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Abstract of Thesis 
 
 
 

 
ANALYSIS AND  

APPLICATION OF  
CAPACITIVE DISPLACEMENT SENSORS TO  

CURVED SURFACES 
 

Capacitive displacement sensors have many applications where non-contact, high 
precision measurement of a surface is required. Because of their non-contact nature they can 
easily measure conductive surfaces that are flexible or otherwise unable to be measured using a 
contact probe. Since the output of the capacitance gage is electrical, data points can be collected 
quickly and averaged to improve statistics.  

It is often necessary for capacitive displacement sensors to gage the distance from a 
curved (non-flat) surface. Although displacements can easily be detected, the calibration of this 
output can vary considerably from the flat case. Since a capacitance gage is typically factory-
calibrated against a flat reference, the experimental output contains errors in both gain and 
linearity. A series of calibration corrections is calculated for rectifying this output.  

Capacitance gages are also limited in their overall displacement travel. A support stage is 
described that, along with control electronics, allow the properties of the capacitance gage to be 
combined with an interferometer to overcome this displacement limitation. Finally, an 
application is proposed that would make use of the capacitance sensor and support stage 
assembly.  
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1: 
Introduction 

Capacitance displacement sensors or “gages” are used in precision engineering 

applications such as metrology (dimensional, form, and machine) and precision machines. 

Capacitance gages are suitable for these applications since they provide high sensitivity, non-

contact measurement, and a wide range of bandwidths. Engineers often assume that their 

displacement sensor measurements are perfectly linear and calibrated irrespective of operating 

conditions, but in many situations this is not the case. In particular a capacitance displacement 

gage will show erroneous output when it is used in combination with a convex spherical surface 

rather than a flat surface. The errors arising from this operating condition can be significant in 

several common applications. 

The calibration of capacitance gages changes when comparing output from flat versus 

spherical surfaces due to the change in capacitances within the system. These changes will be 

modeled using finite element software, and the resulting data will be used to create“error maps” 

for specific diameter spheres. Finally, these error maps will be proven to be valid by applying the 

theoretical corrections to experimental results.  

Another capacitance gage limitation, that of a small overall sensing range, can be 

overcome by combining the capacitance gage with a second displacement sensor. This assembly 

can be electronically controlled to maintain a constant distance from a target surface, and a 

machine is proposed that takes advantage of such a subassembly. The control subassembly will 

be validated experimentally using equipment available in the laboratory. 

This chapter begins by introducing the fundamentals of capacitance displacement gages 

and a few common applications. These applications include piezo feedback in nanopositioning 

stages and spindle metrology measurements. Second, this chapter will open the “black box” and 

look at some of the electronic and electrostatic issues involved with capacitance gages, including 

closed-form approximations and linearity considerations. 
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1.1 Capacitance Sensors Overview 
Capacitance is the property of a conductor or a system of conductors to store and release 

energy by storing electrons. The fundamental relationship between charge Q, capacitance C, and 

voltage potential V, is given by Eq. (1-1). The energy stored in a capacitor is given by Eq. (1-2). 

From these equations it is apparent that the charge and therefore energy storage ability goes up as 

capacitance increases. 

 
 VCQ ⋅=  (1-1) 

 
 2

2
1 CVW =  (1-2) 

 
Because electrons are naturally repelled by each other and are drawn to positive charges 

(i.e., a material with a dearth of electrons), the most common capacitor arrangements have two 

conductive plates separated by only a thin layer of insulator (dielectric). When one plate is 

charged negatively and the other charged positively, many more electrons can be stored since the 

electrons on the negative plate are drawn to the holes on the positively charged plate. A smaller 

gap between the plates produces a higher capacitance. If the gap distance is variable, the 

capacitance between the two plates will vary as well.  

Commercially available capacitance sensors utilize either a varying gap or varying area to 

change their capacitance as a function of displacement. They are used in applications requiring 

high sensitivity, non-contact displacement measurement. In nearly all commercial capacitance 

gage applications the gage is placed in close proximity to a conductive target surface that is 

electrically grounded. During operation, an AC circuit at a frequency of a few kHz modulates the 

voltage on the “sensing” conductor and determines its capacitance relative to the grounded plane. 

Figure 1-1 shows a commercially available capacitance displacement sensor that is manufactured 

and sold by Lion Precision, Inc. (Minneapolis, MN). On this sensor the central conductor or 

“sensing element” is ground flat and perpendicular to the housing. This conductor is separated 

from the “guard ring” by an insulating material. The guard ring is kept at approximately the same 

potential voltage as the sensing element, but is not part of the sensing circuit. This guard ring 

geometry minimizes the spreading or “fringe effects” of the electric field near the edges of the 

sensing element, as will be discussed in detail in Chapter 2. By minimizing the fringing the 

linearity is improved and the gage is also somewhat protected from spurious external electric 
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fields from other voltage sources. The dimensions of the capacitance gage conductors and 

insulators are shown in Figure 1-2.  

Grounded outer shell

Guard ring

Sensing element

Insulator

 
Figure 1-1. Lion Precision capacitance gage with key components labeled.  

Guard ring

Sensing elementGrounded shell

1.7144

8.382

7.62
5.08

3.1724

9.525

1.1430

 
Figure 1-2. Cross section of capacitance sensor. All dimensions in mm. 
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1.1.1 Closed-form approximate solutions 
The capacitance of an idealized parallel plate capacitor has a simple closed-form solution, 

shown in Eq. (1-3). The capacitance C is directly proportional to the surface area A of each plate, 

the electric field permittivity of free space 0ε , and the relative permittivity of the insulator 

between the plates Rε . The capacitance C is inversely proportional to the distance d between the 

plates. This formulation is considered only a first order approximation since it neglects fringe 

effects and any thickness of the plates. It assumes that the electric field is perfectly uniform 

across the gap between the plates and is zero elsewhere. Graphically, the electric field lines are 

perpendicular to the surfaces of the plates and have equal magnitude. The equipotential lines 

(constant voltage) are parallel to the plates and occur at equal spacing.  

 

 
d

A
C Rεε 0=  (1-3) 

 
In the unit system (mm, V) applied throughout the capacitance calculations and field 

simulations of this thesis, the absolute permittivity, 0ε , equals 8.854 ×  10-9 µF /mm. The 

resulting capacitance values calculated with Eq. (1-3) are therefore in units of µF , which are 

sometimes converted to picoFarads (pF) for simplicity. The relative permittivity Rε  is a 

dimensionless quantity greater than 1 that relates the permittivity of the medium between the 

plates to that of vacuum. Hicks and Atherton [1] suggest using Essen and Froome’s [2] relation, 

which is given in Eq. (1-4), to calculate the relative permittivity of air as a function of 

temperature T and the partial pressures of dry air (p1), carbon dioxide (p2), and water vapor (p3) 

in the atmosphere. A typical value for relative permittivity at room temperature is 1.0008, but it 

will be shown in Section 3.3.3 that this can be assumed to be 1 with no loss of accuracy in the 

final calculations.  

 

 6
321 10574812.12956.26639.15531 −×









 +++=− p

TT
p

T
p

TRε  (1-4) 

 
The expression for ideal capacitance in Eq. (1-3) is only a first order approximation since 

it neglects fringe effects and any thickness of the plates. It assumes that the electric field is 

perfectly uniform across the gap between the plates and zero elsewhere. The electric field lines 
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are perpendicular to the surfaces of the plates and have equal magnitude, and the equipotential 

lines (constant voltage) are parallel to the plates and occur at equal spacing. Because the 

effective area of the plates is increased by fringing at the perimeter of the plates, the actual 

capacitance is always larger than what Eq. (1-3) suggests; hence the ideal capacitance 

underestimates the capacitance of the actual system.  

A more accurate estimate of the capacitance between two parallel circular plates includes 

the effect of the electrical field fringing around the perimeter of the plates. Lion [3] suggests that 

Eq. (1-5) be used to determine a capacitance value Cf that includes fringe effects. The correction 

factor f in this equation is a function of the plate thickness, s, and the gap distance, d. The value 

of f is determined from Table 1-1 for a given ratio of plate thickness to gap distance (s/d) [4]. 

 

 












 +++= f

d
rr

d
rC f 116ln

2

0
ππε  (1-5) 

 
Table 1-1. Fringe effect correction factor f for Eq. (1-5).  

s/d f(s/d) s/d f(s/d) 
0.02 0.098 0.4 0.84 
0.04 0.168 0.6 1.06 
0.06 0.230 0.8 1.24 
0.08 0.285 1.0 1.39 
0.1 0.335 1.2 1.52 
0.2 0.54 1.4 1.63 

 

Moon and Sparks [5] provide a third closed-form approximation for the capacitance when 

the capacitor consists of two thin circular plates with an annular Kelvin guard ring surrounding 

one plate to reduce fringe effects. This configuration is illustrated in Figure 1-3, where r is the 

radius of the upper plate and g is the gap between it and the guard ring. This approximation is 

valid under three conditions: (1) the plates and guard ring are thin, (2) the gap between the upper 

plate and guard ring (g) is much smaller than the distance between the plates (g<<d), and (3) 

when the width of the guard ring w is about 5 times greater than the distance between the plates 

( dw ⋅≈ 5 ). 
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Lower plate

Guard ring
Upper plate

g

d

r

w

 
Figure 1-3. Geometry for the Kelvin guard ring approximation. 

The Moon and Sparks approximation applies two separate corrections to the ideal 

capacitance. The first correction is to determine the effective radius, re, by combining the radius 

r and half of the gap, g, between the sensing element and the guard ring. This is shown in Eq. 

(1-6). The capacitance with this new radius applied is shown in Eq. (1-7). Since the electric field 

is not parallel in this region there is an additional correction that is a function of the gap g and the 

distance between plates d. This correction term χ  is presented in Eq. (1-8). The resulting 

capacitance Cg is presented in Eq. (1-9). All three of these closed-form solutions will be 

compared to finite element calculations in Chapter 2.  
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 [ ]χ+= 10CCg  (1-9) 

 
Despite being based upon thin conducting plates, the Moon and Sparks approximation 

has been recommended by several more recent publications, including Heerens and Vermeulen 

[6], Lanyi [7], and Hicks and Atherton [8].  
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Another approximation for capacitance was suggested by Brown and Bullied [9] for the 

case of plates with finite thickness, s, and the inclusion of a guard ring. Brown and Bullied’s 

approximation applies a correction factor that depends upon the width of the space between the 

sensing area and guard ring, g, as shown in Eq. (1-10). 
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For the case of a capacitance gage with a guard ring placed in close proximity to a curved 

surface, no closed form solution is found in the literature. Finite element modeling has been used 

for both flat surfaces [10] and for rough and tilted surfaces [11] with good results. Applying 

these methods to a variety of curved surfaces is the next logical step.  

1.1.2 Capacitive sensing circuitry 
There are many different electrical circuits that linearize the output of the capacitance 

gage as a function of the gap distance d. The simplest measurement system is to drive the 

capacitor with a sinusoidal current of the form shown in Eq. (1-11) [12]. The resulting voltage is 

given by the integral in Eq. (1-12), which is solved in Eq. (1-13). The ratio of voltage to current 

shown in Eq. (1-14) therefore varies with the inverse of capacitance, and this value is therefore 

directly proportional to the gap distance d.  
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In practice, more complex circuits such as those described by Jones and Richards [13] 

and Hugill [14] incorporate reference capacitors and other elements to stabilize the output. In 

addition, short-circuiting of the sensing element is a common scenario, so protection from such 

overloading is necessary.  

1.1.3 Calibration of capacitance displacement gages 
The calibration of a capacitance gage must be accomplished using one or more devices 

that are capable of comparable resolution. A displacement sensing interferometer, for example, is 

able to measure position to within a few percent of the wavelength of the laser illumination used, 

typically 10 nm for lasers in the visible spectrum. By using a moving target in combination with 

the readout from such an interferometer, the output of the capacitance gage can be electronically 

calibrated to a known source.  

Without access to the typically proprietary circuit diagrams of their electronics, the 

overall linearity of a particular capacitance gage system must be determined by examining the 

calibration data. Indeed, calibration information from Lion Precision, the manufacturer of the 

capacitance gages used throughout this study, shows this output to be linear to within 0.2% over 

the entire operational range of the capacitance probe [15].  

Finally, it is important to take note of the active range of the commercial capacitance 

sensor at various gain settings. Throughout the capacitance simulation and analysis a distinction 

will be made between absolute distances to surfaces, denoted by d, and a relative displacement, 

denoted by d∆ . The chart in Table 1-2 lists both the distance and displacement values, and the 

output voltages, for the two gain settings of interest.  

Table 1-2. Distance and displacement values for the “fine” and “ultrafine” gain settings of 
a Lion Precision capacitance gage.  

Gain setting Variable Minimum Reference (nom.) Maximum 
Fine Distance d 0.0762 mm (3.0 minch) 0.1016 mm (4.0 minch) 0.1270 mm (5.0 minch) 
 Displacement d∆  -0.0254 mm (-1.0 minch) 0.0000 mm (0.0 minch) 0.0254 mm (1.0 minch) 
 Voltage, V -10 V 0 V +10 V 
     
Ultrafine Distance d 0.02032 mm (0.8 minch) 0.02540 mm (1.0 minch) 0.03048 mm (1.2 minch) 
 Displacement d∆  -0.00508 mm (-0.2 minch) 0.00000 mm (0.0 minch) 0.00508 mm (0.2 minch) 
 Voltage, V -10 V 0 V +10 V 
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1.2 Common Applications of Capacitive Displacement Sensors 

1.2.1 Feedback in nanopositioning stages 
Capacitance gages excel at applications where the travel displacements are small but the 

demands of sensitivity (output voltage per unit displacement) are great. One example of such an 

application is for piezo-driven nanopositioning stages. These stages require closed-loop feedback 

because their piezo actuators exhibit nonlinear time-dependent phenomena such as hysteresis and 

creep. Because of their high sensitivity and repeatability, these closed loop piezo-stages are often 

used as the motion control stages of scanning probe microscopes such as scanning tunneling 

microscopes (STMs) and atomic force microscopes (AFMs). The sample is typically placed on 

the moveable nanopositioning stage with the probe fixed above it. The piezo stage is easily 

controlled by the electronic circuits of the AFM, and the capacitance gage maintains the linearity 

and precision of the required motion. A photograph of a commercially available, closed-loop 

nanopositioning stage (Polytec PI) that employs piezo actuators and capacitance displacement 

sensors is shown in Figure 1-4. This stage can be moved 100 µm  in X, Y, and Z directions with 

nanometer resolution. External electronics collect the signals from the capacitance gages and use 

this information to provide power to the piezo controllers.  

 
Figure 1-4. A piezo-driven nanopositioning stage.  



Chapter 1  Introduction 

 10 

1.2.2 Spindle metrology 
Although capacitance gages are exceptionally accurate in applications involving flat, 

parallel surfaces, many applications in machine metrology involve rotating axisymmetric 

artifacts such as a sphere or cylinder. Donaldson reversal, a common method to separate errors 

due to an imperfect target surface from errors in the axis of rotation, must use as a target a 

cylindrical or spherical surface. An overhead view of such an application is illustrated in Figure 

1-5, which is reproduced from [16].  

X XX X

Stator

Rotor

Part

X X XX

Capacitance gage
 

Figure 1-5. Spindle measurement using the Donaldson Reversal technique.  

Two measurements are made of a rotating surface, a “normal” and a “reversed” 

measurement, with both angular and displacement values recorded. Because the reverse 

placement is 180 degrees out of phase from the normal measurement, the sum of these two 

measurements represents twice the surface profile, and the difference represents the spindle 

radial error motion. In equation form from [17], this becomes Eqs. (1-15) to (1-18), where I1 and 

I2 are the forward and reverse measurements, respectively, R is the spindle radial error motion, 

and B is the surface profile. 
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The mathematics of the Donaldson reversal technique assume that the sensitivity of the 

capacitive gage (in V/mm or V/minch) is linear so that the spindle error can be separated from 

the surface errors. The functions I1 and I2 are not measured directly, but are derived from a linear 

gain G, specifically as shown in Eqs. (1-19) and (1-20). 

 
 )()( 11 θθ VGI ⋅=  (1-19) 

 
 )()( 22 θθ VGI ⋅=  (1-20) 

 
Plugging these linear functions into the previous equations results in solutions to R and B 

in terms of G, V1, and V2. However this analysis falls apart if we assume that the displacement is 

not a linear function of V. Assume for a moment that the form of the equation is predominantly 

linear, with a small quadratic term with coefficient δ . These modified measurements are shown 

in Eq. (1-21) and Eq. (1-22).  

 
 )()()( 2

111 θδθθ VVGI ⋅+⋅=  (1-21) 

 
 )()()( 2

222 θδθθ VVGI ⋅+⋅=  (1-22) 

 
Now the calculations become quite complex and are not easily solved. As will be shown 

in Chapter 3, in the final analysis both the gain G of the capacitance gage as well as its linearity 

is compromised when viewing a curved surface.  

1.2.3 Reference flat metrology 
A reference flat surface can also be measured using a capacitance gage transducer. In 

particular, a conductive flat can be measured directly, while non-conductive surfaces can be 

measured indirectly, as described in Section 1.3.1. In either case a linear motion stage is mounted 

parallel to the reference flat, and the capacitance gage is parallel to the surface. A conductive 

surface must be grounded to the capacitance gage electronics. The combined error of the 

reference flat and the linear motion stage must not exceed the active range of the capacitance 
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gage. These two errors are separated using Donaldson reversal, as described by Evans, Hocken, 

and Estler [18] and also in Section 1.2.2. Unlike the spindle metrology case, as long as the 

capacitance gage is parallel to the surface, the sensitivity should match the calibrated data.  

1.3 Overcoming Limits on the Capacitance Gage Active Range 
Like any sensor, capacitance gages are not without their limitations. Generally a 

capacitance gage is applied only to conductive surfaces. Although non-conductive surfaces can 

be detected due to differences in relative permeability, the Rε  term from Eq. (1-3), this is an 

indirect method.  

Non-contact methods also suffer when a surface is not perfectly clean. Attempting to 

measure a machined surface might result in misinformation due to oil or dirt present on the 

surface. In such cases a contact probe may be a better alternative, since such a probe generally 

has sufficient force to press against the machined surface.  

A third limitation of a capacitance gage is in the overall travel range. Since this is a 

displacement sensor all points of interest on a surface should be taken with a single measurement. 

This may prove impossible if the surface has too much variation from ideal or if, as mentioned in 

Section 1.2.3, the moving stage and the surface to be measured are not parallel. There are 

workarounds for all three of these limitations.  

Capacitance gage

Capacitance target

Porous carbon

Square shaft

Contact tip  
Figure 1-6. Contact probe adapter from Lion Precision.  
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1.3.1 Adapting for contact sensor arrangement 
One solution to both the conductive surface problem as well as the problem of a 

contaminated surface is to use a capacitance gage in combination with a contact probe. Such a 

device is available from Lion Precision, their contact probe adapter [19], shown in Figure 1-6. 

This adapter combines a fixed capacitance gage with a moveable contact probe. The contact 

probe moves on a small air bearing support, and the displacements are measured using the 

capacitance gage. Any desired probe tip diameter and material can be accommodated with this 

arrangement, and the capacitance gage electronics remain unchanged.  

1.3.2 Surface tracking 
Since capacitance gages have a small active range, applications where more travel is 

needed require an additional displacement measurement device. A system that combines a large 

displacement range with similar resolution to the capacitance gage is a laser interferometer. An 

interferometer uses two pathways, a measurement pathway and a reference pathway, to establish 

displacement. Light from the laser is divided using a beamsplitter and sent along the two 

pathways. Once they are recombined the resulting beam intensity will vary as the length of the 

measurement pathway changes. Ideally, these two pathways both terminate in a retroreflector. 

The surface conditions required by an interferometer are therefore even more stringent than those 

required of a capacitance gage.  

A measurement scheme previously described [20] uses one sensor to “track” a surface, 

then uses an interferometer to measure displacement of the tracking component. In this example, 

an optical head from a compact disc player is used to track a surface with step features. The 

optical head feedback electronics are designed to produce an optimal spot size for the laser by 

maintaining a constant distance from the surface. As surface features are encountered, the PZT 

actuator in the system moves the optical head to compensate. The interferometer measures the 

movement of the optical head, which corresponds precisely to the surface features. The optical 

head and measurement setup diagrams from this paper are reproduced in Figure 1-7. Once again, 

this mode of surface tracking is implemented in the closed-loop system described in Chapter 4.  
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Figure 1-7. Optical head (left) and measurement setup (right) of a surface tracking system.  

1.4 A Form Measurement Machine 
Designing a subsystem that eliminates one of the primary limitations of a capacitance 

sensor is not enough to prove its practicality. An application is needed that requires such a 

subsystem, and a machine must be designed to show how the subsystem is applied.  

Large format mirrors for astronomical applications require a precision form over a large 

area. Future generations of space-based telescopes will likely be dependent on thin “gossamer” 

optics made from formed and coated polymers. These mirrors, unlike the rigid ones of previous 

designs, cannot be subjected to the forces of a contact probe without drastically deforming. Non-

contact measurement is a necessity. 

The travel required to measure such a mirror naturally increases as the size increases. 

Since these surfaces are not truly spherical even a “perfectly” formed mirror will require some 

travel of the measurement gage. A subsystem that overcomes this limitation is therefore also 

necessary for such a machine.  
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1.5 Conclusions 
Capacitance gages are displacement sensors that use the capacitance properties of parallel 

conductive plates. Although the simplest capacitor configuration is that of two equal-sized 

parallel plates, in practical applications a third conductor is required to isolate the electric field 

from outside influences. Closed form approximate solutions exist for several of these geometries, 

but not for cases of curved target surfaces.  

Capacitance gages also suffer from several drawbacks. They are calibrated against a flat 

surface, therefore they are only accurate when used against such a surface. Unfortunately, some 

applications such as spindle metrology cannot offer a flat reference surface. The errors in such a 

measurement must be evaluated so that they can be removed in postprocessing. Capacitance 

gages are also limited in terms of active sensing range. To overcome this drawback, a 

capacitance gage can be used to track a surface and its motion followed by a second 

displacement sensor, such as a laser interferometer. A complete machine design incorporating 

these components will prove the usefulness of these studies.  
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2: 
Finite Element Analysis of Capacitance 
Gage Measurements of Spherical Surfaces 

2.1 Introduction 
Capacitance sensors are used for many non-contact displacement measurement 

applications. By applying voltage they create an electric field between a central “sensing” 

element and a grounded, conductive “target” surface. The voltage potential between the two 

conductors is analogous to the solution of a heat transfer problem between two surfaces whose 

temperature is fixed. The electric field lines are the gradient of the potential, analogous to the 

direction of heat flow.  

For a flat target the electric field lines are uniform and parallel across most of the sensing 

area. For a spherical target surface the solution is more complex, and a closed form equation has 

not been found. To determine the capacitance of this system, a finite element model of a 

commercially available capacitance sensor and a spherical target is modeled in the Ansys finite 

element software. Capacitance values are first calculated for various gap distances from a flat 

surface, then these results are compared to similar capacitance values derived from spherical 

surfaces.  

2.2 Electric Field Analysis Formulation 
Most mechanical engineers are familiar with finite element analysis (FEA) packages for 

use with stress/strain calculations or heat transfer modeling. The software package Ansys, in 

addition to these options, can also be applied to solve electric or magnetic field problems. As 

with traditional mechanical problems, a complex electric field problem that cannot be calculated 

analytically can be solved using a sufficiently refined mesh [21].  

As is the case with a heat transfer finite element problem, the electric field solution takes 

the form of a scalar potential. The formulation for a conduction heat transfer problem is given in 
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Eq. (2-1), from [22], where qB is the heat generation rate per unit volume, kx, ky, and kz are 

thermal conductivities, and θ  is the temperature. 
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Boundary conditions applied to heat transfer problems are either a known temperature on 

a surface or a known heat flux. If there is no heat generation, then the right hand side of Eq. (2-1) 

is zero. 

Changing the variables of Eq. (2-1) to those generally applied to electrostatic problems, 

the resulting differential equation is shown in Eq. (2-2). Here qB represents the presence of 

charges in the electric field or “charge density,” the three ε  values are the electric permittivity 

values of the material, and φ  is the field potential in volts.  

 

 B
zyx q

zzyyxx
−=





∂
∂

∂
∂+








∂
∂

∂
∂+





∂
∂

∂
∂ φεφεφε  (2-2) 

 
The two possible boundary conditions in an electrostatic problem are either to prescribe 

the charge density on a boundary, analogous to a fixed heat flux on a boundary in a conduction 

problem, or to prescribe the field potential (voltage) on a surface, analogous to surfaces of 

constant temperature.  

To describe the effect of charges in an electric field problem (the qB term) consider an 

insulator that has been electrically charged by removing or adding electrons. When this insulator 

is placed in close proximity to other conductors or insulators, electrons will “sense” the charges 

on the insulator and be either drawn or repulsed by them depending on their sign. The force felt 

by a single electron is the product of the field potential φ  and the charge of a single electron, 

measured in Coulombs. The electric field lines represent the direction and magnitude of the total 

electrostatic force anywhere in the geometry of the problem. Returning to the conduction heat 

transfer analogy, electric field potential is analogous to lines of constant temperature, while 

electric field lines are analogous to the direction of heat flow.  

Electric permittivity values (ε ) represent a property of an insulator where charges are 

rearranged in the insulator to counteract the presence of charges on nearby materials. Because an 

insulator will develop a positive charge when placed in close proximity to a negatively charged 
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conductor and vice-versa, the electric permittivity of an insulator is always greater than that of 

vacuum. For this reason electric permittivity is typically broken into two values, the dimensioned 

constant value 0ε , representing vacuum, and a dimensionless multiplier denoted by Rε , 

representing the relative increase in permittivity as a property of the material in the gap. For air 

the Rε  term is typically 1.0008, varying slightly with temperature and humidity. The electric 

permittivity is analogous to the conduction coefficient k in a heat transfer problem, since a larger 

k results in higher heat flux, just as an increase in ε  results in higher electric fields within the 

gap.  

For a material with an isotropic electric permittivity, the ε  values can be moved to the 

right hand side of the equation. The differential equation now takes the form of Poisson’s 

Equation, shown in Eq. (2-3).  
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The final step to convert this equation to our usable form is to consider the cylindrical 

symmetry of the problem at hand. The differential operator is put into cylindrical coordinates (r, 

θ , and z), but by the definition of an axisymmetric problem, there is to be no dependence on the 

variable θ . The resulting differential equation is shown in Eq. (2-4).  
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In the case when no free charges are present within the insulated areas of the capacitor, 

the qB term on the right side of the equation goes to zero and the form of Eq. (2-5) is Laplace.  
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A detailed analysis of possible solutions to this form of the Laplace Equation is given in 

[23] based on certain simplified boundary conditions. Unfortunately, the combined boundary 

conditions of a cylinder and a sphere are not straightforward, and therefore a finite element 

solution must be pursued.  



Chapter 2  Finite Element Analysis 

 19 

2.3 Electrostatic Analyses in Ansys 
The complete Ansys code used in these simulations is listed in Appendix B, however, an 

overview of the commands used is useful as well. Of particular interest are the commands that 

are unique to an electrostatic analysis.  

The method used in Ansys to build these models is to begin with keypoints, then add 

lines, then areas. Because the model is axisymmetric each 2D area in the model actually 

represents a 3D volume. After the initial header commands to enter the preprocessor, some 

values are defined for the geometry of the problem, as shown. Values not initially listed in metric 

units are converted to metric in a subsequent step. The electrostatic constant 0ε  or EMUNIT is 

also defined below. 
finish 
/clear                  ! used to erase and start over analysis 
/title, Axisymmetric Capacitor, h-Method 
/prep7 
! Defining the geometry of  
! parallel plate capacitor in Ansys.  
! Set units to mm, microfarads 
emunit,epzro,8.854e-9   !epsilon in uF per mm 
! Define Variables 
pthick=0.05     ! Thickness of each cap plate 
bplater=10      ! Base plate radius in mm 
uplater=10      ! Upper plate radius 
gap=0.05        ! gap between plates at center 
rsph=20         ! radius of surrounding sphere 
 

Because the finite element analysis is to be completed several times with different 

keypoint locations, the geometry of the problem was erased and rebuilt for each analysis. In the 

code below, G is the number of iterations for the loop, I is the counter, and C is an array that will 

store capacitance values for each plate spacing, as well as the distance between plates for later 

reference. 
! Set the number of loops for the calculation 
G=1                 ! number of different gaps to use************* 
*dim,C,table,G,2,1  ! dimension the capacitance array 
! ********************************************************* 
! Begin Loop Here 
*do,I,1,G 
/prep7 
gap=gapinit+gapinc*(I-1) 
tp=gap+dep 
! 
! Next 3 lines erase all elements to start over geometry 
asel,all 
aclear,all 
adele,all,,,1 
! 
! Define keypoints of cap gauge and ref surface 
k,1,0,tp 
k,2,innerbr,tp 
k,3,halfpt,tp 
k,4,innerpr,tp 
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From these keypoints, lines are created using appropriate size commands, and areas are 

defined. Element type 121 is to be used to mesh all of the areas except the edges of the model. 

This quadratic element can be used for a number of different types of analysis including 

electrostatic, and it is set for an axisymmetric application. For the material property (MP) 

command two materials are needed, one for the air gap and one for the plastic that is part of the 

capacitance gage. Since conductors contain no electric field, the conductors will not need to be 

meshed. The relative permeability ( Rε ) of air is set to 1 and the relative permeability of the 

plastic is set to the dimensionless value 3.8 per the manufacturer’s specifications in the code 

below.  
et,1,plane121,,,1,,,,       ! area elements for efield 
mp,perx,1,1                 ! efield relative permeability 
mat,1                       ! using material number 1 (air) 
mat,2                       ! defining type 2 
mp,perx,2,3.8               ! setting permeability material 2 (plastic) 
 

The outer boundary of the model must also be supplied with a boundary condition. To 

avoid using a large number of elements to mesh the surrounding space, an infinite element type 

(110) is used for the last row of elements of the model. This quadratic element type can also be 

used in an axisymmetric problem. In the following code, these elements are applied to certain 

areas and the “infinite” boundary condition for the outer lines is also set.  
et,2,infin110,1,0,1          ! infinite boundary elements, axisymmetric 
mshkey,2 
asel,s,area,,9,9             ! first infinite area 
asel,a,area,,18,18           ! second infinite area 
amesh,all                    ! mesh infinite sections 
lsel,s,,,9,9                 ! upper edge 
lsel,a,,,28,28               ! right edge 
lsel,a,,,38,38               ! right edge 
sfl,all,inf                  ! set these lines to infinity 
 

The next step is to group lines representing a common boundary condition together using 

the CM command. This is necessary for some of the capacitance calculations. It is helpful for a 

common boundary to use consecutive line numbers as shown here, so that a single selection 

command can choose not only the lines but also the associated nodes. The assignment of a 

particular voltage using the d command is necessary for two-conductor analyses.  
lsel,s,,,39,40,,1         ! selecting center conductor 
d,all,volt,V1             ! apply V1 volts to center conductor 
cm,cond1,node             ! Define 1st conductor for cmatrix analysis 
lsel,s,,,41,44,,1         ! select ground ring 
d,all,volt,V1             ! set voltage ground ring same as center 
cm,cond2,node 
 
lsel,s,,,45,47,,1         ! select outer shield 
d,all,volt,0              ! set voltage of shield to ground 
cm,cond3,node 
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lsel,s,,,15,23,,1         ! select lower sphere or plate 
d,all,volt,V0             ! set voltage to V0 
cm,cond4,node 
 

The capacitance values are calculated in one of two ways. For a simple, two-conductor 

problem the capacitance is calculated by first summing the energy stored in the elements 

(equivalent to strain energy in a traditional mechanics analysis) to W. Then the capacitance of the 

system is given by Eq. (2-6). For the preliminary analysis, voltages V1 and V0 were applied to the 

conductors and the capacitance value calculated within the Ansys script.  
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/solution               ! running solver 
solve 
finish 
! 
/post1 
etable,sene,sene          ! calculating capacitance 
ssum 
*get,W,ssum,,item,sene 
C=(W*2)/((V1-V0)**2) 
*status,C 
finish 
 

For three or more conductors a special routine in Ansys called CMATRIX must be run. 

This is discussed in detail in Section 2.6. Once the capacitance is calculated it can be stored in a 

file or printed in an output window. The loop is then repeated as necessary. The two models 

discussed in the following sections should help in understanding the Ansys routines.  

Area to be modeled

Upper plate

Lower plate

 
Figure 2-1. Full geometry of parallel-plate problem with area to be modeled. 
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Figure 2-2. Mesh for preliminary finite element model, including detail. 



Chapter 2  Finite Element Analysis 

 23 

2.4 Parallel Plate Finite Element Model 
As a test case for comparison of the finite element model to closed-form solutions, a 

simplified model of a parallel plate capacitor is built in Ansys. This model consists of two 

circular parallel plates of thickness 0.05 mm and radius 10 mm, separated by a gap of 0.05 mm. 

The complete code defining the geometry of this problem appears in Appendix B. This problem 

is set up with axisymmetric geometry, meaning that only a radial cross section is actually 

modeled, as shown in Figure 2-1. The left edge of all images from Ansys represents the center of 

the model and all elements have a three-dimensional volume. With the exception of the leftmost 

column all elements are actually topologically similar to a toroid (with flattened sides). The mesh 

is shown in Figure 2-2.  

The detailed portion of Figure 2-2 shows that the conductive areas of the model (the 

white rectangles in this perspective) are not meshed. This is the case in electrostatic modeling for 

the simple reason that the electric field inside conductors is always zero. This follows from the 

definition that a conductor; namely, that electrons are free to flow throughout a conductor 

unimpeded. If an electric field were present within a conductor, charged electrons would feel the 

resulting force and would rearrange themselves to cancel out the electric field. Conductive 

surfaces are therefore part of the boundary of the finite element problem.  

Of the two boundary conditions mentioned in Section 2.2, the condition applied to 

conductive surfaces is always that of a fixed potential (voltage). The three surfaces of each plate 

are therefore assigned a fixed voltage, with different voltages for the upper and lower plates. 

This is necessary to calculate capacitance (C), as energy must first be stored within the mesh 

before C can be calculated.  

To prove the validity of the parallel plate finite element model, the result of the 

capacitance calculation is to be compared against the first two closed form solutions described in 

Section 1.1.1. Graphically, it is expected that the field potential will be uniformly distributed 

between the plates as parallel lines and that the electric field vectors are of uniform magnitude 

between the plates and perpendicular to the conductive surface. The electric field solution is 

always perpendicular to the surface of a conductor, again by the definition of a conductor. If the 

electric field vectors at the surface of a conductor have any component along that surface, 

charges will redistribute themselves to ensure that the field vectors are normal.  
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From the closed form solution in Eq. (1-3), we set d = 0.05 mm and r = 10 mm. The 

resulting value for the capacitance C is 55.63 pF. The second closed-form solution, listed in Eq. 

(1-5), includes fringing and should therefore be more accurate for this arrangement. From Table 

1-1, the value of the function f for s = d = 0.05 is 1.39. The closed form calculation using Eq. 

(1-5) results in the value C = 56.66 pF. These two solutions are the standard by which the Ansys 

solutions are to be compared.  

One axisymmetric solution from Ansys used only element 121 throughout the model. As 

discussed in Section 2.3, a boundary condition must be applied along the outer edge of elements, 

in this case setting the potential of these three lines at zero volts. With these conditions and 

approximately 400 elements, the results of the Ansys calculation are a respectable 57.7 pF. 

Increasing the number of elements to over 9,000 results in an improvement of the FEA value to 

56.79 pF.  

One additional improvement is then made to the Ansys model to ensure good agreement 

with the theoretical values. The outer boundary of the model is not actually at “ground” potential, 

but instead should be isolated in space from all other conductors. A better model of the system 

gives the outer elements the property of “infinity,” where no electric field lines extend to the 

outer boundaries of the model (in this axisymmetric model the upper, lower, and right sides). By 

adding a single row of element 110 to these three sides a result of C = 56.49 pF (an error of 

0.3%) is achieved with a mere 394 elements. Details of the potentials and the electric field 

vectors are shown in Figure 2-3 and Figure 2-4, respectively.  

All of the lessons learned while improving this simple model can be applied to the model 

of the actual capacitance gage geometry, where a closed form solution is not readily available.  

2.5 Finite Element Model of Capacitance Sensor 
As with the parallel plate capacitance calculation described in Section 2.4, the complete 

model of the commercially available capacitance gage will be axisymmetric. A drawing of the 

cross section of the capacitance gage is shown in Figure 2-5, with the area to be modeled 

highlighted. Per the requirements of the Ansys software package, the left side of the model is the 

axis of symmetry. Also as in the parallel plate model, this model will be built by defining first 

keypoints, then lines, then areas. These areas of course represent volumes when the model is 

rotated about its axis. The author has found that for moderately involved geometries it is better to 
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build the geometry from the ground up, rather than attempting to define geometric areas first and 

then subtracting or adding other areas as needed. By building the geometry “by hand,” changes 

made throughout the refinement of the model did not produce unexpected changes in line or area 

numbering. Such changes are the bane of a script that depends on the sequential numbering of 

areas to define material properties and boundary conditions.  

The keypoints and lines of the capacitance gage and a flat target are shown in Figure 2-6. 

Lines are created to separate areas that represent conductors and insulators in the capacitance 

gage, and vertical lines are dropped through the air gap to the lower surface. These additional 

lines allow every area in the model to be a quadrilateral, making it possible to fill each area 

entirely with quadrilateral elements.  

 
Figure 2-3. Detail of equipotential lines indicating the FEA solution to the parallel plate 

capacitor problem.  
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Figure 2-4. Electric field vector solution. The field strength is indicated by the length of 

each vector. 

Area to be modeled
Curved target surface

Guard ring

Sensing element
Grounded shell

Flat target surface

 
Figure 2-5. Cross-section of capacitance gage showing area to be modeled in Ansys. 
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Figure 2-6. Lines defining electric field problem geometry in Ansys.  

 
Figure 2-7. Areas defined in the 2D Ansys model for a flat, parallel target.  
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The lower lines in Figure 2-6 represent the conductive target, in this case a flat surface, 

and the upper row of rectangles and quadrilaterals represents the geometry of the capacitance 

gage. The numbered areas defined from these keypoints and lines are shown in Figure 2-7 for the 

case of a flat target surface, and in Figure 2-8 for a curved surface. Area 1 represents the central 

conductor, the sensing element of the capacitance gage. Because this represents a conductor it 

does not need to be meshed into elements and therefore it is not a requirement that it be defined 

as an area.  

Areas 2 and 3 both represent the dielectric insulator that fills the gap between the sensing 

element and the guard ring. Two areas are defined only because the author originally speculated 

that such separation may have been needed to accurately calculate capacitance. This turned out 

not to be the case. These areas are both meshed with axisymmetric element 121.  

Areas 4 and 5 represent the guard ring, a conductor held at approximately the same 

voltage as the sensing element but whose capacitance does not contribute to the output of the 

gage. This is divided into two quadrilateral areas since the face of the guard ring changes 

geometry at this point, and it was desirable to have quadrilateral sections throughout the model. 

Area 6 is another dielectric section meshed with element 121, surrounded by Area 7, the outer 

(grounded) shielding of the probe. Area 8 is the final air gap meshed with element 121, while 

area 9 is composed of one column of the specialized “infinite” element 110 that indicates 

mathematically the absence of any conductors external to those being modeled.  

The second row of areas represents the air gap between the capacitance gage and the 

target surface. Once again, these are divided into multiple areas so that they can be meshed with 

quadrilateral elements. Areas 10 through 17 are meshed with element 121, while area 18, like 

area 9 above it is meshed with the “infinite” element 110.  

The mesh of quadrilateral elements applied to all non-conductive areas is shown in 

Figure 2-9 for the case of the flat target, and Figure 2-10 for the case of the curved surface. Both 

the model for the flat target and the model for the curved target in their final form have exactly 

the same number of lines, areas, and elements. It is only the shapes of the elements that become 

deformed as the curvature of the target is changed. This allows the Ansys code to be nearly 

identical for the two cases.  
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Figure 2-8. Areas defined in the 2D Ansys model for a curved (spherical) target.  

 
Figure 2-9. Complete meshed areas of Ansys model for a flat target. Note that only non-

conductive areas are meshed (dielectric and air regions).  
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Figure 2-10. Complete meshed areas of Ansys model for spherical target.  

 

Figure 2-11. Detail of quadrilateral elements surrounding central conductor.  
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The mesh for this model is composed of quadrilateral elements of varying sizes, 

rectangles wherever possible, with the finest mesh placed at the areas where the electric field has 

the most drastic changes. From prior analyses the areas that show the highest gradient are at the 

corners of conductors, where the normal to the conductive surface changes suddenly. For this 

reason the mesh surrounding the corner of the central conductor, shown in detail in Figure 2-11, 

is some three times finer than other areas. Also note that the number of rows between the 

capacitance gage and the target surface is constant, even though in the case of the curved target 

the gap widens considerably. This is deemed acceptable since the most critical areas of the model 

occur in the air and dielectric material surrounding the central, sensing conductor. The exact 

mesh and even the geometry of the probe outside the guard ring have little impact with regard to 

the capacitance value of interest.  

Once the mesh is complete the boundary conditions are applied to each of the conductors. 

Lines 39 and 40, which are the boundary of area 1, are grouped together as conductor 1. If the 

problem at hand was to calculate the electric field, these lines would be assigned a fixed voltage 

(potential). However, since the goal of this analysis is to determine capacitance, these voltages 

will be applied automatically to the numbered conductors as described in Section 2.6. In a 

similar fashion, lines 41-44 are grouped together to form conductor 2, lines 45-47 form 

conductor 3, and lines 15-23 form conductor 4.  

2.6 Graphical Ansys Solution 
Although the goal of this analysis is to produce comparative capacitance values for flat vs. 

curved target surfaces, it is illustrative to also apply a typical set of voltages to the conductors 

and perform a single analysis showing the electric field and the equipotential lines (lines of 

constant voltage).  

2.6.1 Electric field lines 
To calculate a finite element solution to the electric field, voltages must first be applied to 

all four conductors. As is the case with the actual capacitance gage, both the central conductor 

and the guard ring are set to the same potential (+5 V). The outer shell of the probe and the target 

surface are both set to ground (0 V). Figure 2-12 shows the resulting vector solution of the 

electric field for each element. Care must be taken in interpreting this display: the density of 

arrows does not represent the magnitude of the electric field, only the density of nodes in the 
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model (one arrow per node). It is actually the length and gray-level of the vector that represents 

the magnitude of the electric field. From left to right, as the gap increases, there is a 

corresponding decrease in electric field strength. Notice also the changing direction of the field 

vectors at the sharp corner of the central conductor. This is the “fringe effect” mentioned 

previously, where electric fields change direction suddenly. For this reason a finer mesh was 

used when modeling this area of the air gap.  

Also notice the direction of the vectors in the gap between the central conductor and the 

guard ring. As you move horizontally from the central conductor to the right, initially the field 

lines point away from the central conductor and toward the target surface (downward and to the 

right). Later, the field lines switch, and now point downward and to the left. These latter lines 

originate from the guard ring and thus represent electric field caused by the interaction of the 

guard ring and the target surface. Since only the electric field from the central conductor is 

included when the capacitance is measured, the point where the electric field ceases to emanate 

from the central conductor has been termed by this author the “crossover point.” This is after all 

the purpose of the guard ring: to limit the fringing or extension of the electric field as much as 

possible beyond the boundary of the central conductor. The closer the field lines are to parallel, 

the closer the system will be to perfectly linear.  

2.6.2 Equipotentials 
A second useful graphical presentation of a single Ansys solution shows the location of 

equipotential lines within the insulating spaces. One such display appears in Figure 2-13. It is 

important to note that, since the electric field lines are the gradient of the potential function, the 

equipotential lines are perpendicular to the electric field vectors shown in Figure 2-12. As can be 

seen in Figure 2-13, the line spacing is nearly parallel between the central conductor and the 

target surface, with a “hill” located between the central conductor and the guard ring. For a 

perfectly linear system this artifact would not exist, however the goal of the guard ring is to 

minimize this curvature. Looking at the potential lines at the outer edge of the guard ring, all 

lines curve upward to pass between the guard ring and the outer conductor of the capacitance 

gage, which is grounded. Without the guard ring, this effect would occur on the outer surface of 

the central conductor, where it would severely affect the linearity of the gage. A voltage of +9 V 

is applied to the central conductor and the guard ring in Figure 2-13.  
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Figure 2-12. Electric field solution from Ansys.  

 
Figure 2-13. Equipotential lines of Ansys solution.  



Chapter 2  Finite Element Analysis 

 34 

2.7 Capacitance Calculations 
Once the geometry, the material properties, the boundary conditions, and the mesh have 

all been defined, there are two methods to calculating the capacitance values. In the preliminary 

analysis only two conductors existed in the model, so when a voltage difference is applied to the 

plates the resulting energy is all due to the two plates alone.  

When more than two conductors are involved, the calculations to determine the 

capacitance become much more convoluted, and involve multiple finite element solutions to the 

same geometry. Fortunately, some of this linear algebra is automated by Ansys.  

2.7.1 Self-lumped and mutual-lumped capacitances 
For a model such as the commercial capacitance gage described in Section 2.5, where 

four conductors are involved, several different capacitances must be determined. In this model 

the conductors are numbered as shown in Figure 2-14. Each conductor has its own self-lumped 

capacitance, as well as mutual lumped capacitance between each of the other conductors. The 

mutual lumped values, C12, C13, C14, etc., in Figure 2-14, are the values that represent what an 

external circuit is able to measure, and so must be determined for each geometric configuration.  

C12

C13

C14

C23

C24 C34

1 2 3

4

Sensing
conductor

Target conductor

Ground shieldGuard ring

 
Figure 2-14. Numbering applied to the different conductors within Ansys. Conductor 4 is 

also considered ground.  
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The technique for determining the mutual lumped capacitance values when multiple 

conductors are present necessitates multiple analyses, but the steps to calculate these values have 

been automated by the Ansys software. For each geometrical configuration, several sets of 

voltages are applied to the conductors and the electric field determined. The resulting energy W 

stored throughout the model is calculated. For a four-conductor problem such as this the energy 

is given by Eq. (2-7).  
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These D values are not the lumped capacitance values that we are seeking but are rather 

the ground capacitance values, their capacitance relative to an external ground conductor. The 

ground capacitance is the capability of any conductor isolated in space to hold a charge. Values 

in Eq. (2-7) such as D11 represent the self-ground capacitance of electrode 1, while D12 

represents the mutual ground capacitance between conductors 1 and 2. The first step in 

calculating the lumped values C is to calculate the values of the ground capacitances D.  

The Ansys macro CMATRIX automates much of this task. As mentioned in Section 2.3, 

within the Ansys script the four conductors are defined by their nodes and given the names 

“cond1,” “cond2,” etc. The macro CMATRIX first determines the D11, D22, etc. values by 

applying voltages to the conductors, one at a time, setting all other voltages to zero. Applying 

only V1, for example, results in Eq. (2-7) reducing to Eq. (2-8). Since V1 is known and W can be 

determined from the finite element solution, this equation can be solved for D11. In a similar 

manner, voltages are applied to determine the D12, D13, etc. values from Eq. (2-7).  

 
 2

1112
1 VDW =  (2-8) 

 
The total charge Q on a single conductor is given by the product of the self-ground 

capacitance D and the voltage V. For the case of more than one conductor, the charge Q on each 

conductor is determined from all four voltages and the appropriate ground capacitance values, as 

given in Eqs. (2-9) through (2-12). 

 
 4143132121111 VDVDVDVDQ +++=  (2-9) 
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 4243232221122 VDVDVDVDQ +++=  (2-10) 

 
 4343332231133 VDVDVDVDQ +++=  (2-11) 

 
 4443342241144 VDVDVDVDQ +++=  (2-12) 

 
The lumped capacitance values C, which are the desired goal of the analysis, are 

calculated from these charges Q. These lumped capacitance values take into account the 

differences in the voltages across conductors, rather than the absolute voltage, and are obtained 

from Eqs. (2-13) through (2-16).  

 
 )()()( 4114311321121111 VVCVVCVVCVCQ −+−+−+=  (2-13) 

 
 )()()( 4224322312122222 VVCVVCVVCVCQ −+−+−+=  (2-14) 

 
 )()()( 4334232313133333 VVCVVCVVCVCQ −+−+−+=  (2-15) 

 
 )()()( 3434242414144444 VVCVVCVVCVCQ −+−+−+=  (2-16) 

 
A slightly different configuration of voltage values is needed to complete the calculation 

of the lumped capacitance values C. For example, setting V1 = V2 = V3 = V4 and having already 

determined all of the values of D, the four Q values and the self lumped capacitance values C11, 

C22, C33, and C44 can be determined. The six mutual lumped values C12, C13, etc. are determined 

by appropriate combinations of voltages as shown in Table 2-1.  

Table 2-1. Order of determining lumped capacitances from FEA values.  

Step Variable solved Equation V1 V2 V3 V4 
1. D11, Q1 (2-7), (2-9) 1.0 0.0 0.0 0.0 
2. D22, Q2 (2-7), (2-10) 0.0 1.0 0.0 0.0 
3. D33, Q3 (2-7), (2-11) 0.0 0.0 1.0 0.0 
4. D44, Q4 (2-7), (2-12) 0.0 0.0 0.0 1.0 
5. C11, C22, C33, C44 (2-13) to (2-16) 1.0 1.0 1.0 1.0 
6.  C14, C24, C34 (2-13) to (2-15) 1.0 1.0 1.0 0.0 
7.  C13, C23 (2-13) to (2-14) 1.0 1.0 0.0 1.0 
8.  C12 (2-13) 1.0 0.0 1.0 1.0 
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An example of the output from a single run of the CMATRIX macro is shown in Figure 

2-15. Both the ground capacitance and the lumped capacitance values are presented. Because 

conductor 4 is also defined as ground (i.e. there is no ground external to this problem) the mutual 

ground capacitance values and the mutual lumped capacitance values only differ by a sign 

convention. Out of all these results, the capacitance pertinent to this study is the mutual lumped 

capacitance between conductor 1 (the sensing element) and conductor 4 (the target surface). This 

is the variable C14 from Figure 2-14.  

 
Figure 2-15. Output of CMATRIX command for flat plate geometry.  

2.7.2 Capacitance for flat target surface 
For the purposes of this study it is not enough to determine a single capacitance value. 

For a given target surface the capacitance value C14 must be calculated several times to produce a 

table of capacitance values as a function of the distance between conductors d and the target 

shape. These values are to be compared against theoretical values and against each other.  
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The first target to be analyzed is a flat plane. Fifteen d values are used and for each 

spacing the geometry is built from scratch. The CMATRIX macro determines the capacitance 

between conductors 1 and 4. As mentioned in Section 2.3, because the CMATRIX values are 

overwritten each time the distance d is changed, it is necessary to pull out the capacitance value 

of interest and store it in a separate array. The array is output as a text file once the analysis of all 

geometries is complete. These data files are named to reflect the geometry of the target surface 

and the gain setting that the simulation is emulating. The capacitance results of the flat plane 

control study are shown in the third column of Table 2-2.  

Table 2-2. Output of capacitance calculations for flat surface, as compared with theoretical 
values from Eq. (1-3), Eq. (1-7), and Eq. (1-8).  

d, mm d, minch C, flat surf., pF C from (1-3), pF C0 from (1-7), pF C from (1-8), pF 
0.066040 2.6 0.4817117 0.309526 0.6287  
0.071120 2.8 0.4521186 0.287417 0.5838 0.0155 
0.076200 3.0 0.4261263 0.268255 0.5449 0.0498 
0.081280 3.2 0.4030960 0.251489 0.5108 0.0757 
0.086360 3.4 0.3825340 0.236696 0.4808 0.0954 
0.091440 3.6 0.3640525 0.223546 0.4541 0.1103 
0.096520 3.8 0.3473424 0.211781 0.4302 0.1216 
0.101600 4.0 0.3321538 0.201191 0.4087 0.1302 
0.106680 4.2 0.3182827 0.191611 0.3892 0.1366 
0.111760 4.4 0.3055605 0.182901 0.3715 0.1414 
0.116840 4.6 0.2938468 0.174949 0.3554 0.1448 
0.121920 4.8 0.2830235 0.167659 0.3405 0.1472 
0.127000 5.0 0.2729906 0.160953 0.3269 0.1487 
0.132080 5.2 0.2636625 0.154763 0.3144 0.1496 
0.137160 5.4 0.2549662 0.149031 0.3027 0.1499 

 

The distance values d in Table 2-2 include the active range of the cap gage at its “fine” 

gain setting, namely 0.0762 to 0.127 mm (3.0 to 5.0 minch) at a gain of 394 Volts/mm (10 

Volts/minch). Two additional distance values are included at the beginning and at the end of the 

data to ensure that the active range is modeled properly; this will be discussed further in Chapter 

3.  

2.7.3 Comparison of flat surface values to theory 
Now that capacitance values have been calculated for a flat target surface from the finite 

element approximation, it is important to compare this to the two models discussed in Section 

1.1.1. Columns 4, 5, and 6 of Table 2-2 present the capacitance values for the same geometry 

based on Eq. (1-3), Eq. (1-7), and Eq. (1-8). Equation (1-3), which neglects any fringing effects 

due to the thickness of the sensing conductor, produces values much smaller than those 



Chapter 2  Finite Element Analysis 

 39 

determined by Ansys. Equation (1-7), which increases the sensing area to include half of the 

distance to the guard ring, overestimates the capacitance. Equation (1-8), which is designed to 

take into account the full nature of the guard ring geometry, should provide the best estimate. It 

is obvious from the data that this is not the case, and in fact this is the worst estimate of the three. 

This is due to the fact that the assumptions made during the development of the equation are not 

valid for this geometry. Clearly, all of these closed-loop approximations suffer from various 

limitations.  

One reason that Eq. (1-3) is such an underestimate of the actual capacitance was 

described in Section 2.6.1. Graphically it was shown that the electric field lines extend beyond 

the diameter of the central conductor, partway to the guard ring. The “effective radius,” or the 

location of the crossover point, can be back-calculated using the capacitance numbers as 

determined by Ansys. Returning to the simplest capacitance equation and plugging in the actual 

radius of the central conductor, r = 0.8585 mm (33.8 minch), the capacitance value C for a 

distance d of 0.0254 mm (1.0 minch) is calculated using Eq. (2-17) to be 0.8048 pF.  
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The capacitance as calculated by Ansys (1.0828 pF) is greater than this and that is to be 

expected, since the cylindrical walls of the central conductor are contributing to the total 

capacitance and cannot be neglected. Using an FEA-determined capacitance value C, Eq. (2-17) 

can be solved for the effective radius reff, as shown in Eq. (2-18).  

 

 
πε0

Cdreff =  (2-18) 

 

Table 2-3 lists additional theoretical capacitances and the values as calculated by Ansys. 

As the gap distance increases, the effective radius also increases, indicating a spreading of the 

electric field. In all cases the effective radius is larger than the radius of the central conductor, 

0.8585 mm (33.8 minch), and smaller than the inner radius of the ground ring, 1.585 mm (62.4 

minch). The ground ring, therefore, is able to effectively contain the electric field well within its 

boundaries as expected, although less so as the gap increases.  
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Table 2-3. Effective values of the central conductor radius as a function of the distance d.  

d, mm d, minch Ctheor, pF Ccalc, pF reff, mm reff, minch 
0.01829 0.7200 1.1177 1.4342 0.971055 38.2305 
0.02540 1.0000 0.8048 1.0828 0.994367 39.1483 
0.03251 1.2800 0.6287 0.8783 1.013209 39.8901 
0.06604 2.6000 0.3095 0.4817 1.069416 42.1030 
0.07620 3.0000 0.2683 0.4261 1.080409 42.5358 
0.10160 4.0000 0.2012 0.3322 1.101545 43.3679 
0.12700 5.0000 0.1610 0.2730 1.116447 43.9546 
0.13716 5.4000 0.1490 0.2550 1.121344 44.1474 

 

2.7.4 Capacitance for spherical targets 
Once the Ansys capacitance values for a flat surface have been validated, the effects of a 

spherical target on the capacitance can be investigated. For some data sets the same distance 

values d were used to calculate the capacitance value C14. One such set of results for a 12.7 mm 

(0.5 inch) target is shown in Table 2-4.  

Table 2-4. Output of capacitance calculations for 12.7 mm (0.5 inch) diameter target, 
distance values identical to that of flat surface.  

d, mm d, minch C, half inch., pF 
0.066040 2.6 0.2659735 
0.071120 2.8 0.2528921 
0.076200 3.0 0.2411320 
0.081280 3.2 0.2304947 
0.086360 3.4 0.2208208 
0.091440 3.6 0.2119804 
0.096520 3.8 0.2038665 
0.101600 4.0 0.1963899 
0.106680 4.2 0.1894761 
0.111760 4.4 0.1830617 
0.116840 4.6 0.1770929 
0.121920 4.8 0.1715234 
0.127000 5.0 0.1663133 
0.132080 5.2 0.1614278 
0.137160 5.4 0.1568368 

 

By comparing the capacitance values from Table 2-2 and Table 2-4 it is apparent that the 

curvature dramatically affects the capacitance value. Additionally, the same distance values 

applied to flat and curved surfaces produce capacitance values that, in this example, almost fail 

to overlap. The capacitance value in Table 2-4 resulting from a spacing of 0.06604 mm (2.6 

minch) roughly corresponds to the flat spacing of 0.13208 mm (5.2 minch). If an actual 

experiment were performed using the capacitance gage electronics, the results would be as 
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follows: when the capacitance gage is positioned at any distance larger than 0.06604 mm (2.6 

minch), the output will be off-scale! The active range of the sensor will be found in a 

displacement range of approximately 0.05 mm (2 minch) with a maximum distance d of 0.06604 

mm (2.6 minch).  

By running preliminary values of capacitance at each diameter sphere and comparing the 

results to the flat plane values of Table 2-2, an appropriate starting point is determined for each 

diameter sphere. These values are shown in Table 2-5 for both of the gain settings that were 

eventually used in the calculations.  

Table 2-5. Starting and ending points for each target sphere and gain setting in minch.  

Sphere diameter Start, 394V/mm gain End, 394V/mm gain Start, 1969V/mm gain End, 1969V/mm gain 
6.350 mm (0.250 in) 0.0102 mm (0.4 minch) 0.0813 mm (3.2 minch) 0.0005 mm (0.02 minch) 0.0147 mm (0.58 minch) 
9.525 mm (0.375 in) 0.0229 mm (0.9 minch) 0.0940 mm (3.7 minch) 0.0005 mm (0.02 minch) 0.0147 mm (0.58 minch) 
12.70 mm (0.500 in) 0.0330 mm (1.3 minch) 0.1041 mm (4.1 minch) 0.0005 mm (0.02 minch) 0.0147 mm (0.58 minch) 
15.88 mm (0.625 in) 0.0381 mm (1.5 minch) 0.1092 mm (4.3 minch) 0.0020 mm (0.08 minch) 0.0132 mm (0.52 minch) 
19.05 mm (0.750 in) 0.0457 mm (1.8 minch) 0.1168 mm (4.6 minch) 0.0025 mm (0.10 minch) 0.0137 mm (0.54 minch) 
22.23 mm (0.875 in) 0.0432 mm (1.7 minch) 0.1143 mm (4.5 minch) 0.0046 mm (0.18 minch) 0.0157 mm (0.62 minch) 
25.40 mm (1.000 in) 0.0457 mm (1.8 minch) 0.1168 mm (4.6 minch) 0.0061 mm (0.24 minch) 0.0173 mm (0.68 minch) 

 

With these final distances the capacitance values for all 7 sphere diameters can be 

calculated for the two different gain settings. Although these gain values do not enter into any of 

the calculations in Ansys, it is necessary to recalculate the values because the nominal distance 

(distance that produces a 0 V output from the capacitance gage electronics) is different for the 

different gain settings. As described previously the gain setting of 394 V/mm (10 V/minch) has a 

total active range of 0.0762 to 0.1270 mm (3.0 to 5.0 minch), which corresponds to a nominal 

offset of 0.1016 mm (4.0 minch). The highest gain setting of 1969 V/mm (50 V/minch) has a 

nominal offset of 0.0254 mm (1.0 minch) with a total range of 0.02032 to 0.03048 mm (0.8 to 

1.2 minch). The complete capacitance results are shown in Table 2-6 and Table 2-7. These are 

the values that will be analyzed in great detail in the next chapter.  

2.8 Conclusions 
Finite element modeling software such as Ansys can be used to solve electrostatic 

problems. In the simplified case of two parallel plates, the results closely match available closed 

form solutions. When a complete model is built of a commercially available capacitance gage 

and the target surface is a flat plane, once again the results fall in the expected range.  
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Capacitance values are next calculated for cases where the capacitance gage is placed in 

close proximity to spherical surfaces. The data shows that the more extreme curvature deviates a 

greater amount from the flat (reference) data. Furthermore, many of these data points fall outside 

the active range of the capacitance gage, so new active ranges are defined for each diameter 

sphere. The spherical data is analyzed in detail in Chapter 3.  

Table 2-6. Capacitance values calculated for the gain setting 394 V/mm.  

Dia (mm) 6.35 9.53 12.70 15.88 19.05 22.23 25.40 flat 
Dia (in) 0.250 0.375 0.500 0.625 0.750 0.875 1.000 flat 
dstart (mm) 0.01016 0.02286 0.03302 0.0381 0.04572 0.04318 0.04572 0.06604 
dstart (minch) 0.4 0.9 1.3 1.5 1.8 1.7 1.8 2.6 
dinc (mm) 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 0.0051 
dinc (minch) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
C (pF) 0.5260 0.4937 0.4723 0.4752 0.4515 0.4891 0.4878 0.4817 
 0.4595 0.4507 0.4373 0.4415 0.4223 0.4551 0.4545 0.4521 
 0.4136 0.4161 0.4079 0.4129 0.3970 0.4260 0.4259 0.4261 
 0.3789 0.3875 0.3828 0.3882 0.3749 0.4007 0.4010 0.4031 
 0.3513 0.3633 0.3610 0.3666 0.3553 0.3786 0.3791 0.3825 
 0.3285 0.3425 0.3418 0.3475 0.3379 0.3589 0.3596 0.3641 
 0.3093 0.3242 0.3248 0.3305 0.3222 0.3413 0.3422 0.3473 
 0.2926 0.3081 0.3096 0.3152 0.3080 0.3256 0.3264 0.3322 
 0.2781 0.2938 0.2959 0.3014 0.2951 0.3113 0.3122 0.3183 
 0.2652 0.2809 0.2835 0.2888 0.2833 0.2982 0.2992 0.3056 
 0.2537 0.2692 0.2721 0.2774 0.2725 0.2863 0.2874 0.2938 
 0.2433 0.2586 0.2618 0.2669 0.2626 0.2754 0.2765 0.2830 
 0.2339 0.2488 0.2522 0.2572 0.2533 0.2653 0.2664 0.2730 
 0.2253 0.2399 0.2434 0.2482 0.2448 0.2560 0.2571 0.2637 
 0.2174 0.2316 0.2352 0.2399 0.2368 0.2474 0.2484 0.2550 

 

Table 2-7. Capacitance values calculated for the gain setting 1969 V/mm. 

Dia (mm) 9.53 12.70 15.88 19.05 22.23 25.40 flat 
Dia (inch) 0.375 0.500 0.625 0.750 0.875 1.000 flat 
dstart (mm) 0.000508 0.000508 0.002032 0.002540 0.004572 0.006096 0.018288 
dstart (minch) 0.02 0.02 0.08 0.10 0.18 0.24 0.72 
dinc (mm) 0.001016 0.001016 0.001016 0.001016 0.001016 0.001016 0.001016 
dinc (minch) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
C (pF) 1.4507 1.8216 1.5661 1.6609 1.5009 1.4432 1.4342 
 1.1623 1.4384 1.3946 1.4934 1.3909 1.3519 1.3691 
 1.0296 1.2627 1.2749 1.3708 1.3014 1.2746 1.3101 
 0.9430 1.1485 1.1836 1.2749 1.2263 1.2080 1.2565 
 0.8790 1.0644 1.1102 1.1964 1.1619 1.1498 1.2075 
 0.8283 0.9980 1.0491 1.1305 1.1059 1.0982 1.1625 
 0.7865 0.9435 0.9969 1.0739 1.0565 1.0521 1.1211 
 0.7511 0.8973 0.9516 1.0244 1.0125 1.0106 1.0828 
 0.7203 0.8574 0.9117 0.9807 0.9728 0.9729 1.0473 
 0.6932 0.8224 0.8761 0.9416 0.9369 0.9385 1.0143 
 0.6691 0.7913 0.8440 0.9064 0.9041 0.9069 0.9835 
 0.6473 0.7633 0.8149 0.8743 0.8741 0.8778 0.9546 
 0.6275 0.7379     0.9276 
 0.6094 0.7148     0.9022 
 0.5928 0.6935     0.8783 
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3: 
Compensation of Errors 
from Spherical Target Surfaces 

3.1 Introduction 
In the previous chapter, an Ansys finite element model was used to calculate capacitance 

values for a capacitance gage placed in close proximity to a target surface. Several different 

target surfaces were modeled, including a flat plane and spheres ranging in diameter from 6.35 

mm (0.250 inches) to 25.4 mm (1.000 inches). The flat plane serves as a reference, from which 

the capacitance value of the probe that is expected by the electronics can be determined for a 

given gap distance.  

When the same probe is placed in proximity to a curved surface, the capacitance of the 

system is now quite different. Since the electronics are unchanged, they will respond to the 

capacitance of the system only, therefore giving a false reading of distance.  

In this chapter the capacitance values from Table 2-6 and Table 2-7 are exhaustively 

analyzed to determine a modified gain for each spherical diameter, as well as the expected 

deviations from linear. These gain and nonlinearity values are compared with unpublished 

experimental results from another laboratory, and a lookup table is created to correct the 

capacitance gage output. With this correction, the erroneous output of the capacitance gage 

electronics can be modified to account for the shape of the target surface.  

3.2 Linearized Flat Target Results 
Now that capacitance values have been determined for different distance values d, it is 

necessary to analyze the mathematics of the linearized output. As described in Chapter 1, the 

electronics associated with the capacitance gage are designed to linearize the output as a function 

of the inverse of the capacitance. This in turn is linear with respect to the distance. Rearranging 

Eq. (1-3), we have Eq. (3-1).  
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 ( ) 



⋅=

C
Ad 1

0ε  (3-1) 

 
We know that the voltage output is proportional to the displacement d∆  from a nominal 

or reference distance, which we will call dr. Incorporating this gain G, the result is shown in Eq. 

(3-2).  

 
 ( )rddGdGV −=∆⋅=  (3-2) 

 
Next, we substitute the right side of Eq. (3-1) into (3-6), using Cr for the capacitance 

associated with the reference distance dr. The results are shown in Eq. (3-3).  

 

 







−⋅=
rCC

AGV 11
0ε  (3-3) 

 
Finally, the A0ε  constant has been assigned the variable S throughout this discussion. 

Substituting into Eq. (3-3), we are left with Eq. (3-7).  

 

 







−⋅=
rCC

SGV 11
 (3-4) 

 

3.2.1 Slope values for linear fit 
Once the capacitance values for the flat target are tabulated, the first test of the data is to 

plot the gap distance d as a function of the inverse of the capacitance, 1/C. This plot is shown in 

Figure 3-1 for both the “fine” gain setting of 394 V/mm (10 V/minch) and the “ultrafine” gain 

setting of 1969 V/mm (50 V/minch). These two ranges are named for the gain settings provided 

by Lion Precision in their electronics box. The lines plotted on the same graph represent the 

linear best fit for each range, showing that the data is highly linear as expected. Units for these 

plots throughout this chapter are mm for distance and pF -1 for inverse capacitance values. The 

slopes of these lines as calculated by Matlab and converted to metric units are shown in Eq. (3-5) 

and Eq. (3-6).  

 
 mmpF106.38 3 ⋅⋅= −

fS  (3-5) 
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 mmpF103.32 3 ⋅⋅= −

ufS  (3-6) 

 
The subscript on each S indicates the gain setting (fine or ultrafine). Reconfiguring the 

simplest form of the capacitance equation to fit to this plot, the slope should be the coefficient to 

the inverse capacitance in Eq. (3-1). Plugging in the known values for A and 0ε , the calculated 

value of the slope is as shown in Eq. (3-7). 

 
 mmpF104.20 3

0 ⋅⋅== −AS ε  (3-7) 

 
As discussed in the previous chapter, the actual active area of the central conductor is 

somewhat greater than the flat area parallel to the target surface. Taking as the active area the 

central values for each range from Table 2-3, the theoretical slopes for the two different voltage 

ranges are calculated to be as shown in Eq. (3-8) and Eq. (3-9). 

 
 mmpF108.33 3 ⋅⋅= −

fS  (3-8) 

 
 mmpF105.27 3 ⋅⋅= −

ufS  (3-9) 

 
These values are much closer to those taken from the plots. Since these values are taken 

from the same data this result is hardly surprising, nevertheless it is a good check of the 

consistency of the results and of the assumptions made in the analysis.  

3.2.2 Nonlinear residuals 
As the data points are so close to the best-fit line, it is helpful to display the results of the 

analysis in a way that elucidates the small deviations from linear. This is achieved by subtracting 

the linear approximation from the actual data, leaving only the nonlinear component of the data. 

The zero line therefore represents the linear fit, with the data points above it shown above the 

best-fit line. For all of these “residual” plots the units chosen for ease of understanding and 

consistency are µm  and pF -1. Figure 3-2 shows that the data points are slightly higher than the 

linear best-fit line at the extremes of the range, while in the middle of the range the data points 

fall slightly below the line. The total error over the valid data points is 0.241 µm  (9.5 µinch ).  
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Figure 3-1. Linear relationship of d to 1/C for a flat target surface for both fine and 

ultrafine gain settings. 
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Figure 3-2. Nonlinear residual portion of flat target capacitance results for the 

fine gain setting.  
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An additional step in evaluating these results is to convert the distances d to 

displacements d∆ , then convert the displacements to the units of the output of the capacitance 

electronics, which is in volts (V). This will allow comparison of the flat target results to 

calibration data from the capacitance gage manufacturer. Restating Eq. (3-2) and solving for d, 

we have Eq. (3-10).  

 

 rd
G
Vd +=  (3-10) 

 
Once again, here G is the gain in V/mm and dr is the nominal offset in mm. For the fine 

gain setting G = 394 and dr = 0.1016. For the ultrafine setting G = 1969 and dr = 0.0254. In 

either case, the voltage output ranges from –10 to +10 volts, which limits the active ranges for 

the fine and ultrafine gain settings to 0.0762-0.127 and 0.02032-0.03048 mm, respectively. 

Figure 3-3 shows a plot of the fine gain setting output voltage as a function of the inverse 

capacitance. It is important to note that the data calculated exceeds the active range of the 

capacitance gage. The output voltage is expected to “flatten out” or saturate outside of its valid 

range. The purpose of calculating capacitance values outside this range is to ensure that the data 

at the extreme ends of the valid range do not suffer from end effects when fitting curves to the 

graphs.  

A final analysis of the flat target data is to calculate the nonlinear residual values from 

Figure 3-2 as a function of output voltage V. The resulting values are that the maximum 

deviations from linear are +126 mV and –67 mV.  

It is now time to compare these results with calibration data from the manufacturer of the 

capacitance gage, Lion Precision. Data from a typical calibration curve is shown in Table 3-1 

[24]. This table shows a total deviation from linear in the valid voltage range of only 0.08 µm  (3 

µinch ) or 47 mV. Comparing this to Figure 3-2, it is clear that the performance of the 

capacitance gage is much better than the analysis would indicate.  
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Figure 3-3. Plot of output voltage as a function of capacitance for the fine gain setting.  

 

Table 3-1. Calibration data from a Lion Precision capacitance gage with fine gain setting.  

Gap Output Output converted to Error 
milliinches Volts milliinches milliinches 

3.000 10.041 2.996 -0.004 
3.125 8.778 3.122 -0.003 
3.250 7.518 3.248 -0.002 
3.375 6.260 3.374 -0.001 
3.500 5.006 3.499 -0.001 
3.625 3.753 3.625 0.000 
3.750 2.503 3.750 0.000 
3.875 1.253 3.875 0.000 
4.000 0.000 4.000 0.000 
4.125 -1.249 4.125 0.000 
4.250 -2.500 4.250 0.000 
4.375 -3.752 4.375 0.000 
4.500 -5.001 4.500 0.000 
4.625 -6.251 4.625 0.000 
4.750 -7.499 4.750 0.000 
4.875 -8.747 4.875 0.000 
5.000 -9.994 4.999 -0.001 
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Figure 3-4. Linear approximations of d to 1/C for spherical target surfaces and fine gain 

setting. 
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Figure 3-5. Linear approximations for spherical targets and ultrafine gain setting. 
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This discrepancy was solved by contacting the engineering staff at Lion Precision, the 

capacitance gage manufacturer. It is typical for an uncalibrated capacitance gage to show 

nonlinear errors of 0.508 µm  (20 µinch ) or more, in good agreement with the deviations shown 

in Figure 3-2. Fortunately, the electronics of the capacitance gage have the capability to correct 

for this deviation, and adjustment of the electronics to compensate for this linearity is part of the 

standard calibration procedure. It is critical during this analysis to remember that this correction 

exists in the electronics and should be included, if possible, in the analysis. The reader may 

wonder how this correction can be accomplished without opening the “black box” that represents 

the capacitance gage electronics. This will be described as the spherical results are analyzed.  

3.3 Spherical Target Results 
The data relating 1/C to the displacements for the spherical targets is less linear than the 

data from the flat targets, nevertheless it is illuminating to fit a straight line to the data as before. 

Seven different diameters were analyzed for the fine gain setting and six for the ultrafine setting. 

The data points and the corresponding fitted lines are plotted in Figure 3-4 for the fine gain 

setting and Figure 3-5 for the ultrafine gain setting.  

The next step in the analysis of the spherical data is to correlate the displacements from 

the spherical surfaces to the displacements from the flat target surface. The capacitance gage of 

course has no way to “know” what kind of surface it is detecting, since the only value it is able to 

measure is the capacitance. Regardless of the shape of the surface, the capacitance gage 

electronics will sense the capacitance and output a voltage based on the flat surface calibration.  

As an example, assume that the capacitance gage is in close proximity to a surface such 

that it senses a capacitance of 0.4 pF. A capacitance of 0.4 pF corresponds to an inverse value of 

2.5 pF -1. Looking at the curve in Figure 3-3, the output voltage corresponding to this capacitance 

is approximately –7.5 V, which from the voltage-displacement conversion equation corresponds 

to a distance of 0.0826 mm (3.25 minch). The displacement could have also been determined 

directly from Figure 3-1, but it is helpful to remember all the steps and conversions involved. 

Once again, the input that the system senses has nothing whatsoever to do with the shape of the 

surface, but only with the capacitance that it senses between the central conductor and the 

surface.  
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In an ideal world, then, the capacitance values listed in Table 2-6 and Table 2-7 for 

spherical surfaces would have resulted in capacitance values that corresponded precisely with 

different displacements from the flat surface. As an example, some data is reproduced, with 

complete displacement values, in Table 3-2.  

Table 3-2. Sample displacement and capacitance values.  

6.35 mm (0.250 in) diameter target  Flat target 
d, mm d, minch C, pF 1/C, pF-1  d, mm d, minch C, pF 1/C, pF-1 
0.02032 0.8 0.4136 2.4178  0.0762 3.0 0.4261 2.3469 
0.0254 1.0 0.3789 2.6392  0.08128 3.2 0.4031 2.4808 
0.03048 1.2 0.3513 2.8466  0.08636 3.4 0.3825 2.6144 
0.03556 1.4 0.3285 3.0441  0.09144 3.6 0.3641 2.7465 
0.04064 1.6 0.3093 3.2331  0.09652 3.8 0.3473 2.8794 
0.04572 1.8 0.2926 3.4176  0.1016 4.0 0.3322 3.0102 
0.0508 2.0 0.2781 3.5958  0.10668 4.2 0.3183 3.1417 
0.05588 2.2 0.2652 3.7707  0.11176 4.4 0.3056 3.2723 
0.06096 2.4 0.2537 3.9417  0.11684 4.6 0.2938 3.4037 
0.06604 2.6 0.2433 4.1102  0.12192 4.8 0.2830 3.5336 
0.07112 2.8 0.2339 4.2753  0.127 5.0 0.2730 3.6630 
 

From Table 3-2 the capacitance value for the 6.35 mm (0.250 inch) sphere at a distance 

of 0.04064 mm (1.6 minch) is 0.3093 pF, approximately equal to the capacitance value from the 

flat surface at a distance of 0.11176 mm (4.4 minch). Thus when the capacitance gage is 0.04064 

mm from the sphere, it will sense a capacitance approximately equal to a distance of 0.11176 

mm from a flat surface, and will output the voltage appropriate to that gap (+4 V). The final goal 

of the analysis is to correlate these displacements.  

3.3.1 Linear fit solutions 
There are two possible methods of calculating distances from one set of capacitance 

values to the other. The linear fit described in Section 3.2.1 is the most straightforward solution, 

since it uses the idealized approximation of a parallel plate capacitor. This method also has the 

advantage that capacitance values outside the analyzed range can nevertheless be correlated to 

displacement values. It will be shown that higher order polynomial fits do not allow 

extrapolation.  

The first analysis of the data is achieved by using to the best-fit lines from Figure 3-1, 

plugging in the inverse capacitance values from a spherical measurement, and determining 

distance values d. As a graphical example, the inverse capacitance values from the third column 

of Table 3-2 are plotted along with the curve from Figure 3-1 in Figure 3-6 below. The 

horizontal lines show how the new displacements are determined from the plotted points.  
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Figure 3-6. Correlating capacitance values to measured displacements.  

Algebraically, the best-fit line takes the form of two coefficients P1 and P0, which are 

then used in combination with the capacitance values from the curved 6.35 mm (0.250 inch) 

surface, C0250, as shown in Eq. (3-11).  

 
 0

1
02501 PCPdmeas +⋅= −  (3-11) 

 
The coefficients are determined to be P1 = 1.5183 and P0 = –0.5644. It is important to 

distinguish between the distances that are used in the Ansys analysis and the distances that result 

from the above calculations. Since the distances in the Ansys analysis are the true distances to 

the surface, these are denoted as the “real” distances or dreal. The distances determined by the 

capacitance gage based on the flat surface are the distances that the system measures, hence the 

name dmeas. Finally, these distances can be converted to displacements d∆  by subtracting the 

distance that produces zero voltage output. This terminology is used throughout the Matlab code 

that produced these results. As a flow chart, this process is as shown in Figure 3-7.  
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Figure 3-7. Block diagram of data conversion process.  

Once the measured distance values dmeas are calculated, the results of the analysis can be 

plotted as a function of the actual distance dreal. Such plots are shown in Figure 3-8 for the fine 

gain setting and Figure 3-9 for the ultrafine gain setting. These plots can be considered as a 

lookup table relating one distance measurement to the other. The vertical scale can trivially be 

converted to voltage and the axes switched if the preferred format of this graph is to plot actual 

distance as a function of output voltage. In either case, a best-fit line can be determined with the 

slope representing the actual gain of the capacitance gage for a particular spherical target in 

V/mm.  

There are of course other methods that can be used to analyze this same data. The plot of 

inverse capacitance for the flat target was converted to a voltage scale for Figure 3-3, centered at 

0 V. The capacitance scale could also be centered on zero by subtracting the central value, but 

this results in a central value of 0 pF -1, a relative term with no physical meaning. This should not 

affect the slope values but only the intercept. Capacitance data could also be converted to voltage 

before comparison, but again this results in additional conversions that may add to the overall 

error. By leaving voltage out of the conversion diagram of Figure 3-7, the method presented has 

the fewest steps.  

There are, however, two problems with the described method that have only been alluded 

to thus far. The first problem has to do with the linear fit of the distance data d to 1/C for the flat 

target case. We have already seen that the residual error from this linear approximation has a 

total range of 0.241 µm  (9.5 µinch ). It is known that the electronics of the capacitance gage take 

into account the majority of this error, so that the actual error of the calibrated device is 0.0762 

µm  (3 µinch ). It is therefore clear that by using only a linear fit we are not achieving quite the 

same conversion from capacitance to displacement that is produced by the electronics. A higher 

order fit must be carefully applied to the data to produce the most accurate conversion.  
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Figure 3-8. Plot of displacement measured as a function of actual displacement for different 

diameter spheres and fine gain setting.  
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Figure 3-9. Plot of measured and actual displacement for ultrafine gain setting.  
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The second problem with the described method is with the ranges of capacitance values 

from the various Ansys simulations. As can be seen from Table 2-6 and Table 2-7, the exact 

ranges of capacitance do not match from the spherical targets to the flat targets. Generally 

speaking, the spherical target range exceeds that of the flat target range, since the gain of the 

spherical targets is greater than the nominal gain from a flat target surface. When the capacitance 

of the spherical distance dreal is converted to an equivalent distance dmeas on the flat scale, the 

range of displacements does not perfectly match the active range of the capacitance gage. For 

ultrafine gain settings and small diameters the plot of d versus 1/C is highly curved, so any 

deviation from the full range of the device will result in a significant skewing of the resulting 

slope. Since the 12-15 data points resulting from the Ansys simulation cannot precisely mimic 

the full range of the flat capacitance values, a slightly different technique must be employed.  

3.3.2 Higher-order polynomial solutions 
The technique using higher-order polynomial fits requires two changes to the previous, 

linear method. First, a higher order polynomial fit is employed to the data. Second, the spherical 

data, rather than the flat data, is fit to a polynomial, and real distance values are calculated from 

that. A block diagram of this improved method is shown in Figure 3-10, which can be compared 

and contrasted with Figure 3-7. The equation associated with this higher order fit is shown in Eq. 

(3-12). When this technique is employed, the range of real values that are output precisely match 

the output range of the capacitance gage electronics. When theoretical results are compared with 

empirical tests, the same data range is now used in each.  

Ansys
simulation

Conversion
equation

dreal C0250

dmeas

P3, P2, P1, P0Third order
polynomial fit

Ansys
simulation

Flat
target

Sphere
target

Cflat dreal

 
Figure 3-10. Block diagram of improved data conversion process.  
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The first problem with the original method, that of not correcting for the nonlinearity of 

the electronics, has now also been taken care of. To determine the order of polynomial necessary 
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to achieve a good fit to the simulated data, several different orders of polynomial were applied to 

the same data, as shown in Figure 3-11. Although the coefficients differ significantly, all of these 

functions are able to interpolate between data points to almost exactly the same curve. The 

problems occur when any of the functions are asked to extrapolate beyond the data plotted. 

These extrapolations are also shown in Figure 3-11.  

Obviously a higher order polynomial fit is an extremely poor way to extrapolate beyond 

the existing data. Care has been taken, then, to ensure that the data ranges of capacitance on the 

curved surfaces is always greater than the data range for the flat target surface. When the 

capacitance values from the flat target simulation are applied to a curve such as the one shown in 

Figure 3-11, the displacement values are always interpolated between existing capacitance values. 

This results in a minimum error from the conversion process. It also means that coefficients must 

be calculated for every spherical target and gain setting, rather than using a common set of 

coefficients. In the interest of completeness, these coefficients are presented in Table 3-3. It is 

important to note that there is no physical significance to the values of these coefficients, they 

are only for the purposes of interpolating the existing data. If in the future a closed-form solution 

or approximation is made of this problem, then a different form of equation may be fit to the data 

points, one that is better able to extrapolate the data values.  

Once the curve fitting scheme of Figure 3-10 has been applied to the data, the plots in 

Figure 3-8 and Figure 3-9 are produced. Each curve of these plots contains 15 data points, 

corresponding to the capacitance values of the 15 data points of the flat target surface. These flat 

target values include the full travel range of the capacitance gage, plus two additional data points 

at each end of the data. The central 11 data points thus represent the active range of the 

capacitance gage, and it is these 11 points that will be used in the next step of the analysis. 
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Figure 3-11. Different order polynomial fits to the same empirical data.  

 

Table 3-3. Table of polynomial coefficients for different diameter spheres and gain settings. 

 Fine Gain Setting Ultrafine Gain Setting 
Diameter P4 P3 P2 P1 P0 P4 P3 P2 P1 P0 
6.350 mm  
(0.250 in) 

0.0009 -0.0221 0.2163 -0.2343 0.0162      

9.525 mm  
(0.375 in) 

0.0007 -0.0155 0.1448 0.2109 -0.3353 0.0230 -0.1685 0.6146 -0.5252 0.1375 

12.70 mm  
(0.500 in) 

0.0004 -0.0098 0.0939 0.4683 -0.4482 0.0454 -0.2990 0.8648 -0.5446 0.1038 

15.88 mm  
(0.625 in) 

0.0003 -0.0072 0.0694 0.6003 -0.4534 0.0816 -0.4623 1.0980 -0.5387 0.0784 

19.05 mm  
(0.750 in) 

0.0002 -0.0047 0.0489 0.6969 -0.4476 0.0974 -0.5133 1.1153 -0.3974 0.0313 

22.23 mm  
(0.875 in) 

0.0002 -0.0048 0.0460 0.7323 -0.4003 0.0902 -0.4667 0.9866 -0.1916 -0.0204 

25.40 mm  
(1.000 in) 

0.0002 -0.0039 0.0385 0.7727 -0.3737 0.0785 -0.4024 0.8398 -0.0015 -0.0616 

 

3.3.3 Justification for relative permeability approximation 
Now that higher order polynomial fits have been applied to the mapping of the 

capacitance values, it is appropriate to discuss the reasons why the exact relative permeability of 
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air Rε  is of little consequence to this analysis. Table 3-4 shows some capacitance calculations 

performed both without and with the relative permeability of air ( Rε  = 1.0008) included.  

Table 3-4. Table comparing capacitance values 
before and after including relative permeability. 

d, mm d, minch Cflat Cflat, including Rε  Ratio 1 + ∆  
0.018288 0.72 1.4342330 1.4352240 1.000691 
0.021336 0.84 1.2564640 1.2573270 1.000687 
0.024384 0.96 1.1211030 1.1218700 1.000684 
0.027432 1.08 1.0142710 1.0149630 1.000682 
0.030480 1.20 0.9275919 0.9282233 1.000681 
 

The final column of this table calculates the ratio of the capacitance with the relative 

permeability to the value without this term. We expect this value to be 1.0008, but in fact these 

are very close to 1.0007. The reason behind this discrepancy is in the fact that there are two 

materials present in the analysis, air and an epoxy, and we have changed the relative 

permeability of only one of them. Therefore the effect on the total capacitance is slightly less 

than the size of the multiplier. Since this ratio is not precisely the value of Rε , it is given the 

moniker 1 + ∆ .  

Returning to the coefficients derived from a best fit polynomial, P3, P2, P1, and P0, we 

want to see how the addition of the 1 + ∆  term will affect these coefficients. This is identical to a 

change of variables, with * representing the new values as shown in Eq. (3-13). Substituting in 

for the value of C produces the line fitting formula in Eq. (3-14). The new multipliers can be 

lumped together with the coefficients, to produce new P values such as the example shown in Eq. 

(3-15).  

 
 ( )CC ∆+= 1*  (3-13) 
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The next step in this evaluation is to use these new coefficients together with new 

capacitance values to determine what effect they will have on the output of the final curve fitting. 
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Equation (3-12) is rewritten with the new coefficients and new capacitance values as shown in 

Eq. (3-16). But, if we now substitute in values for P from Eq. (3-15) and values for C from Eq. 

(3-13), we end up with Eq. (3-17), which is identical to Eq. (3-12). In as much as the ∆  term is 

constant, the inclusion or omission makes no difference to the distance calculations! 
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The ratios calculated in Table 3-4 showed that over the active range of the capacitance 

gage the ∆  term varied slightly, a factor of about 1 in 100,000. Therefore we expect that the 

omission of the Rε  term will affect the accuracy of the final results at the 0.001% level. In 

evaluating this error, it should be noted that the relative permeability used for the epoxy material, 

3.8, is only given to two significant figures. It has been indicated that it is the interplay between 

these two relative permeabilities that causes the variation in the ratios in Table 3-4. Of much 

greater importance to increasing the accuracy of the capacitance calculations, then, is a 

determination of the value of Rε  for the epoxy to a greater number of significant figures.  

3.4 Applying the Correction 
There are several ways to apply these correction curves once they have been accurately 

calculated. The simplest method is to use a linear approximation to the curves in Figure 3-8 and 

Figure 3-9, calculating from this a new slope and a new nominal offset position. Both of these 

values should be determined not from the full 15 data points, but from the central 11, which 

represent the active travel range of the capacitance gage.  

There are two possible offset values that can be determined from each data curve. The 

graph in Figure 3-12 shows the most nonlinear data curve, that of the 9.525 mm (0.375 inch) 

sphere and the ultrafine gain setting. Also shown is the best-fit line through the central 11 data 

points. This line deviates from the data in the center and at the edges, as expected from a least-

squares linear fit. The central data point, which corresponds to the flat surface offset 

displacement of 0.0254 mm (1.0 minch), is therefore not the same as the location where this line 
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crosses the flat surface offset. If the central data point were used as the offset value, the entire 

line would be shifted to the right, resulting in an increase in the overall error of the fit. The 

correct nominal offset value must be derived from the crossing point of the best-fit line.  

It is important to note that this analysis assumes that all or most of the active range of the 

capacitance gage is to be used in a specific application. The best-fit line approximation is equally 

weighted across the full output range, therefore error is minimized as long as the data collected 

from a particular experiment are also equally distributed. If this is not the case, more accurate 

curve fitting can be achieved for a particular range of data. This will be discussed in more detail 

as part of the discussion of corrections to the Donaldson Reversal technique.  
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Figure 3-12. Plot of linear fit to 9.525 mm diameter sphere ultrafine gain curve, showing 

two possible values for the nominal offset.  

For clarity it is necessary to show the algebra needed to convert one displacement into 

another. Until now, we have converted capacitance values to displacement values and vice-versa. 

Now we are converting displacement values to displacement values, probably a more confusing 

prospect. As discussed before, the actual displacement from the gage to the curved surface is 

termed dreal. The displacement that the capacitance gage electronics “believe” that it is from the 

surface, based on the erroneous assumption that the surface is flat, is termed dmeas, and it is the 
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conversion between these two distances that we must describe algebraically. Calculating from 

the slope and offset values, we write Eq. (3-18). 

 

 ( ) 0rrealrmeas
flat

fit dddd
G
G

−=−  (3-18) 

 
In this equation Gfit is the calculated slope of the best-fit line, Gflat is the gain for a flat 

surface (394 V/mm or 10 V/minch for the fine gain setting, 1969 V/mm or 50 V/minch for the 

ultrafine gain setting), dr is the nominal offset for the measured value (0.1016 mm or 4.0 minch 

for the fine gain setting, 0.0254 mm or 1.0 minch for the ultrafine gain setting) and dr0 is the 

calculated nominal offset value. Values of Gfit and dr0 appear in Table 3-5.  

Table 3-5. Slope and offset values for linear best-fit curves to displacement measurements.  

 Fine Gain Setting Ultrafine Gain Setting 
Diameter, mm Slope, V/mm Offset, mm Slope, V/mm Offset, mm 
flat 393.7 0.1016 1968.5 0.02540 
6.350 586.2 0.047244   
9.525 492.8 0.059248 6766.0 0.00827 
12.700 459.4 0.069139 4208.5 0.00823 
15.875 442.6 0.074117 3315.0 0.00934 
19.050 432.6 0.081643 2895.9 0.00982 
22.225 426.0 0.079111 2661.6 0.01181 
25.400 421.2 0.081618 2515.3 0.01331 

 

For applications where this first-order approximation is insufficiently accurate, it is 

necessary to include either an error map or a higher order approximation. Error maps for the fine 

and ultrafine gain settings are presented in Figure 3-13 and Figure 3-14, respectively. Although 

this data can be presented in terms of output voltage, in most cases an experimentalist will have 

already converted the voltage output of the capacitance gage to a distance or displacement value. 

Application of the error map values becomes the final step in the postprocessing of the data. For 

this reason the complete nonlinear residues R are shown as a function of the measured distance 

dmeas. To apply this residue to measured data the slope and offset must first be corrected as before, 

then the residue function added to the end result. This is the previous equation rearranged 

slightly and with an additional term, as shown in Eq. (3-19). 
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Figure 3-13. Nonlinear residue (error map) curves for fine gain setting.  
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Figure 3-14. Nonlinear residue (error map) curves for ultrafine gain setting.  
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The higher order approximation of the “lookup table” can be accomplished any number 

of ways, using any one of several different formats of the function. No attempt has been made to 

find a function that is a good extrapolation of the data. Care was taken throughout the Ansys 

simulations to ensure that the active range of the capacitance gage was covered when simulating 

the curved surfaces, so that higher order curves are only used to fit interpolated values.  

Rather than try and invert or analyze the previous curve fitting algorithms, the best 

approach to a higher order approximation is to simply begin with the 15 data points for each 

curved surface and derive a third-order polynomial from this data. We choose to use the 

measured data values as the abscissa, since it is anticipated that most conversions will be from 

measured displacements to real displacements. All 15 data points are used since this will 

undoubtedly improve the curve fitting at the ends of the active range, with little or no loss in 

accuracy at the center values of the curve. As with the previous curve fitting, it was found that 

third, fourth, or fifth order polynomials all showed excellent ability to fit a smooth curve, 

therefore for simplicity the third order polynomial was used. The form of this solution is then as 

shown in Eq. (3-20). 

 
 DmeasCmeasBmeasAreal PdPdPdPd +⋅+⋅+⋅= 23  (3-20) 

 
These new coefficients PA through PD have no relationship to the previous curve-fitting 

coefficients. Code for calculating all of these coefficients is included in Appendix C.  

3.5 Application to Donaldson Reversal 
For application such as Donaldson Reversal, either of the two correction methods can be 

applied to previously collected data. The first-order (linear) correction can be applied by 

multiplying existing data by the increase in gain from its nominal value; namely, the unitless 

term in Eq. (3-21). 
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Notice that this multiplier will increase all of the measured values in an experiment, 

including out-of-roundness (OOR) and other errors. Since all of the measurements for Donaldson 

Reversal are of relative displacement, there is no need to add or subtract the nominal offset 

distances.  

If a new experiment is planned, three precautionary steps can ensure that the linear fit 

achieves the best results. The first step is to center both the “normal” and “reverse” 

measurements on the active scale. Although this makes no difference whatsoever when a linear 

model of a capacitance gage is assumed, it makes a great deal of difference when the actual 

curves are analyzed. Looking again at the worst-case scenario in Figure 3-12, the curve gets 

gradually steeper from left to right. Fitting a line to the leftmost 5 points results in a slope of 

10787 V/mm (274 V/minch) whereas fitting a line to the rightmost 5 points results in a slope of 

5157 V/mm (131 V/minch), a difference of over 50 %. A subset of 5 data points centered on the 

middle of the active range of the capacitance gage results in a slope of 6772 V/mm (172 

V/minch), which is quite comparable to the slope of the entire line as given in Table 3-5. If the 

normal and reverse measurements have significantly different slopes, then the equations used to 

separate the surface errors from the spindle errors are no longer valid. Worse still, the 

information of absolute position is lost once these values are combined, so postprocessing 

corrections can only be applied to the raw data.  

The second suggested step to achieving the maximum linearity for a Donaldson Reversal 

experiment is somewhat counterintuitive: use a lower gain setting. This at first seems nonsensical, 

since of course the maximum resolution is achieved at the highest gain setting. But given the 

analysis of the nonlinearity to this point, such an assumption should be examined closely. The 

resolution dδ  of a capacitance gage measurement is given by the number of A/D bits N, the gain 

G, and Eq. (3-22). 

 

 NG
d

2
20
⋅

=δ  (3-22) 

 
For a 16-bit A/D and the nominal ultrafine gain setting of 1969 V/mm (50 V/minch), this 

resolution is 0.15 nm (0.006 µinch ). Looking back at the error map for the ultrafine gain setting 

as presented in Figure 3-14, it is clear that the accuracy is some 4 orders of magnitude less than 

this. The highest gain setting, therefore, only imbues a false sense of increased accuracy.  
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At first comparison, it appears as though the overall error of the fine gain setting as 

shown in Figure 3-13 is much larger than the overall error of the ultrafine gain setting shown in 

Figure 3-14. Consider, though, that the active range of the capacitance gage in the fine gain 

setting is five times greater. To make a fair comparison, the central 0.01 µm  (0.4 µinch ) of 

travel for the fine gain setting should be compared with the total travel at the ultrafine gain 

setting. When this comparison is made for the case of the 12.7 mm (0.5 inch) sphere, the error 

range is 1.2 µm  (47 µinch ) for the ultrafine gain setting, and only 0.08 µm  (3 µinch ) for the 

fine gain setting.  

The reason that the ultrafine gain setting is more nonlinear than the fine gain setting is a 

straightforward one. For the fine gain setting the nominal distance from a flat surface is 0.1 mm 

(4.0 minch). When the 12.7 mm (0.5 inch) sphere is moved to a position that produces the 

equivalent capacitance, this distance is 0.0612 mm (2.41 minch), some 40 % closer. For the 

ultrafine gain setting, the nominal offset is 0.0254 mm (1.0 minch), which is simulated when the 

gage is positioned at a distance of only 0.00432 mm (0.17 minch), some 83 % closer. It is the 

fact that the surface position required to achieve the equivalent capacitance is off by such a great 

degree that causes the nonlinearity to be heightened at the ultrafine gain setting. Put another way, 

when the curved surface is closer, there is a larger difference between the closest and furthest 

areas. When the curved surface is further away, the discrepancy is a smaller percentage of the 

overall distance.  

The final suggested step should be obvious from comparing the results of the various 

sphere diameters. This suggestion is as follows: use the largest sphere conveniently available. As 

the sphere diameter increases the area comparable to the central conductor of the capacitance 

gage becomes flatter and the corresponding data more linear. Although not simulated in this 

work, it is postulated that a cylindrical surface of equivalent radius will have less than half of the 

nonlinear error associated with the spherical surface.  

3.6 Experimental Verification 
All of the Ansys simulations presented in this paper were designed to allow experimental 

confirmation. The geometry of the capacitance gage represents the model C1-C manufactured by 

Lion Precision, and the sphere diameters modeled are also readily available. The electronic 
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control circuitry that has been discussed previously also represents the actual electronics in use in 

the Precision Systems Laboratory at the University of Kentucky.  

Several experiments with spherical targets have been performed in parallel with this finite 

element simulation. Prof. Eric Marsh of the Machine Dynamics Research Laboratory at the 

Pennsylvania State University [25] has utilized two capacitance gages to directly compare the 

output of a capacitance gage against a flat surface with the output of a capacitance gage against a 

spherical surface. A photograph of the experimental setup appears in Figure 3-15. A diagram of 

this same experimental setup is provided in Figure 3-16.  

In this experiment, the capacitance gage on the left is held parallel and in close proximity 

to a flat, machined surface. On the right, a second cap gage targets a spherical surface. Both 

target surfaces are supported by a large gage block from below, while the capacitance gages are 

supported from above. Structural support and relative movement are provided by a Moore 

machine base, also pictured in Figure 3-15.  

 
Figure 3-15. Photo of experimental setup for verification of nonlinearity data. 
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Figure 3-16. Diagram of experimental setup showing moving and fixed components. 

As the worktable supporting the target surfaces is moved back and forth in the x direction, 

the capacitance gages sense the changing gaps on either side of the moving target. The output of 

the capacitance gage electronics is sent to a data acquisition card in a PC, where the analog 

voltage output is digitized. This data acquisition card collects a large number of data points 

alternately from each capacitance gage, but this collection can be assumed to be simultaneous 

when the sampling time is much less than the travel speed of the worktable. Although one sphere 

is shown in the diagram, all seven spheres are mounted to the central gage block. To change to a 

different diameter sphere, the table is moved in the y direction and the capacitance gage 

repositioned.  

If we consider for a moment the case where both gages are positioned in close proximity 

to a flat surface and perfectly calibrated, it would be expected that the sum of the gap on the left 

and the gap on the right would be a constant value. This can also be written as shown in Eq. 

(3-23). 

 
 ( ) ( )tFKtR −=  (3-23) 

 
In this equation R is the right measurement, F is the left, and K a constant. Since the 

value K is not expected to change, this type of setup is sometimes referred to as a “null” 
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experiment. Although temperature changes would of course cause the structural blocks to expand 

or contract, affecting the gaps, the experiment is completed on such a short time scale (less than 

a minute) that temperature changes are deemed negligible.  

When the capacitance gage on the right is positioned over a sphere, the resulting data 

reveals the differences between the flat measurement F and the round surface measurement R. 

We can consider this flat measurement as the actual or “real” distance, and the round 

measurement the measured distance. Using the nomenclature used to analyze the theoretical 

results and dropping the constant for convenience, the experimental results become Eqs. (3-24) 

and (3-25). 

 
 ( )tFdreal −=  (3-24) 

 
 ( )tRdmeas =  (3-25) 

 
An example of the raw experimental data is shown in Figure 3-17. As expected, the flat 

and round data are in opposing directions. Also note that at the extreme end of each pass one or 

both capacitance gages exceed the calibrated scale (from –10 V to +10 V). As these data points 

are not considered to be calibrated, they will be discarded. Finally note that there are positions 

where the motion of the stage pauses briefly. This is due to backlash in the lead screw of the 

Moore machine and has little impact on the analysis of the data.  

Using the above equations, experimental lookup tables can be produced and plotted that 

have the same appearance and function as Figure 3-8 and Figure 3-9. A better graphical 

representation is achieved by first calculating the best-fit line, then plotting the residual error. 

These new plots appear in Figure 3-18 and Figure 3-19, these can be compared to the theoretical 

results in Figure 3-13 and Figure 3-14. Table 3-6 compares the theoretical slopes of the best-fit 

line to the calculated slopes from the empirical data [26].  

The form of the nonlinear residue curves is quite comparable, showing the same 

nonlinear trends and the increase in nonlinearity as the diameter is decreased. In terms of 

absolute value, a comparison of these shows that in all cases the theoretical error map is actually 

slightly larger than the empirical error map. It is hypothesized that one possible reason for this 

discrepancy may be the presence of additional conductors in the circuit that add small amounts 
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of capacitance to the value calculated in Ansys. The presence of an additional capacitance term 

may reduce the magnitude of the correction, but further work would be required to prove this.  
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Figure 3-17. Raw traces of flat and round surface measurements. 

Table 3-6. Comparison of best-fit slopes between theoretical calculations and experimental 
results. 

 Fine Gain Setting Ultrafine Gain Setting 
Diameter Slope,  

From Ansys 
Slope,  
Experimental 

Slope,  
From Ansys 

Slope,  
Experimental 

Flat 393.7 V/mm  
(10.0000 V/minch) 

- 1968.5 V/mm  
(50.0000 V/minch) 

- 

6.35 mm (0.250 in) 586.1929 V/mm  
(14.8893 V/minch) 

570.9 V/mm  
(14.5 V/minch) 

- - 

9.525 mm (0.375 in) 492.752 V/mm  
(12.5159 V/minch) 

488.2 V/mm  
(12.4 V/minch) 

6765.98 V/mm  
(171.8559 V/minch) 

- 

12.7 mm (0.500 in) 459.3976 V/mm 
(11.6687 V/minch) 

452.8 V/mm  
(11.5 V/minch) 

4208.457 V/mm  
(106.8948 V/minch) 

4535.4 V/mm  
(115.2 V/minch) 

15.875 mm (0.625 in) 442.6299 V/mm  
(11.2428 V/minch) 

437.0 V/mm  
(11.1 V/minch) 

3315.008 V/mm  
(84.2012 V/minch) 

3464.6 V/mm  
(88.0 V/minch) 

19.05 mm (0.750 in) 432.6142 V/mm  
(10.9884 V/minch) 

429.1 /mm  
(10.9 V/minch) 

2895.937 V/mm  
(73.5568 V/minch) 

2763.8 V/mm  
(70.2 V/minch) 

22.225 mm (0.875 in) 425.9646 V/mm  
(10.8195 V/minch) 

425.2 V/mm  
(10.8 V/minch) 

2661.583 V/mm  
(67.6042 V/minch) 

2578.7 V/mm  
(65.5 V/minch) 

25.4 mm (1.000 in) 421.2402 V/mm  
(10.6995 V/minch) 

417.3 V/mm  
(10.6 V/minch) 

2515.264 V/mm  
(63.8877 V/minch) 

2460.6 V/mm  
(62.5 V/minch) 
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Figure 3-18. Nonlinear residue for experimental data from the fine gain setting.  
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Figure 3-19. Nonlinear residue for experimental data from the ultrafine gain setting.  



Chapter 3  Compensation of Errors from Spherical Targets 

 71 

The final litmus test of the theoretical calculations is to apply the nonlinear third order 

curve to correct a set of measurements and compare them to a reference measurement. 

Fortunately, such a data set has been provided by Lion Precision [27]. The first four columns of 

Table 3-7 list the data from the Lion Precision calibration report, which is typically presented in 

English units. Since this data is calibrated with a 12.7 mm (0.5 inch) sphere as a reference 

surface, the calculated error is much larger than the values shown in Table 3-1, which is from a 

flat reference surface. The total range of these error values over the active range of the device is 

6.86 µm  (270 µinch ). Column 5 of Table 3-7 presents corrected distance values based on the 

output voltage from column 2 and the theoretical lookup table graphically presented in Figure 

3-13. This corrected data shows an error range of 0.386 µm  (15.2 µinch ), a 94 % improvement 

in linearity. Subtracting this error and plotting the nonlinearity before and after this correction, 

we arrive at Figure 3-20. Complete values before and after correction are listed in Table 3-8.  
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Figure 3-20. Empirical nonlinearity before and after theoretical corrections are applied.  
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Table 3-7. Calibration report data from Lion Precision plus corrected distances.  

Gap Output Output converted to Error Corrected Value 
milliinches Volts milliinches milliinches milliinches 

1.465 12.061 1.259 -0.206 1.4604 
1.590 10.582 1.407 -0.183 1.5796 
1.715 9.019 1.563 -0.152 1.7067 
1.840 7.478 1.717 -0.123 1.8335 
1.965 5.958 1.869 -0.096 1.9599 
2.090 4.452 2.020 -0.070 2.0864 
2.215 2.954 2.170 -0.045 2.2132 
2.340 1.470 2.318 -0.022 2.3391 
2.465 0.000 2.465 0.000 2.4650 
2.590 -1.465 2.611 0.021 2.5908 
2.715 -2.926 2.758 0.043 2.7181 
2.840 -4.376 2.903 0.063 2.8443 
2.965 -5.818 3.047 0.082 2.9703 
3.090 -7.252 3.190 0.100 3.0958 
3.215 -8.675 3.333 0.118 3.2219 
3.340 -10.091 3.474 0.134 3.3467 
3.465 -11.496 3.615 0.150 3.4720 

 

Table 3-8. Total error ranges before and after correction equation is applied.  

Diameter Gain, V/minch Raw error Average offset Corrected error 
12.7 mm  
(0.500 in) 

394 V/mm  
(10.0 V/minch) 

6.858 µm  

(270.0 µinch ) 

-1.382 µm  

(-54.4 µinch ) 

0.386 µm  

(15.2 µinch ) 
12.7 mm  
(0.500 in) 

1969 V/mm  
(50.0 V/minch) 

4.343 µm  

(171.0 µinch ) 

-1.501 µm  

(-59.1 µinch ) 

0.2997 µm  

(11.8 µinch ) 
25.4 mm  
(1.000 in)  

394 V/mm  
(10.0 V/minch) 

4.064 µm  

(160.0 µinch ) 

3.045 µm  

(119.9 µinch ) 

0.871 µm  

(34.3 µinch ) 
25.4 mm  
(1.000 in) 

1969 V/mm  
(50.0 V/minch) 

2.565 µm  

(101.0 µinch ) 

0.5004 µm  

(19.7 µinch ) 

0.6121 µm  

(24.1 µinch ) 

 

3.7 Conclusions 
A thorough analysis of both the theoretical and experimental data has shown the 

importance of correcting capacitance gage measurements whenever the gage is applied to a 

curved surface. Otherwise the accuracy of the data, in terms of absolute distance, linearity, and 

gain, is called into question. As expected the problem is most severe with the smallest target 

spheres, approaching the flat surface values as the diameter increases.  

Eventually it may be possible to develop a set of general, nondimensionalized equations 

or curves that represent the changes in slope as a function of gap, capacitance gage diameter, and 

surface curvature. In the interim, empirical measurements such as a “null” experiment of a 

particular surface can be used to create a lookup table of correction values.  
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4: 
Overcoming the Limits on the 
Sensing Range of a Capacitance Gage 

4.1 Introduction 
Although capacitive displacement sensors offer several advantageous properties, these do 

not come without a penalty. Their high sensitivity translates into a very small active range of 

sensing. For many applications where non-contact sensing is either desirable or required, the full 

range of the capacitive sensor, even at the lowest gain setting, may be insufficient.  

One such application for the capacitive displacement sensor is in the area of large format 

optics. Surface measurements are taken by moving either the displacement sensor or the optic. 

Although it is expected that an optical surface should be good to within a fraction of the 

wavelength of light, it is important to remember that the ideal optical form is in most cases not 

spherical. A large optic will deviate significantly from a true sphere over its entire surface. Since 

the capacitance gage is only able to measure relative position changes, the entire surface of 

interest must be within the active range of the sensor. Such an application will be discussed in 

detail in Chapter 5.  

To allow the use of capacitive displacement sensors in an application that requires long 

travel displacements (0.5 mm or more), the capacitive sensor must be mounted to a stage that 

will provide the necessary travel. Once this additional degree of freedom is added, displacement 

measurements become the sum of the displacement sensed by the capacitive gage and the 

displacement of the supporting stage. Measurement of the displacement of the supporting stage 

should be comparable in resolution to that of the capacitance gage, and can be accomplished 

using an interferometer arrangement. Light from the laser is reflected from a retroreflector 

attached to the moving stage, and this light interferes with light from a reference channel. Once 

again this is a displacement measurement (no absolute position is possible) but the travel can 

easily be several cm or more. This application of an interferometer is also discussed in Chapter 5.  
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Although it would seem that the interferometer could make an accurate measurement of 

the surface without need for the capacitance gage, the capacitance gage adds robustness to the 

system in two ways. First, the interferometer requires a highly polished, parallel mirror surface to 

accurately display an interference pattern. A less-than-perfect surface becomes problematic for 

the interferometer, and it is precisely this type of surface that needs to be evaluated. Also, since 

the interferometer is a displacement sensor only, if the laser signal is lost during the 

measurement then the reference distance is also lost. Finally, the capacitance gage provides 

averaging over a small surface area, automatically removing smaller surface features so that form 

errors can be analyzed. A similar measurement using an interferometer would require thousands 

of times more data points that would then be averaged in postprocessing to produce the same 

results.  

This chapter describes an experimentally verified control scheme between a linear air 

bearing stage and a capacitive displacement sensor. A linear air bearing stage was chosen 

because of its low friction and the near-absence of parasitic motions. The linear stage is moved 

by a voicecoil, which allows for complete electronic control without the resolution limits 

inherent in a stepper motor. The entire open loop system can therefore be modeled completely in 

the analog domain.  

Capacitance gage
with linear stage

Retroreflector

Target Surface

Beamsplitter

Retroreflector

Interferometer

dr=const.
 

Figure 4-1. Complete measurement configuration, 
including interferometer and capacitance gage. 
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The system is designed to maintain a constant distance between the capacitance gage and 

the mirror surface, which is preferable for two reasons. First, by maintaining a constant distance 

from the surface, the output of the capacitance gage need not be added to the output of the 

interferometer. As long as the capacitance gage distance remains constant, the displacement 

output of the interferometer is all that is needed to determine the form of the surface. The second 

reason for maintaining a constant distance has been illustrated already in Chapter 3. Specifically, 

for different curvatures of surface both the nominal distance (distance that produces 0 V) and the 

gain are affected. By positioning the capacitance gage at the nominal distance, the gain factor is 

removed from consideration. This system arrangement is presented in Figure 4-1.  

4.2 Open Loop Transfer Function 
For the purposes of experimentally testing the viability of a control scheme, an open-loop 

electromechanical system was assembled from available components in the Precision Systems 

Laboratory of the University of Kentucky. A frequency domain model of the system is then built 

by two methods: first by measuring the gains of the individual components of the system, then 

by analyzing the frequency response of the entire open-loop system and constructing a Bode plot.  

4.2.1 System overview 
The open loop control system consists of a linear air bearing stage and voicecoil (Systems 

Magnetic Company model ADE231581), a capacitance sensor (Lion Precision model C1-C), a 

power amplifier (Kepco Trans-Conductance Amplifier), and a moveable aluminum target. A line 

drawing showing the mechanical connections appears in Figure 4-2, including the voicecoil, 

linear air bearing, capacitance gage, and moveable target. The electrical connections, including 

the amplifier, voicecoil, and capacitance gage, are shown in Figure 4-3. The equipment as 

assembled on the optical table in the laboratory is pictured in Figure 4-4.  

Additional equipment required by the system includes a source of pressurized dry air and 

an electronics box for the capacitance sensor (Lion Precision model DMT22, not shown in 

photograph). Measurements are made using a DMM, a signal analyzer (Agilent Dynamic Signal 

Analyzer model 35670A), and a PC with A/D capabilities. The latter allows multiple voltage 

sources to be recorded simultaneously for postprocessing.  

The system begins with the input at the left of the system and with subsequent signals 

moving to the right. The input signal, a voltage, is applied to the front panel of the power 
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amplifier. This power amplifier is configured to provide an output current that is linear with the 

input voltage. The output of the amplifier is wired directly to the cylindrical voicecoil. The 

voicecoil is designed to provide a force on its ferromagnetic “rotor” that is linear with the input 

current. The rotor of the voicecoil is attached to the “rotor” or moving element of the linear air 

bearing, which is composed of hardened aluminum with a square cross section. Dry air at 30 psi 

is applied to the bearing, producing an almost frictionless, floating mass. With the exception of 

the cable for the capacitance gage, the moving components of the system are entirely supported 

by the pressurized air of the air bearing.  

Linear air bearing statorVoicecoil stator

Baseplate

Voicecoil rotor

Air bearing rotor Capacitance gage

Target surface

Micrometer controlled stage  
Figure 4-2. Drawing of mechanical components of test system.  

Power amplifier

IoutVin

Voicecoil

Capacitance gage controller

Vout

Vin Vout

Capacitance
gage

 
Figure 4-3. Drawing of electrical connections in open-loop test system.  
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Attached to the rightmost end of the linear air bearing rotor is a small, 9.5 mm (0.375 

inch) diameter capacitance displacement sensor. A target surface is mounted to the fixed table by 

means of a micrometer-controlled stage. The target surface can therefore be moved in controlled 

increments as needed, with the capacitance gage sensing displacements. The electronics box 

converts the capacitance into a voltage from –10 V to +10 V that is linear with displacement. The 

calibrated gain of this capacitance gage is 78.7 V/mm (2 V/minch) at the lowest gain setting, 

with a nominal offset of 0.254 mm. Having both the input and output of the system in the 

common units of Volts allows both for ease in measuring and comparing these two signals, as 

well as for closing the control loop. 

Power Amplifier Voicecoil Linear Air Bearing

Capacitance Gage

Target

 
Figure 4-4. Complete test control system with key components labeled.  

To measure the input and output voltages of this system an acquisition card (DAQ) in a 

Pentium computer is capable of digitizing, displaying, and recording both signals. Although this 

DAQ is not able to provide an analog output of the form that will eventually be needed to close 

the feedback loop, it is useful for testing and recording experimental data.  

4.2.2 Component model and measurements 
One technique for building a model of the entire system is to start with a model of each 

individual component, then determine how they are interconnected. A diagram of the individual 

components and their connections appears in Figure 4-5. The G variables indicate the gains of 
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the power amplifier, voicecoil, and capacitance displacement sensor. The m variable is the mass 

of the entire moving section, including voicecoil rotor and air bearing rotor. The s variable is for 

frequency, and the c constant is a term to represent the small damping inherent in the bearing. 

G1 G2 1/m 1/s
Vin I F a

G3

x Vout

Power
amplifier Voicecoil Moving

mass

v

Integrator Integrator Capacitance
gage

1/s

c

Damping

Fd

-
+

 
Figure 4-5. Block diagram of the complete analog system.  

Per the specifications of the power supply, voicecoil, and capacitance gage, all of these 

gains are constants, independent of frequency. From this “bottoms up” piecewise approach, the 

model of the entire system is represented by Eq. (4-1). 
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Most of these individual gain terms can be readily determined by simple experimentation. 

The gain G1 of the trans-conductance amplifier is determined by measuring the voltage drop 

across a known resistor as a function of input voltage, as shown in Figure 4-6. The resistor is 

several orders of magnitude lower than the DMM pictured so the DMM resistance can be 

ignored. Several points are measured and averaged, with a resulting value for G1 of 0.6066 A/V.  

When this gain is applied to the input voltage Vin, the resulting output is in units of mA as 

expected. The next two terms in Eq. (4-1), G2 and m, are determined as follows. First, the mass 

of the moving components is measured using a laboratory scale. Then the linear air bearing is 

positioned at a known angle using gage blocks. Sufficient current is applied to the voicecoil to 

prevent the rotors from moving due to gravity. The solution to the force provided by the 

voicecoil is given by Eq. (4-2). The experimental setup is presented in Figure 4-7.  
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Power amplifier

IoutVin

Voltmeter
Vin

R

 
Figure 4-6. Experimental setup to determine gain of power amplifier.  

The mass m is measured to be 4.3 kg, and current and geometry measurements produce a 

gain G2 of 28.076 N/A. An input value in amps results in an output value of Newtons.  

An additional force term occurs due to friction in the air bearing, and it is modeled as 

being proportional to the velocity of the air bearing rotor. Thus after dividing by mass and 

applying one integration, the velocity feedback is summed together with the force provided by 

the voicecoil. An additional integration to the velocity term produces displacement x.  

l

h

 
Figure 4-7. Experimental setup to determine force provided by the voicecoil. 
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Moving to the final gain G3, this is recognized as the calibrated gain of the capacitance 

displacement sensor, which has already been given as 78.74 V/mm. Since the target surface in 

this experiment is flat and parallel, no additional corrections to this gain are necessary.  

At the end of these static measurements, the only remaining unknown in the system is the 

damping term c. Since coulomb damping by its nature requires a dynamic experiment, no 

determination of this term is possible statically. An experiment with calibrated springs and an 

accelerometer could have been used to determine this last unknown, but an even more 

straightforward, “top-down” approach was applied instead as described in detail in Section 4.3. 

Combining the known terms from the static experiment, the system model to this point is as 

shown in Eq. (4-3). 
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4.2.3 Frequency analysis of open-loop system 
A second approach to modeling the system is a “top down” approach, considering the 

functioning of the system as a whole, rather than separating out individual components for 

scrutiny. Looking at the form of Eq. (4-1), it is apparent that this is a model of a second order, 

damped oscillator.  

The assumption that a system is of second order (or at least can be approximated by one) 

implies that there are two dominant poles near the ωj  axis, much closer than any other poles or 

zeros. A pure second order damped system is a Type 1 system, meaning that a step input can be 

tracked with zero error, and that a ramp input can be tracked with finite error. In the Bode 

diagram of such a system the phase approaches but never crosses –180 degrees so the gain 

margin is infinite. On the root locus the two lines depart at an angle of 90 degrees from the 

location nζω−  on the real axis, and never cross the ωj  axis.  

Before the open-loop system is analyzed, it is clear from the component modeling and 

early testing that the system has an extremely large gain. Prior to frequency tests, an analog 

voltage divider of value K was added to the input of the system, as shown in the modified block 

diagram of Figure 4-8. This resistor bridge can be considered as a filter of constant gain, with an 
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initial value based on voltage ratios of K1=0.01068. The modified transfer function is shown in 

Eq. (4-4). 

G1 G2 1/m 1/s
Vin I F a

G3

x Vout

Power
amplifier Voicecoil Moving

mass

v

Integrator Integrator Capacitance
gage

1/s

c

Damping

Fd

-
+

K
V

 
Figure 4-8. Modified block diagram of the complete analog system, including attenuator.  
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The next step in determining the system response is to employ a signal analyzer to 

measure both amplitude and phase response of the open loop system. The Agilent Model 

35670A Dynamic Signal Analyzer had the necessary flexibility to test the system. Experiment 

parameters required by the signal analyzer include the start and stop frequency (in Hz), output 

amplitude (in mV), and the form of the frequency input (swept sine wave). Selection of the 

appropriate start and stop frequencies requires some knowledge of the approximate gain at the 

starting or stopping frequency. Throughout the testing the system must be monitored to prevent 

the output from exceeding the input limits of the signal analyzer (-5 to +5 V).  

To connect the signal analyzer to the system the voltage output of the signal analyzer is 

connected to Vin of the system, and the output of the system Vout is connected to the voltage input 

of the signal analyzer. For each experiment, only one decade of response could be measured at a 

time, before it became necessary to modify the output amplitude. Also, due to the long settling 

time for low frequencies (many seconds), the system must be monitored to prevent the stator 

from drifting out of range of the capacitance gage. This unwanted motion occurs because the 

damping of the system is extremely low. Small forces on the cabling or any slight tilt of the air 

bearing can both cause the rotor to drift left or right. Since the active travel range of the 

capacitance gage is limited, even the smallest movements may result in off-scale voltages.  
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Figure 4-9. Amplitude and phase response from 1 Hz to 10 Hz.  

One decade of data is shown in the Bode plot of Figure 4-9. In this figure, the first 

complete decade of data collected, the phase has approached approximately –180 degrees, and 

the amplitude is clearly and precisely falling at 40 dB per decade. This would confirm that the 

system is second order, validating our use of the damped oscillator model in Eq. (4-5). This 

decrease in response indicates that both break points occur long before this frequency range. For 

this system, 1 Hz is considered a “high frequency.”  

Several difficulties arose while attempting lower frequency tests. Sweeping of the sine 

wave from highest frequency to lowest frequency helped stabilize the system through part of a 

decade. Determining an appropriate starting amplitude became quite difficult, since the gain of 

the system was ever-increasing. Ultimately, the drifting of the air bearing at the lowest 

frequencies prevented the collection and analysis of additional Bode plots.  

4.3 Closed Loop Response Testing 
The first closed-loop test of the system was to simply close the loop with a wire, 

inverting the output of the capacitance gage (Vout) and applying it to the input of the power 

supply (Vin). The results were quite dramatic and somewhat destructive: the motion of the stage 
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was so great that the capacitance gage immediately exceeded its linear output range (-10 V to 

+10 V). This high voltage provided such a large force to the voicecoil that the capacitance gage 

was driven into the target flat plane, knocking it to the floor. Subsequent tests with added 

damping indicated that the closed-loop system was either unstable or marginally stable.  

Since the large forces involved are clearly the result of an exceedingly large gain, it was 

decided to include a potentiometer in the voltage divider circuit, by which means the gain K in 

Eq. (4-4) could be varied easily. Two attenuator circuits applied at different times are sketched in 

Figure 4-10.  

As discussed in Section 4.2.3, the system described by Eq. (4-4) is a second order, 

damped oscillator. The more familiar form of the damped oscillator equation is to write it in 

terms of two variables, a natural frequency nω  and a damping coefficient ζ . The open loop 

formulation is shown in Eq. (4-5), and the closed loop formulation in Eq. (4-6). The task at hand 

is to determine the two unknowns nω  and ζ .  
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This variable attenuation, Kv, becomes a method by which a series of measurements of 

the closed loop system can be made. For each attenuation value Kv a different natural frequency 

and damping coefficient are determined, but from these a common value for the numerator and 

the c/m term in Eq. (4-3) can be derived.  

Vout

Vin

R1=10k

R2=10k

R3=10k
Vout

Vin

R1=10k

R2=10k

R3=100

 
Figure 4-10. Two attenuator circuits applied to the input of the system.  
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Once a gain is applied and the loop closed, the damped, oscillatory response of the 

system can be recorded and analyzed. One such plot of oscillatory response is shown in Figure 

4-11. From these plots it is possible to determine the frequency of the damped oscillations dω  

and an attenuation factor δ .  
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Figure 4-11. Oscillatory response of closed loop system with simple attenuator K.  

Values of dω  and δ  were collected for three different gain settings of the variable gain 

Kv. To determine values of the desired variables nω  and ζ  an approximation must first be made 

for the natural frequency, namely that for lightly damped systems dn ωω ≈ . With this in place, 

the damping coefficient can be determined from Eq. (4-7) [28]. This equation compares the 

amplitude of the oscillations at an initial point (x0) to the magnitude after n oscillations (xn) 

where n is arbitrary.  

 

 πζδ 2ln1 0 ≈=
nx

x
n

 (4-7) 
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Although the values of nω  and ζ  are different each time, it is possible to factor out the 

attenuation Kv and determine the numerator and c/m term for the system model G(s), which 

should remain constant. Table 4-1 shows the values obtained by these three measurements.  

Table 4-1. Closed loop values obtained from varying analog gain.  

Kv ζ  nω  c/m numerator 
5.99e-4 1.58e-2 13.607 0.431 3.09e5 
1.164e-3 7.4e-3 18.84 0.278 3.05e5 
5.06e-3 1.288e-3 38.73 0.09977 2.96e5 

 

The results in Table 4-1 show consistency in the numerator of the open-loop system, but 

some discrepancies in the location of the pole in the left hand plane (column 4). This would 

indicate that the system under study is not entirely a true second order system, but rather there 

are one or more additional poles somewhere in the left hand plane. Since the Bode plot in Figure 

4-9 shows the amplitude decreasing at 40 dB/decade, any additional poles to the system must lie 

far in the left-hand plane (at much higher frequencies). For this reason, the model can still be 

considered a second order system, although the presence of an additional pole must be 

considered when analyzing the data in Table 4-1.  

The clearest way to analyze this data is by plotting the closed loop points on a root locus 

diagram. The data points are shown in Figure 4-12, along with points that extrapolate the open 

loop poles on the real axis. Given a smaller and smaller gain, the root locus should intersect at 

the real axis and approach the open loop poles. The apparent bending of the root locus toward the 

ωj  axis as the gain is increased is consistent with a pole in the far left hand plane, and this is 

also consistent with the fact that the closed loop system with no gain reduction was either 

unstable or marginally stable. From this diagram an intersection point with the real axis is 

approximated to be at s = –0.275, indicating that the open loop poles based on the second order 

system model are at 0 and –0.55 rad/s. With this and the average value of the numerator from 

Table 4-1, the system model can now be fully described as shown in Eq. (4-8).  
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Since this is an incredibly large gain, it is likely that a digital feedback system might have 

difficulty providing small enough voltages without quantization errors. One bit on a 16 bit A/D 
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that is capable of a –10 V to +10 V range is 0.3 mV, but this system might require input voltages 

comparable to this size. To reduce the gain of the system to a reasonable level, a 1000:1 analog 

voltage divider K was applied to the input of the system, with the result that the final system 

model became as shown in Eq. (4-9). This is the system model used for development of both the 

digital and analog controllers. 
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Figure 4-12. Closed loop points plotted on a root locus diagram. This includes both data 

from Table 1 and extrapolated values.  

4.4 Closed Loop Control 
Once the system model in Eq. (4-9) has been determined, the controller can be designed. 

The purpose of this controller is to maintain a constant distance from the target surface, therefore 

the system can be considered to be tracking a voltage of 0 V. As the target surface moves past 

the capacitance gage, it is important to determine how quickly the capacitance gage can follow 

the surface, a function of the settling time.  
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For simplicity of application and ease of modification, a digital controller was 

temporarily applied to control the system. Once the design of the digital controller is finalized 

and its performance confirmed, for cost reasons an analog circuit with equivalent performance is 

to be applied in its place. For this reason the design process occurs in the s domain before being 

converted to the z domain. 

4.4.1 Digital filter designs 
The first step in the design of a digital controller for the air bearing system is to 

determine the sampling rate of the digital controller. The digital control system utilized for this 

testing is an Allen-Bradley Small Logic Controller (SLC). The rack-based controller consists of a 

processor, power supply, and a single analog input-output card. This card has the ability to 

process two analog inputs and two analog outputs with 16 bit digitization over the range from  

–10 V to +10 V.  

The sampling time Ts of the digital controller is 10 msec. The analysis of the second 

order system model has shown that this sampling time is well beyond the Nyquist limit for the 

natural frequencies of the final attenuated system modeled in Eq. (4-9), which has an nω  = 17.4 

rad/s. The zero-order-hold term for this sampling time, which must be applied to the system 

model, is shown in Eq. (4-10). The complete system model to be compensated is shown in Eq. 

(4-11). The digital compensator is designed for this system.  
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The first design of the compensator used as a design parameter desired dominant poles at 

–2+2j and –2–2j. This point was selected because it was thought that the large mass of the test 

system could be moved by a step function with a settling time of 2 seconds. The angle of 45 

degrees in the complex plane was selected so that the root locus could be bent using a standard 

lead compensator design. This approach was favored since it is a robust and straightforward 

design.  
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The analog lead compensator Gc(s) was calculated using Matlab code listed in Appendix 

C, with the results shown in Eq. (4-12). The bilinear transformation is applied to this to convert 

to the z domain, with the results shown in Eq. (4-13).  
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This first compensator design is programmed into the digital controller to measure the 

actual performance of the complete system. To produce oscillations, the system is disturbed from 

equilibrium either by moving the target surface or by positioning the rotor away from 

equilibrium. Two plots of such measurements appear in Figure 4-13. The plot shows output 

voltage over time, which can be converted to position by dividing by the G3 gain factor of the 

capacitance gage.  
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Figure 4-13. Results of the first compensator design.  
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There are several problems with this first design that must be addressed before the design 

is acceptable. The settling time of Figure 4-13, about 9 seconds, is much larger than the settling 

time of 2 seconds that is to be expected from the dominant poles of the first design. Also, as can 

be seen from the figure, several oscillations occur before steady state is reached. A final concern 

is that the system does not settle precisely to zero volts as expected, but instead reaches 3 volts in 

the steady state.  

Both the settling time and the oscillations can be explained by considering the effect of 

the lead compensator design. A lead compensator is designed to “bend” the root locus such that 

is passes through two desired poles. The angle of deficiency is the amount of angle that is 

required to be added by the compensator, in this case 83.9 degrees. Such a large angle is difficult 

to achieve with this kind of compensator, in effect we are expecting too much for this system. It 

is decided, then, to pick new dominant poles and attempt a new compensator design.  

The two new poles are chosen to be located at –1+j and –1–j, which will require less 

“bending” of the root locus. The settling time for these points is 4 seconds, with minimal 

overshoot. Once again, Matlab is used to solve for the compensator in both the s (analog) and z 

(digital) domains. These solutions appear in Eqs. (4-14) and (4-15).  
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The angle of deficiency in this case is 70.7 degrees, less than the previous solution and 

much more reasonable for a lead compensator to achieve. This new design is programmed into 

the digital controller and the system is once again disturbed from equilibrium while recording the 

system output voltage Vout. Two plots of the output appear in Figure 4-14. In both traces, the 

system starts out at rest but displaced from equilibrium. After one oscillation the system settles to 

an equilibrium position. As before, the equilibrium position is stable but zero in one instance, 3 

V in the other. The settling time is less than the 4 seconds stipulated by the design, and the 

overshoot is minimal.  

One possible cause of this nonzero steady-state is due to some slight tilt in the air bearing 

stage. With essentially no static friction an air bearing stage is affected by any tilt in the position 
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of the stage, no matter how slight. A constant force is required to maintain equilibrium, which 

translates into a constant but non-zero input voltage. Cabling to the capacitance gage also applies 

a force that must be compensated, and may vary from experiment to experiment depending on 

the exact starting position of the stage. Although 3 V seems like a large value, the final analog 

gain K present in the system will reduce that signal to 3 mV. The power supply may also exhibit 

a slight offset affecting the location of its “zero” point.  
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Figure 4-14. Output signal after implementation of second controller design.  

4.4.2 Analog filter equivalent 
After a satisfactory digital design has produced good results from the system, the next 

step is to build an inexpensive, analog version of this controller on a circuit board. This not only 

frees up the expensive digital controller for other experiments, but also makes the design both 

portable and easily reproducible.  

In the analog domain the zero-order-hold does not exist, so the system to be modeled is 

simply that shown in Eq. (4-9). Choosing once again our successful design poles of –1+j and  

–1–j, we utilize Matlab once again to produce the lead compensator of Eq. (4-16). This is nearly 

identical to the s domain design of the compensator shown in Eq. (4-14), indicating that the zero-
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order-hold has little effect in this case. Equation (4-16) is rewritten in Eq. (4-17) to facilitate the 

analog design process.  
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Implementing this design in the format of Eq. (4-17) with operational amplifiers is quite 

straightforward, involving four resistors and two capacitors as shown in Figure 4-15. Choosing 

straightforward values of capacitance, 3 equations and 4 unknowns allow for some flexibility in 

the design. The equation for determining the compensator from this diagram is as shown in Eq. 

(4-18).  
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Figure 4-15. Lead compensator analog design, including 1000:1 gain reducer.  

4.5 Conclusions 
A capacitance sensor, while offering high sensitivity, has drawbacks in terms of active 

range. This limitation can be overcome by coupling the sensor with a linear stage, whose motion 

is measured with a displacement measuring interferometer. The signal from the capacitance gage 

is used in a feedback loop to maintain a constant distance from the target surface. The control 

circuit can be digital or analog. Such a system has been designed and tested to prove viability in 

the application. 
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5: 
A Measurement Machine for Large Mirrors 

5.1 Introduction 
To this point, this thesis has studied the effects of applying capacitance sensors to various 

surfaces. A single application, that of making non-contact spindle measurements, has been used 

as justification for the detailed analysis of Chapter 2 and Chapter 3. An application that would 

require the extended operating range of the system described in Chapter 4 has not yet been 

described. This chapter will present such an application, as well as a machine that incorporates 

the linear air bearing system of Chapter 4.  

Lightweight, large format mirrors are planned for future generations of space-based 

telescopes to collect the maximum amount of light from faint sources. These thin film 

“gossamer” mirrors are formed from a sheet of polymer and coated with aluminum or gold for 

maximum reflectivity. In some configurations, multiple reflectors are arranged on a frame 

structure that allows for dynamic focusing of the optics.  

A second, less-demanding application for these mirrors is for the collection of solar 

radiation for powering onboard systems. In either case, accurate measurements of the form of the 

surface must be achieved. If the wavelength of light is in the visible region, then measurements 

of the surface should have an error on the order of 50 nm or less to be a useful indication of the 

quality of the optic.  

These surface measurements can be placed into three major categories. The smallest-

scale measurements (microns) are of surface roughness, while waviness measurements are of 

features up to approximately 1 mm in size. The largest features are categorized as form, or how 

closely the entire surface conforms to a desired shape. For roughness and waviness 

measurements, a small area of the mirror can be removed and examined using traditional 

techniques such as surface profilometry. For form measurements a machine must be able to 

achieve displacement measurements across the entire surface without damaging or deforming the 

flexible surface of the mirror.  



Chapter 5  A Measurement Machine for Large Mirrors 

 93 

In this chapter two machine designs are compared and contrasted to determine which 

machine offers the maximum accuracy, while allowing sufficient flexibility for measuring a 

variety of mirror surfaces and curvatures. Both proposed machines would use a capacitive sensor 

in combination with a linear air bearing and a laser interferometer to serially measure as many 

surface points as needed. The mirror is supported along its entire circumference by a “nest” 

structure to minimize deformations due to induced strains. The design details of these two 

“mirror metrology machines” are compared and contrasted.  

The first instrument design considered for this measurement uses a “pendulum” geometry, 

with a radial arm pivoted at the nominal center of the mirror. The mirror nest is supported by a 

spindle that allows rotation around a vertical axis. The pendulum pivots on a second, horizontal 

axis to sweep across the surface of the mirror. The light path for the interferometer travels along 

the horizontal axis of the upper spindle, then is reflected downward to the back side of the 

capacitance sensor. For a perfectly spherical mirror with the upper axis of rotation intersecting 

the center of the mirror, the variation in radius and the tilt of the surface are both zero.  

The second design considered for this machine uses a “swingarm” to traverse the surface 

of the mirror. As in the first machine, the mirror nest is mounted horizontally on a rotating 

spindle. For optimal operation of the machine the angle of the tilted axis of the swingarm is set 

such that the vertical axis of the mirror intersects the tilted axis of the swingarm at the nominal 

center of the mirror. Once again, for a spherical mirror properly aligned the variation in radius is 

zero. Central to this design is its ability to measure a wide variety of curvatures, including very 

large radii (many meters in length).  

5.2 Mirror Dimensions 
For gossamer optics the mirror dimension is usually limited by one of two factors. The 

first is the constraints placed upon the optics by the size of the optical structure at launch. For 

this reason it is often desirable for the optic to be rolled or folded during launch, to be unfurled 

along with the supporting structure once the spacecraft is in orbit. The second size constraint 

placed on the optic is due to the availability and quality of formed polymer sheets. Larger size 

sheets typically have more variability in thickness, which may translate into form errors once the 

mirror has been shaped.  
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The target mirror dimensions for this application are shown in Figure 5-1. The surface 

has a radius of curvature of 100 cm and a diameter (circumference/pi) of 80 cm. A flat edge of 

2.5 cm is desired for mounting purposes. Also as part of the mount, precision holes may be 

positioned at regular intervals along this edge.  

100

80
2.5  

Figure 5-1. Initial target values for mirror dimensions, in mm 

5.3 Overview of Prior Measurement Techniques 
At least three categories of measurement techniques have been applied to large format 

mirrors in past applications. These include 2D profilometry, phase shift interferometry, and non-

contact laser profiling. All three of these methods have been rejected as possibilities due to their 

limitations when applied to gossamer optics.  

5.3.1 2D profilometry methods 
One method of surface evaluation is to use contact profilometry to measure multiple 

points on an arc [29]. A pivoting arm is designed to trace a circular arc, and a gage measures 

deviation in radius from sphericity. To access all points on the surface, a second rotational axis is 

required, either to rotate the measurement structure over the mirror surface, or to rotate the 

mirror surface under the measurement structure.  

This method is one of the simplest, and is often used as a rough guide for a surface. If the 

surface is assumed to have cylindrical symmetry (if for example, the surface has been diamond 

turned), then this method is useful for indicating high spots that need additional machining. 
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Contact profilometry will not work for gossamer mirrors as any pressure on the surface results in 

large deformations. In addition, for polymer forms cylindrical symmetry cannot be assumed. 

5.3.2 Phase shift interferometry – areal 3D measurement 
The traditional method of measuring the form of large optics is using an interferometric 

method [30]. Optics divert a plane wave to the idealized shape of the optic, then the fringe 

pattern on the surface is checked for areas that need further work. In many cases, a CCD camera 

captures the image of the fringe pattern for analysis.  

Although phase-measuring interferometry is possible on a large optic such as this mirror, 

it can only make a limited number of measurements over a given surface area. Typically low-

resolution CCD cameras, e.g., 640 x 480 pixels, are used to determine the surface features, and 

this assumes that the difference in depth from one pixel to the next is only a fraction of the 

wavelength of visible light. If a phase-measuring interferometer is used to image the entire 

surface of a mirror (~0.2 m2 for some test surfaces) each pixel images ~1 mm2. From one pixel to 

the next, the distance to the surface will change by many wavelengths, so it is not possible for 

this type of interferometer to measure such a large and imperfect surface in its entirety.  

Even in cases where the surface is nearly perfect, each form requires its own custom 

reference optic or holographic grating. Often for this reason the interferometer method is used 

only at the final evaluation step. For the machine design proposed here, it is desirable to have a 

device that can measure the form of a mirror at every step along the way, even if there are 

significant deviations from the desired form of the surface.  

5.3.3 Non-contact laser rangefinder 
A measurement machine using a non-contact laser rangefinder was built by Dr. John 

Main at the University of Kentucky in 2001. In this machine the X-Y stage was suspended over a 

flange, which held the mirror in place during measurement. A sketch of this device is shown in 

Figure 5-2. X, Y coordinates were sent to the stage and the resulting Z data were recorded. To 

remove systematic errors a flat reference surface was also measured and the difference was 

subtracted from the raw data file.  

At the time of its inception it was recognized that the laser device is only able to measure 

surfaces at normal or near-normal incidence. As the laser moves closer to the edge of the mirror 

the angle to the normal becomes too large and the data become unreliable.  
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In addition, as the laser moves across the stage, some cantilevering of the mechanism is 

inevitable. Using a reference flat cancelled out any deflection distance, but does not correct for a 

deflection angle. Such an angle causes cosine-type errors in measuring a flat surface, but causes 

a much more complex systematic error in the data from a curved surface. Of the three prior 

methods studied, this approach has the fewest limitations. A machine that more closely follows 

the contours of the mirror surface will be able to eliminate many of the limitations of this early 

prototype.  

Laser measures Z distance

Laser moves in X and Y

Mirror surface

Support beam
bending

 
Figure 5-2. Preliminary surface measurement device. 

5.4 Common Machine Components 
Although two different machine designs are proposed in this chapter, both of these 

designs share several common elements. These include the mounting and support structure of the 

mirror, as well as the capacitance gage support that is combined with an interferometer.  

For a thin-film mirror, much more so than a standard rigid mirror, the support is critical 

to producing the correct shape. As useful as they can be in many applications, kinematic 

constraints are not feasible for such a flexible surface. Rather a “nest” structure with a machined 

upper surface is described that provides uniform support to the entire flat edge of the mirror. This 

nest is mounted to an air bearing spindle which provides the most uniform rotational motion 

possible.  
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As discussed in Chapter 4, the capacitance gage has an active range that is insufficient for 

many applications, including this one. What is needed instead is the averaging ability of the 

capacitance gage in combination with an accurate displacement sensor, namely a laser 

interferometer. Such an interferometer, looking at a reflective surface mounted to the back of the 

capacitance gage, could accurately measure displacements even from surfaces that are not 

conducive to direct interferometric measurement. Motion of the capacitance gage is designed to 

maintain a constant distance from the target surface by means of a voicecoil and air bearing 

support, as described in Chapter 4. The displacement reading is therefore read from the 

interferometer system, which only requires that a single surface be measured continuously.  

5.4.1 Mirror mount 
To accurately measure the mirror surface the entire mirror must first be mounted in a way 

that does not induce strains or vibrations in the polymer. In the previous system described in 

Section 5.3.3, a large hole cut in a flat plate was used to support the edge of the mirror. Most 

strain in this configuration is due to gravity effects, which can be modeled if enough of the 

material properties are known. Since there is no way to eliminate these body forces, the best that 

can be done is to make them symmetric, i.e., by mounting the mirror so that it rotates around a 

vertical axis.  

As with most gossamer optics, the mirror is designed to be supported only by its edges, 

so a “nest” has been designed that allows for uniform support of the edge of the mirror. The nest 

also has a series of holes around its upper surface that provide a slight vacuum to hold the film in 

place during measurement. This nest is shown in Figure 5-3. The mirror is mounted horizontally 

not only because this provides symmetric distortion due to gravity, but also to prevent it from 

collapsing under its own weight. The nest is in turn mounted on a precision air bearing spindle. 

 
Figure 5-3. “Nest” for supporting thin flexible mirror 
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Because the surface shape can be profoundly affected by the position in which the edge is 

held, it is proposed that a registration system be implemented in the forming and measurement 

steps. This registration or “punch” system involves first punching precision holes in the flat 

polymer sheet outside the diameter of the formed mirror (see Figure 5-4). When the film is 

mounted prior to forming, these holes are used for alignment in the clamping mechanism. As 

long as the film is not drawn from under the clamp the holes will be in precisely the same 

position on each mirror. The metrology machine would have identical pins for precision 

mounting of the mirror, ensuring that the clamped edge of the mirror is not out-of-round. This 

system allows for reliable, repeatable mounting of the mirrors. Otherwise, the mounting of the 

mirror could greatly distort the edge of the mirror, an example of which is shown in Figure 5-5. 

Here the correct edge (as shown when the mirror was formed) is juxtaposed against a different 

boundary condition applied during mounting for measurement. It is clear that a mirror with such 

a distorted boundary condition will change its shape over nearly its entire surface.  

Punches

 
Figure 5-4. Proposed punch system. 

Correct edge boundary

Possible edge boundary

 
Figure 5-5. Comparison of correct edge boundary condition to likely edge support.  
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Other factors that affect the shape of the mirror include air currents, vibrations of the 

system, and centripetal forces. Assuming that the measurement system is sealed from currents in 

the surrounding air, the only air currents present near the mirror surface are those induced by the 

motion of the mirror and the gage. Slowing down the measurement rate (and therefore the rate of 

movement of the mirror and gage) is a certain way to eliminate any motion due to air currents. 

The tradeoff is of course increased read time for a fixed number of data points. Similarly, 

centripetal forces due to any rotation of the mirror can be reduced to negligible levels by 

reducing the read rate.  

More problematic is the reaction of the surface to system vibrations. To maximize inertial 

damping it is proposed that the air bearing and nest structure be constructed on an existing 5-ton 

granite table in the Precision Systems Laboratory. If this proves insufficient to eliminate 

vibrations, direct damping of the mirror surface is proposed, by immersing the mirror in a 

viscous fluid. Unlike the mirror itself, which has very little damping, this arrangement would 

easily eliminate low frequency oscillations of the surface. This method would only be utilized if 

no other means is available to sufficiently eliminate forcing vibrations in the mirror.  

As mentioned before, the rotational degree of freedom for the mirror is applied by 

mounting the nest on an air bearing spindle. This air bearing spindle minimizes errors due to 

spindle error motions, including tip and face motion errors.  

Rotation of mirror

 
Figure 5-6. Air bearing rotation of the mirror. 

5.4.2 Capacitance gage 
The capacitance gage to be used in this application is identical to the device analyzed in 

Chapter 3 and Chapter 4. Since the mirror surface is conductive (and is grounded in both 

machine designs), the gage senses displacements from a nominal distance to the surface of the 
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mirror, approximately averaging this distance over the sensing area. As described previously, the 

resolution of capacitance gages ultimately depends upon the data acquisition system and the 

magnitude of the form errors (range of measurement), but commercial cap gages can easily 

achieve resolutions below 10 nm with 16-bit D/A conversion. 

The advantage of using a capacitance gage to measure the displacement to the surface is 

in its averaging effect over the active area of the sensor (typically ~2 mm2), thus separating out 

roughness from waviness wavelengths. The size of the active surface area is also compatible 

with the number of measurement points desired for analysis purposes. Considering for example 

the mirror described in Section 5.2, the area is roughly 500,000 mm2, indicating that with a slight 

overlap several hundred thousand unique data points can be measured.  

As discussed in Chapter 4, a capacitive gage such as that proposed can detect relatively 

large changes in displacement (1 mm or more on lower sensitivity settings [31]) only at the 

expense of resolution. The system proposed in Chapter 4, where the cap gage is mounted on a 

small air bearing and kept at a constant distance from the surface using a voicecoil or linear 

motor and closed-loop feedback, will be used in both machine designs. The feedback-controlled 

displacement of the capacitive gage in the radial direction will be measured by a laser 

interferometer system. A similar scheme has been proposed previously using a commercially 

available CD optical head [32], but this optical device does not have the averaging advantage 

provided by the capacitance gage.  

One limitation of standard commercial capacitance gages is in the range of acceptable 

angles to the target surface. Because of the small gap and relatively large flat surface (including 

guard ring structure), the maximum angle of one commercial gage is calculated to be ~ 2.3 

degrees at the highest sensitivity setting. Ultimately this range limits the mirror geometries that 

can be measured, and highlights the importance of proper alignment when setting up this 

machine.  

To minimize thermal effects on the accuracy of the measurement, the support structure of 

the capacitance gage is to be made of zerodur or a similar low-CTE material. It is only necessary 

to use zerodur in the gap between the capacitance gage and the mirror for the interferometer, as 

the expansion or contraction of other components is irrelevant to the measurement.  
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Capacitance gage

Laser mirror

Air bearing

Hardened sleeve

Invar mount

 
Figure 5-7. Capacitance gage mount with mirror, made of zerodur.  

5.4.3 Displacement-measuring interferometer 
As mentioned before, the active range of a capacitance sensor is many times smaller than 

the travel necessary to measure the surface of an 80 cm diameter mirror. In the previous 

measurement system a laser was used to measure the distance to the surface of the mirror using 

time-of-flight. What is proposed in this improved design is that a laser interferometer be used to 

measure the displacement of the capacitive sensor mount. By knowing the displacement of the 

sensor mount, as well as the fixed dimensions of the mount, the distance to the surface of the 

mirror can be measured with a precision comparable to that of the capacitance gage or the 

interferometer alone.  

A laser interferometer is a system that uses interference from two laser pathways to 

determine changes in lengths of the pathways. Typically one pathway is the “reference” pathway, 

a fixed distance, and the other pathway changes in length. Coherent light from a laser is passed 

through a beamsplitter and half of the light travels each path. Upon its return the light is 

recombined and sent to a photodetector. If the lengths of the two paths differ by an integer 
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multiple of the wavelength (a typical visible wavelength is 500 nm), then the two waves interfere 

constructively, and the light on the photodetector is maximized. If the measurement path length 

changes and the paths now differ by a half wavelength, the light interferes destructively and no 

signal is measured by the photodetector.  

Commercial interferometer systems are able to convert the signal from the photodetector 

into a displacement measurement. Since the system has no “zero” starting point it is only 

possible to make displacement measurements with an interferometer, and consequently a 

measurement of a mirror surface would have to be a contiguous set of data. By placing a 

retroreflector on the back side of the capacitance gage mount as shown in Figure 5-7, the 

interferometer would always be utilizing a quality optical surface for its measurement pathway. 

Also since the capacitance gage and its mount would only travel in the radial direction, this 

reference surface would always remain perpendicular to the light pathway, as required for 

optimal measurements.  

Linear bearing for
movement in R

This distance is maintained at a constant value

Interferometer
measures this

distance

Fixed length,
thermally stable

Laser from interferometer system

Mirror surface

Upper Spindle

 
Figure 5-8. “Pendulum” design for a measurement machine.  
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5.5 First Design: The “Pendulum” 
The pendulum design sketched in Figure 5-8 is the most straightforward of the two 

machine designs. The upper spindle supports a stiff but lightweight arm that in turn supports the 

linear bearing and voicecoil. This spindle is mounted in a large overhead structure, most likely 

granite, which allows for multiple mounting locations of this spindle.  

The laser for the interferometer passes through the center of this spindle, then is reflected 

downward, along the arm, to the back side of the capacitance gage mount. As mentioned 

previously, this component is to be made of a low CTE material. Because this light pathway 

includes the main pendulum arm, the interferometer is able to measure changes in the length of 

this arm due to gravity, temperature fluctuations, etc. Temperature changes may also affect the 

surrounding granite structures, but they have a much more significant thermal mass and would 

therefore change much more slowly and measurably.  

5.5.1 Advantage in sensor configuration 
As can be seen from the diagram in Figure 5-8, the system proposed measures spherical 

coordinates of data points, namely R, θ , and φ  values of the mirror surface, instead of the 

previous X, Y, Z measurements. These three degrees of freedom are more suitable for this type 

of surface, and allow for tremendous improvements in accuracy. Using standard spherical 

notation the R measurement is provided by the interferometer, the θ  angle by the upper spindle, 

and the φ  angle by the lower spindle. By aligning the upper spindle with the nominal center of 

curvature of the surface, the total travel in the R direction is minimized.  

Another point in favor of this design is the fact that each of the three coordinates of a 

surface point is an independent measurement. By having each measurement produced by a 

separate device, the possibility of error propagation is greatly reduced. Figure 5-9 shows a 

downward-looking plot of paths traversed by the capacitance gage. Alternatively, circular paths 

could be traversed along the system, again with equal ease in recording the angular coordinates 

of each data point.  

5.5.2 Difficulties in accommodating different curvatures 
The most fundamental limitation of the pendulum design is its inability to measure a wide 

range of different curvatures. Since the upper spindle must be aligned with the nominal center of 

curvature of the film, relatively flat mirrors require mounting the spindle high above the surface. 
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Any offset between the spindle and this center results in added tilt between the capacitance gage 

and the surface. A sample plot of this increase is shown in Figure 5-10.  
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Figure 5-9. Downward-looking plot of lines (numbered) traversed by pendulum design. 
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Figure 5-10. Tilt angle due to spindle offset from film center, pendulum design. 
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As the radius of curvature of the mirror increases, the length and mass of the arm 

increases, with a third-order increase in the bending angle of the arm. Even if multiple mounting 

locations for the upper spindle are machined into the upper granite structure, the final alignment 

must be achieved by raising/lowering the film, necessitating z-axis motion of the lower spindle. 

Alignment of the center of the film under the zero position of the pendulum arm requires x and y 

axis control of the lower spindle as well. With each additional translational degree of freedom, 6 

additional terms are required in the error budget. The second design is able to eliminate one of 

these alignment translation stages. 

Linear bearing for
movement in R

Interferometer
laser beam

Mirror surface

Spindle

Sine table
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Figure 5-11. "Swingarm” design for a measurement machine. 
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5.6 Second Design: The “Swingarm” 
The swingarm design shown in Figure 5-11 uses a different geometrical configuration to 

position the capacitance gage over various locations on the mirror surface. In this case a 

horizontal arm rotating on a tilted axis suspends the capacitance gage mount above the surface. 

The capacitance gage is moved in the radial direction by the same voicecoil arrangement 

described above. As can be seen from the figure, a huge advantage to this system is that the arm 

is only slightly larger than the radius of the mirror. For different radii of curvature, only the angle 

of the sine table changes. This geometrical relationship is given [33] by Eq. (5-1).  

 

 
R
L=θsin  (5-1) 

 
Where L is the perpendicular distance from probe tip to axis of rotation as shown in 

Figure 5-11, and R is the nominal radius of the mirror. Once the approximate angle is set by 

adjusting the sine table, the mirror is moved to its final position using x and y axis control. No z-

axis motion of the mirror is required for alignment. As can be seen from the above equation, the 

swingarm design can even accommodate a mirror of infinite radius (flat surface), by setting the 

angle θ  to zero. Finally, since this design locates the measurement equipment to one side of the 

surface, other equipment (e.g., optics) can be mounted overhead.  

5.6.1 Swingarm design limitations 
One downside of this swingarm arrangement is the difficulty in choosing the optical path 

for the interferometer. Current thinking is to bring the laser to the end of the arm using fiber 

optics, measuring just the travel of the capacitance gage relative to the end of the arm. No longer 

can the laser pathway measure all vertical motions of the capacitance gage mount. Instead, 

corrections due to arm bending and thermal drift must be included later, as described in Section 

5.7.  

A second difficulty arises when calculating the location on the mirror surface of 

measured points. As can be seen in Figure 5-12, rotating the capacitance gage causes arcs to be 

traced on the surface of the mirror. The position of these points is calculated from knowledge of 

the distance L of the machine and the angular information from the two spindles.  
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Figure 5-12. Downward-looking plot of arcs traversed by swingarm design 

5.6.2 Parametric swingarm studies 
To study the geometry of the swingarm model in greater detail, a skeleton model of the 

structural components was created in ProEngineer. This model, shown in Figure 5-13, was used 

to perform sensitivity studies as the arm traversed the surface. First, a spherical surface was 

created and the probe swept across its surface. As expected, with optimal alignment the probe 

surface remained equidistant and parallel to the mirror surface at all angles. Of greater interest is 

the clearance of the main arm with respect to the edge of the film, as plotted in the upper graph 

of Figure 5-14. This information is helpful when designing the arm and nest structures.  

 
Figure 5-13. Skeleton model of swingarm design for parametric studies 
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Figure 5-14. Results of two parametric studies of swingarm design.  

A second study modeled a parabolic mirror surface with similar dimensions to the 

original, spherical surface. The lower graph of Figure 5-14 shows the radial travel such a surface 

would necessitate. This information is needed to determine if the air bearing and voicecoil have 

sufficient travel.  

5.7 Postprocessing Corrections to Data 
Several corrections to the raw data of this machine are anticipated and have been 

analyzed. These include systematic errors due to slight offsets in the capacitance gage, errors due 

to a tilted mirror surface relative to the capacitance gage, and finally errors due to beam bending 

in the machine. All of these errors can be corrected for after the collection of the raw data file, as 

a postprocessing step.  

Not all errors can be determined prior to the building of the machine. Temperature 

changes in various parts of the machine alter the dimensions slightly; in both designs some of 

these changes will be in the sensitive direction. Only after the machine is built and installed can 

machine component temperatures be measured and their effect on the accuracy of the machine 

determined.  
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5.7.1 Capacitance gage offset 
Chapter 4 presents a feedback loop that positions the capacitance gage at a fixed distance 

from the reference surface. This fixed distance is such that the capacitance gage output is zero 

volts, and the forces on the air bearing rotor due to the voicecoil are zero.  

In a real machine some small forces will be required to maintain the position of the 

capacitance gage, therefore the capacitance gage will not be positioned at the nominal distance. 

Since the forces required will vary over the surface of the mirror, it is important to register this 

offset of the capacitance gage and add or subtract this displacement from the displacement 

measured by the interferometer.  

Fortunately, the output of the capacitance gage is easily monitored and is already in a 

form that lends itself readily to digitization. It is proposed that during data collection every 

reading of the interferometer will also include a reading of the voltage output of the capacitance 

gage. With this information these small offset corrections can be made to the data to more 

accurately determine the location of the mirror.  

5.7.2 Slope correction 
For these large radius mirrors the capacitance gage will “see” a surface that is essentially 

flat. Curvature corrections such as those proposed in Chapter 3 are not needed at this scale. A 

similar sort of systematic error does occur whenever the capacitance gage is tilted with respect to 

the surface being measured, rather than being perfectly parallel.  

Just as with the curvature problem analyzed in Chapter 3, deviations from the target 

arrangement used during calibration will result in erroneous displacement measurements. Since 

the capacitance gage is factory-calibrated using a parallel surface, any tilt of that surface results 

in the capacitance gage perceiving a smaller displacement. This tilt is shown two-dimensionally 

in Figure 5-16, although of course this tilt exists in three dimensions. Although the curved 

surface was solved using FEA, this tilted surface does not offer any axial symmetry for FEA. 

The computing power required for an FEA solution is therefore significantly larger. 

Closed-form solutions to this capacitance problem do exist for small angles [34], one 

such solution is shown in Eqs. (5-2) and (5-3).  
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Figure 5-15. Plot of distance offset as a function of tilt angle, optimal spacing in mm. 
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Figure 5-16. Capacitive sensing of a sloped surface.  

Solving these Equations for the geometry of the capacitance gage and various nominal 

gap distances results in Figure 5-15. These lines show the percentage error in distance for a 
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particular spacing and tilt angle. If the tilt angle at a particular data point is known, this 

correction can be added to radius values from either machine design. These tilt angles can be 

determined by applying a gradient function (similar to those built in to Matlab) to the raw mirror 

data. Since the slopes are calculated from the radial distances and the radial distances are 

corrected slightly by using the slopes, two or three iterations of this correction may be required.  

5.7.3 Use of a reference surface 
Another systematic error is due to structural bending or extension of the measurement 

arm. As discussed previously, in the pendulum design the extension of the arm is included in the 

measurement of the R value by the interferometer. At any position other than vertical there also 

exists bending in the arm, which is manifest in both deflection and tilt at the end of the arm. Tilt 

errors are most likely much smaller than the tilt encountered by the cap gage simply due to the 

mirror surface being aspheric. Equations for deflection can be solved as a function of the arm 

angle, and these can be used to correct the location of the measurement point in postprocessing.  

For the swingarm design, the arm is primarily in a bending mode, although the direction 

changes as a function of both sine table and spindle angle. For this reason it is advisable to use a 

hollow cylinder as the arm structure, since this geometry has a uniform moment of inertia for 

bending at any angle.  

For either machine design, the theoretical bending needs to be tested experimentally to 

determine the validity of the model. It is proposed that, rather than testing individual components, 

the entire assembly should be testing using a known reference surface. A diamond turned (rigid) 

mirror such as one manufactured for a ground-based telescope can serve as a test bed to validate 

the functionality of the form measurement machine. Even if the form of the mirror is not ideal as 

long as it is known then it can serve as a reference measurement to compare against 

measurements from the proposed machines. The difference in the two measurements becomes 

the error map for the machine. This is the ultimate test of the accuracy and repeatability of this 

machine.  
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5.8 Conclusions 
Accurate form measurements of large-scale reflective optics are critical to refining their 

manufacturing processes. Previous measurement systems suffered both from limited accuracy 

and a lack of ability to easily separate form error from roughness and waviness. Many of these 

systems were designed to measure rigid optics, not the thin-film “gossamer” optics favored for 

future space applications.  

A non-contact measurement system is proposed that would average out these roughness 

and waviness variations while providing form measurements over wide variations in the radius 

of curvature. This system combines a capacitive gage with a displacement measuring 

interferometer to determine the form of the mirror with high accuracy and repeatability.  

Of the two designs presented, the swingarm design has been selected due primarily to its 

greater flexibility in measuring a variety of surface curvatures and to its shorter arm length. Also, 

the lower profile of the equipment makes this design more easily built from existing machine 

structures. A solid model of this design is shown in Figure 5-17. To determine correction terms 

due to bending of the structure, a reference mirror of known form will be measured and the 

differences between measurements used as an error map.  

 
Figure 5-17. Solid model of final machine design.  
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6: 
Conclusions and Future Work 

With the prevalence of high performance sensors in the laboratory, it is important to 

understand the conditions under which their performance is achieved. It is also necessary to 

understand what effect non-ideal conditions have on those same performance parameters. This 

has been the focus of this study of capacitive displacement sensors. It has been demonstrated that 

the effects of placing the capacitance gage in proximity to a spherical target can be reproduced 

using finite element analysis, with results that closely match empirical measurements. The range 

limitations of the capacitance gage can be overcome by pairing it with an air bearing and an 

additional displacement sensor. Finally, a machine using these devices has been conceptualized 

and modeled.  

6.1 Capacitive Displacement Sensors 
Capacitive displacement sensors offer non-contact sensing of a wide variety of 

conductive surfaces using a rugged, sealed probe with no moving parts. This device is calibrated 

at the time of manufacture to be highly linear over its active travel range of a few hundredths of a 

mm. The nature of the device being electronic, the inner, sensing conductor is shielded from 

outside effects by both a guard ring and a grounded shell. It has been shown that the guard ring 

limits the fringing of the electric field at the edge of the sensing element, increasing the linearity 

of the device. The linearity of the output of the capacitance sensor with displacement is achieved 

by an electronic circuit that compares peak voltage to peak current. This output is a function of 

the inverse of the capacitance C, which is linear with the gap distance d.  

It has been shown that several applications, including spindle metrology, cannot provide 

a flat reference surface for measurement by the capacitance sensor. Instead a cylindrical or 

spherical surface becomes the available target. Since no closed-form solution exists for modeling 

the complex electric field between the central, sensing conductor, the guard ring, the ground 

shield, and the target surface, finite element modeling is chosen to simulate a variety of different 

spherical targets and distances d.  
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6.2 Finite Element Modeling 
The solution to the finite element electric field problem first takes the form of a scalar 

potential, analogous in many ways to conduction heat transfer problems. The temperature 

solution of a heat transfer problem is compared to the voltage potential between conductors in 

the electric field problem, with constant temperature surfaces mathematically identical to 

surfaces of conductors, where voltage is constant. The cylindrical form of the equation takes the 

form of Laplace when no charges are present in the system.  

To solve electrostatic problems in the Ansys software a model of the geometry must be 

built using keypoints, lines, and areas. Since the problem to be solved is axisymmetric, two-

dimensional areas are used to represent three-dimensional volumes. Once areas are meshed, the 

boundary conditions of constant potential are applied to the lines bordering conductors, and a 

special infinite condition is applied to the outer edges of the model. This condition is necessary 

to represent the fact that all other conductors are “infinitely” far away.  

To compare the finite element solution to closed-form solutions, a two-conductor model 

is created of a parallel plate capacitor. The capacitance C of this system is solved with several 

different meshes and outer boundary conditions, with excellent results when compared to the 

theory. Next a model of the actual capacitance gage configuration is built and tested against a flat 

surface. For this system of four conductors, a more complicated algorithm must be used to 

determine the lumped capacitance values between each pair of conductors. The electric field 

solution can also be presented graphically, where the effects of the guard ring on the fringing of 

the electric field can be shown. Also, the capacitance results are compared with a closed-form 

solution of the guard ring geometry, again with good correlation.  

Once the validity of the finite element model has been proven, the model is modified to 

include a spherical target surface. When these results are compared to the flat surface values, it is 

clear that the same distances (as measured from the center of the capacitance gage) produce very 

different capacitance values. It is necessary in most cases to run test cases to determine the 

correct distances to produce capacitance values comparable to the flat cases. Otherwise, the 

capacitance gage electronics would not consider the positioning of the gage to be “on-scale.” 

These capacitance values are then analyzed to determine the appropriate method to remove the 

errors associated with the curved surfaces.  
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6.3 Nonlinear Compensation 
Once the capacitance values for flat surfaces and varying-diameter spheres have been 

calculated using finite element analysis, the next step in the process is to plot these results and 

determine the best-fit lines through each set of data points. First the flat surface was plotted, 

since this is the basis on which the capacitance gages are calibrated. Two sets of data 

corresponding to the manufacturer’s “fine” and “ultrafine” gain settings are fit to two different 

lines with similar (but not identical) slopes. By subtracting the best-fit line from the actual 

capacitance data, the nonlinear residual is calculated and plotted. This curve is to be compared to 

the same curve from the spherical surface measurements.  

Because the capacitance gage is correctly calibrated for measurements of a flat surface, 

the finite element results can also be used to calculate the output voltage for any particular 

capacitance. It is important to recognize the limitations of the electronics, particularly the fact 

that the output will flatten out beyond its –10 V to +10 V active range.  

To determine the output voltage as a function of capacitance, two methods are possible. 

In the first, the best-fit line from the flat target data is used to determine a linear equation 

between inverse capacitance and displacement. Another linear equation converts this 

displacement to output voltage. This method has the advantage that capacitance values outside 

the range included in the flat surface data can also be plugged into the linear equation with good 

results. In this way the capacitance values from the curved surfaces are converted into 

“measured” displacement. These displacements are plotted against the actual or “real” 

displacement that was used in the finite element simulation. These graphs provide a lookup table 

by which the output of the capacitance gage electronics can be converted into the actual 

displacement of the device.  

Although this linear best-fit method is able to extrapolate beyond the original capacitance 

range, it was shown that the capacitance gage electronics actually remove some of the 

nonlinearity present with the flat target. Therefore, it is more appropriate to use a higher order 

polynomial fit to the data to correlate capacitance values from one simulation to the other. 

Finally, to produce evenly spaced data points for the final analysis, it is deemed better to fit 

polynomials to the spherical capacitance values, plugging in the more evenly spaced capacitance 

values from the flat surface analysis to determine the relative slope between displacements.  
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6.4 Air Bearing Support and Control 
Although capacitance gages show high sensitivity to small displacements, the 

disadvantage of such a high sensitivity is a relatively small active range. Many applications 

could benefit from the non-contact, averaging abilities of the capacitance gage, but require a 

larger travel range than available even at the lowest gain setting.  

Laser interferometers have sensitivity on par with that of a capacitance gage, but ideally 

require a mirror surface to accurately gage displacements. To combine these two displacement 

sensors into a single unit, a control system is proposed that uses the capacitance gage for sensing 

surface features, but maintains a constant distance to that surface. The displacement of the air 

bearing stage that supports the capacitance gage is, in turn, measured by the interferometer.  

Such a control system was built and tested using an available capacitance gage, air 

bearing stage, and linear amplifier. The resulting system was modeled as a second order 

oscillator with damping, and evaluated using several methods. Amplitude and phase response 

were difficult to measure due to long settling times at low frequencies, but Bode plots did 

confirm the validity of the second order model. Closed loop response testing revealed large 

numbers of oscillations, indicative of a small damping coefficient, as expected from the air 

bearing support. Measuring the closed loop response as a function of various gains allowed for a 

determination of a second order system model. From this point, several digital filter results were 

tested until the desired settling time and overshoot were achieved. To accomplish these same 

results at lower cost, an equivalent analog control design is presented.  

6.5 Large Mirror Form Measurement Machine 
One such application of the air bearing support is in a machine to measure large format 

mirrors. Many of these mirrors are made of lightweight, flexible materials, and therefore require 

a non-contact gage such as the capacitance sensor. To measure these near-spherical surfaces, two 

machine designs were proposed and evaluated in terms of flexibility and ease of use. A mount is 

proposed to support such a mirror, and two air bearings spindles are used to position the mirror 

under the capacitance sensor. Since such a large surface will require greater travel than permitted 

by the capacitance gage alone, the air bearing support in combination with a laser interferometer 

is proposed to record displacements.  
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When comparing and contrasting the swingarm vs. the pendulum design, the swingarm is 

shown to be far simpler, but its setup is too inflexible for measuring different curvatures. Also, as 

many large-format mirrors are nearly flat, the apparatus required for such a radius of curvature 

would be impracticall large. It is therefore concluded that the swingarm design is the most 

promising of the two.  

6.6 Future Work 
There are several different areas that could be studied based on the techniques and 

concepts presented in Chapters 2 through 5. These primarily involve extensions of the ideas 

presented to other geometries and applications where they would be found useful. 

6.6.1 Other capacitance geometries 
The finite element analysis presented in Chapter 2 studied spherical target surfaces using 

an axisymmetric finite element analysis. For many high performance bearing and surface 

measurements a cylindrical target surface is used. Although the capacitance gage also has 

cylindrical symmetry, when the capacitance gage is targeting the walls of a cylinder there are 

only two planes of symmetry to the problem. It is necessary in this case to build a three-

dimensional model of one quarter of the capacitance gage and the target surface, requiring many 

hundreds more elements and much greater computing power. 

When comparing a cylinder to a sphere qualitatively, it is apparent that the sphere has 

curvature in all directions, while the cylinder has curvature along one plane of symmetry but is 

flat in the other plane. It is anticipated, then, that the nonlinear effect of curvature for a given 

cylinder diameter would be less than that for the equivalent sphere. Just as larger spheres were 

closer and closer to the flat data points, the cylindrical surface should approach the flat data for 

large diameters.  

In the analysis of capacitance values found in Chapter 3, only polynomial fits to data 

were used to interpolate between data points. In time and with further analysis, it should be 

possible to create a mathematical model that more realistically portrays the effects of capacitance 

and target spheres. Such a mathematical model may take into account the average distance to the 

surface, as well as including the effective radius of the sensing element. Of greatest value would 

be a closed-form determination of the new gain values as a function of sphere diameter.  
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6.6.2 Mechanical improvements to air bearing support system 
With the success of the preliminary system described in Chapter 4, including a method to 

implement the control electronics in the analog domain, future work should include the 

optimization of the dimensions of the mechanical components of the system. Although the 

voicecoil and air bearing functioned as expected, both were many times larger than necessary to 

support the weight of the capacitance gage. The optimal system must consider the mass to be 

carried and the forces involved.  

To determine how the transfer function of a system would change as the mechanical 

components are modified, it is useful to revisit Figure 4-5. Changes to the mechanical 

components would change the voicecoil, the mass, and the damping term. For the purposes of 

this discussion the amplifier and the capacitance gage would remain the same.  

Given the relative size of the capacitance gage compared to the air bearing rotor, it is 

determined that the ideal support structure should be approximately 5 times smaller (along each 

dimension). It is assumed that the force provided by the voicecoil is roughly proportional to the 

length of its windings. Reducing both the length and the diameter by a factor of 5 each results in 

a new gain value G2 of 1.123 N/A, some 25 times less than previously.  

If the mass is deemed to be proportional to the volume of the stator, changing all three 

dimensions results in a reduction of mass by a factor of 125, or a mass of approximately 34 g. 

This is nearly twice the mass of the capacitance gage, which weighs just 20 g.  

To determine the change in the damping coefficient, we must examine a different form of 

the closed-form second order equation, shown in Eq. (6-1). In this form the damping coefficient 

c is multiplied by the velocity to produce a force. Dividing every term by the mass m results in 

Eq. (6-2).  

 
 0=++ kxxcxm &&&  (6-1) 
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We can equate the terms in Eq. (6-2) to the terms in Eqs. (4-3) or (4-5). We then assume 

that the damping force (and therefore c) is proportional to the surface area of the air bearing. 

With reductions in length, height, and width of the air bearing, the resulting surface area will be 
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25 times less. However, this term is divided by the mass m, which we have already shown should 

be 125 times less. The final coefficient, then, is some 5 times larger. Starting with a value of 0.55, 

the new value for c/m is 2.75. The final system model is shown in Eq. (6-3).  
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Although this system has an even higher resonant frequency (about 1 kHz), what is more 

important is that the pole in the left hand plane has shifted further left. Recalling that the root 

locus tends to drift to the right as gain is increased, it is possible that our original design poles of 

–1+j and –1–j can now be achieved with a simple (fractional) gain. Faster settling times are also 

now more easily achieved with the lag compensator. For design poles of –4+4j and –4–4j the 

angle of deficiency is 68.5 degrees, less than what was required for the laboratory system with a 

settling time of 4 seconds.  

A final improvement to the system is possible by testing other types of controllers. A lag 

compensator may be introduced to reduce the steady-state error. A PID controller may be 

designed to compare the results with that of the lead compensator. Ultimately the settling time of 

the closed-loop system may dictate the rate at which a surface can be analyzed.  
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Appendix A: 
List of Variables 

Q Charge on a conductor 

C Capacitance between two conductors 

0ε  Electric field permeability of vacuum 

Rε  Dimensionless, relative permeability of a medium; always greater than 1 

A Area of a conductor 

d Distance between two parallel conductors 

p Pressure 

T Temperature in K 

r Radius of a circular area, or radial direction in cylindrical coordinates 

Cf Closed-form capacitance including fringe effects 

f Function to include fringing effects 

s Thickness of plate in parallel plate capacitor analysis (Chapter 1);  

frequency variable in analog domain (Chapter 4) 

ri A radius that includes half the distance to the guard ring 

Cg Closed-form capacitance including factor for guard ring 

χ  Correction to include guard ring geometry 

w Width of guard ring 

g Gap between central conductor and guard ring 

I Current to capacitor 

V Voltage applied to a conductor 

ω  Angular frequency, in radians/s 

d∆  Displacement from a nominal value, the nominal value generally being the value 

that produces a zero volt output from the capacitance electronics 

I1 and I2 Forward and reverse measurements of rotating part 

)(θR  Spindle radial error motion 
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)(θB  Surface profile of rotating part 

G Gain of a capacitance gage in V/mm or V/minch 

k Thermal conductivities in a heat transfer problem 

qB Heat generation term in a heat transfer problem, or charge density in an electric 

field analysis 

φ  Field potential solution to the electric field problem, in volts 

W Energy stored in a capacitance system due to voltage potentials applied to 

conductors 

z Axial coordinate in cylindrical coordinate system, frequency variable in digital 

domain 

C12 Mutual lumped capacitance value between conductors 1 and 2 

D12 Ground capacitance values used in CMATRIX analysis 

reff Effective radius of central, sensing conductor 

dr Reference distance, the distance that produces 0 V on the output of the 

capacitance gage electronics 

Sf and Suf Slopes of best-fit lines for fine and ultrafine gain settings, respectively 

Cr Reference capacitance, capacitance that corresponds to zero volts output 

P0 to P3 Coefficients used for polynomial curve fitting 

dmeas Distance as given by the output electronics of the capacitance gage 

dreal Actual distance between closest point of spherical target surface and capacitance 

gage 

Cflat Capacitance values calculated by Ansys for a flat target surface 

Gfit Best-fit gain of voltage vs. distance for curved surfaces 

Gflat Gain in voltage per distance for flat target surface, as provided by the capacitance 

gage manufacturer 

R Nonlinear residue, curve remaining after straight line has been subtracted from 

calibration data 

dδ  Displacement resolution of digitized data 

R(t) Round target surface experimental measurement data 

F(t) Flat target surface experimental measurement data 

m Combined mass of all moving components in air bearing support system 
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c Damping term for spring-mass system 

ζ  Damping coefficient for second order system model 

K Analog proportional filter (gain) 

Vin Input voltage to control system 

Vout Output voltage of control system 

nω  Natural frequency of second order system 

R1, R2, etc Resistor values 

Gc Lead compensator 

GZOH Effective filter due to influence of zero order hold 
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Appendix B: 
ANSYS Code for FEA 

Electrostatic Analysis of Parallel Plate Problem 
The following code modeled a simplified, parallel plate capacitor in Ansys. Two identical 

circular plates of finite thickness were modeled as an axisymmetric problem, and the results 

compared with closed form solutions. Since only two conductors exist in this problem, the 

calculation of the energy stored in the system, and then the capacitance, is relatively 

straightforward and does not require use of the cmatrix command. This code is contained in the 

file 2D_cap4.txt.  
finish 
/clear                  ! used to erase and start over analysis 
/title, Axisymmetric Capacitor, h-Method 
/prep7 
! 
! Defining the geometry of  
! parallel plate capacitor in Ansys.  
! Set units to mm, microfarads 
! 
emunit,epzro,8.854e-9   !epsilon in uF per mm 
! 
! Define Variables 
pthick=0.05     ! Thickness of each cap plate 
bplater=10      ! Base plate radius in mm 
uplater=10! Upper plate radius 
tilt=0   ! tilt angle in degrees 
gap=0.05  ! gap between plates at center 
V0=-5.0         ! voltage of base plate 
V1=5.0          ! voltage of upper plate 
rsph=20  ! radius of surrounding sphere 
esz=5           ! size of element division (not used) 
cdiv=20         ! number of divisions on cap surface 
vdiv=7  ! number of vertical divisions 
! 
! Use same coordinate system for everything 
csys,0 
! 
! Define lower rectangle 
rectng,0,bplater,-pthick-gap,-gap 
! 
! Define upper rectangle 
rectng,0,bplater,0,pthick 
! 
! Define surrounding rectangle 
hgt=25*(gap+pthick) 
rectng,0,1.5*bplater,-hgt,hgt 
! 
! Create lines and break for meshing 
lesize,2,,,2         ! edge of plate 
lesize,6,,,2         ! edge of plate 
lesize,3,,,cdiv,10      ! select plate sides 
lesize,7,,,cdiv,10 
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lesize,1,,,cdiv,0.1 
lesize,5,,,cdiv,0.1 
lesize,9,,,cdiv 
lesize,11,,,cdiv 
lesize,10,,,6 
l,1,9                ! line 13 
l,4,5                ! line 14 
l,8,12               ! line 15 
lsel,s,line,,13,15,2 
lesize,all,,,vdiv,8  
l,7,11               ! line 16 
lesize,16,,,vdiv,8   ! 10 divisions, 4x size difference 
l,2,10               ! line 17 
lesize,17,,,vdiv,8   ! same as previous 
l,3,6                ! line 18 
lesize,18,,,2 
! create areas for element 121 
a,2,3,6,7,11,10             ! area 4 
a,7,8,12,11                 ! area 5 
a,1,2,10,9                  ! area 6 
a,4,5,6,3                   ! area 7 
! now make areas for outer elements 
rectng,0,2*bplater,-1.5*hgt,1.5*hgt    ! area 8 
l,9,13                      ! line 23  
l,10,14                     ! line 24  
l,11,15                     ! line 25 
l,12,16                     ! line 26 
a,13,9,10,14                ! area 9 
a,14,10,11,15               ! area 10 
a,15,11,12,16               ! area 11 
lsel,s,line,,23,26 
lesize,all,,,1              ! need just 1 element in gap 
lsel,s,line,,19 
lesize,19,,,cdiv,4 
lsel,s,line,,21 
lesize,21,,,cdiv,0.25 
lsel,s,line,,20 
lesize,20,,,6 
! 
! Commands for element type, meshing.  
et,1,plane121,,,1,,,,       ! area elements for efield 
mp,perx,1,1                 ! efield relative permeability 
mat,1                       ! using material number 1  
mshkey,2   
amesh,4,7                   ! mesh the four inside areas 
et,2,infin110,1,0,1         ! boundary elements, axisymmetric 
mshkey,2 
amesh,9,11                  ! mesh outer areas 
lsel,s,line,,19,21          ! outside lines 
sfl,all,inf                 ! set these lines to infinity 
! 
! Applying voltages to nodes at lines 
!lsel,s,,,9,12,,1     ! select lines 9-12 plus nodes, etc. 
!d,all,volt,0             ! apply 0 volts at outer boundary nodes 
lsel,s,,,1,4,,1      ! select lower (ground) plate 
d,all,volt,V0            ! set voltage these nodes 
lsel,s,,,5,8,,1      ! select upper (tilted) plate 
d,all,volt,V1            ! set voltage these nodes 
allsel 
/gst,on 
save  
finish 
! 
/solution               ! running solver 
solve 
finish 
! 
/post1 
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etable,sene,sene          ! calculating capacitance 
ssum 
*get,W,ssum,,item,sene 
C=(W*2)/((V1-V0)**2) 
*status,C 
finish 

Code for Flat Surfaces 
The following code uses the actual geometry of the capacitance gage probe, including the 

geometry of the guard ring. The capacitance of each pair of capacitors is calculated for a given 

spacing, then the values of interest are stored in a matrix C. Fifteen separate analyses are 

completed to determine the capacitance values over the entire active range of the gage. These flat 

surface values are used as reference points when determining the correction for spherical 

surfaces.  
finish 
/clear                  ! used to erase and start over analysis 
! 
/title, Axisymmetric Capacitance Gage, Actual Geometry 
! 
! With version 7, changing line numbers to accommodate selection 
! 
! Incremental changes: took out solver, this just creates geometry 
!  
! This code produces a capacitance that is the sum of all energy in the gaps. 
! Use this as a starting point to do the more sophisticated and automated process. 
! 
/prep7 
! 
! Defining the geometry of  
! the actual capacitance gage sensor  
! Set units to mm, microfarads 
! 
emunit,epzro,8.854e-9   !epsilon in uF per mm 
! 
! Define Dimensions of the capacitance gage 
! 
innerb=0.0675   ! Inner brass capacitance diameter, inches 
innerp=0.1249   ! Inner plastic diameter, inches 
flatdia=0.200   ! Diameter of flat area 
outerb=0.300 ! Outer brass diameter, inches 
outerp=0.330    ! Outer plastic diameter, inches 
ss=0.375        ! Stainless steel outer diameter inches 
V0=-5.0         ! voltage of base plate 
V1=5.0          ! voltage of upper plate 
gapinitmi=5.8   ! Initial gap setting in minch ********************* 
gapincmi=0.2    ! Increment of the gap distance in minch 
depin=0.045     ! Depth of cap gage in inches 
slp=20          ! Upwards slope of gage in degrees 
TestDia=0.625   ! Diameter of test sphere, inches 
Agap=0.2        ! Air gap around cap gage, mm 
Cflg=0.0        ! Set to zero for flat surface, otherwise round  
Nr=1.0          ! Use to refine the mesh, 2 quadruples elements, etc  
! 
! Convert measurements to metric and radii 
! 
innerbr=innerb*25.4/2 
innerpr=innerp*25.4/2 
flatrad=flatdia*25.4/2 
outerbr=outerb*25.4/2 
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outerpr=outerp*25.4/2 
ssr=ss*25.4/2 
dep=depin*25.4 
gapinc=gapincmi*0.0254 
gapinit=gapinitmi*0.0254 
halfpt=(innerbr+innerpr)/2   ! Halfway across plastic spacer 
TestR=TestDia*25.4/2 
SimEdg=1.1*ssr               ! Edge of simulation, fix later 
! 
! Keypoint y values 
! 
k26y=(outerbr-flatrad)*tan(slp*3.1415926/180) 
k27y=(outerpr-flatrad)*tan(slp*3.1415926/180) 
k28y=(ssr-flatrad)*tan(slp*3.14159/180) 
k42y=TestR-(TestR**2-Cflg*innerbr**2)**0.5 
k43y=TestR-(TestR**2-Cflg*halfpt**2)**0.5 
k44y=TestR-(TestR**2-Cflg*innerpr**2)**0.5 
k45y=TestR-(TestR**2-Cflg*flatrad**2)**0.5 
k46y=TestR-(TestR**2-Cflg*outerbr**2)**0.5 
k47y=TestR-(TestR**2-Cflg*outerpr**2)**0.5 
k48y=TestR-(TestR**2-Cflg*ssr**2)**0.5 
k49y=TestR-(TestR**2-Cflg*(ssr+Agap)**2)**0.5 
k50y=TestR-(TestR**2-Cflg*SimEdg**2)**0.5 
! 
! Center of sphere keypoint 
! 
k,100,0,-TestR 
! 
! Use same coordinate system for everything 
! 
csys,0 
! 
! Set the number of loops for the calculation 
G=1                ! number of different gaps to use************* 
*dim,C,table,G,2,1  ! dimension the capacitance array 
! 
! ********************************************************* 
! Begin Loop Here 
*do,I,1,G 
/prep7 
gap=gapinit+gapinc*(I-1) 
tp=gap+dep 
! 
! Next 3 lines erase all elements to start over geometry 
!  
asel,all 
aclear,all 
adele,all,,,1 
! 
! Define keypoints of cap gage and ref surface 
! 
k,1,0,tp 
k,2,innerbr,tp 
k,3,halfpt,tp 
k,4,innerpr,tp 
k,5,flatrad,tp 
k,6,outerbr,tp 
k,7,outerpr,tp 
k,8,ssr,tp 
k,9,ssr+Agap,tp 
k,10,SimEdg,tp 
! 
k,21,0,gap 
k,22,innerbr,gap 
k,23,halfpt,gap 
k,24,innerpr,gap 
k,25,flatrad,gap 
k,26,outerbr,gap+k26y 
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k,27,outerpr,gap+k27y 
k,28,ssr,gap+k28y 
k,29,ssr+Agap,gap+k28y 
k,30,SimEdg,gap+k28y 
! 
k,41,0,0 
k,42,innerbr,-k42y 
k,43,halfpt,-k43y 
k,44,innerpr,-k44y 
k,45,flatrad,-k45y 
k,46,outerbr,-k46y 
k,47,outerpr,-k47y 
k,48,ssr,-k48y 
k,49,ssr+Agap,-k49y 
k,50,SimEdg,-k50y 
! 
! Create All Lines, Horizontals first 
! Also breaking into segments for elements as needed 
! 
l,1,2              ! line 1 
l,2,3,32*Nr,4      ! line 2 
l,3,4,8*Nr,1       ! line 3 
l,4,5              ! line 4 
l,5,6              ! line 5 
l,6,7,8*Nr,1       ! line 6 
l,7,8              ! line 7 
l,8,9,8*Nr,1       ! line 8 
l,9,10,1,1         ! line 9, inf flag 
l,22,23,32*Nr,4    ! line 10 (old 11) 
l,23,24,8*Nr,1     ! line 11 (old 12) 
l,26,27,8*Nr,1     ! line 12 (old 15) 
l,28,29,8*Nr,1     ! line 13 (old 17) 
l,29,30,1,1        ! line 14 (old 18), inf flag 
! 
! Need to make the following 9 lines curved for sphere 
! 
l,41,42,50*Nr,0.25 ! line 15 (old 19) 
l,42,43,32*Nr,4    ! line 16 (old 20) 
l,43,44,8*Nr,1     ! line 17 (old 21) 
l,44,45,24*Nr,1    ! line 18 (old 22) 
l,45,46,24*Nr,1    ! line 19 (old 23) 
l,46,47,8*Nr,1     ! line 20 (old 24) 
l,47,48,8*Nr,1     ! line 21 (old 25) 
l,48,49,8*Nr,1     ! line 22 (old 26) 
l,49,50,1,1        ! line 23 (old 27) 
! 
l,21,1             ! line 24 (old 28) 
l,23,3,64*Nr,4     ! line 25 (old 30) 
l,25,5             ! line 26 (old 32) 
 
l,29,9,12*Nr,1     ! line 27 (old 36) 
l,30,10,12*Nr,1    ! line 28 (old 37) 
! 
l,21,41,16*Nr,3    ! line 29 (old 38) 
l,22,42,16*Nr,3    ! line 30 (old 39) 
l,23,43,16*Nr,3    ! line 31 (old 40) 
l,24,44,16*Nr,3    ! line 32 (old 41) 
l,25,45,16*Nr,3    ! line 33 (old 42) 
l,26,46,16*Nr,3    ! line 34 (old 43) 
l,27,47,16*Nr,3    ! line 35 (old 44) 
l,28,48,16*Nr,3    ! line 36 (old 45) 
l,29,49,16*Nr,3    ! line 37 (old 46) 
l,30,50,16*Nr,3    ! line 38 (old 47) 
! 
! New lines for conductors 
! 
l,21,22,50*Nr,0.25 ! line 39 (old 10)  
l,22,2,64*Nr,4     ! line 40 (old 29) 
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l,24,4,64*Nr,4     ! line 41 (old 31) 
l,26,6,32*Nr,4     ! line 42 (old 33) 
l,24,25,24*Nr,1    ! line 43 (old 13) 
l,25,26,24*Nr,1    ! line 44 (old 14) 
l,27,7,32*Nr,4     ! line 45 (old 34) 
l,28,8,12*Nr,2     ! line 46 (old 35) 
l,27,28,8*Nr,1     ! line 47 (old 16) 
! 
! Define areas, all new numbers 
! 
al,1,24,39,40    ! area 1 
al,2,40,10,25    ! area 2 
al,3,25,11,41    ! area 3 
al,4,41,43,26    ! area 4 
al,5,26,44,42    ! area 5 
al,6,42,12,45    ! area 6 
al,7,45,47,46    ! area 7 
al,8,46,13,27    ! area 8 
al,9,27,14,28    ! area 9 
! 
al,39,29,15,30   ! area 10 
al,10,30,16,31   ! area 11 
al,11,31,17,32   ! area 12 
al,43,32,18,33   ! area 13 
al,44,33,19,34   ! area 14 
al,12,34,20,35   ! area 15 
al,47,35,21,36   ! area 16 
al,13,36,22,37   ! area 17 
al,14,37,23,38   ! area 18 
! 
! Element type and meshing, still need to modify this code 
! to account for plastic permeability, correct areas to select 
! No changes made to code below this point 
! 
!shpp,modify,1,500           ! modify aspect ratio warning 
et,1,plane121,,,1,,,,       ! area elements for efield 
mp,perx,1,1                 ! efield relative permeability 
mat,1                       ! using material number 1 (air) 
mat,2                       ! defining type 2 
mp,perx,2,3.8               ! setting permeability material 2 (plastic) 
mshkey,2  
! 
! Select all nonconductive areas and mesh 
! 
asel,s,area,,2,3             ! S for new selection, plastic area 
asel,a,area,,6,6             ! Add plastic section 6 
amesh,all                    ! mesh with type 2 material 
 
mat,1                        ! back to material type 1 (air) 
asel,s,area,,8,8             ! Air gap on side of gage 
asel,a,area,,10,17           ! Last of the air gaps 
amesh,all                    ! mesh all selected areas 
! 
et,2,infin110,1,0,1          ! infinite boundary elements, axisymmetric 
mshkey,2 
asel,s,area,,9,9             ! first infinite area 
asel,a,area,,18,18           ! second infinite area 
amesh,all                    ! mesh infinite sections 
! 
lsel,s,,,9,9                 ! upper edge 
lsel,a,,,28,28               ! right edge 
lsel,a,,,38,38               ! right edge 
sfl,all,inf                  ! set these lines to infinity 
! 
! Applying voltages to nodes on certain lines 
! 
lsel,s,,,39,40,,1         ! selecting center conductor 
!d,all,volt,V1            ! apply V1 volts to center conductor 
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cm,cond1,node             ! Define 1st conductor for cmatrix analysis 
 
lsel,s,,,41,44,,1         ! select ground ring 
!d,all,volt,V1            ! set voltage ground ring same as center 
cm,cond2,node 
 
lsel,s,,,45,47,,1         ! select outer shield 
!d,all,volt,0             ! set voltage of shield to ground 
cm,cond3,node 
 
lsel,s,,,15,23,,1         ! select lower sphere or plate 
!d,all,volt,V0            ! set voltage to V0 
cm,cond4,node 
! 
! 
allsel,all 
/gst,off                     ! graphical solution tracking off 
save  
finish 
! 
/solution                    ! running solver 
cmatrix,1,'cond',4,1,'cmat'  ! solves for all cap values 
finish 
! 
/post1 
C(I,1)=gap                    ! first value is current gap 
C(I,2)=cmat(1,4,2)            ! pulling correct value from table 
finish 
! 
*enddo 
! 
! End of Loop 
! *************************************************************** 
! 
! Output resulting table data to a file 
! 
/post1 
/output,flatres,txt 
*mwrite,C(1,1) 
(F10.6, E18.7) 
/output 
finish 
 

 

Code for Spherical Surfaces 
The code below for spherical target surfaces is nearly identical to the code used for flat 

surfaces. The number of lines, areas, and elements in the mesh all remain constant, only the 

location of the keypoints and the shape of the target surface changes. The capacitance values 

from this analysis are compared and contrasted to the flat case. Note that this code is for one 

radius of curvature only, and that the starting distance between the conductors is changed so that 

the ranges of capacitance values overlap.  
finish 
/clear                  ! used to erase and start over analysis 
! 
/title, Axisymmetric Capacitance Gauge, Actual Geometry 
! 
! With version 7, changing line numbers to accomodate selection 
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! 
! Incremental changes: took out solver, this just creates geometry 
!  
! This code produces a capacitance that is the sum of all energy in the gaps. 
! Use this as a starting point to do the more sophisticated and automated process. 
! 
/prep7 
! 
! Defining the geometry of  
! the actual capacitance gauge sensor  
! Set units to mm, microfarads 
! 
emunit,epzro,8.854e-9   !epsilon in uF per mm 
! 
! Define Dimensions of the capacitance gauge 
! 
innerb=0.0675   ! Inner brass capacitance diameter, inches 
innerp=0.1249   ! Inner plastic diameter, inches 
flatdia=0.200   ! Diameter of flat area 
outerb=0.300    ! Outer brass diameter, inches 
outerp=0.330    ! Outer plastic diameter, inches 
ss=0.375        ! Stainless steel outer diameter inches 
V0=-5.0         ! voltage of base plate 
V1=5.0          ! voltage of upper plate 
gapinitmi=0.02  ! Initial gap setting in minch ********************* 
gapincmi=0.04   ! Increment of the gap distance in minch 
depin=0.045     ! Depth of cap gauge in inches 
slp=20          ! Upwards slope of gauge in degrees 
TestDia=0.500   ! Diameter of test sphere, inches ****************** 
Agap=0.2        ! Air gap around cap gauge, mm 
Cflg=1.0        ! Set to zero for flat surface, otherwise round  
Nr=1.0          ! Use to refine the mesh, 2 quadruples elements, etc  
! 
! Convert measurements to metric and radii 
! 
innerbr=innerb*25.4/2 
innerpr=innerp*25.4/2 
flatrad=flatdia*25.4/2 
outerbr=outerb*25.4/2 
outerpr=outerp*25.4/2 
ssr=ss*25.4/2 
dep=depin*25.4 
gapinc=gapincmi*0.0254 
gapinit=gapinitmi*0.0254 
halfpt=(innerbr+innerpr)/2   ! Halfway across plastic spacer 
TestR=TestDia*25.4/2 
SimEdg=1.1*ssr               ! Edge of simulation, fix later 
! 
! Keypoint y values 
! 
k26y=(outerbr-flatrad)*tan(slp*3.1415926/180) 
k27y=(outerpr-flatrad)*tan(slp*3.1415926/180) 
k28y=(ssr-flatrad)*tan(slp*3.14159/180) 
k42y=TestR-(TestR**2-Cflg*innerbr**2)**0.5 
k43y=TestR-(TestR**2-Cflg*halfpt**2)**0.5 
k44y=TestR-(TestR**2-Cflg*innerpr**2)**0.5 
k45y=TestR-(TestR**2-Cflg*flatrad**2)**0.5 
k46y=TestR-(TestR**2-Cflg*outerbr**2)**0.5 
k47y=TestR-(TestR**2-Cflg*outerpr**2)**0.5 
k48y=TestR-(TestR**2-Cflg*ssr**2)**0.5 
k49y=TestR-(TestR**2-Cflg*(ssr+Agap)**2)**0.5 
k50y=TestR-(TestR**2-Cflg*SimEdg**2)**0.5 
! 
! Center of sphere keypoint 
! 
k,100,0,-TestR 
! 
! Use same coordinate system for everything 
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! 
csys,0 
! 
! Set the number of loops for the calculation 
G=15                ! number of different gaps to use************* 
*dim,C,table,G,2,1  ! dimension the capacitance array 
! 
! ********************************************************* 
! Begin Loop Here 
*do,I,1,G 
/prep7 
gap=gapinit+gapinc*(I-1) 
tp=gap+dep 
! 
! Next 3 lines erase all elements to start over geometry 
!  
asel,all 
aclear,all 
adele,all,,,1 
! 
! Define keypoints of cap gauge and ref surface 
! 
k,1,0,tp 
k,2,innerbr,tp 
k,3,halfpt,tp 
k,4,innerpr,tp 
k,5,flatrad,tp 
k,6,outerbr,tp 
k,7,outerpr,tp 
k,8,ssr,tp 
k,9,ssr+Agap,tp 
k,10,SimEdg,tp 
! 
k,21,0,gap 
k,22,innerbr,gap 
k,23,halfpt,gap 
k,24,innerpr,gap 
k,25,flatrad,gap 
k,26,outerbr,gap+k26y 
k,27,outerpr,gap+k27y 
k,28,ssr,gap+k28y 
k,29,ssr+Agap,gap+k28y 
k,30,SimEdg,gap+k28y 
! 
k,41,0,0 
k,42,innerbr,-k42y 
k,43,halfpt,-k43y 
k,44,innerpr,-k44y 
k,45,flatrad,-k45y 
k,46,outerbr,-k46y 
k,47,outerpr,-k47y 
k,48,ssr,-k48y 
k,49,ssr+Agap,-k49y 
k,50,SimEdg,-k50y 
! 
! Create All Lines, Horizontals first 
! Also breaking into segments for elements as needed 
! 
l,1,2              ! line 1 
l,2,3,48*Nr,4      ! line 2 
l,3,4,24*Nr,1      ! line 3 
l,4,5              ! line 4 
l,5,6              ! line 5 
l,6,7,8*Nr,1       ! line 6 
l,7,8              ! line 7 
l,8,9,8*Nr,1       ! line 8 
l,9,10,1,1         ! line 9, inf flag 
l,22,23,48*Nr,4    ! line 10 (old 11) 
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l,23,24,24*Nr,1    ! line 11 (old 12) 
l,26,27,8*Nr,1     ! line 12 (old 15) 
l,28,29,8*Nr,1     ! line 13 (old 17) 
l,29,30,1,1        ! line 14 (old 18), inf flag 
! 
! The following 9 lines are curved for sphere, flat equivalent 
! info was removed due to possible conflict 
! 
larc,41,42,100,TestR       ! line 15 
lesize,15,,,100*Nr,0.25  
larc,42,43,100,TestR       ! line 16 
lesize,16,,,48*Nr,4 
larc,43,44,100,TestR       ! line 17 
lesize,17,,,24*Nr,1 
larc,44,45,100,TestR       ! line 18 
lesize,18,,,64*Nr,1 
larc,45,46,100,TestR       ! line 19 
lesize,19,,,48*Nr,1 
larc,46,47,100,TestR       ! line 20 
lesize,20,,,8*Nr,1 
larc,47,48,100,TestR       ! line 21 
lesize,21,,,8*Nr,1 
larc,48,49,100,TestR       ! line 22 
lesize,22,,,8*Nr,1 
larc,49,50,100,TestR       ! line 23 
lesize,23,,,1,1 
! 
l,21,1             ! line 24 (old 28) 
l,23,3,64*Nr,4     ! line 25 (old 30) 
l,25,5             ! line 26 (old 32) 
 
l,29,9,12*Nr,1     ! line 27 (old 36) 
l,30,10,12*Nr,1    ! line 28 (old 37) 
! 
l,21,41,12*Nr,3    ! line 29 (old 38) 
l,22,42,12*Nr,3    ! line 30 (old 39) 
l,23,43,12*Nr,3    ! line 31 (old 40) 
l,24,44,12*Nr,3    ! line 32 (old 41) 
l,25,45,12*Nr,3    ! line 33 (old 42) 
l,26,46,12*Nr,3    ! line 34 (old 43) 
l,27,47,12*Nr,3    ! line 35 (old 44) 
l,28,48,12*Nr,3    ! line 36 (old 45) 
l,29,49,12*Nr,3    ! line 37 (old 46) 
l,30,50,12*Nr,3    ! line 38 (old 47) 
! 
! New lines for conductors 
! 
l,21,22,100*Nr,0.25 ! line 39 (old 10)  
l,22,2,64*Nr,4      ! line 40 (old 29) 
l,24,4,64*Nr,4      ! line 41 (old 31) 
l,26,6,32*Nr,4      ! line 42 (old 33) 
l,24,25,64*Nr,1     ! line 43 (old 13) 
l,25,26,48*Nr,1     ! line 44 (old 14) 
l,27,7,32*Nr,4      ! line 45 (old 34) 
l,28,8,12*Nr,2      ! line 46 (old 35) 
l,27,28,8*Nr,1      ! line 47 (old 16) 
! 
! Define areas, all new numbers 
! 
al,1,24,39,40    ! area 1 
al,2,40,10,25    ! area 2 
al,3,25,11,41    ! area 3 
al,4,41,43,26    ! area 4 
al,5,26,44,42    ! area 5 
al,6,42,12,45    ! area 6 
al,7,45,47,46    ! area 7 
al,8,46,13,27    ! area 8 
al,9,27,14,28    ! area 9 
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! 
al,39,29,15,30   ! area 10 
al,10,30,16,31   ! area 11 
al,11,31,17,32   ! area 12 
al,43,32,18,33   ! area 13 
al,44,33,19,34   ! area 14 
al,12,34,20,35   ! area 15 
al,47,35,21,36   ! area 16 
al,13,36,22,37   ! area 17 
al,14,37,23,38   ! area 18 
! 
! Element type and meshing, still need to modify this code 
! to account for plastic permeability, correct areas to select 
! No changes made to code below this point 
! 
!shpp,modify,1,500           ! modify aspect ratio warning 
et,1,plane121,,,1,,,,       ! area elements for efield 
mp,perx,1,1                 ! efield relative permeability 
mat,1                       ! using material number 1 (air) 
mat,2                       ! defining type 2 
mp,perx,2,3.8               ! setting permeability material 2 (plastic) 
mshkey,2  
! 
! Select all nonconductive areas and mesh 
! 
asel,s,area,,2,3             ! S for new selection, plastic area 
asel,a,area,,6,6             ! Add plastic section 6 
amesh,all                    ! mesh with type 2 material 
 
mat,1                        ! back to material type 1 (air) 
asel,s,area,,8,8             ! Air gap on side of gage 
asel,a,area,,10,17           ! Last of the air gaps 
amesh,all                    ! mesh all selected areas 
! 
et,2,infin110,1,0,1          ! infinite boundary elements, axisymmetric 
mshkey,2 
asel,s,area,,9,9             ! first infinite area 
asel,a,area,,18,18           ! second infinite area 
amesh,all                    ! mesh infinite sections 
! 
lsel,s,,,9,9                 ! upper edge 
lsel,a,,,28,28               ! right edge 
lsel,a,,,38,38               ! right edge 
sfl,all,inf                  ! set these lines to infinity 
! 
! Applying voltages to nodes on certain lines 
! 
lsel,s,,,39,40,,1         ! selecting center conductor 
!d,all,volt,V1            ! apply V1 volts to center conductor 
cm,cond1,node             ! Define 1st conductor for cmatrix analysis 
 
lsel,s,,,41,44,,1         ! select ground ring 
!d,all,volt,V1            ! set voltage ground ring same as center 
cm,cond2,node 
 
lsel,s,,,45,47,,1         ! select outer shield 
!d,all,volt,0             ! set voltage of shield to ground 
cm,cond3,node 
 
lsel,s,,,15,23,,1         ! select lower sphere or plate 
!d,all,volt,V0            ! set voltage to V0 
cm,cond4,node 
! 
! 
allsel,all 
!/gst,off                     ! turns off graphical solution tracking 
save  
finish 
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! 
/solution                    ! running solver 
cmatrix,1,'cond',4,1,'cmat'  ! solves for all cap values **************** 
finish 
! 
/post1 
C(I,1)=gap                    ! first value is current gap 
C(I,2)=cmat(1,4,2)            ! pulling correct value from table 
finish 
! 
*enddo 
! 
! End of Loop 
! *************************************************************** 
! 
! Output resulting table data to a file 
! 
/post1 
/output,r50v0500,txt  
*mwrite,C(1,1) 
(F10.6, E18.7) 
/output 
finish 
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Appendix C: 
Matlab Code for Analysis 

Capacitance and Distance Calculations 
Below is the Matlab file analyze50Vimp.m, which loads the data from the capacitance 

calculations and produces polynomial fits between real and measured distances. This file is for 

the ultrafine gain setting, but a nearly identical file is used to determine the polynomial fits for 

the fine gain setting, with only the initial data changing.  
% Analyze results from Ansys 
% This file is for work for 50V data,  
% to compare to empirical measurements 
% 
close all; 
clear all; 
 
% This data from file Results50Vflat.txt  
rawf=[0.018288     0.1434233E-05 
  0.019304     0.1369051E-05 
  0.020320     0.1310086E-05 
  0.021336     0.1256464E-05 
  0.022352     0.1207471E-05 
  0.023368     0.1162515E-05 
  0.024384     0.1121103E-05 
  0.025400     0.1082818E-05 
  0.026416     0.1047307E-05 
  0.027432     0.1014271E-05 
  0.028448     0.9834500E-06 
  0.029464     0.9546216E-06 
  0.030480     0.9275919E-06 
  0.031496     0.9021915E-06 
  0.032512     0.8782723E-06]; 
% 
% New data for different diameter spheres analyzed week of 
% 6/9/03. Distance values are different so that the  
% C ranges approximate that of the flat system. Raw data 
% files are Results50v1000b.txt, etc. No 0.25 data this time. 
% 
raw0375=[0.000508     0.1450724E-05 
  0.001524     0.1162308E-05 
  0.002540     0.1029579E-05 
  0.003556     0.9430071E-06 
  0.004572     0.8789629E-06 
  0.005588     0.8283043E-06 
  0.006604     0.7865214E-06 
  0.007620     0.7510553E-06 
  0.008636     0.7203132E-06 
  0.009652     0.6932360E-06 
  0.010668     0.6690841E-06 
  0.011684     0.6473202E-06 
  0.012700     0.6275419E-06 
  0.013716     0.6094399E-06 
  0.014732     0.5927716E-06]; 
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% 
raw0500=[0.000508     0.1821639E-05 
  0.001524     0.1438404E-05 
  0.002540     0.1262719E-05 
  0.003556     0.1148545E-05 
  0.004572     0.1064376E-05 
  0.005588     0.9980241E-06 
  0.006604     0.9434770E-06 
  0.007620     0.8973238E-06 
  0.008636     0.8574416E-06 
  0.009652     0.8224196E-06 
  0.010668     0.7912724E-06 
  0.011684     0.7632846E-06 
  0.012700     0.7379204E-06 
  0.013716     0.7147686E-06 
  0.014732     0.6935061E-06]; 
% 
% The following are from the "b" files, Results50V0625b.txt etc. 
% 
raw0625=[0.002032     0.1566080E-05 
  0.003048     0.1394565E-05 
  0.004064     0.1274906E-05 
  0.005080     0.1183601E-05 
  0.006096     0.1110183E-05 
  0.007112     0.1049072E-05 
  0.008128     0.9969377E-06 
  0.009144     0.9516351E-06 
  0.010160     0.9117000E-06 
  0.011176     0.8760892E-06 
  0.012192     0.8440332E-06 
  0.013208     0.8149488E-06]; 
% 
raw0750=[0.002540     0.1660855E-05 
  0.003556     0.1493410E-05 
  0.004572     0.1370833E-05 
  0.005588     0.1274850E-05 
  0.006604     0.1196449E-05 
  0.007620     0.1130521E-05 
  0.008636     0.1073887E-05 
  0.009652     0.1024437E-05 
  0.010668     0.9806982E-06 
  0.011684     0.9416030E-06 
  0.012700     0.9063526E-06 
  0.013716     0.8743340E-06]; 
% 
raw0875=[0.004572     0.1500872E-05 
  0.005588     0.1390900E-05 
  0.006604     0.1301350E-05 
  0.007620     0.1226266E-05 
  0.008636     0.1161948E-05 
  0.009652     0.1105938E-05 
  0.010668     0.1056523E-05 
  0.011684     0.1012460E-05 
  0.012700     0.9728228E-06 
  0.013716     0.9368989E-06 
  0.014732     0.9041318E-06 
  0.015748     0.8740780E-06]; 
% 
raw1000=[0.006096     0.1443223E-05 
  0.007112     0.1351868E-05 
  0.008128     0.1274599E-05 
  0.009144     0.1208003E-05 
  0.010160     0.1149752E-05 
  0.011176     0.1098194E-05 
  0.012192     0.1052111E-05 
  0.013208     0.1010583E-05 
  0.014224     0.9728968E-06 
  0.015240     0.9384897E-06 
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  0.016256     0.9069101E-06 
  0.017272     0.8777905E-06]; 
% 
% Separate out the variables into two 
% columns for each diameter plus flat data 
% 
drealf=rawf(:,1); Cf=rawf(:,2); 
dreal0375=raw0375(:,1); Cr0375=raw0375(:,2); 
dreal0500=raw0500(:,1); Cr0500=raw0500(:,2); 
dreal0625=raw0625(:,1); Cr0625=raw0625(:,2); 
dreal0750=raw0750(:,1); Cr0750=raw0750(:,2); 
dreal0875=raw0875(:,1); Cr0875=raw0875(:,2); 
dreal1000=raw1000(:,1); Cr1000=raw1000(:,2); 
% 
% Invert the capacitance values and convert to pF-1 
% NEW change for improved curve fitting 
% 
Cfinv=1./Cf*1e-6; 
Crinv0375=1./Cr0375*1e-6; 
Crinv0500=1./Cr0500*1e-6; 
Crinv0625=1./Cr0625*1e-6; 
Crinv0750=1./Cr0750*1e-6; 
Crinv0875=1./Cr0875*1e-6; 
Crinv1000=1./Cr1000*1e-6; 
% 
% Convert all distances to minches for plotting 
%  
drealfin=drealf/0.0254; 
dreal0375in=dreal0375/0.0254; 
dreal0500in=dreal0500/0.0254; 
dreal0625in=dreal0625/0.0254; 
dreal0750in=dreal0750/0.0254; 
dreal0875in=dreal0875/0.0254; 
dreal1000in=dreal1000/0.0254; 
% 
% Determine polynomial fit to curved data, use 4th order 
% to ensure good fit 
% 
P0375b=polyfit(Crinv0375,dreal0375,4); 
P0500b=polyfit(Crinv0500,dreal0500,4); 
P0625b=polyfit(Crinv0625,dreal0625,4); 
P0750b=polyfit(Crinv0750,dreal0750,4); 
P0875b=polyfit(Crinv0875,dreal0875,4); 
P1000b=polyfit(Crinv1000,dreal1000,4); 
% 
% Use coeffs to interpolate 15 new "real" values 
% 
drealint0375=polyval(P0375b,Cfinv)/0.0254; 
drealint0500=polyval(P0500b,Cfinv)/0.0254; 
drealint0625=polyval(P0625b,Cfinv)/0.0254; 
drealint0750=polyval(P0750b,Cfinv)/0.0254; 
drealint0875=polyval(P0875b,Cfinv)/0.0254; 
drealint1000=polyval(P1000b,Cfinv)/0.0254; 
% 
% Determine complete coefficients for curve 
% 
Pb0375=polyfit(drealfin,drealint0375,4); 
Pb0500=polyfit(drealfin,drealint0500,4); 
Pb0625=polyfit(drealfin,drealint0625,4); 
Pb0750=polyfit(drealfin,drealint0750,4); 
Pb0875=polyfit(drealfin,drealint0875,4); 
Pb1000=polyfit(drealfin,drealint1000,4); 
% 
% Determine linear slope of real d to measured d over full range 
% 
Pc0375=polyfit(drealint0375,drealfin,1); 
Pc0500=polyfit(drealint0500,drealfin,1); 
Pc0625=polyfit(drealint0625,drealfin,1); 
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Pc0750=polyfit(drealint0750,drealfin,1); 
Pc0875=polyfit(drealint0875,drealfin,1); 
Pc1000=polyfit(drealint1000,drealfin,1); 
% 
% Fit only active area of curve 
% Can't use this code, not enough data points 
% 
Pc0375b=polyfit(drealint0375(3:13),drealfin(3:13),1); 
Pc0500b=polyfit(drealint0500(3:13),drealfin(3:13),1); 
Pc0625b=polyfit(drealint0625(3:13),drealfin(3:13),1); 
Pc0750b=polyfit(drealint0750(3:13),drealfin(3:13),1); 
Pc0875b=polyfit(drealint0875(3:13),drealfin(3:13),1); 
Pc1000b=polyfit(drealint1000(3:13),drealfin(3:13),1); 
% 
% Combine these slopes into a matrix to present as results 
Slps=[0.375 Pc0375(1)*50 
    0.500 Pc0500(1)*50 
    0.625 Pc0625(1)*50 
    0.750 Pc0750(1)*50 
    0.875 Pc0875(1)*50 
    1.000 Pc1000(1)*50]; 
% 
% For plotting purposes fit lines to raw data 
dreal0375line=polyval(polyfit(Crinv0375,dreal0375in,1),Crinv0375); 
dreal0500line=polyval(polyfit(Crinv0500,dreal0500in,1),Crinv0500); 
dreal0625line=polyval(polyfit(Crinv0625,dreal0625in,1),Crinv0625); 
dreal0750line=polyval(polyfit(Crinv0750,dreal0750in,1),Crinv0750); 
dreal0875line=polyval(polyfit(Crinv0875,dreal0875in,1),Crinv0875); 
dreal1000line=polyval(polyfit(Crinv1000,dreal1000in,1),Crinv1000); 
% 
% 
SlpsB=[0.375 Pc0375b(1)*50 dreal0375line(8) 
    0.500 Pc0500b(1)*50 dreal0500line(8) 
    0.625 Pc0625b(1)*50 dreal0625line(8) 
    0.750 Pc0750b(1)*50 dreal0750line(8) 
    0.875 Pc0875b(1)*50 dreal0875line(8) 
    1.000 Pc1000b(1)*50 dreal1000line(8)] 
% 
% Plotting routines newly added 
figure(1) 
set(1,'PaperPositionMode','Manual') 
set(1,'Position',[0 0 6.5*72 4.25*72]) 
set(1,'PaperPosition',[0 0 6.5 4.25]) 
% 
% Plot Commands Here 
plot(dreal0375in*0.0254,Crinv0375,'vk') 
hold on 
plot(dreal0500in*0.0254,Crinv0500,'sk') 
plot(dreal0625in*0.0254,Crinv0625,'^k') 
plot(dreal0750in*0.0254,Crinv0750,'dk') 
plot(dreal0875in*0.0254,Crinv0875,'+k') 
plot(dreal1000in*0.0254,Crinv1000,'xk') 
% 
plot(dreal0375line*0.0254,Crinv0375,'k') 
plot(dreal0500line*0.0254,Crinv0500,'k') 
plot(dreal0625line*0.0254,Crinv0625,'k') 
plot(dreal0750line*0.0254,Crinv0750,'k') 
plot(dreal0875line*0.0254,Crinv0875,'k') 
plot(dreal1000line*0.0254,Crinv1000,'k') 
% 
grid on 
legend('9.53 mm dia.','12.7 mm dia.','15.88 mm dia.','19.05 mm dia.','22.23 mm 

dia.','25.4 mm dia.',4) 
axis([-0.003 0.03 0.2 1.8]) 
ylabel('Inverse Capacitance, pF^-^1'); 
xlabel('Distance, mm'); 
print -deps RoundUltraHigh.eps           %export figure to EPS format 
hold off 
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Capacitance Tilt Calculations 
The Matlab script below, from captilt3.m, uses a closed-form solution for small tilt angles 

to determine the error due to tilt and plot these values.  
% This file uses a closed-form solution from Harb, Chetwynd, and Smith 
% to calculate tilt errors of capacitance gauges. This solution ignores 
% fringe effects so is not exact 
 
% captilt2 attempts to solve for the difference between the true distance 
% d to the surface and the distance that a cap gauge will read, do, based  
% on the assumption of parallel plates. This needs an iterative solution 
 
close all; 
clear all; 
 
dnom=[0.1  0.2  0.3  0.4];  %nominal distances 
derr=[0:0.5:40]';        %first column of solution set, mrad 
rr=2.5;                  %radius of probe tip in mm 
dnomlength=length(dnom); 
derrlength=length(derr); 
for a=1:dnomlength        %stepping through distance values 
    for b=1:derrlength    %stepping through angular values 
        Th=derr(b,1)*0.001; 
        do=dnom(a);       %distance if perpendicular surfaces 
        dg=do;            %first guess at distance 
        for c=1:5         %iterative loop to solve for dg 
            k(b,a)=rr*sin(2*Th)/(2*dg); 
            if Th==0 
                expr=0.5; 
            else 
                expr=(1-((1-k(b,a)^2)^0.5))/(k(b,a)^2); 
            end 
        dg=do*2*cos(Th)*expr; 
        end 
        derr(b,a+1)=100*(dg-do)/do; 
    end 
end 
 
figure(1) 
set(1,'PaperPositionMode','Manual') 
set(1,'Position',[0 0 6.5*72 4.25*72]) 
set(1,'PaperPosition',[0 0 6.5 4.25]) 
% 
plot(derr(1:9:81,1),derr(1:9:81,2),'k^',derr(1:9:81,1),derr(1:9:81,3),'ko',derr(1:9

:81,1),derr(1:9:81,4),'kx') 
hold on 
plot(derr(:,1),derr(:,2),'k',derr(:,1),derr(:,3),'k',derr(:,1),derr(:,4),'k') 
grid on 
xlabel('Tilt angle, mrad'); 
ylabel('Percentage error in measurement'); 
%title('Percentage Error in Distance Measurements, 2.5 mm radius probe tip'); 
legend('0.1 optimal','0.2 optimal','0.3 optimal',2); 
%axis([0.6 1.2 -4 6]); 
print -deps Captilt3.eps           %export figure to EPS format 
hold off 
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Polynomial Fitting Tests 
The Matlab code below, from testpoly.m, creates polynomial fits of different orders to 

show the effectiveness of using higher order fits for interpolation. Conversely, higher order fits 

are not good for extrapolating additional data points.  
% Using 50V data to test polynomial fits 
% 
close all; 
clear all; 
 
% This data from file Results50Vflat.txt  
rawf=[0.018288     0.1434233E-05 
  0.019304     0.1369051E-05 
  0.020320     0.1310086E-05 
  0.021336     0.1256464E-05 
  0.022352     0.1207471E-05 
  0.023368     0.1162515E-05 
  0.024384     0.1121103E-05 
  0.025400     0.1082818E-05 
  0.026416     0.1047307E-05 
  0.027432     0.1014271E-05 
  0.028448     0.9834500E-06 
  0.029464     0.9546216E-06 
  0.030480     0.9275919E-06 
  0.031496     0.9021915E-06 
  0.032512     0.8782723E-06]; 
% 
% New data for different diameter spheres analyzed week of 
% 6/9/03. Distance values are different so that the  
% C ranges approximate that of the flat system. Raw data 
% files are Results50v1000b.txt, etc. No 0.25 data this time. 
% 
raw0375=[0.000508     0.1450724E-05 
  0.001524     0.1162308E-05 
  0.002540     0.1029579E-05 
  0.003556     0.9430071E-06 
  0.004572     0.8789629E-06 
  0.005588     0.8283043E-06 
  0.006604     0.7865214E-06]; 
% 
% Separate out the variables into two 
% columns for each diameter plus flat data 
% 
drealf=rawf(:,1); Cf=rawf(:,2); 
dreal0375=raw0375(:,1); Cr0375=raw0375(:,2); 
dreal0375in=dreal0375/0.0254; 
% 
% Invert the capacitance values 
% 
Cfinv=1./Cf*1e-6; 
Crinv0375=1./Cr0375*1e-6; 
% 
% Next fit line to drealf=P1*Cfinv+P2 for flat surface 
% This is just a check of the linearity of the flat data 
% 
P=polyfit(Cfinv,drealf,1); 
P0375a=polyfit(Crinv0375,dreal0375,2); 
P0375b=polyfit(Crinv0375,dreal0375,3); 
P0375c=polyfit(Crinv0375,dreal0375,4); 
% 
x=[0.0:0.002:2.5]; 
ya=polyval(P0375a,x); 
yb=polyval(P0375b,x); 
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yc=polyval(P0375c,x); 
yain=ya/0.0254; ybin=yb/0.0254; ycin=yc/0.0254; 
% 
% Plot commands with sizing, etc. 
figure(1); 
set(1,'PaperPositionMode','Manual') 
set(1,'Position',[0 0 6.5*72 4.25*72]) 
set(1,'PaperPosition',[0 0 6.5 4.25]) 
% 
plot(dreal0375in*0.0254,Crinv0375,'+k') 
hold on 
plot(yain*0.0254,x,'-k',ybin*0.0254,x,'-.k',ycin*0.0254,x,'--k'); 
legend('Data','Order 2','Order 3','Order 4',2) 
grid on 
axis([0 0.040 0 2.5]) 
ylabel('Inverse Capacitance, pF^-^1'); 
xlabel('Distance, mm'); 
% 
% Export figure to EPS format         
print -deps Testpoly.eps 
hold off 
% 
% Not sure what the remaining code does 
% 
% Convert actual (real) distances to minches 
%  
y2a=polyval(P0375a,Crinv0375)/0.0254; 
y2b=polyval(P0375b,Crinv0375)/0.0254; 
y2c=polyval(P0375c,Crinv0375)/0.0254; 
 
 
drealfin=drealf/0.0254; 
drealin0375=dreal0375/0.0254; 
 
diff3=y2a-drealin0375 
diff4=y2b-drealin0375 
diff5=y2c-drealin0375 
 
% 
% Plug in cap values from curved surfaces to get  
% dmeasin, which is the distance reading you would get  
% from the cap gage electronics in inches 
% Note that this does NOT include nonlinear effects from 
% the flat surface. Need to redo this code 
% 
%dmeasin0375=polyval(P,Crinv0375)/0.0254; 
 
drealint0375=polyval(P0375b,Cfinv)/0.0254 
%figure(2) 
%plot(drealfin,drealint0375,'+') 
%grid on 
 
Pc0375=polyfit(drealint0375(3:13),drealfin(3:13),1); 
 
% Determine linear slope of real d to measured d over full range 
% 
% 
SlpsActiv=[0.375 Pc0375(1)*50]; 
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Comparison Between Theoretical and Empirical Data 
Several sets of test data from Lion Precision were used to test the error removal algorithm 

based on the Ansys analysis of capacitance. The program below, which is contained in the file 

LionComp4.m, includes a set of this calibration information.  
 
% Data from Lion Precision Calibration for 1.0 inch sphere 50V/mil 
GapTrue=[0.233; 0.258; 0.283; 0.308; 0.333; 0.358; 0.383; 0.408; 0.433 
    0.458; 0.483; 0.508; 0.533; 0.558; 0.583; 0.608; 0.633]; 
GapMeas=[0.191; 0.191; 0.214; 0.252; 0.290; 0.327; 0.363; 0.398; 0.433 
    0.468; 0.502; 0.536; 0.570; 0.603; 0.636; 0.666; 0.668]; 
GapMeasNorm=GapMeas+0.567; 
% 
% This step assumes that coeffs have been created from empirical data 
% to convert the measured data to calibrated data 
% 
Pb1000=[0.07846382240499 -0.40235208073235 0.83981081823174 -0.00146015186737 -

0.06159070841960]; 
% 
% Note that valid values are only from 4 to 14 out of 17 
% 
Uncorr=GapTrue-GapMeas; 
err_raw=max(Uncorr(4:14))-min(Uncorr(4:14)) 
Corr1000=polyval(Pb1000,GapMeasNorm); 
offst=Corr1000-GapTrue; 
mean(offst(4:14)) 
err1=max(offst(4:14))-min(offst(4:14)) 
 

 

Lead Analog Design 
This short program takes the system model determined from experimentation and 

develops an analog lead compensator for the system. This code is contained in the file 

LeadAnalogOnly.m. 
 
% strictly analog design 
s1=-1+1*j 
% GzohG=303/(s1*(s1+0.55)*(0.005*s1+1)) 
GzohG=303/(s1*(s1+0.55)) 
phi=180-180/pi*angle(GzohG) 
pc=50 
jnk=phi+180/pi*angle(s1+pc) 
zc=imag(s1)/tan(pi/180*jnk)-real(s1) 
kc=1/abs(GzohG*(s1+zc)/(s1+pc)) 
Ts=0.010 
[numd,dend]=bilinear(kc*[1 zc],[1 pc],Ts) 
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