
Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems

Gabriel Luque

Universidad de Málaga, Andalucı́a Tech

E.T.S.I. Informática, Campus Teatinos,

29071 Málaga (España)

gabriel@lcc.uma.es

Enrique Alba

Universidad de Málaga, Andalucı́a Tech

E.T.S.I. Informática, Campus Teatinos,

29071 Málaga (España)

eat@lcc.uma.es

Abstract—This paper proposes a novel algorithm combining
path relinking with a set of cooperating trajectory based
parallel algorithms to yield a new metaheuristic of enhanced
search features. Algorithms based on the exploration of the
neighborhood of a single solution, like simulated annealing
(SA), have offered accurate results for a large number of real-
world problems in the past. Because of their trajectory based
nature, some advanced models such as the cooperative one
are competitive in academic problems, but still show many
limitations in addressing large scale instances. In addition,
the field of parallel models for trajectory methods has not
deeply been studied yet (at least in comparison with parallel
population based models). In this work, we propose a new
hybrid algorithm which improves cooperative single solution
techniques by using path relinking, allowing both to reduce the
global execution time and to improve the efficacy of the method.
We applied here this new model using a large benchmark of
instances of two real-world NP-hard problems: DNA fragment
assembly and QAP problems, with competitive results.

Keywords-parallelism; trajectory based metaheuristics; path
relinking; QAP; DNA fragment assembly;

I. INTRODUCTION

Metaheuristics are general heuristics that provide sub-

optimal solutions in a reasonable time for various optimiza-

tion problems [11]. According to the number of solutions

they manage during optimization process, they fall into

two categories: trajectory based methods and population

based techniques. On the one hand, a population based

metaheuristic makes use of a randomly generated population

of solutions. The initial population is enhanced through a

natural evolution process. At each generation of the process,

the whole population or a part of the population is replaced

by newly generated individuals (often the best ones). On the

other hand, a trajectory based algorithm starts with a single

initial solution which, at each step of the search, is replaced

by another (often better) solution found in its neighborhood.

Although the use of metaheuristics allows to significantly

reduce the temporal complexity of the search process, the

exploration remains time-consuming for many industrial and

engineering problems. In this context, parallelism emerges

as a useful strategy to reduce the computational times down

to affordable values. The point is that the parallel versions of

metaheuristics allows not only to speed up the computations,

but also to improve the quality of the provided solutions

[1], [18]. For both trajectory-based and population-based

metaheuristics, different parallel models have been proposed

in the literature. In general, these parallel models are mostly

oriented to study parallel population-based algorithms, but

it actually exists a gap in the studies about parallel models

for single solution methods from which something could be

gained for other researchers.

The focus of this paper is on parallel trajectory-based

metaheuristics. Usually, three major parallel models for this

kind of algorithms exist: the parallel exploration of the

neighborhood, the parallel evaluation of each solution, and

the multi-start model. The two first models speed up the

execution of the method without changing the semantics of

the algorithm in comparison with a sequential exploration.

The last one is maybe more interesting from the algorithmic

point of view since it can change the behavior of the

method with respect to its serial counterpart. The multi-start

model lies in launching in parallel several independent or

cooperative homo/heterogeneous algorithms. Usually, in its

cooperative mode, subalgorithms of the parallel multi-start

model exchange information (solutions) during execution

and when the target subalgorithm receives a solution, it

continues the search using the previous one or the newly

received one according to a selection scheme. The problem

of this cooperative model is that some interesting informa-

tion is lost since either the new solution is discarded (it is

not chosen by the selection scheme) and no new information

is incorporated, or it is accepted and the previous historical

information of the subalgorithm is lost.

This work proposes a new parallel yet simple model that

extends the cooperative multi-start model to avoid the afore-

mentioned flaw. In this case, when a solution is received,

we use the path relinking technique to generate a set of new

candidate solutions which combine the information of the

new solution and the previous tentative solution of the target

subalgorithm. Therefore, the subalgorithm incorporates new

information but, at the same time, it keeps information

of its own search. The utilization of path relinking opens

some design alternatives: which subalgorithms cooperate,

which solution of the set generated by path relinking will be

selected to continue the search, . . . Then, one goal of this

paper is to propose a new cooperative scheme and study

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62905806?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


the different design alternatives. Other important objective

of this work is the utilization of this parallel model to solve

two real-world NP-hard problems: DNA fragment assembly

[17] and QAP problems [16].

This paper is organized as follows. The next section

(Section II) introduces some background information about

parallel trajectory based methods and path relinking. Section

III presents our proposed parallel model. Then we describe

the experimental design used in this paper. Later, we discuss

experimental results in Section V and finally we summarize

the conclusions and give some hints on the future work.

II. BACKGROUND

In this section, we present some background information

about the basic techniques that we use to design our new

proposal described in this paper.

A. Trajectory based techniques

Trajectory based methods, illustrated in Algorithm 1,

are single solution-based metaheuristics dedicated to the

improvement only one solution in its neighborhood. They

start their exploration process from an initial solution ran-

domly generated or provided by another metaheuristic. This

solution is then updated during a certain number of steps. At

each step, the current solution is replaced by another (often

the better) one found in its neighborhood. These methods

are mainly characterized by: an internal memory storing

the state of the search, a strategy for the selection of the

initial solution, a generator of candidate solutions i.e. the

neighborhood, and a selection policy of the candidate moves.

Three major trajectory based algorithms are largely used:

Hill Climbing (HC) [16], Simulated Annealing (SA) [14],

and Tabu Search (TS) [12].

Generate(s(0));
t := 0;

while not Termination Criterion(s(t) do

m(t) := SelectAcceptableMove(s(t));
s(t+ 1) := ApplyMove(m(t),s(t));
t := t+ 1;

end while

Algorithm 1: Trajectory based technique skeleton pseudo-

code

Although these technique allows to obtain very accurate

results for a large number of problems, some advanced

mechanisms have to be used to tackle with the high require-

ments of the industrial problems. One of these mechanisms

is the utilization of parallel models. In the literature are

usually identified three major parallel distributed models

of this kind of method [2]: the parallel exploration of

the neighborhood, the multi-start model, and the parallel

evaluation of each solution.

• Parallel multi-start model: The model consists in

launching in parallel several independent or cooperative

homo/heterogeneous single solution method. Each sub-

algorithm is often initialized with a different solution.

The independent approach is widely exploited because

it is natural and easy for the user. In this case, the

semantics of the model is the same as the serial execu-

tion. That is to say the results obtained with N parallel

independent methods is the same as that provided by

N algorithms performed in a serial way on a single

machine. The parallelism allows to efficiently enhance

the robustness of the execution.

In its cooperative mode, subalgorithms of the parallel

multi-start model exchange information during execu-

tion. Usually that information is a solution.

• Parallel exploration of the neighborhood model:

This parallel model is a kind of farmer/worker model

allowing to speed up the exploration of the possible

moves without changing the semantics of the algorithm

in comparison with a sequential exploration. At the

beginning of each iteration of the algorithm, the farmer

sends the current solution to a pool of workers. Each

worker explores some neighboring candidates, and re-

turns back the results to the farmer.

• Parallel evaluation of solution model: The fitness

of each solution is evaluated in a parallel centralized

way. This kind of parallelism could be efficient if the

evaluation function is CPU time-consuming and/or IO

intensive.

In the literature, we can found parallel versions of the

most popular trajectory based metaheuristics such as parallel

SA [9], [4], parallel VNS [19], [8], parallel TS [3], [6],

. . . But most of them are focused on the application to be

solved and they use classical parallel models. The aim of this

paper is the parallel model itself, our goal is to provide a

new mechanism to build more efficient and accurate parallel

solution-based techniques.

The two last models uses the parallel platform to speedup

the search procedure but they don’t change the behavior of

the method. On the contrary, the first parallel model using

cooperation modify the dynamics of the technique. In this

work, we focus in this kind of methods.

B. Path Relinking

Path relinking (PR) [13] was originally proposed into the

context of scatter search by extension of its basic philosophy.

PR is based on the generation of paths between high quality

solutions. This leads to a broader conception of the meaning

of creating combinations of solutions. Such combinations

may be conceived to arise by generating paths between and

beyond selected solutions in neighborhood space, rather than

in Euclidean space. This conception is reinforced by the fact

that a path between solutions in a neighborhood space will

generally yield new solutions that share a significant subset



Figure 1. Path relinking scheme.

of attributes contained in the parent solutions, in varying

“mixes” according to the path selected and the location on

the path that determines the solution currently considered.

The character of such paths is easily specified by reference

to solution attributes that are added, dropped or otherwise

modified by the moves executed in neighborhood space. To

generate the desired paths, it is only necessary to select

moves that perform the following role: upon starting from an

initiating solution, the moves must progressively introduce

attributes contributed by a guiding solution (or reduce the

distance between attributes of the initiating and guiding

solutions). In Figure 1, we can observe the scheme followed

for this technique to obtain new solutions.

III. OUR PROPOSED MODEL

Our goal is to design a new parallel model for trajectory

based metaheuristics which allows to reduce the global

execution time but, at the same time, it also improves the

efficacy of the exploration of the search space. A number of

papers has been devoted to this topic for parallel approaches

involving population based methods (some of them also

involving trajectory-based ones) but it is not a very studied

field for pure parallel trajectory based metaheuristics.

Since we want to improve the efficacy of the resulting

parallel algorithm, we focus on the multi-start cooperative

paradigm (the other two models do not change the dynamics

of the method with respect to the serial version). As dis-

cussed in the introduction, a problem in classical approaches

of multi-start models for trajectory-based metaheuristics

is the lost of information. Indeed, when a subalgorithm

receives a solution from other subalgorithm, it has to choose

whether it continues the search either with the current one

or the newly received one, loosing the stored information in

the discarded solution.

We propose a new model in which we do not have

to choose between the two solutions, but generate a new

solution with the main features of both solutions. With

this aim, we can use some mechanisms, similar to the

recombination operator of population based method, which

combine both solutions [15]. But, in this work, we propose

the utilization of a more advanced technique such as path

relinking. We run this technique to generate some paths

using the current solution and the incoming solution as initial

points. The generated path provides the parallel technique

of a set of candidate solutions to continue the search, and

therefore, a selection scheme is needed to chose one.

Several important design issues arise from the general

model proposed in this work:

• Cooperation scheme: it indicates what and how sub-

algorithms cooperate each other.

• Selection scheme: it refers what solution is selected

from the set of candidate ones generated by PR.

For each design feature we have proposed some alterna-

tives. In the previous existing multi-start models, the features

of the incoming solution were not very important rather

than it fitness value, but now, this issue can provoke an

important impact in the search behaviour. Different possible

cooperation schema are analyzed here:

• Predefined: in this case, each subalgorithm receives a

single solution (the sending island is defined by the

topology). Therefore, any subalgorithm only receives a

single solution which is combined with the local one.

• Depending of the fitness value (best): in this case,

each subalgorithm receives a solution from each subal-

gorithm which composes the global method. Now, the

subalgorithm has to select one solution from this set

of candidate solutions, that will be combined with the

current one. In this strategy, the selection mechanism is

based on the fitness value of the incoming solutions. In

this study, we select the solution with the best fitness.

• Depending of the features of the solution (distance):



as in the previous one, each subalgorithm receives

several solutions (one per subalgorithm) and it has to

select one. In this case, the selection will be performed

by using a genotypic distance (a diversity measure)

among the solutions and we select the farthest one. This

distance depends on how the solution are represented

in the algorithm.

• Random: as in the previous scenarios, each subalgo-

rithm receives several solutions (one per subalgorithm)

but in this strategy, random one is selected from all the

incoming solutions.

Using one of the these strategies, our proposed technique

obtains the second initial solution (the first initial one is the

current point of the subalgorithm) and then, we can apply

the path relinking to generate a path. That path provides

some new candidate solutions and the method has to select

one of them to replace the current one and continue the

search process. To choose the new solution we also take

into account some alternatives:

• Best: the algorithm selects the best solution in the

generated path:

maxs∈S(f(s)), (1)

where S is a set of solution composed by the points

visited during the path generated by PR and f is the

fitness function (assuming the maximization case).

• Most shared information: in this case, the subalgo-

rithm selects the solution sharing more information

from initial solutions. To do this, we calculate the

genotypic distance among the solutions and then we

apply the next equation:

mins∈S(max(dist(s, s′), dist(s, s′′))), (2)

where S is a set of solution composed by the points

visited during the path generated by PR, s′ and s′′ are

the initial solutions and dist is the genotypic distance

between two solutions. With this process we simulta-

neously minimize the distance of the new solution with

respect to the two initial ones.

• Random: in this case, the subalgorithm select a random

solution from the path without taking into account its

quality or any other feature.

In the experimental section we study the behaviour and

the performance of each strategy.

IV. EXPERIMENTAL DESIGN

In this section, we describe the experimental design

followed in this work. First, we present the problems and

the instances used in the experiments. Later, we explain the

algorithm used to test our parallel model. Finally, we present

the methodology and parameters used in the experiments.

A. Benchmark

In order to make more relevant contribution, we have

selected a wide set of instances from two very different

problems: DNA fragment assembly and QAP.

DNA fragment assembly: In order to determine the function

of a specific genes, scientists have learned to read the

sequence of nucleotides comprising a DNA sequence in

a process called DNA sequencing. To do that, multiple

exact copies of the original DNA sequence are made. Each

copy is then cut into short fragments at random positions.

These small fragments can be read in the laboratory by

specialized equipment. After the fragment set is obtained,

a traditional assemble approach is followed in this order:

overlap, layout, and then consensus. To ensure that enough

fragments overlap, the reading of fragments continues until

a coverage is satisfied. We give a brief description of each

of the three phases, namely overlap, layout, and consensus:

• Overlap Phase - Finding the overlapping fragments.

This phase consists of finding the best or longest match

between the suffix of one sequence and the prefix of

another. In this step, we compare all possible pairs

of fragments to determine their similarity. Usually, a

dynamic programming algorithm applied to semiglobal

alignment is used in this step. The intuition behind

finding the pairwise overlap is that fragments with a

significant overlap score are very likely next to each

other in the target sequence.

• Layout Phase - Finding the order of fragments based on

the computed similarity score. This is the most difficult

step because it is hard to tell the true overlap due to the

several challenges: unknown fragment orientation, base

call errors, incomplete coverage, repeated regions, and

chimeras and contamination. After the order is deter-

mined, the progressive alignment algorithm is applied

to combine all the pairwise alignments obtained in the

overlap phase.

• Consensus Phase - Deriving the DNA sequence from

the layout. The most common technique used in this

phase is to apply the majority rule in building the

consensus.

From a combinatorial optimization viewpoint, the whole

process of constructing of the consensus sequence is similar

to that of a tour in the Travelling Salesman Problem (TSP).

This is because each fragment would have to be in a specific

fragment ordering sequence in order for the formation of

a consensus sequence to take place. The main difference

between TSP and DNA fragment assembly is that there

would not be a proper alignment between the first and the

last fragments in the consensus sequence that is comparable

to the connection between the first and the last cities in

the TSP solution. Therefore, many equivalent solutions to

TSP are thus inequivalent in our context. Other important



difference is that while the ordering is the final solution

to TSP, in our case, this ordering is only an intermediate

step and several different orderings can produce equivalent

results. Other minor differences can be found between

both problems due to the challenges described previously

(unknown orientation, incomplete coverage, etc.).

To measure the quality of a consensus, we can look at

the distribution of the coverage. Coverage at a base position

is defined as the number of fragments at that position. It is

a measure of the redundancy of the fragment data, and it

denotes the number of fragments, on average, in which a

given nucleotide in the target DNA is expected to appear.

It is computed as the number of bases read from fragments

over the length of the target DNA [17].

Coverage =

∑n

i=1 length of the fragment i

target sequence length
(3)

where n is the number of fragments. The higher the cover-

age, the fewer number of the gaps, and the better the result.

To test and analyze the performance of our algorithm

we generated several problem instances with GenFrag [7].

GenFrag takes a known DNA sequence and uses it as a

parent strand from which random fragments are generated

according to the criteria supplied by the user (mean fragment

length and coverage of parent sequence).

We have chosen four sequences from the NCBI web

site1: a human apolopoprotein HUMAPOBF, with accession

number M15421, which is 10,089 bases long; the complete

genome of bacteriophage lambda, with accession number

J02459, which is 20k bases long; and the Neurospora

crassa (common bread mold) BAC, with accession number

BX842596, which is 77,292 bases long.

Table I
INFORMATION OF DATASETS.

Parameters
Instance

M15421 J02459 BX842596

Coverage 5 7 7 4 7
Fragment length 398 383 405 708 703
Nb. of fragments 127 177 352 442 773

QAP: The Quadratic Assignment Problem (QAP) is a well-

known NP-hard combinatorial optimization problem, which

is the core of many real-world optimization problems [10].

QAP models many applications in diverse areas.

Let P be a set of n facilities and L a set of n locations.

For each pair of locations i and j, an arbitrary distance is

specified rij and for each pair of facilities p and q, a flow

is specified wpq . The QAP consists of assigning to each

location in L one facility in P in such manner that the total

cost of the assignment is minimized. Each location can only

contain one facility and all facilities must be assigned to one

1http://www.ncbi.nlm.nih.gov/

location. For each pair of locations, the cost is calculated

as the product of the distance between the locations and

the flow associated with the facilities in the locations. The

total cost is the sum of all the costs associated with each

pair of locations. One solution to this problem is a bijection

between L and P , that is, x : L → P such that x is bijective.

Without loss of generality, we can just assume that L = P =
{1, 2, ..., n} and each solution x is a permutation in Sn, the

set permutations of {1, 2, ..., n}.

The cost function to be minimized can be formally defined

as:

f(x) =

n∑

i,j=1

ri,j · wx(i),x(j) (4)

We chose the five most complex QAP instances of

QAPLIB Library2. The complexity of the QAP instances

is given by their size and autocorrelation length ℓ [5]. In

consequence, we selected esc128, tho150, tai100b, tai150b,

and tai256c instances that are described in Table II.

Table II
THE FIVE MOST COMPLEX INSTANCES OF QAPLIB.

Instance Size ξ ℓ Lowest Known Cost

esc128 128 32 32 64

tho150 150 41.19 44.174 8.13E+06

tai100b 100 35.472 39.613 1.19E+09

tai150b 150 40.458 42.947 4.99E+08

tai256c 256 64 64 4.48E+07

B. Algorithm

We have used the well-known simulated annealing al-

gorithm to test our parallel model. Simulated annealing

(SA) [14] is a stochastic optimization technique, which

has its origin in statistical mechanics. It is based upon a

cooling procedure used in industry. This procedure heats

the material to a high temperature so that it becomes a

liquid and the atoms can move relatively freely. The tem-

perature is then slowly lowered so that at each temperature

the atoms can move enough to begin adopting the most

stable configuration. In principle, if the material is cooled

slowly enough, the atoms are able to reach the most stable

(optimum) configuration. This smooth cooling process is

known as annealing. Algorithm 2 shows a scheme of SA.

First at all, the parameter T , called the temperature, and

the solution, are initialized. The solution s1 is accepted

as the new current solution if δ = f(s1) − f(s0) < 0.

Stagnations in local optimum are prevented by accepting

also solutions which increase the objective function value

with a probability exp(−δ/T ) if δ > 0. This process is

repeated several times to obtain good sampling statistics

for the current temperature. The number of such iterations

is given by the parameter Markov Chain length, whose

name alludes the fact that the sequence of accepted solutions

2http://www.seas.upenn.edu/qaplib/



is a Markov chain (a sequence of states in which each state

only depends on the previous one). Then the temperature is

decremented and the entire process repeated until a frozen

state is achieved at Tmin. The value of T usually varies from

a relatively large value to a small value close to zero.

t = 0

initialize(T)

s0 = Initial Solution()

v0 = Evaluate(s0)

repeat

repeat

t = t + 1

s1 = Generate(s0,T)

v1 = Evaluate(s0,T)

if Accept(v0,v1,T) then

s0 = s1

v0 = v1

end if

until t mod Markov Chain length == 0

T = Update(T)

until ’loop stop criterion’ satisfied

Algorithm 2: Scheme of the Simulated Annealing(SA)

Algorithm.

In order to apply SA to solve our problems, we have

to define how a solution in the neighborhood is generated

(function Generate in Algorithm 2). Since we use an integer

permutatio to represent a solution for both problem, we use

the standard swap operator (the values of two positions are

interchanged) to build a new solution from the current one.

In our parallel approach we run eight independent in-

stances (subalgorithms) of SA which asynchronously coop-

erate every 50 iterations. As cooperation scheme, we use

the four alternatives presented in Section III. When a new

solution arrives to the target subalgorithm, the PR method

is applied to generate a path. To build this path, first, it

analyzes the component which are different between the two

initial solutions, and then, each visited point in the path is

generated by changing one of these components.

This way of building the path allows us to obtain efficient

implementations of the selection scheme (see Section III).

For example, we do not need to build the whole path

when we want to select a random solution from the path

or when we plan to use a solution which maximizes the

shared information, since they can be calculated a priori

only generating a single solution. However, to obtain the best

solution of the path, all the visited points should be generated

and evaluated. In order to the reduce the computation cost of

this last strategy, we will use partial evaluations instead of

a complete evaluation of the solution. This allows to reduce

the computational complexity of the evaluation of a solution

from O(n2) (a complete evaluation) to O(n) (when a partial

evaluation is performed).

C. Methodology

This subsection provides the reader with the details of

the experiments performed to evaluate the new parallel

model proposed for trajectory-based metaheuristics. We have

analyzed 12 different variants (three selection strategies and

four cooperation schema). We use the terminology SA X Y,

where X is the selection mechanism and Y is the cooperation

strategy. The possible values for X are: rnd for random,

bst for best, and inf for maximizing the shared information

scheme. The possible values for Y are: pre for the predefined

topology, bst for the best solution, dst for the strategy based

on the distance, and rnd for the random one. We will

also compare our proposed model with a parallel version

using the multi-start no-cooperative model, also known as

independent run model (iSA) , and a parallel version using

the classical multi-start cooperative model (cSA), in which

incoming solutions just replace the current one. In order to

perform fair comparisons, the stopping condition is to find

the optimal solution.

The experiments have been executed on a Intel Xeon(R)

CPU E3-1220 v3 @ 3.10GHz with 16 GB running Ubuntu

Linux 14.4. Because of the stochastic nature of the algo-

rithms, we perform 30 independent runs of each test to

gather meaningful experimental data and apply statistical

confidence metrics to validate our results. First, we use the

Kolmogorov-Smirnov test to check whether the data follows

a normal distribution or not. If so, then we carry out an

ANOVA test to compare the means; otherwise, a Kruskal-

Wallis test is used to compare the medians. In each case, a

confidence level of 99 % is used.

V. ANALYSIS OF THE EXPERIMENTS

In this section we analyze the results of the different

variants of our proposed model. First, we study the accuracy

of the methods and then, we discuss their computational

cost.

A. Accuracy

Let’s first compare the accuracy of the different algo-

rithms. Since there are many different problem instances and

analyzing them thoroughly would hinder us from drawing

clear conclusions, we have summarized in Table III the

results. In this table we only study the accuracy of the

techniques. Since the stopping criterion is to find the optimal

solution (if it is possible since some variants get stuck in a

local one), to measure the accuracy we use the number of

instances solved by the method (the algorithm was able to

find the optimum). We use two different values: the first one

is the number of instances in which the algorithm found the

optimal solution in at least one run; and the second one is

the number of instances in which the algorithm found the



optimal solution in robust way (this means the algorithm

find the optimum in at least 25 out 30 independent runs).

The range of both values is between 0 and 10 (5 instances

of QAP plus 5 instances of DNA Fragment Assembly)

Cooperation scheme Selection scheme
bst rnd inf

pre 7 - 3 5 - 1 6 - 3
bst 10 - 10 10 - 5 10 - 10

rnd 9 - 6 7 - 3 9 - 4
dst 10 - 10 8 - 5 10 - 8

iSA 3 - 0
cSA 5 - 1

Table III
ACCURACY OF THE ALGORITHMS.

From Table III, we can obtain several interesting conclu-

sions. First, we can note that cooperative schema signifi-

cantly outperform to non-cooperative ones. In fact, iSA is

not able to find the solution to any instance in a robust way.

A second important conclusion is that all the variants of our

model outperform traditional parallel models for trajectory

based methods. This results shows that the exploration

scheme induced by our model is more accurate than the

other parallel algorithms in the context of this problem.

Analyzing the different variants of the proposed model,

it can be seen that the models that make use of some

information from the incoming solutions (fitness, distance

or shared information) outperform the variants which are

based on other features (random or predefined topologies).

This is an expected result since the utilization of additional

information during the process allows the method to have

more elements to guide its search.

In concrete, we can see that cooperation strategies using

the best incoming solution or the farthest solution are

the best variants. This is a quite surprising result, since

these techniques promote very different search behaviours

(the bst strategy favors the intensification while the dst

scheme promotes the diversification) but both methods get

very high-quality solutions. A similar behaviour can be

observe when we analyze the different selection method:

the bst (which promotes intensification) and inf (which

promotes diversification) strategies obtain equivalent results.

Although the result are similar, we can notice a clear trend

toward the techniques which favor the intensification. In fact,

SA bst bst, SA bst inf and SA dst bst are the only ones

which can solve all the instances in all the runs.

B. Computational cost

Now, we focus on the computational cost: numerical

performance (number of partial evaluations) and wall-clock

time (in seconds). In order to perform a fair comparison, we

only consider the algorithms which get similar results. In

concrete, we compare SA bst bst, SA bst inf, SA dst bst

y SA dst inf using the instances which are robustly solved

by these methods. In Figure 2, we show the numerical

performance (left figure) and the runtime (right figure). Both

values are normalized with respect to the value obtained by

SA dst inf.

From Figure 2, we can distinguish three different be-

haviours according to the statistical analysis (all the results

are statistically different with the exception of SA X inf

models) . The first behaviour is the presented by SA dst bst

which is the variant with the highest computational cost.

This is expected since the initial solutions selected by dst

cooperation strategy are very different and therefore the

generated path are longer and it also has to evaluate all the

generated solution to find the best solution in the path (bst

selection scheme). The second behaviour is the provoked

by SA bst bst which is the second variant with a higher

computational cost. This high cost is due to the utilization of

bst selection scheme, in which the variant has to evaluate all

the solutions in the path, although in this case the path are

usually shorter than in the previous variant (SA dst bst).

Finally, the last behaviour is the presented by SA X inf

strategies which need less runtime to find the solution. This

is mainly due to the inf selection scheme only need to

evaluate a single solution in the path.

Summarizing we can conclude that variants using the

best solution in the path obtain the best accurate results

but they need more execution time to find these high-

quality solutions. By contrast, strategies using the shared

information between solutions are faster but the solution

obtained are slightly worse.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have developed a new parallel model for

trajectory based methods, which improves the cooperation

phase by means of adding path relinking technique. The

utilization of this last technique allow to generate a wide

set of candidate solutions to continue the search. This set is

composed by solutions which include information from the

current solution of the subalgorithm and also information

from the incoming solution.

The results show that our proposed method is more

accurate and efficient than the existing one. We have studied

different design alternatives such as the several cooperation

schema or different mechanism to select the next solution

from the set of solutions generated by path relinking. Each

variant has its own advantages and drawbacks. For example,

we saw that using the best solution of the path, the algorithm

obtains very accurate solution but the computation cost is

higher.

As future work, we plan to extend this study to other

problems or other trajectory based methods for generalizing

the conclusion of this paper. In this paper, we have observed

that the evaluation of the point visited by the path generated

by PR is a quite high-consuming process, then we want to

analyze different alternatives to perform that process (maybe



(a) (b)

Figure 2. (a) Numerical performance (number of partial evaluations) and (b) execution time (seconds).

using some theoretical results about the search space) and

then speed up the search.

ACKNOWLEDGMENTS

This research has been partially funded by project number

8.06/5.47.4142 in collaboration with the VSB-Technical

University of Ostrava and Universidad de Málaga (An-

dalucı́a Tech) UMA/FEDER FC14-TIC36, programa de

fortalecimiento de las capacidades de I+D+i en las uni-

versidades 2014-2015, de la Consejerı́a e Economı́a, In-

novación, Ciencia y Empleo, cofinanciado por el fondo

europeo de desarrollo regional (FEDER) Also, partially

funded by the Spanish MINECO project TIN2014-57341-

R (http://moveon.lcc.uma.es).

REFERENCES

[1] E. Alba, editor. Parallel Metaheuristics: A New Class of
Algorithms. Wiley, 2005.

[2] E. Alba, G. Luque, and S. Nesmachnow. Parallel meta-
heuristics: recent advances and new trends. International
Transactions in Operational Research, 20(1):1–48, 2013.

[3] W. Bożejko, J. Pempera, and C. Smutnicki. Parallel tabu
search algorithm for the hybrid flow shop problem. Comput-
ers & Industrial Engineering, 65(3):466–474, 2013.

[4] Y.-L. Chang, K.-S. Chen, B. Huang, W.-Y. Chang, J. A.
Benediktsson, and L. Chang. A parallel simulated annealing
approach to band selection for high-dimensional remote sens-
ing images. Selected Topics in Applied Earth Observations
and Remote Sensing, IEEE Journal of, 4(3):579–590, 2011.

[5] F. Chicano, G. Luque, and E. Alba. Autocorrelation measures
for the quadratiec assignment problem. Applied Mathematics
Letters, 25(4):698–705, 2012.

[6] J.-F. Cordeau and M. Maischberger. A parallel iterated tabu
search heuristic for vehicle routing problems. Computers &
Operations Research, 39(9):2033–2050, 2012.

[7] M. L. Engle and C. Burks. Artificially generated data sets for
testing DNA fragment assembly algorithms. Genomics, 16,
1993.

[8] M. Eskandarpour, S. H. Zegordi, and E. Nikbakhsh. A
parallel variable neighborhood search for the multi-objective
sustainable post-sales network design problem. International
Journal of Production Economics, 145(1):117–131, 2013.

[9] A. Ferreiro, J. Garcı́a, J. López-Salas, and C. Vázquez. An
efficient implementation of parallel simulated annealing algo-
rithm in gpus. Journal of Global Optimization, 57(3):863–
890, 2013.

[10] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[11] M. Gendreau. Handbook of metaheuristics, volume 146.
Springer, 2010.

[12] F. Glover. Tabu Search, part I. ORSA, Journal of Computing,
(1):190–206, 1989.

[13] F. Glover, M. Laguna, and R. Martı́. Fundamentals of
scatter search and path relinking. Control and cybernetics,
39(3):653–684, 2000.

[14] S. Kirkpatrick, C. Gellatt, and M. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[15] G. Luque, F. Luna, and E. Alba. A new parallel coop-
erative model for trajectory based metaheuristics. In Dis-
tributed Computing and Artificial Intelligence, pages 559–
567. Springer, 2010.

[16] C. Papadimitriou. The Complexity of Combinatorial Opti-
mization Problems. Master’s thesis, Princeton University,
1976.

[17] J. Setubal and J. Meidanis. Introduction to Computational
Molecular Biology, chapter 4 - Fragment Assembly of DNA,
pages 105–139. University of Campinas, Brazil, 1997.

[18] E.-G. Talbi. Parallel combinatorial optimization, volume 58.
John Wiley & Sons, 2006.

[19] M. Yazdani, M. Amiri, and M. Zandieh. Flexible job-
shop scheduling with parallel variable neighborhood search
algorithm. Expert Systems with Applications, 37(1):678–687,
2010.


