5,613 research outputs found

    Automatic calcium scoring in low-dose chest CT using deep neural networks with dilated convolutions

    Full text link
    Heavy smokers undergoing screening with low-dose chest CT are affected by cardiovascular disease as much as by lung cancer. Low-dose chest CT scans acquired in screening enable quantification of atherosclerotic calcifications and thus enable identification of subjects at increased cardiovascular risk. This paper presents a method for automatic detection of coronary artery, thoracic aorta and cardiac valve calcifications in low-dose chest CT using two consecutive convolutional neural networks. The first network identifies and labels potential calcifications according to their anatomical location and the second network identifies true calcifications among the detected candidates. This method was trained and evaluated on a set of 1744 CT scans from the National Lung Screening Trial. To determine whether any reconstruction or only images reconstructed with soft tissue filters can be used for calcification detection, we evaluated the method on soft and medium/sharp filter reconstructions separately. On soft filter reconstructions, the method achieved F1 scores of 0.89, 0.89, 0.67, and 0.55 for coronary artery, thoracic aorta, aortic valve and mitral valve calcifications, respectively. On sharp filter reconstructions, the F1 scores were 0.84, 0.81, 0.64, and 0.66, respectively. Linearly weighted kappa coefficients for risk category assignment based on per subject coronary artery calcium were 0.91 and 0.90 for soft and sharp filter reconstructions, respectively. These results demonstrate that the presented method enables reliable automatic cardiovascular risk assessment in all low-dose chest CT scans acquired for lung cancer screening

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Automatic coronary calcium scoring in chest CT using a deep neural network in direct comparison with non-contrast cardiac CT:A validation study

    Get PDF
    Purpose: To evaluate deep-learning based calcium quantification on Chest CT scans compared with manual evaluation, and to enable interpretation in terms of the traditional Agatston score on dedicated Cardiac CT. Methods: Automated calcium quantification was performed using a combination of deep-learning convolution neural networks with a ResNet-architecture for image features and a fully connected neural network for spatial coordinate features. Calcifications were identified automatically, after which the algorithm automatically excluded all non-coronary calcifications using coronary probability maps and aortic segmentation. The algorithm was first trained on cardiac-CTs and refined on non-triggered chest-CTs. This study used on 95 patients (cohort 1), who underwent both dedicated calcium scoring and chest-CT acquisitions using the Agatston score as reference standard and 168 patients (cohort 2) who underwent chest-CT only using qualitative expert assessment for external validation. Results from the deep-learning model were compared to Agatston-scores(cardiac-CTs) and manually determined calcium volumes(chest-CTs) and risk classifications. Results: In cohort 1, the Agatston score and AI determined calcium volume shows high correlation with a correlation coefficient of 0.921(p < 0.001) and R-2 of 0.91. According to the Agatston categories, a total of 67(70 %) were correctly classified with a sensitivity of 91 % and specificity of 92 % in detecting presence of coronary calcifications. Manual determined calcium volume on chest-CT showed excellent correlation with the AI volumes with a correlation coefficient of 0.923(p < 0.001) and R-2 of 0.96, no significant difference was found (p = 0.247). According to qualitative risk classifications in cohort 2, 138(82 %) cases were correctly classified with a k-coefficient of 0.74, representing good agreement. All wrongly classified scans (30(18 %)) were attributed to an adjacent category. Conclusion: Artificial intelligence based calcium quantification on chest-CTs shows good correlation compared to reference standards. Fully automating this process may reduce evaluation time and potentially optimize clinical calcium scoring without additional acquisitions

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Accuracy of an Artificial Intelligence Deep Learning Algorithm Implementing a Recurrent Neural Network With Long Short-term Memory for the Automated Detection of Calcified Plaques From Coronary Computed Tomography Angiography

    Get PDF
    Purpose: The purpose of this study was to evaluate the accuracy of a novel fully automated deep learning (DL) algorithm implementing a recurrent neural network (RNN) with long short-term memory (LSTM) for the detection of coronary artery calcium (CAC) from coronary computed tomography angiography (CCTA) data. Materials and Methods: Under an IRB waiver and in HIPAA compliance, a total of 194 patients who had undergone CCTA were retrospectively included. Two observers independently evaluated the image quality and recorded the presence of CAC in the right (RCA), the combination of left main and left anterior descending (LM-LAD), and left circumflex (LCx) coronary arteries. Noncontrast CACS scans were allowed to be used in cases of uncertainty. Heart and coronary artery centerline detection and labeling were automatically performed. Presence of CAC was assessed by a RNN-LSTM. The algorithm's overall and per-vessel sensitivity, specificity, and diagnostic accuracy were calculated. Results: CAC was absent in 84 and present in 110 patients. As regards CCTA, the median subjective image quality, signal-to-noise ratio, and contrast-to-noise ratio were 3.0, 13.0, and 11.4. A total of 565 vessels were evaluated. On a per-vessel basis, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 93.1% (confidence interval [CI], 84.3%-96.7%), 82.76% (CI, 74.6%-89.4%), and 86.7% (CI, 76.8%-87.9%), respectively, for the RCA, 93.1% (CI, 86.4%-97.7%), 95.5% (CI, 88.77%-98.75%), and 94.2% (CI. 90.2%-94.6%), respectively, for the LM-LAD, and 89.9% (CI, 80.2%-95.8%), 90.0% (CI, 83.2%-94.7%), and 89.9% (CI, 85.0%-94.1%), respectively, for the LCx. The overall sensitivity, specificity, and diagnostic accuracy were 92.1% (CI, 92.1%-95.2%), 88.9% (CI. 84.9%-92.1%), and 90.3% (CI, 88.0%-90.0%), respectively. When accounting for image quality, the algorithm achieved a sensitivity, specificity, and diagnostic accuracy of 76.2%, 87.5%, and 82.2%, respectively, for poor-quality data sets and 93.3%, 89.2% and 90.9%, respectively, when data sets rated adequate or higher were combined. Conclusion: The proposed RNN-LSTM demonstrated high diagnostic accuracy for the detection of CAC from CCTA

    Application of AI in cardiovascular multimodality imaging

    Get PDF
    Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging

    Diagnostic Value of Fully Automated Artificial Intelligence Powered Coronary Artery Calcium Scoring from 18F-FDG PET/CT

    Full text link
    OBJECTIVES The objective of this study was to assess the feasibility and accuracy of a fully automated artificial intelligence (AI) powered coronary artery calcium scoring (CACS) method on ungated CT in oncologic patients undergoing 18F-FDG PET/CT. METHODS A total of 100 oncologic patients examined between 2007 and 2015 were retrospectively included. All patients underwent 18F-FDG PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) by 99mTc-tetrofosmin within 6 months. CACS was manually performed on non-contrast ECG-gated CT scans obtained from SPECT-MPI (i.e., reference standard). Additionally, CACS was performed using a cloud-based, user-independent tool (AI-CACS) on ungated CT scans from 18F-FDG-PET/CT examinations. Agatston scores from the manual CACS and AI-CACS were compared. RESULTS On a per-patient basis, the AI-CACS tool achieved a sensitivity and specificity of 85% and 90% for the detection of CAC. Interscore agreement of CACS between manual CACS and AI-CACS was 0.88 (95% CI: 0.827, 0.918). Interclass agreement of risk categories was 0.8 in weighted Kappa analysis, with a reclassification rate of 44% and an underestimation of one risk category by AI-CACS in 39% of cases. On a per-vessel basis, interscore agreement of CAC scores ranged from 0.716 for the circumflex artery to 0.863 for the left anterior descending artery. CONCLUSIONS Fully automated AI-CACS as performed on non-contrast free-breathing, ungated CT scans from 18F-FDG-PET/CT examinations is feasible and provides an acceptable to good estimation of CAC burden. CAC load on ungated CT is, however, generally underestimated by AI-CACS, which should be taken into account when interpreting imaging findings

    Machine learning applications in cardiac computed tomography: a composite systematic review

    Get PDF
    Artificial intelligence and machine learning (ML) models are rapidly being applied to the analysis of cardiac computed tomography (CT). We sought to provide an overview of the contemporary advances brought about by the combination of ML and cardiac CT. Six searches were performed in Medline, Embase, and the Cochrane Library up to November 2021 for (i) CT-fractional flow reserve (CT-FFR), (ii) atrial fibrillation (AF), (iii) aortic stenosis, (iv) plaque characterization, (v) fat quantification, and (vi) coronary artery calcium score. We included 57 studies pertaining to the aforementioned topics. Non-invasive CT-FFR can accurately be estimated using ML algorithms and has the potential to reduce the requirement for invasive angiography. Coronary artery calcification and non-calcified coronary lesions can now be automatically and accurately calculated. Epicardial adipose tissue can also be automatically, accurately, and rapidly quantified. Effective ML algorithms have been developed to streamline and optimize the safety of aortic annular measurements to facilitate pre-transcatheter aortic valve replacement valve selection. Within electrophysiology, the left atrium (LA) can be segmented and resultant LA volumes have contributed to accurate predictions of post-ablation recurrence of AF. In this review, we discuss the latest studies and evolving techniques of ML and cardiac CT
    • …
    corecore