
Solving the Train Dispatching problem via
Deep Reinforcement Learning

Valerio Agasuccia,b, Giorgio Granic,∗, Leonardo Lamorgeseb

aDIAG, Sapienza University of Rome, Rome, Italy
bOPTRAIL, Rome, Italy

cDepartment of Statistical Sciences, Sapienza University of Rome, Rome, Italy

Abstract

Every day, railways experience disturbances and disruptions, both on the net-
work and the fleet side, that affect the stability of rail traffic. Induced delays
propagate through the network, which leads to a mismatch in demand and offer
for goods and passengers, and, in turn, to a loss in service quality. In these cases,
it is the duty of human traffic controllers, the so-called dispatchers, to do their
best to minimize the impact on traffic. However, dispatchers inevitably have
a limited depth of perception of the knock-on effect of their decisions, particu-
larly how they affect areas of the network that are outside their direct control.
In recent years, much work in Decision Science has been devoted to develop-
ing methods to solve the problem automatically and support the dispatchers in
this challenging task. This paper investigates Machine Learning-based meth-
ods for tackling this problem, proposing two different Deep Q-Learning meth-
ods(Decentralized and Centralized). Numerical results show the superiority of
these techniques respect to the classical linear Q-Learning based on matrices.
Moreover the Centralized approach is compared with a MILP formulation show-
ing interesting results. The experiments are inspired on data provided by a U.S.
class 1 railroad.

Keywords: Scheduling; Reinforcement Learning; Optimization

Declarations

• Declaration of interests

Declaration of interests: none.

• Funding

∗Corresponding author
Email addresses: agasucci@diag.uniroma1.it (Valerio Agasucci), g.grani@uniroma1.it

(Giorgio Grani), leonardo.lamorgese@optrail.com (Leonardo Lamorgese)

Preprint submitted to Elsevier June 11, 2023

The research conducted by Giorgio Grani and presented in this paper was
partly funded by Project Opstra (nr.267554), supplied by The Norwegian
National Research Council.

• Authors’ contribution

– Valerio Agasucci : Data curation; Formal analysis; Investigation;
Methodology; Resources; Software; Validation; Visualization; Writ-
ing - original draft; Writing - review and editing.

– Giorgio Grani (corresponding author): Conceptualization; Data
curation; Formal analysis; Investigation; Methodology; Resources;
Software; Validation; Visualization; Supervision; Writing - original
draft; Writing - review and editing.

– Leonardo Lamorgese: Resources; Writing - original draft; Writing
- review and editing.

1. Introduction

A railway system is a complex network of interconnected tracks, where train
traffic is controlled via the signaling system by activating switches and signals.
The management and operation of a railway system is the task of the Infrastruc-
ture Manager (IM). A Train Operating Company (TOC) organizes its fleet to
accommodate expected demands, maximizing revenue and coverage. In regions
where for geographical and historical reasons the market is made up of predom-
inantly freight-hauling companies, such as, e.g., North America and Australia,
the IM and TOC are often the same entity. That is, rail operators are generally
vertically integrated, owning and operating both the network and the fleet. In
most countries however, the IM is a single public authority, which rents its net-
work to TOCs to operate their train services. This is particularly common for
systems that operate predominantly passenger traffic, like in Europe. Here, the
IM interacts with the TOCs to establish a plan for train traffic, the so-called
timetable. This process, referred to as timetabling, takes place offline, generally
every 3 to 12 months, and is a challenging and time-consuming task. Its main
goal is to assign routes to trains and create a schedule that is conflict-free and,
typically, presents some elements of periodicity. Despite a vast body of litera-
ture in this field of research, in practice timetables are to this day still in many
cases hand-engineered by specialised personnel, basing their decisions largely on
experience, regulation, safety measures, business rules to factor in the various
requests expressed by the TOC (the latter more delicate and time-consuming
in liberalised markets with multiple competing TOCs).

In operating a railway system, the IM ideally attempts to adhere perfectly
to the timetable. Unfortunately, as anyone who has ever taken a train will be
familiar with, this seldom happens, as small disturbances, or in some cases seri-
ous disruptions, occur daily. A train malfunction, switch or track failure, delays
in the preparation of the train or in passengers embarking, and plenty of other

2

issues may create train delays and ultimately affect the overall network, some-
times in unforeseen ways. In some cases small delays are recovered from simply
driving trains faster, but, very often, online re-routing and re-scheduling deci-
sions have to be taken to reduce delays and increase efficiency. In literature, this
online decision making process is referred to as the Train Dispatching problem
(TD), a real-time variant of the above mentioned Train Timetabling problem
(known to be NP-hard [8]). The very little time admitted for computation (of-
ten only a few seconds) and the size and complexity of real-life instances makes
this problem very challenging to solve also in practice. The real-time nature
of the problem in particular largely limits the solution approaches that can be
used effectively. Operationally, the task of dispatching trains is in the hands of
the IM’s traffic controllers, the dispatchers, each assigned to a specific portion of
the network (a station, a junction, a part of a line, etc). To this day, dispatchers
are generally provided with little or no decision support in this process, which
makes it challenging for them to go beyond their local view of the network and
take into account the knock-on effects of their decisions, especially in areas of
the network that are outside their direct control.

The Train Dispatching problem has sparked much research interest over
the years, in particular in the Optimization community. Different models and
solutions approaches have been proposed over the years: some exact methods
([19]-[23]), heuristic based on MILP formulation as [42]-[4]-[5]-[1], tabu search
[37], genetic algorithms [16], classic greedy heuristic [7], and neighbourhood
search ([27]). Refer to [20] for a deeper insight on the Train Dispatching problem,
and to the many surveys on the topic for an overview of these approaches (e.g.
[6]-[11]-[14]- [22]-[36]). Recent developments in both Machine Learning and
Optimization have led to the definition of new learning-based paradigms to
solve hard problems. Our focus is on Reinforcement Learning, for which a
lot of interesting results have been achieved so far. In particular, in the well
known AlphaGo algorithm (see [34]) the authors tackle the complex game of Go,
developing an outstanding framework able to overcome the best human player.
Several approaches have followed AlphaGo, like AlphaZero [33, 32] and MuZero
[29], increasing every time the degree of generalization possible. Recently in [18],
this approach was extended to combinatorial problems with a more general range
of possible applications. To achieve their results, the authors combined Deep
Q-Learning with graph convolutional neural networks, which are a specialized
class of models for graph-like structures. A very similar approach was followed
in [13].

Our contribution. In this paper, TD is tackled by means of Deep Q-Learning
on a single railway line. More specifically, two approaches are investigated:
Decentralized and Centralized. In the former, each train can be seen as an
independent agent with the ability to see only a part of the network, namely
some tracks ahead/behind it and not beyond. This approach has the advantage
that it can be easily generalized, but, on the other hand, may lack the depth
of prediction useful to express network dynamics. The latter method takes as
input the entire line and learns to deal with delay propagation. Moreover, we

3

use a Graph Neural Network to estimate this delay reflecting the railway topol-
ogy. Both methods generalize to different railway sizes. From the standpoint
of the application, these authors find the use of Deep Reinforcement Learn-
ing approaches (such as Deep Q-Learning) very promising, as they present the
advantage of shifting the computational burden to the learning stage. While
enumerative algorithms typical of Combinatorial Optimization and Constraint
Programming have proven to be effective in several train dispatching contexts,
scalability remains a daunting challenge. On the other hand, under the assump-
tion that the model can be trained effectively, Deep RL could achieve a (quasi)
real-time performance, unattainable with classical optimization approaches. Fi-
nally, we point out that a possible reason for the slow adoption of automatic
dispatching software in the industry is the diversity of business rules and require-
ments for such software in different regions and markets. The step of adapting
the software to a specific set of such rules and requirements could be accelerated
(or indeed skipped) using a Deep RL-based approach, which builds its internal
input-output representation based on provided data and requires virtually no
knowledge of the rules themselves.

For all the above, we believe that it is worth pursuing the application of Deep
RL techniques in the field of train dispatching. This article is not the first article
proposing the use of RL for train dispatching, so we highlight the differences
between these. Papers [17]-[30] use a linear Q-Learning approach to tackle
the problem. In [15], the authors present an approach based on approximate
dynamic programming. Recent papers [24],[25],[39] introduce a Deep-network
to predict the next action. In [21] Deep RL is used to solve the energy-aimed
timetable rescheduling (find the optimal timetable minimizing the energy usage)
in [41] an RL approach is exploited to reschedule the timetable of the high-
speed railway line between Shangai and Beijing, while in [40] a multi-agent
reinforcement learning is incorporated in the metro system. Finally in [44]-[45]
an Actor-Critic method is used to schedule the underground train service in
London. However, these approaches are quite limited in terms of the size of
the instances that can be solved. Indeed, in [24],[25],[39] the railway network
considered in the experiments is limited to 7 or 8 stations and in [24],[39] train
traffic is considered only in one direction. In this paper we present an approach
which is able to tackle larger instances (up to 29 stations in our experiments)
and handle both traffic directions. Furthermore, we model other, important
factors in the dispatching process, such as train length and other business rules
described in section 2.1, which instead are not all covered in the cited papers.
The train length has been tackled in other works among the ones cited before,
but it appears to be a factor that increases significantly the computational
complexity of the proposed procedures, where here is directly embedded. This
results in a model that is more faithful to real-life requirements and an algorithm
that can solve instances of some practical relevance (e.g. a regional line). In
addition, it may be worth noting that our experiments are carried out on data
from the US railway network, which presents its own challenges respect to other
regions in the world like the European, Chinese and Japanese ones. Finally, in
the computational section we show how the Deep Q-Learning approaches here

4

presented perform better than their linear counterpart, the matrix Q-learning
approach proposed in [17].

The paper is organized as follows: in Section 2, basic concepts of Train
Dispatching and Reinforcement Learning are introduced formally. In Section
3 Graph Neural Networks are introduced. In Section 4, the two algorithms
are discussed. Specifically, in sub-section 4.1, the Decentralized approach is
tackled, whereas in sub-section 4.2, the Centralized approach is presented. In
Section 5, a numerical analysis is conducted to prove the effectiveness of Deep
Reinforcement Learning approach for the train dispatching problem. Finally in
Section 6 a comparison between our approach and a well-known Mixed-Integer
Programming approach is provided.

2. Preliminaries

Two basic ingredients characterize this paper: the Train Dispatching prob-
lem (TD) and (Deep) Reinforcement Learning (DeepRL). In the following, a
short presentation of both, with the aim of being introductory and not compre-
hensive.

2.1. Train Dispatching problem

The fundamental elements of the Train Dispatching problem (TD) are trains,
the railway network, and paths. Trains are of course the means of transporta-
tion in this system. In practice, different types of trains can operate at the
same time on a network. Two of the most important attributes of a train for
dispatching decisions are its priority and its length. Priority represents the rel-
ative importance of a train respect to other trains, which generally reflects in
the decisions taken by dispatchers to recover from delay. For example, cargo
trains usually have a lower priority than passenger ones. Their length depends
on various aspects, such as technology, market and nature of the service.

A railway network is composed of a set of tracks, switches and signals. A
common way to represent this network is to see it as an alternating sequence
of tracks and stations. A station is a logical entity in the network that com-
prises multiple tracks and switches where, typically, the majority of routing
and scheduling actions take place. Tracks are physical connections between two
stations. Trains traveling in opposite directions can never occupy a track si-
multaneously, while certain tracks allow this for trains travelling in the same
direction.

In terms of infrastructure, stations are effectively also a set of interconnected
track segments. An interlocking route is a sequence of track segments that con-
nects two signals. Different routes can be conflicting, that is, certain movements
may not be allowed on such routes at the same time. The interlocking is pre-
cisely the signaling device that prevents these conflicts. Certain interlocking
routes also include stopping points, which allow train activities. Some of these
activities can be embarking passengers or loading goods. Generally each stop-
ping point can be occupied by at most one train at the time. A switch is

5

a mechanical installation enabling trains to be guided from one track to the
other. A switch can be occupied by one train at a time. Finally, a path is the
expected sequence of tracks and stations for a given train. The path is specified
by a starting station, a set of boarding points, and the arrival station.

The elements introduced above allow to model real-life operations with a
level of approximation that is sufficient for the purposes of this paper.

In a few words, TD is the problem of managing train traffic in real-time by
taking scheduling and routing decisions in order to maximize system efficiency.
Such dispatching decisions are subject to a number of constraints related to the
signaling system, infrastructure capacity, business rules, train physics etc. In
railway systems operated following an official timetable, the goal is typically to
adhere to it as much as possible. When deviations from this plan occur, the
dispatcher objective is to recover from these deviations, minimizing train delay.

A particularly pernicious situation is the occurrence of a deadlock. A group
of trains are said to be in deadlock if none of them can move because of another
train that is blocking the next track of its path. A deadlock is the result of lack
of information (e.g. wrong train length assumptions) or, more often, induced
by human error (erroneous dispatching decisions). A critical aspect of any
automatic dispatching systems is that it avoid creating deadlocks at all costs.

2.2. Reinforcement Learning

Reinforcement Learning (RL) is an approximated version of Dynamic Pro-
gramming, as stated in [3]. This paradigm learns, in the sense that the approx-
imated function built takes into account statistical information obtainable from
previous iterations of the same algorithm or external data. The term Deep Rein-
forcement Learning (DeepRL) usually refers to RL where a deep neural network
is used to build the approximation. We refer to [35] and [3] for a comprehensive
discussion on RL .

RL is usually explained through agent and environment interaction. The
agent is the part of the algorithm that learns and takes decisions. To do so,
it analyzes the surrounding environment. Once it takes a decision, the envi-
ronment reacts to this decision and the agent perceives the effect its action
has produced. To understand if the action taken has been successful or not, the
agent may receive a reward associated with the action and the new environment
observed.

In the Decentralized approach in Section 4.1, the agent is the train and the
environment the observable line , i.e. the portion of line and trains reachable by
the agent, more details in Section 4.1, as opposed to the centralized approach,
the agent act as a line coordinator, deciding for each train, and the environment
is the entire line.

For the purposes of this paper, the reinforcement procedure will move for-
ward following the rolling horizon of events, indexed by t. An event takes place
every time there is a decision to make that may affect the global objective.
In the RL vocabulary, the state represents the formal representation of the en-
vironment at a time step t, and it is formalized by the vector st ∈ St, where

6

Agent

Environment

at

rt+1

st+1

st

Figure 1: The reinforcement learning framework

St ⊆ Rm is the set of all possible states at time t. The action taken by the agent
is at ∈ At, where At ⊆ Rn is the set of all possible actions at time t. Once
the agent observes st and carries out at, the environment reacts by producing
the new state st+1 ∈ St and a reward rt+1 ∈ R, where R ⊆ R is the set of all
possible rewards. In this case, R is mono-dimensional, but in general, it could
take the form of a vector, depending on the problem examined. Figure 1 shows
a simplified flowchart of RL .

Q-learning is a branch of RL that uses an action-value function (usually
referred to as q-function) to identify the action to take. More formally, the q-
function Q(st, at) represents the reward that the system is expected to achieve
by taking said action given the state. At each step t, the action that brings the
highest reward is chosen, namely:

at = arg max
a∈At

Q(st, a)

Pseudo-code for a Q-learning algorithm is presented in 1.
L(ŷ, y) is the loss function used to perform the training, i.e. a measure of

the error committed by the model that one wants to minimize. Examples of
loss functions are Mean Squared error, Cross-Entropy, Mean Absolute Error
and so on, see [38] for an overview on the topic. ε ∈ (0, 1) is the probability of
choosing a random action, T is the final state of the process (i.e. when it is not
possible to move anymore), γ ∈ (0, 1] is the future discount, a hyper-parameter
reflecting the fact that future rewards may be less important. To make the
estimation more consistent, usually, a replay mechanism is used, so that the
agent interacts with the system for a few virtual steps before learning. This is
suitable in situations where the environment can be efficiently manipulated or
simulated in a way that the computational cost is only marginally affected.

3. Graph neural networks

Graph convolutional neural networks, introduced by [28], are used to ap-
proximate the Q-value function. Differently from Deep-neural network, GNN

7

Algorithm 1: Q-learning algorithm

Input: P a set of instances, D = ∅ the memory, a loss function L(ŷ, y), ε ∈ (0, 1),
γ ∈ (0, 1], #episodes, #moves
Output: the trained predictor Q(·, ·)
for k = 1, . . . ,#episodes do

Sample P ∈ P
Initialize episode t = 0, s0 = 0
for t = 0, . . . ,#moves do

Select an action at =

{
Unif {At} , with probability ε
arg maxa∈At Q(st, a), with probability 1− ε

Observe st+1, rt+1 = ENVIRONMENT(st, at)
Store (st, at, yt+1) in the memory D, where

yt+1 =

{
rt+1, if t+ 1 = T
rt+1 + γ arg maxa∈At Q(st+1, a), oth.

Sample batch (x, y) ⊆ D
Learn by making one step of stochastic gradient descent w.r.t. the loss
L(Q(x), y)
if t+ 1 = T then

Break
end

end

end

exploits the graph input structure of the railway to learn the Q-value func-
tion. The name convolutional derives from the fact that the information is
aggregated, shared and propagated among nodes according to how they are
connected. This process is known as message passing, since the information of
each node is propagated to the others for a given number of steps. The outputs
of message passing are the so-called embedding vectors (one embedding for each
node of the graph). The embedding vector collects information not only pro-
vided by the node to which it refers, but it brings information by other nodes
of the graph. For richer overview of GNN, please refer to [46].

The input of the network is a graph G(N,A) where N is the set of vertices
and A the set of arcs. At each node j ∈ N is associated a vector of features
xj ∈ Rn where n is the number of features. In our message passing architecture,
we use the scheme adopted by [2]. Given an input graph, for each node i we
define the set of neighbours δ(i)− = {j ∈ V : (j, i) ∈ E}.

The first step of the GNN is to apply a mean function to all the neighbour
features of each node i:

mi =

∑
j∈nei xj

|nei|
, i ∈ V (1)

Where mi is the mean of the features of the neighbours of node i. In Figure 2 we
show an example of a graph, the features and the mean (computed as reported
above) associated to each node. Then a concatenation is performed between mi

and xi, and put as input of a feed-forward neural network ReLU1) with ReLU
(see [31]) as an activation function:

li = ReLU (W ᵀ
1 concat (xi,mi) + b1) , i ∈ V

8

1

m1 = x2

x1 = [0, 1, 0, 1]

2

x2 = [1, 0, 0, 0]

m2 = x3

3

x3 = [0, 0, 0, 0]

m3 = x1+x2

2

Figure 2: Graph and its features.

The term li is the output, W1 the weights and b1 the biases of the neural network
ReLU1.

Depending on the node connections the outputs are passed to a second neural
network ReLU2 with ReLU as an activation function.

hi = ReLU

W ᵀ
2

li +
∑
j∈nei

lj

+ b2

 , i ∈ V

Where hi is the embedding vector generated as the output of the neural network
ReLU2, having W2 and b2 as weights and biases, respectively. The message
passing returns an hi for each i ∈ N . All the steps in the message passing
can be performed several times, however for most applications 2 or 3 times are
sufficient. In our experiments, we do so twice. The message passing ensures
that the information of each node is propagated not only to its neighbours,
but also to the furthest nodes. ReLU1 and ReLU2 have the same category of
parameters: W1 and b1 for ReLU1; W2 and b2 for ReLU2. The embedding
vector hi may have a different size than xi. This is justified by the fact that
hi does not only bring the information from xi but also from other nodes. To
have another message passing step hi becomes the new input of (1). Finally to
obtain the target (in this work the Q-values) a last network f(·) is applied to
the sum of hi.

o = f
(
(hi)i∈V

)
In Figure 3, we show the network described above referred to graph in Figure
2.

4. Proposed methods

In this section, basic ideas regarding states, actions, and rewards to solve TD

are presented. Two approaches are proposed: Decentralized and Centralized.

9

x1

x2

x3

M

M

M

m1

m2

m3

(x1,m1)

(x2,m2)

(x3,m3)

ReLU1

ReLU1

ReLU1

l1

l2

l3

+

+

+

ReLU2

ReLU2

ReLU2

h1

h2

h3

+ f o

Figure 3: Message passing on the graph in figure 2.

The difference between them lies mainly in the topology of the state and in the
reward mechanism, and therefore in the ability of the approximating q-function
to capture the right policy. When describing the state, both of the approaches
use the concept of resource. A resource is a track or a stopping point that can
be occupied by one or more trains.

The majority of models for TD rely on several approximations to make the
problem more readable and the mathematics easier to handle. Using RL allows
to integrate many of these hidden aspects in the environment, introducing a new
level of complexity with a relatively small effort. One of the most important
is train length, which translate into computational burden for traditional opti-
mization algorithms, where here is a feature directly embedded in the system.
To avoid this, some models in the literature tend to approximate a train with a
point, but this is not the case in real life where a train may occupy more than
one resource at the same time. This is especially critical in railway systems that
operate predominantly freight services (such as in the North American market),
where trains are often longer than the available infrastructure to accommodate
them, and the risk of dispatcher-induced deadlocks is very real.

Another important step is to model safety rules like the safety distance inside
the same track, or the role of switches, For each track, we check the safety
distance between two consecutive trains. Additionally, we model the rule that
if a switch is occupied by a train, then no other train can use the same switch.
Therefore, the train that has to cross will be held until the switch is freed.
Finally, we introduce the minimum headway time between the occupation of a
track by consecutive trains. Given a couple of follower trains, we compute the
elapsed time since the first train has entered. If this quantity is smaller than a
certain threshold, the headway time, the train has to wait. In our experiments,
the headway time, the safety distance and all the other railway parameters
are exogenous value inspired by the US class 1 Railroad we are working with.
A simple rule has been implemented to avoid deadlocks between two crossing
trains in specific circumstances.In short, given a generic train T0 positioned inR0

that wishes to occupy the resource R1, then the method evaluates the position

10

of all visible trains Ti and the single-track resources1 Ri, for i = 1, . . . ,K2,
converging to R1. For each train Ti, the flow of resources Fi from Ri to R1 is
then computed. Finally, if there exists at least one i ∈ {1, . . . ,K} such that a
train Ti occupy a resource Ri in Fi, then T0 must wait to avoid deadlock.

The inclusion of all these aspects allows a greater adherence to the real-
world problem than many optimization approaches attain, and the relative ease
in doing so is, in our opinion, one of the advantages of a deep RL approach.

4.1. Decentralized approach

In this subsection, we will present the Decentralized approach, introducing
the structure of the state when full observability of the rail network is guaran-
teed.

As studied in [9, 43], enriching the information available to the agent (so the
state) affects the space of policies to be learned. For this reason, the following
six features are associated to each resource:

1. status, which is a discrete value chosen among stopping point, track,
blocked3, and failure4

2. number of trains

3. train priority (if there is more than one train, the train with the highest
priority is reported)

4. direction, which is a discrete value chosen among: follower, crossing, or
empty5

5. length check, a Boolean identifying if the train length is less than or
equal to the resource size

6. number of parallel resources6 w.r.t. to the current one

For that which concerns the learning process the model that approximates
the q-function is represented by a feed-forward deep neural network (FNN) with
two fully connected hidden layers of 60 neurons each, and a third layer mapping
into the space of the actions. The output of the third layer is then combined
with a mask, disabling infeasible moves. Figure 4 shows the structure of the
network. Firstly, the input (the state) passes through a layer of neurons, where
each neuron is associated with a ReLU (see [31]) activation function. The output
of the first layer goes to a second one with the same kind of activation functions.
Then, everything is multiplied by the action mask, filtering allowed actions from
prohibited ones. An action mask is a vector, whose components are equal to
one if the correspondent action is allowed, zero otherwise.

1A single-track resource is a resource that does not have a parallel resource
2Ri is directly connected with Ri+1 ∀i = 1, . . .K
3Temporarily reserved by another train.
4The resource is out of service.
5A train T1 is a follower for a train T2 if they have the same direction, otherwise T1 is a

crossing train for T2.
6Given a resource R1 that connect two resources RA and RB , a resource R2 is a parallel

resource of R1 if R2 connects RA and RB .

11

input

fully connected

ReLU

fully connected

ReLU

multiply

output

action mask

Figure 4: The deep network utilized

The typical goal of a dispatcher is to take routing and scheduling decisions
that minimize some measures of delay. One way to model these decisions is
to establish whether a train can access a specific resource or whether it has
to stop/hold before entering it. The algorithm takes this decision when a train
reaches a control point. When possible, the train will take the best-programmed
resource as default. This happens when, for instance, all the resources ahead of
the train are free. The best resource is the one ensuring a minimum programmed
running-time for the specific train.

In Figure 5 , for example, we have four resources: 1a, 1b. 1c and 1d with
respectively 800, 1000, 1200 and 1300 unimpeded running time, which is is
the minimum running time that a train needs to go from its current position
to its destination (in this example 1a, 1b, 1c and 1d) if it were never held..
The resource 1a represents the best choice, since it accumulates less unimpeded
running time, while the alternatives (1b, 1c, 1d) are all higher.

On the other hand, it may happen that all the next reachable resources are
not available, so the train is forced to stop. In all the other situations, the
algorithm acts as if the train were able to take decisions by itself. The state of
the system (from the point of view of the train) does not represent the entire
network, but only a limited number of resources ahead and behind. For each
visible resource, the six features discussed before are considered.

Given the state, the action to be taken is one of the following:

• halt

12

1a

1b

1c

1d

Train

Figure 5: Best and reachable resources

• go to the best resource

• go to a reachable resource

The first action (stopping a train) can always be taken, while the other two
possibilities depend on the state.

The most delicate part in the Decentralized approach is the definition of the
reward. While the global objective is to minimize the total weighted delay, the
agent viewpoint does not allow to express the reward associated with a state-
action pair in terms of the actual impact on the overall network objective. For
this reason, the reward is assigned at the end of each episode, and then the
data collected is stored as (st, at, Q(st, at), rt), where Q(st, at) is the output of
the neural network. In particular, the reward for each generated state-action
pair is given a large penalty value if the episode ends up in a deadlock, a minor
penalty if the weighted delay is greater than 1.25 times the minimum weighted
delay found so far, and a prize if the weighted delay is less than or equal to 1.25
times the minimum weighted delay found so far. This strategy is inspired by
[17], where the authors adopt a classical matrix-based Q-learning approach on
a single-track. We define the weighted delay of a train as the difference between
the actual running time and the unimpeded running time. The actual running
time is the timing of the solution taken by our algorithm, which may be different
from the planned one, whereas the unimpeded running time is the the minimum
running time that a train needs to go from its current position to its destination.
By multiplying this value by a priority factor, leveraging how disruptive a delay
would be, obtaining the cumulative delay of the train considered. The choice
of leveraging reflects the different priorities of trains, so that a delay has more
serious consequences if it refers to passenger train rather than a freight one.
This is, in our experience, a common choice for companies. Summing up all the
single delays we obtain the total weighted delay.

The last aspect to be discussed is memory management. Since no prior
knowledge is used, the composition of the sample is critical to drive a smooth
learning process. Therefore, the memory was divided into three data-sets: best,
normal and deadlock. The best memory stores all the samples ending up in
a weighted delay that is less than or equal to 1.25 times the best delay found
so far, the normal memory stores the ones with weighted delay that is greater

13

than 1.25 the best found, and the deadlock memory stores all the unsuccessful
instances.

Action-state-reward items are stored according to the level of reward if
and only if the action mask in the FNN allows more than one action, so as
to strengthen the learning process only on critical moves. Deadlock and normal
memory data-sets are never deleted, while the best memory is updated every
time a new best weighted delay is found.

4.2. Centralized approach

The idea behind the Centralized approach is that the DeepRL algorithm may
take advantage of knowing the state of the overall network at each step, and
attempt to learn the particular dynamics of the network thanks to the GNN. In
this case the agent can be seen as a line coordinator, deciding critical issues at
control points, predicting the expected effect on the network. This mimics to
some extent the behaviour of human dispatchers, which have full control over a
limited part of the network. Moreover, considering all the network as a state,
the use of a GNN instead of a feed-forward neural network allows adopt the
same neural network for different railway sizes. In feed-forward networks, the
input is fixed in size, requiring a different model for every railway case, whereas
using GNNs the same model operates to multiple railway networks.

In this approach the state is a graph, each node is a resource (track or
stopping point) and there is an arc when two resources are linked. With each
node is associated a vector of features that explains the characteristics of the
train in that resource. This is a one hot-encoded vector with the following
characteristics:

• the first n bits are reserved for the train’s priority. The i-th bit is set to
1, if the train belongs to the i-th priority class, and 0 otherwise.

• one bit at position n+ 1, for the train’s direction in that resource

• m bits, from position n+2 to position n+2+m, are reserved for the class
length of the train

• finally, one bit in position n+2+m+1 states if a decision has to be taken
for the train in that resource.

The action space is the same as the Decentralized approach, however the
reward mechanism, unlike the Decentralized approach, takes into account the
actual delay in absolute value, rather than a measure of how good such delay is
with respect to the best achievable. More in detail we define the reward-to-go
from a time step t as:

Rt = −
T∑

k=t

rk

Where rk is the difference of delay between step k and step k−1. The reward-to-
go is a negative quantity because we are minimizing the delay. The Q-function,

14

instead, given a state st and the action at is given by:

Q(s, a) = E[

T∑
k=t

rk|s = st, a = at]

To estimate the reward-to-go and measure the goodness of an action, we
have therefore to minimize the following loss:

L =

T∑
t=1

(Q(st, at)−Rt)
2.

5. Numerical results

The test bed for the experiments is inspired on data provided by a U.S.
class 1 railroad. The two algorithms were compared to the linear Q-learning
algorithm proposed in [17], since the primary aim of this paper is to show that
DeepRL is superior to linear Q-learning. In particular, the quality of the solutions
in terms of final delay is the main driver used to discriminate the quality of an
algorithm. For what concerns time, all the procedures need less than one second
to complete an episode, and therefore are well suited for this online/real-time
application.

All tests were performed on an Intel i5 processor, with no use of GPUs.
Our experiments take into account railway networks with a different number of
resources, number of trains and train’s priorities.

The experiments were conducted to investigate the following properties:

1. the ability to solve unseen instances generated from the same distribution

2. the ability to generalize when the number and the length of the trains
increase

3. the ability to generalize when the numbers of resources in the railway
network changes.

5.1. First experiment

In this experiment the considered railway network is mainly characterized
by the alternation of one station and one track (single-track), but also include
some parts of the network where two stations are connected by two single tracks
or more (multiple-track). In total, the network has 134 resources (tracks and
stopping points), 15 tracks and 29 stopping points have at least one parallel
resources, while 33 are single-track resources. The time window is two hours.
In Figure 6, we report a small section of our railway to show what we consider as
a stopping point and as a track. Resources 2a and 2b are stopping points where
trains can meet or pass. Elements 1, 3, 4a, 4b, 5a and 5b are tracks, where the
couples 4a, 4b and 5a, 5b are parallel, meaning they are connected to the same
stations. We refer to both tracks and stopping points as resources. The track is
effectively the portion of the network that connects two stations. Stations can

15

1 2a

2b

3 4a 5a

4b 5b

C1

C2

Figure 6: Railway example

have stopping points or they can be crossovers, like C1 or C2, where a crossover
is composed by one or more switches connecting two parallel tracks, or a parallel
track and a single one. We do not model the switches, considering them as a
part of the next track. As explained in Section 4, if a train occupies a switch
no other train can use it.

Traffic characteristics for each instance are described in terms of: number of
trains, position, direction, priority and length.

The range for each parameter is realistic, as again it is inspired on input
provided by the U.S. class 1 railroad. More specifically:

• the number of trains N is chosen randomly between 4 and 10 with the
following probability distribution: P (N = 4) = 0.1, P (N = 5) = 0.2,
P (N = 6) = 0.2, P (N = 7) = 0.2, P (N = 8) = 0.15, P (N = 9) = 0.1,
P (N = 10) = 0.05

• the position is chosen using a uniform distribution on the available re-
sources

• the direction is chosen uniformly

• the priority A is chosen randomly between 1 and 5 with the following
probability distribution P (A = 1) = 0.05, P (A = 2) = 0.15, P (A = 3) =
0.23, P (A = 4) = 0.27, P (A = 5) = 0.3

• the length is chosen uniformly in the set {4000, 4500, 5000, 5500, 6000,
6500} to be intended in feet

Given the above mentioned distributions, to generate an instance we repeat
the following steps:

1. select the number of trains N

2. for each train in N :

(a) select its initial position
(b) select its direction (down-hill, up-hill)
(c) select its priority
(d) select its length.

Priority, direction and position are sampled according to the distribution
probability described above even in the next experiments. Additionally, the
delay is multiplied by a penalty factor to express the relative importance of a
train class and its priority. Given a priority A ∈ {1, 2, 3, 4, 5}, the coefficient ωA

16

Table 1: Basic Statistics on 100 Test Instances From the Same Distribution of the Training.

Delay Linear Q-learning Decentralized Centralized
minimum 886 0 0
average 42399.04 9914.864 9295.297

maximum 174262 30578 35441
std dev 35422.18 7287.825 7398.979

deadlocks 4 5 4

is such that ω1 = 20, ω2 = 10, ω3 = 5, ω4 = 2 and ω5 = 1. Delays are affected
by a penalty factor higher than one, which is linked to the priority. Since we
are reporting delays multiplied by this factor, their values may appear high.

The models were trained on 100 randomly generated instances, with the
fixed rail network described above, and tested on 100 unseen instances with
the same specifications. The training phase involved running 10 000 episodes
for each algorithm. An episode is stopped either when all trains are at their
last resource or after a 2-hour plan is produced. In this context, we define an
episode as the production of a 2-hour plan. In Table 1 we show some statistics,
like minimum, average and maximum delay, its standard deviation and the
number of deadlocks.In Table 2, we report the number of instances won, drawn,
and lost by each approach (Centralized, Decentralized and Q-Learning). We
have a win when the delay found is smaller, a draw when it is comparable, and
a loss it is higher with respect to the values obtained by the other approach in
comparison. By looking at the results, we see the Centralized approach reaches
a delay that is less than Decentralized in 44 instances, being comparable in
47, and higher in only 9 of them. Comparing Centralized and Q-Learning,
we have that in 93 instances the Centralized reaches a delay that is less than
Q-Learning, and similarly can be said for the Decentralized approach. This
highlights the Centralized has the best performances on this test set. Figure
7 reports the performance profiles for the three algorithms w.r.t. the value of
the delay obtained on 100 instances of the same distribution of the training set.
Performance profiles have been used as proposed in [12]. Given a set of solvers I
and a set of problems P, the performance profile takes as input a ratio between
the performance (i.e. the value of the weighted delay) of a solver i ∈ I on
problem p ∈ P and the best performance obtained by any solver in I on the same
problem. Consider the cumulative function ρs(τ) = |{p ∈ P : rp,i ≤ τ}|/|P|
where tp,i is the delay and rp,i = tp,i/min{tp,i′ : i′ ∈ I}. The performance
profile is the plot of the functions ρs(τ) for s ∈ S. Informally, the higher the
curve the better the component. Here, the components are algorithms and their
performance is determined by comparing the delays obtained on each instance.
The graph shows the supremacy of deep architectures with respect to the simple
linear one, which is reasonable due to the known complexity of the problem. In
general, the Centralized model seems to perform better than the Decentralized
one.

Table 1 summarizes some basic performance statistics. As one can see,

17

Table 2: Wins, draws and defeats on 100 network test instances.

Win/Draw/Loss Centralized Decentralized Q-Learning
Centralized - 44-47-9 93-0-7

Decentralized 9-47-44 - 96-0-4
Q-Learning 7-0-93 4-0-96 -

100 101 102 103

0

0.2

0.4

0.6

0.8

1

Q-learning
Decentralized
Centralized

Figure 7: Performance profiles for the three algorithms compared together based on the value
of the delay obtained on 100 instances of the same distribution of the training set.

the average delay of the DeepRL approaches is considerably smaller, so DeepRL

captures inner non-linearities more efficiently and appears more effective than
linear Q-learning.

5.2. Second experiment

As a second experiment, we test the ability of the three algorithms to gen-
eralize to longer trains with different frequencies. Longer trains in a network
increase the probability to end up in a deadlock. In fact, long trains can occupy
at the same time more than one resource and one or more switch. Even very
simple configurations (e.g. one station with two stopping points and two cross-
ing trains occupying both stopping points and switches) can lead to deadlocks.
In other words, taking into account the length of trains introduces a whole new
level of complexity, which is especially for freight-based traffic, where trains
often tend to be very long. The time window considered is two hours.

In particular, for the test set the new parameters adopted are:

• Number of trains N ; chosen randomly between 4 and 12 with the following
probability distribution: P (N = 4) = 0.05, P (N = 5) = 0.15, P (N =
6) = 0.15, P (N = 7) = 0.15, P (N = 8) = 0.15, P (N = 9) = 0.1,
P (N = 10) = 0.1, P (N = 11) = 0.1,P (N = 12) = 0.05

18

• Length; chosen uniformly in the set {4000, 4500, 5000, 5500, 6000, 6500,
7000, 7500, 8000}, to be intended in feet

The focus is posed on these two parameters, since it has been observed
empirically that they seem to be major factors in influencing the complexity of
a TD problem.

In this case, the DeepRL Decentralized model is trained for 20 000 episodes,
whereas the linear Q-learning for 50 000; we use the same learning of the previous
experiment for the Centralized model.

The Q-learning and Decentralized DeepRL were trained on 200 instances from
the distribution described in the first experiment (except for length and number
of trains) and tested on 200 instances with the specifics specified above. Table
3 summarizes some basic performance statistics for this experiment. Both De-
centralized approach and Centralized outperforms Q-Learning, moreover Cen-
tralized finds almost half deadlock than Decentralized and as in the previous
experiment the average delay in Centralized is less than Decentralized. Linear Q-
Learning appears to find less deadlocks than Decentralized approach. However,
this is arguably induced by the fact that, in many test instances, the Q-learning
based algorithm halts trains before they can reach a potential deadlock. This
leads to huge delays, but falls short of explicitly creating a deadlock. In other
words these results are somewhat biased, since in real-life a plan where trains
are halted continuously (like those produced here by the linear Q-Learning ap-
proach) would be deemed equally unacceptable.
A last observation on the number of deadlocks, is that all the algorithms com-
pared in Table 3 act as powered greedy heuristics. For this reason, their greedy
nature may lead to unwanted solutions, which are more evident when the model
cannot see the entire network, like in the Decentralized approach. We must not
forget that the nature of the test instances is meant to consider also overcrowded
situations, where a feasible solution may be hard to reach for a heuristic method.
To the best of our experience, intensifying the training for longer periods or in-
creasing the number of weights in the models may alleviate this circumstance.

Regarding the comparison among the different approaches, also in this case
we appreciate the fact that both Centralized and Decentralized approaches out-
performs the Q-learning. In Table 4, we can see that in 107 test instances on
200 the Centralized approach returns a delay that is less than the Decentralized
one while in 182 test instances returns a delay that is less than the Q-Learning.
Figure 8 shows the performance profiles in this case.

5.3. Third experiment: different sizes of network

In the last experiments, we test the generalization capability when increasing
the number of resources in our network. We define three different railways: R1,
R2, R3, with the same time window of two hours. Some characteristics of the
railways are shown in Table 5. Railway R1 has the following parameters in
terms of train traffic characteristics:

• Number of trains N ; chosen randomly between 4 and 12 with the following
probability distribution: P (N = 6) = 0.05, P (N = 7) = 0.1, P (N =

19

Table 3: Basic Statistics on 200 Test Instances from the Same Distribution of the Training.

Delay Linear Q-learning Decentralized Centralized
minimum 0 0 0
average 50573.49 13966.1 13012.775

maximum 256883.1 86309.01 54979
std dev 52318.19 14092.37 12045.295

deadlocks 18 26 14

Table 4: Wins, draws and defeats on 200 Test Instances from the Same Distribution of the
Training.

Win/Draw/Loss Centralized Decentralized Q-Learning
Centralized - 107-70-23 182-3-15

Decentralized 23-70-107 - 189-3-8
Q-Learning 15-3-182 8-3-189 -

100 101 102 103 104

0

0.2

0.4

0.6

0.8

1

Q-learning
Decentralized
Centralized

Figure 8: Performance profiles for the three algorithms compared together based on the value
of the delay obtained on 100 with higher number of trains (10 to 15) than the training set.

Table 5: Railway network characteristics

Railway Total resources Stopping points Single track resources Double tracks
R1 155 79 52 12
R2 180 96 60 12
R3 196 106 60 15

8) = 0.1, P (N = 9) = 0.15, P (N = 10) = 0.15, P (N = 11) = 0.1,
P (N = 12) = 0.1, P (N = 13) = 0.1

• Length; chosen uniformly in the set {4000, 4500, 5000, 5500, 6000, 6500,

20

Table 6: Basic Statistics on a new railway with 155 resources

Delay Linear Q-learning Decentralized Centralized
minimum 1572 0 0
average 54611.55 16597.912 14074.175

maximum 153198.146 51952.006 47270.46
std dev 43666.76 14144.157 12861.334

deadlocks 5 5 5

Table 7: Basic Statistics on a new railway with 175 resources

Delay Linear Q-learning Decentralized Centralized

minimum 5412 1074 392

average 68347.693 27082.873 17157.326

maximum 246231.062 112981.007 52735.47

std dev 48582.189 24898.419 14324.176

deadlocks 4 11 14

7000, 7500, 8000}

Railways R2 and R3 have the following parameters in terms of train traffic
characteristics:

• Number of trains N ; chosen randomly between 4 and 12 with the following
probability distribution: P (N = 7) = 0.05, P (N = 8) = 0.1, P (N =
9) = 0.15, P (N = 10) = 0.15, P (N = 11) = 0.15, P (N = 12) = 0.15,
P (N = 13) = 0.1,P (N = 14) = 0.1, P (N = 15) = 0.05

• Length; chosen uniformly in the set {4000, 4500, 5000, 5500, 6000, 6500,
7000, 7500, 8000}

We generated 50 tests for each railway configuration. We did not train our
networks on these new infrastructures, and we rather use the one adopted in
the first experiment. In tables 6-7-8, some statistics for the three approaches.
As shown in the tables, the two Deep-Learning approaches outperform linear
Q-Learning, while the Centralized one again obtains better results in terms of
weighted delay with respect to the Decentralized algorithm. In Tables 9-10-11
we can see how Centralized approach in about one third of the instances reach
a delay that is less than the Decentralized, and it is comparable for one fourth
of them.

6. Mixed integer programming comparison

Finally, we decided to compare our results for the Centralized approach with
those obtained using a mixed integer program (MIP). The formulation is taken

21

Table 8: Basic Statistics on a new railway with 196 resources

Delay Linear Q-learning Decentralized Centralized
minimum 4846 0 0
average 61033.829 21250.22 16844.557

maximum 159952.036 61314 56500
std dev 39812.026 15701.39 12972.443

deadlocks 7 9 11

Table 9: Wins, draws and defeats on a new railway with 155 resources

Win/Draw/Loss Centralized Decentralized Q-Learning
Centralized - 32-11-7 47-0-3

Decentralized 7-11-32 - 47-0-3
Q-Learning 3-0-47 3-0-47 -

from [27] and it models both the routing and scheduling of trains. However,
several of the features that were covered by our Reinforcement Learning model
were not easy to extend in a mathematical formulation, therefore we had to
neglect some of them. For example, a crucial aspect such as modelling the train
length, and therefore its actual occupation of resources. The MIP model would
have suffered computationally with this length adjustment, and it would have
not been a fair comparison. For this reason, solutions of the MIP model with a
lower value than RL solutions may potentially be infeasible. We report a brief
description of the model adopted in [27] in the Appendix.

We ran the tests on the same machine of the previous experiments, and we
report them in Table 12. To recap, the five different test sets where characterized
by:

• 100 test instances on 137 resources (100 T 137 R)

• 200 test instances on 137 resources (200 T 137 R)

• 50 test instances on 155 resources (50 T 155 R)

• 50 test instances on 180 resources (50 T 180 R)

• 50 test instances on 196 resources (50 T 196 R)

We ran each test instance for 10 minutes. For each of the five test sets we
consider:

Table 10: Wins, draws and defeats on new railway with 180 resources

Win/Draw/Loss Centralized Decentralized Q-Learning
Centralized - 29-16-5 39-0-11

Decentralized 5-16-29 - 41-0-9
Q-Learning 11-0-39 9-0-41 -

22

Table 11: Wins, draws and defeats on a new railway with 196 resources

Win/Draw/Loss Centralized Decentralized Q-Learning
Centralized - 30-14-6 44-0-6

Decentralized 6-14-30 - 46-0-4
Q-Learning 6-0-44 4-0-46 -

Table 12: Wins, draws and defeats on a new railway with 196 resources

Test Solved (MIP) Avg delay (MIP) Avg delay 2 (MIP) Avg delay (RL) Both solved

100 T 137 R 98 8779 8716 9387 93
200 T 137 R 187 11712 11503 12893 173
50 T 150 R 37 23550 22960 14666 28
50 T 185 R 41 30339 27494 16936 28
50 T 197 R 43 32926 32504 16379 33

• the number of instances resolved in 10 minutes, where an instance is con-
sidered resolved if it finds an incumbent in the given time limit (Solved
MIP).

• the number of instances solved both by MIP approach and RL, meaning
the algorithm does not end with a deadlock (Both solved).

• the average delay of the sets according to MIP approach on the instances
in the set Solved MIP (Avg delay (MIP)).

• the average delay of the sets according to MIP approach on the instances
in the set Both solved (Avg delay 2 (MIP)).

• the average delay of the sets according to RL approach on the instances
in the set Both solved (Avg delay (RL)).

As we can see, increasing the number of resources and/or trains the number
of variables also escalates and therefore the number of solved instances solved
reasonably decreases. At the same time, the average delay found in the MIP
approach becomes higher than the ones found by RL. In fact while the values are
lower for the first two test groups, they are significantly higher in the remaining
sets. Particularly, for test sets 100 T 137 R and 200 T 137 R that have the
less number of resources and trains MIP the average delay obtained by MIP
approach is a little less than the Centralized approach. However when the
number of resources increases (from 137 to 155, 180 and 196) and even the
maximum number of trains is higher (from 10 and 12 to 13 and 15) MIP for
test instances 50 T 185 R finds an average delay that is 150% higher than the
average delay found by RL approach while for test sets 50 T 185 R and 50 T
197R the average delay found is twice higher than average delay returned by
RL.

23

7. Conclusions

This study compares the use of Deep Q-learning with linear Q-learning for
tackling the train dispatching problem. Two Deep Q-learning approaches were
proposed: Decentralized and Centralized. The former considers a train as an
agent with a limited perception of the rail network. The latter observes the
entire network and uses a GNN to estimate the rewards, allowing to change
the size of railway network without training a new neural network every time.
Computational results inspired on data provided by a U.S. class 1 railroad show
that the deep approaches perform better than the linear case. The generalization
to larger problems, both in terms of number of trains and in terms of railway size,
shows room for improvement, both in terms of search strategy and complexity of
the tested network and instances. When the instance is generated by the same
distribution of the training set, the algorithms prove to deal efficiently with
the problem providing solutions in a very short time. This aspect is crucial in
train dispatching, as indeed in any online/real-time planning problem, and in
our opinion is one of the reasons that makes this research direction interesting.
While solution algorithms based on different paradigms (e.g. Optimization,
CP) have proven to tackle the problem effectively in certain cases, scaling and
computational burden issues are always behind the corner. As shown in Section
6, we compared our Centralized approach with a MILP formulation, showing
the discrepancy between the two methods grows with the complexity of the
problem.i In future research, we may compare ourselves or include our heuristics
into more complex models and algorithms like [26] and [10]. Moreover, Deep
Reinforcement Learning (as in general ML-based approaches) has the advantage
of shifting the computational burden to the algorithm’s learning stage. Unlike in
enumerative algorithms, online response time then becomes basically negligible.
In other words, under the assumption that implicitly mapping space-actions-
rewards (which presents its own, clear scaling issues) can be done effectively,
Deep RL could represent a breakthrough in this application. For this reason,
and others listed in the Contribution paragraph in Section 1, we believe that it
is worth investigating and further advancing this research direction.

References

[1] B Adenso-Dıaz, M Oliva González, and P González-Torre. On-line
timetable re-scheduling in regional train services. Transportation Research
Part B: Methodological, 33(6):387–398, 1999.

[2] Paul Almasan, José Suárez-Varela, Arnau Badia-Sampera, Krzysztof
Rusek, Pere Barlet-Ros, and Albert Cabellos-Aparicio. Deep reinforcement
learning meets graph neural networks: Exploring a routing optimization use
case. arXiv preprint arXiv:1910.07421, 2019.

[3] Dimitri P Bertsekas. Reinforcement learning and optimal control. Athena
Scientific Belmont, MA, 2019.

24

[4] M Boccia, C Mannino, and I Vasiliev. Solving the dispatching problem on
multi-track territories by mixed integer linear programming. In Proc. RAS
Competition/INFORMS Meet., pages 1–16, 2012.

[5] Maurizio Boccia, Carlo Mannino, and Igor Vasilyev. The dispatching prob-
lem on multitrack territories: Heuristic approaches based on mixed integer
linear programming. Networks, 62(4):315–326, 2013.

[6] Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo Kroon, Paolo
Toth, Lucas Veelenturf, and Joris Wagenaar. An overview of recovery
models and algorithms for real-time railway rescheduling. Transportation
Research Part B: Methodological, 63:15–37, 2014.

[7] Xiaoqiang Cai, CJ Goh, and Alistair I Mees. Greedy heuristics for rapid
scheduling of trains on a single track. IIE transactions, 30(5):481–493,
1998.

[8] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving
the train timetabling problem. Operations research, 50(5):851–861, 2002.

[9] Yichen Chen, Lihong Li, and Mengdi Wang. Scalable bilinear π learning
using state and action features. arXiv preprint arXiv:1804.10328, 2018.

[10] Francesco Corman, Andrea D’Ariano, Alessio D Marra, Dario Pacciarelli,
and Marcella Samà. Integrating train scheduling and delay management in
real-time railway traffic control. Transportation Research Part E: Logistics
and Transportation Review, 105:213–239, 2017.

[11] Francesco Corman and Lingyun Meng. A review of online dynamic models
and algorithms for railway traffic management. IEEE Transactions on
Intelligent Transportation Systems, 16(3):1274–1284, 2014.

[12] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization soft-
ware with performance profiles. Mathematical programming, 91(2):201–213,
2002.

[13] Iddo Drori, Anant Kharkar, William R Sickinger, Brandon Kates, Qiang
Ma, Suwen Ge, Eden Dolev, Brenda Dietrich, David P Williamson, and
Madeleine Udell. Learning to solve combinatorial optimization problems
on real-world graphs in linear time. arXiv preprint arXiv:2006.03750, 2020.

[14] Wei Fang, Shengxiang Yang, and Xin Yao. A survey on problem models
and solution approaches to rescheduling in railway networks. IEEE Trans-
actions on Intelligent Transportation Systems, 16(6):2997–3016, 2015.

[15] Taha Ghasempour and Benjamin Heydecker. Adaptive railway traffic con-
trol using approximate dynamic programming. Transportation Research
Part C: Emerging Technologies, 2019.

25

[16] Andrew Higgins, Erhan Kozan, and Luis Ferreira. Heuristic techniques for
single line train scheduling. Journal of heuristics, 3(1):43–62, 1997.

[17] Harshad Khadilkar. A scalable reinforcement learning algorithm for
scheduling railway lines. IEEE Transactions on Intelligent Transportation
Systems, 20(2):727–736, 2018.

[18] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learn-
ing combinatorial optimization algorithms over graphs. In Advances in
Neural Information Processing Systems, pages 6348–6358, 2017.

[19] Leonardo Lamorgese and Carlo Mannino. An exact decomposition ap-
proach for the real-time train dispatching problem. Operations Research,
63(1):48–64, 2015.

[20] Leonardo Lamorgese, Carlo Mannino, Dario Pacciarelli, and Jo-
hanna Törnquist Krasemann. Train dispatching. Handbook of Optimization
in the Railway Industry, pages 265–283, 2018.

[21] Jinlin Liao, Guang Yang, Shiwen Zhang, Feng Zhang, and Cheng Gong. A
deep reinforcement learning approach for the energy-aimed train timetable
rescheduling problem under disturbances. IEEE Transactions on Trans-
portation Electrification, 7(4):3096–3109, 2021.

[22] Sundaravalli Narayanaswami and Narayan Rangaraj. Scheduling and
rescheduling of railway operations: A review and expository analysis. Tech-
nology Operation Management, 2(2):102–122, 2011.

[23] Sundaravalli Narayanaswami and Narayan Rangaraj. Modelling disrup-
tions and resolving conflicts optimally in a railway schedule. Computers &
Industrial Engineering, 64(1):469–481, 2013.

[24] Lingbin Ning, Yidong Li, Min Zhou, Haifeng Song, and Hairong Dong.
A deep reinforcement learning approach to high-speed train timetable
rescheduling under disturbances. In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), pages 3469–3474. IEEE, 2019.

[25] Mitsuaki Obara, Takehiro Kashiyama, and Yoshihide Sekimoto. Deep rein-
forcement learning approach for train rescheduling utilizing graph theory.
In 2018 IEEE International Conference on Big Data (Big Data), pages
4525–4533. IEEE, 2018.

[26] Paola Pellegrini, Grégory Marlière, Raffaele Pesenti, and Joaquin Ro-
driguez. Recife-milp: An effective milp-based heuristic for the real-time
railway traffic management problem. IEEE Transactions on Intelligent
Transportation Systems, 16(5):2609–2619, 2015.

[27] Marcella Samà, Francesco Corman, Dario Pacciarelli, et al. A variable
neighbourhood search for fast train scheduling and routing during disturbed
railway traffic situations. Computers & Operations Research, 78:480–499,
2017.

26

[28] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[29] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Si-
monyan, Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart,
Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

[30] Darja Šemrov, Rok Marsetič, Marijan Žura, Ljupčo Todorovski, and Alek-
sander Srdic. Reinforcement learning approach for train rescheduling on
a single-track railway. Transportation Research Part B: Methodological,
86:250–267, 2016.

[31] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Activation functions
in neural networks. towards data science, 6(12):310–316, 2017.

[32] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Lanctot, et al. A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[33] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Ku-
maran, Thore Graepel, et al. Mastering chess and shogi by self-play with a
general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

[34] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[35] Richard S Sutton and Andrew G Barto. Reinforcement learning: An in-
troduction. MIT press, 2018.

[36] Johanna Törnquist. Computer-based decision support for railway traf-
fic scheduling and dispatching: A review of models and algorithms. In
5th Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS’05). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2006.

[37] Johanna Tornquist and Jan A Persson. Train traffic deviation handling
using tabu search and simulated annealing. In Proceedings of the 38th
annual Hawaii international conference on system sciences, pages 73a–73a.
IEEE, 2005.

[38] Qi Wang, Yue Ma, Kun Zhao, and Yingjie Tian. A comprehensive survey of
loss functions in machine learning. Annals of Data Science, 9(2):187–212,
2022.

27

[39] Rongsheng Wang, Min Zhou, Yidong Li, Qi Zhang, and Hairong Dong.
A timetable rescheduling approach for railway based on monte carlo tree
search. In 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), pages 3738–3743. IEEE, 2019.

[40] Xuekai Wang, Andrea D’Ariano, Shuai Su, and Tao Tang. Cooperative
train control during the power supply shortage in metro system: A multi-
agent reinforcement learning approach. Transportation Research Part B:
Methodological, 170:244–278, 2023.

[41] Yin Wang, Yisheng Lv, Jianying Zhou, Zhiming Yuan, Qi Zhang, and Min
Zhou. A policy-based reinforcement learning approach for high-speed rail-
way timetable rescheduling. In 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC), pages 2362–2367. IEEE, 2021.

[42] C Yan and L Yang. Mixed-integer programming based approaches for the
movement planner problem: Model, heuristics and decomposition. Proc.
RAS Problem Solving Competition, pages 1–14, 2012.

[43] Lin F Yang and Mengdi Wang. Sample-optimal parametric q-learning using
linearly additive features. arXiv preprint arXiv:1902.04779, 2019.

[44] Cheng-shuo Ying, Andy HF Chow, and Kwai-Sang Chin. An actor-
critic deep reinforcement learning approach for metro train scheduling with
rolling stock circulation under stochastic demand. Transportation Research
Part B: Methodological, 140:210–235, 2020.

[45] Cheng-Shuo Ying, Andy HF Chow, Yi-Hui Wang, and Kwai-Sang Chin.
Adaptive metro service schedule and train composition with a proximal
policy optimization approach based on deep reinforcement learning. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[46] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review
of methods and applications. arXiv preprint arXiv:1812.08434, 2018.

Appendix

We represent the railway network as a graph G = (N,F,A) where each node
n ∈ N is a resource. Moreover we have two types of arcs: fixed and disjunctive.
For each train and each routing, fixed arcs connects two subsequent resources
while disjunctive arcs represent logic alternatives where at most one of them can
be activated. A disjunctive arc represents precedence constraints on resources
that can be shared by two trains.

The first group of variables is represented by the routing variables yum, that
are assigned to one if routing m for train u is chosen, and are zero otherwise.
The second group are disjunctive variables x(krj,ump),(umi,krp), that are driven

28

to one if train k on routing r enters in resource p before train u that chooses
routing m, and zero otherwise. Finally, the last group of variables tkrj are
associated with time, in particular the instant when train k enters in resource
j following routing r.

The resulting mathematical formulation is as follows:

min
∑
n∈T

tnpn

s.t. tkrj − tkrp ≥ wkrp,krj +M(1− ykr), ∀ (krp, krj) ∈ F (i)

tump − tkrj ≥ wA
krj,ump +M(2− yum − ykr) +Mx(krj,ump),(umi,krp),

∀ ((krj, ump), (umi, krp)) ∈ A (ii)

tkrp − tumi ≥ wkrj,krp +M(2− yum − ykr) +M(1− x(krj,ump),(umi,krp)),
∀ ((krj, ump), (umi, krp)) ∈ A (iii)

Rb∑
a=1

yab = 1, ∀ b ∈ {1, . . . , Z} (iv)

x(krj,ump),(umi,krp) ∈ {0, 1}, yum ∈ {0, 1}, tk ∈ R+

Constraints (i) ensure that if train k chooses route r for each resource, then
the starting time of two subsequent resources (i and i+1) must be at least equal
to the time to travel the i-th resource. Constraints (ii) -(iii) are precedence
constraints for trains that share the same resources. Group (iv) ensures each
train uses just one routing.

29

