2,595 research outputs found

    Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms

    Get PDF
    This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology.This paper provides an overview of the research in railway scheduling and dispatching. A distinction is made between tactical scheduling, operational scheduling and re-scheduling. Tactical scheduling refers to master scheduling, whereas operational scheduling concerns scheduling at a later stage. Re-scheduling focuses on the re-planning of an existing timetable when deviations from it have occurred. 48 approaches published between 1973 and 2005 have been reviewed according to a framework that classifies them with respect to problem type, solution mechanism, and type of evaluation. 26 of the approaches support the representation of a railway network rather than a railway line, but the majority has been experimentally evaluated for traffic on a line. 94 % of the approaches have been subject to some kind of experimental evaluation, while approximately 4 % have been implemented. The solutions proposed vary from myopic, priority-based algorithms, to traditional operations research techniques and the application of agent technology

    Solving the single-track train scheduling problem via Deep Reinforcement Learning

    Get PDF
    Every day, railways experience small inconveniences, both on the network and the fleet side, affecting the stability of rail traffic. When a disruption occurs, delays propagate through the network, resulting in demand mismatching and, in the long run, demand loss. When a critical situation arises, human dispatchers distributed over the line have the duty to do their best to minimize the impact of the disruptions. Unfortunately, human operators have a limited depth of perception of how what happens in distant areas of the network may affect their control zone. In recent years, decision science has focused on developing methods to solve the problem automatically, to improve the capabilities of human operators. In this paper, machine learning-based methods are investigated when dealing with the train dispatching problem. In particular, two different Deep Q-Learning methods are proposed. Numerical results show the superiority of these techniques respect to the classical linear Q-Learning based on matrices.Comment: 12 pages, 4 figures (2 b&w

    Shunting of Passenger Train Units: an Integrated Approach

    Get PDF
    In this paper, we describe a new model for the Train Unit Shunting Problem. This model is capable of solving the matching and parking subproblems in an integrated manner, usually requiring a reasonable amount of computation time for generating acceptable solutions. Furthermore, the model incorporates complicating details from practice, such as trains composed of several train units and tracks that can be approached from two sides. Computation times are reduced by introducing the concept of virtual shunt tracks. Computational results are presented for real-life cases of NS Reizigers, the main Dutch passenger railway operator.Optimization;Passenger Railways;Shunting

    Integration, Decentralization and Self-Organization:Towards Better Public Transport

    Get PDF

    Integration, Decentralization and Self-Organization:Towards Better Public Transport

    Get PDF

    Adaptive Railway Traffic Control using Approximate Dynamic Programming

    Get PDF
    Railway networks around the world have become challenging to operate in recent decades, with a mixture of track layouts running several different classes of trains with varying operational speeds. This complexity has come about as a result of the sustained increase in passenger numbers where in many countries railways are now more popular than ever before as means of commuting to cities. To address operational challenges, governments and railway undertakings are encouraging development of intelligent and digital transport systems to regulate and optimise train operations in real-time to increase capacity and customer satisfaction by improved usage of existing railway infrastructure. Accordingly, this thesis presents an adaptive railway traffic control system for realtime operations based on a data-based approximate dynamic programming (ADP) approach with integrated reinforcement learning (RL). By assessing requirements and opportunities, the controller aims to reduce delays resulting from trains that entered a control area behind schedule by re-scheduling control plans in real-time at critical locations in a timely manner. The present data-based approach depends on an approximation to the value function of dynamic programming after optimisation from a specified state, which is estimated dynamically from operational experience using RL techniques. By using this approximation, ADP avoids extensive explicit evaluation of performance and so reduces the computational burden substantially. In this thesis, formulations of the approximation function and variants of the RL learning techniques used to estimate it are explored. Evaluation of this controller shows considerable improvements in delays by comparison with current industry practices

    Optimal Train Rescheduling in Oslo Central Station

    Get PDF
    Real-time train dispatching (i.e., rescheduling and replatforming) in passenger railway stations is a very important and very challenging task. In most major stations, this task is carried out by hand by highly trained dispatchers who use their extensive experience to find near-optimal solutions under most conditions. With several simultaneous deviations from the timetable, however, the traffic situation may become too complex for any human to handle it far beyond finding feasible solutions. As part of a prototype for a dispatching support tool developed in collaboration with Bane NOR (Norwegian rail manager), we develop an approach for Optimal Train Rescheduling in large passenger stations. To allow for replatforming, we extend the standard job-shop scheduling approach to train-scheduling, and we develop and compare different MILP formulations for this extended approach. With this approach, we can find, in just a few seconds, optimal plans for our realistic instances from Oslo Central Station, the largest passenger train hub in Norway. The prototype will be tested by dispatchers in the greater Oslo area, starting from the fall of 2021.publishedVersio

    Algorithmic Support for Disruption Management at Netherlands Railways

    Get PDF
    In the Netherlands, relatively large disruptions occur on average about three times per day, each time leading to a temporary and local unavailability of the railway system. Faster response times and better solutions can be expected by the application of algorithmic support in the disruption management process. That is, the modified timetable, rolling stock circulation, and crew duties are generated automatically based on appropriate mathematical models and algorithms for solving these models. In this paper, we present such models and algorithms that were developed at Erasmus University Rotterdam and are being implemented at Netherlands Railways. Finally, we discuss challenges for research and implementation in practice
    • …
    corecore