2,103 research outputs found

    Lightweight Asynchronous Snapshots for Distributed Dataflows

    Full text link
    Distributed stateful stream processing enables the deployment and execution of large scale continuous computations in the cloud, targeting both low latency and high throughput. One of the most fundamental challenges of this paradigm is providing processing guarantees under potential failures. Existing approaches rely on periodic global state snapshots that can be used for failure recovery. Those approaches suffer from two main drawbacks. First, they often stall the overall computation which impacts ingestion. Second, they eagerly persist all records in transit along with the operation states which results in larger snapshots than required. In this work we propose Asynchronous Barrier Snapshotting (ABS), a lightweight algorithm suited for modern dataflow execution engines that minimises space requirements. ABS persists only operator states on acyclic execution topologies while keeping a minimal record log on cyclic dataflows. We implemented ABS on Apache Flink, a distributed analytics engine that supports stateful stream processing. Our evaluation shows that our algorithm does not have a heavy impact on the execution, maintaining linear scalability and performing well with frequent snapshots.Comment: 8 pages, 7 figure

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Distributed Queuing in Dynamic Networks

    Full text link
    We consider the problem of forming a distributed queue in the adversarial dynamic network model of Kuhn, Lynch, and Oshman (STOC 2010) in which the network topology changes from round to round but the network stays connected. This is a synchronous model in which network nodes are assumed to be fixed, the communication links for each round are chosen by an adversary, and nodes do not know who their neighbors are for the current round before they broadcast their messages. Queue requests may arrive over rounds at arbitrary nodes and the goal is to eventually enqueue them in a distributed queue. We present two algorithms that give a total distributed ordering of queue requests in this model. We measure the performance of our algorithms through round complexity, which is the total number of rounds needed to solve the distributed queuing problem. We show that in 1-interval connected graphs, where the communication links change arbitrarily between every round, it is possible to solve the distributed queueing problem in O(nk) rounds using O(log n) size messages, where n is the number of nodes in the network and k <= n is the number of queue requests. Further, we show that for more stable graphs, e.g. T-interval connected graphs where the communication links change in every T rounds, the distributed queuing problem can be solved in O(n+ (nk/min(alpha,T))) rounds using the same O(log n) size messages, where alpha > 0 is the concurrency level parameter that captures the minimum number of active queue requests in the system in any round. These results hold in any arbitrary (sequential, one-shot concurrent, or dynamic) arrival of k queue requests in the system. Moreover, our algorithms ensure correctness in the sense that each queue request is eventually enqueued in the distributed queue after it is issued and each queue request is enqueued exactly once. We also provide an impossibility result for this distributed queuing problem in this model. To the best of our knowledge, these are the first solutions to the distributed queuing problem in adversarial dynamic networks.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given
    corecore