32,428 research outputs found

    A Distributed Merge and Split Algorithm for Fair Cooperation in Wireless Networks

    Full text link
    This paper introduces a novel concept from coalitional game theory which allows the dynamic formation of coalitions among wireless nodes. A simple and distributed merge and split algorithm for coalition formation is constructed. This algorithm is applied to study the gains resulting from the cooperation among single antenna transmitters for virtual MIMO formation. The aim is to find an ultimate transmitters coalition structure that allows cooperating users to maximize their utilities while accounting for the cost of coalition formation. Through this novel game theoretical framework, the wireless network transmitters are able to self-organize and form a structured network composed of disjoint stable coalitions. Simulation results show that the proposed algorithm can improve the average individual user utility by 26.4% as well as cope with the mobility of the distributed users.Comment: This paper is accepted for publication at the IEEE ICC Workshop on Cooperative Communications and Networkin

    Distributed Cooperative Sensing in Cognitive Radio Networks: An Overlapping Coalition Formation Approach

    Full text link
    Cooperative spectrum sensing has been shown to yield a significant performance improvement in cognitive radio networks. In this paper, we consider distributed cooperative sensing (DCS) in which secondary users (SUs) exchange data with one another instead of reporting to a common fusion center. In most existing DCS algorithms, the SUs are grouped into disjoint cooperative groups or coalitions, and within each coalition the local sensing data is exchanged. However, these schemes do not account for the possibility that an SU can be involved in multiple cooperative coalitions thus forming overlapping coalitions. Here, we address this problem using novel techniques from a class of cooperative games, known as overlapping coalition formation games, and based on the game model, we propose a distributed DCS algorithm in which the SUs self-organize into a desirable network structure with overlapping coalitions. Simulation results show that the proposed overlapping algorithm yields significant performance improvements, decreasing the total error probability up to 25% in the Q_m+Q_f criterion, the missed detection probability up to 20% in the Q_m/Q_f criterion, the overhead up to 80%, and the total report number up to 10%, compared with the state-of-the-art non-overlapping algorithm

    Dynamic Policies for Cooperative Networked Systems

    Full text link
    A set of economic entities embedded in a network graph collaborate by opportunistically exchanging their resources to satisfy their dynamically generated needs. Under what conditions their collaboration leads to a sustainable economy? Which online policy can ensure a feasible resource exchange point will be attained, and what information is needed to implement it? Furthermore, assuming there are different resources and the entities have diverse production capabilities, which production policy each entity should employ in order to maximize the economy's sustainability? Importantly, can we design such policies that are also incentive compatible even when there is no a priori information about the entities' needs? We introduce a dynamic production scheduling and resource exchange model to capture this fundamental problem and provide answers to the above questions. Applications range from infrastructure sharing, trade and organisation management, to social networks and sharing economy services.Comment: 6-page version appeared at ACM NetEcon' 1

    Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems

    Get PDF
    G. Luque, E. Alba, Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems, In Proceedings of Intelligent Networking and Collaborative Systems, pp. 184-191, 2-4 September, 2015, Taipei, Taiwan, IEEE PressThis paper proposes a novel algorithm combining path relinking with a set of cooperating trajectory based parallel algorithms to yield a new metaheuristic of enhanced search features. Algorithms based on the exploration of the neighborhood of a single solution, like simulated annealing (SA), have offered accurate results for a large number of real-world problems in the past. Because of their trajectory based nature, some advanced models such as the cooperative one are competitive in academic problems, but still show many limitations in addressing large scale instances. In addition, the field of parallel models for trajectory methods has not deeply been studied yet (at least in comparison with parallel population based models). In this work, we propose a new hybrid algorithm which improves cooperative single solution techniques by using path relinking, allowing both to reduce the global execution time and to improve the efficacy of the method. We applied here this new model using a large benchmark of instances of two real-world NP-hard problems: DNA fragment assembly and QAP problems, with competitive results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Multitask Diffusion Adaptation over Networks

    Full text link
    Adaptive networks are suitable for decentralized inference tasks, e.g., to monitor complex natural phenomena. Recent research works have intensively studied distributed optimization problems in the case where the nodes have to estimate a single optimum parameter vector collaboratively. However, there are many important applications that are multitask-oriented in the sense that there are multiple optimum parameter vectors to be inferred simultaneously, in a collaborative manner, over the area covered by the network. In this paper, we employ diffusion strategies to develop distributed algorithms that address multitask problems by minimizing an appropriate mean-square error criterion with â„“2\ell_2-regularization. The stability and convergence of the algorithm in the mean and in the mean-square sense is analyzed. Simulations are conducted to verify the theoretical findings, and to illustrate how the distributed strategy can be used in several useful applications related to spectral sensing, target localization, and hyperspectral data unmixing.Comment: 29 pages, 11 figures, submitted for publicatio
    • …
    corecore