391 research outputs found

    Optimum acquisition and processing parameters for multichannel analysis of surface waves using 3D electrical resistivity tomography as control

    Get PDF
    Multichannel Analysis of Surface Waves (MASW) and Electrical Resistivity Tomography (ERT) data were acquired in the Newburg, Missouri with the goal of determining optimum MASW acquisition parameters. Users of the MASW tool generally state that greater geophone intervals and greater shot-to-receiver offsets provide for more accurate results. The objective was to determine if this rule of thumb applies in karst terrain. ERT data were acquired along four traverses with eighty-four (84) electrodes at five feet spacing with SuperSting R8 Resistivity System using dipole- dipole array. The data were processed using Earth Imager to generate 2-D resistivity inversion and thereafter, Voxler software was used to collate the 2-D ERT data into a 3-D resistivity model. MASW data on the other hand, were acquired along the same ERT traverses on the same locations using a suite of different geophone intervals (1-ft, 2.5-ft, 5-ft, 7.5-ft, and 10-ft) and shot-to-receiver spacings (0-ft, 10-ft, 20-ft, 30-ft, 40-ft, and 50-ft) with a 20lb sledge hammer as the source. The data were processed using Surfseis software to generate the dispersion curves and 1-D shear wave velocity profiles of the area. On the basis of the comparative analyses of the ERT and MASW data, it was determined that 2.5-ft and 5-ft geophone gave generated depth of bedrock that was consistent with ERT data. With 5-ft geophone spacing it is possible to image the subsurface to greater depth, but with the 7.5-ft and 10-ft, unidentifiable dispersion curves would be generated. Therefore, in this study area, on the basis of data that were acquired it is recommended that 2.5ft spacing be used if depth of investigation is about 40ft, but if the depth of investigation is about 80-ft, using a sledge hammer source then 5-ft geophone spacing at 20-ft shot-receiver offset distance is recommended. --Abstract, page iii

    Applications of satellite and marine geodesy to operations in the ocean environment

    Get PDF
    The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports

    Science opportunities from the Topex/Poseidon mission

    Get PDF
    The U.S. National Aeronautics and Space Administration (NASA) and the French Centre National d'Etudes Spatiales (CNES) propose to conduct a Topex/Poseidon Mission for studying the global ocean circulation from space. The mission will use the techniques of satellite altimetry to make precise and accurate measurements of sea level for several years. The measurements will then be used by Principal Investigators (selected by NASA and CNES) and by the wider oceanographic community working closely with large international programs for observing the Earth, on studies leading to an improved understanding of global ocean dynamics and the interaction of the ocean with other processes influencing life on Earth. The major elements of the mission include a satellite carrrying an altimetric system for measuring the height of the satellite above the sea surface; a precision orbit determination system for referring the altimetric measurements to geodetic coordinates; a data analysis and distribution system for processing the satellite data, verifying their accuracy, and making them available to the scientific community; and a principal investigator program for scientific studies based on the satellite observations. This document describes the satellite, its sensors, its orbit, the data analysis system, and plans for verifying and distributing the data. It then discusses the expected accuracy of the satellite's measurements and their usefulness to oceanographic, geophysical, and other scientific studies. Finally, it outlines the relationship of the Topex/Poseidon mission to other large programs, including the World Climate Research Program, the U.S. Navy's Remote Ocean Sensing System satellite program and the European Space Agency's ERS-1 satellite program

    Conformal Additive Manufacturing and Cooperative Robotic Repair and Diagnosis

    Get PDF
    In the past several years exponential growth has occurred in many industries, including additive manufacturing (AM) and robotics, enabling fascinating new technologies and capabilities. As these technologies mature, the need for higher-level abilities becomes more apparent. For instance, even with current, commercial state-of-the-art technology in AM it is impossible to deposit material onto a nonplanar surface. This limitation prevents the ability to fully encase objects for packaging, to create objects with hollow features or voids, and even to retrofit or repair preexisting items. These limitations can be addressed by the introduction of a conformal AM (CAM) process or more concretely the process in which material is deposited normal to the surface of an object as opposed to solely planar layers. Therefore, one of the main contributions of this work is the development of two novel methods to generate layers from an initial object to a desired object for use in two- and three-dimensional CAM processes. The first method is based on variable offset curves and subject to mild convexity conditions for both the initial and desired object. The second method reparametrizes solutions to Laplace's equation and does not suffer from these limitations. A third method is then presented that alters solutions from the previous methods to incorporate hollow features or voids into the layer generation process. Although these hollow features must obey mild convexity conditions, the location and number of said features is not limited. Examples of all three layering methods are provided in both two- and three-dimensions. Interestingly, these same methods can also be applied to determine the collision-free configuration space in certain robot motion planning applications. However, ultimately, the most compelling application may be in the repair of damaged items. Given an accurate model of a damaged item, these techniques, in conjunction with fused deposition modeling devices embedded on robotic arms, can be leveraged to restore a damaged item to its original condition. In a separate but similar vein, although robotic systems are becoming more capable each day, their designs still lack almost any semblance of a repair mechanism. This issue is increasingly important in situations where robotic systems are deployed to isolated or even hostile environments as human intervention is limited or impossible. The second half of this work focuses on solving this issue by introducing the Hexagonal Distributed Modular Robot (HexDMR) System which is capable of autonomous team repair and diagnosis. In particular, agents of the HexDMR system are composed of heterogeneous modules with different capabilities that may be replaced when damaged. The remainder of this work discusses the design of each of these modules in detail. Additionally, all possible non-isomorphic functional representations of a single agent are enumerated and a case study is provided to compare the performance between two possible iterations. Then, the repair procedures for an agent in the system are outlined and verified through experiments. Finally, a two-step diagnosis procedure based on both qualitative and quantitative measures is introduced. The particle filter based quantitative portion of this procedure is verified through simulation for two separate robot configurations, while the entire procedure is validated through experiments

    Eclipsing Binary Stars: Modeling and Analysis

    Full text link

    Research and technology 81

    Get PDF
    During fiscal year 1981, the Goddard Space Flight Center continued to contribute to the goals and objectives of the Nation's space program by undertaking a wide variety of basic and applied research, technology developments, data analyses, applications investigations and flight projects. The highlights of these research and technology efforts are described

    Superconducting gravity gradiometer mission. Volume 2: Study team technical report

    Get PDF
    Scientific and engineering studies and developments performed or directed by a Study Team composed of various Federal and University activities involved with the development of a three-axis superconducting gravity gradiometer integrated with a six-axis superconducting accelerometer are examined. This instrument is being developed for a future orbital mission to make precise global gravity measurements. The scientific justification and requirements for such a mission are discussed. This includes geophysics, the primary mission objective, as well as secondary objective, such as navigation and feats of fundamental laws of physics, i.e., a null test of the inverse square law of gravitation and tests of general relativity. The instrument design and status along with mission analysis, engineering assessments, and preliminary spacecraft concepts are discussed. In addition, critical spacecraft systems and required technology advancements are examined. The mission requirements and an engineering assessment of a precursor flight test of the instrument are discussed

    ANALYSIS AND APPLICATION OF CAPACITIVE DISPLACEMENT SENSORS TO CURVED SURFACES

    Get PDF
    Capacitive displacement sensors have many applications where non-contact, high precision measurement of a surface is required. Because of their non-contact nature they can easily measure conductive surfaces that are flexible or otherwise unable to be measured using a contact probe. Since the output of the capacitance gage is electrical, data points can be collected quickly and averaged to improve statistics. It is often necessary for capacitive displacement sensors to gage the distance from a curved (non-flat) surface. Although displacements can easily be detected, the calibration of this output can vary considerably from the flat case. Since a capacitance gage is typically factorycalibrated against a flat reference, the experimental output contains errors in both gain and linearity. A series of calibration corrections is calculated for rectifying this output. Capacitance gages are also limited in their overall displacement travel. A support stage is described that, along with control electronics, allow the properties of the capacitance gage to be combined with an interferometer to overcome this displacement limitation. Finally, an application is proposed that would make use of the capacitance sensor and support stage assembly

    Space Station Planetology Experiments (SSPEX)

    Get PDF
    A meeting of 50 planetary scientists considered the uses of the Space Station to support experiments in their various disciplines. Abstracts (28) present concepts for impact and aeolian processes, particle formation and interaction, and other planetary science experiments. Summaries of the rationale, hardware concepts, accomodations, and recommendations are included

    Geodesy: A look to the future

    Get PDF
    The report deals with the current and future uses of contemporary geodetic data and poses some questions and possibilities for the future. It is anticipated that the document will generate interest in present and future geodetic data for the solution of problems in Earth, ocean, and atmospheric sciences
    • …
    corecore