69 research outputs found

    Integrating glycomics, proteomics and glycoproteomics to understand the structural basis for influenza a virus evolution and glycan mediated immune interactions

    Get PDF
    Glycosylation modulates the range and specificity of interactions among glycoproteins and their binding partners. This is important in influenza A virus (IAV) biology because binding of host immune molecules depends on glycosylation of viral surface proteins such as hemagglutinin (HA). Circulating viruses mutate rapidly in response to pressure from the host immune system. As proteins mutate, the virus glycosylation patterns change. The consequence is that viruses evolve to evade host immune responses, which renders vaccines ineffective. Glycan biosynthesis is a non-template driven process, governed by stoichiometric and steric relationships between the enzymatic machinery for glycosylation and the protein being glycosylated. Consequently, protein glycosylation is heterogeneous, thereby making structural analysis and elucidation of precise biological functions extremely challenging. The lack of structural information has been a limiting factor in understanding the exact mechanisms of glycan-mediated interactions of the IAV with host immune-lectins. Genetic sequencing methods allow prediction of glycosylation sites along the protein backbone but are unable to provide exact phenotypic information regarding site occupancy. Crystallography methods are also unable to determine the glycan structures beyond the core residues due to the flexible nature of carbohydrates. This dissertation centers on the development of chromatography and mass spectrometry methods for characterization of site-specific glycosylation in complex glycoproteins and application of these methods to IAV glycomics and glycoproteomics. We combined the site-specific glycosylation information generated using mass spectrometry with information from biochemical assays and structural modeling studies to identify key glycosylation sites mediating interactions of HA with immune lectin surfactant protein-D (SP-D). We also identified the structural features that control glycan processing at these sites, particularly those involving glycan maturation from high-mannose to complex-type, which, in turn, regulate interactions with SP-D. The work presented in this dissertation contributes significantly to the improvement of analytical and bioinformatics methods in glycan and glycoprotein analysis using mass spectrometry and greatly advances the understanding of the structural features regulating glycan microheterogeneity on HA and its interactions with host immune lectins

    Fucosylated and Sulfated Glycans Investigated using Cryogenic Infrared Spectroscopy

    Get PDF
    Unusual monosaccharides (fucose), covalent modifications of glycans (sulfation) and terminal sequences play important biological roles in physiology and pathology of living organisms. Furthermore, in an evolutionary sense, uncommon structures are often the result of selection pressures and can be the source to a deeper understanding of the evolution of glycosylation.157 At the same time, fucosylated glycans and sulfated glycans still challenge standard mass spectrometry (MS)-based analytical workflows in glycan analysis. MS emerged throughout the last decade as the most widely used analytical technique in glycan analysis. As a stand-alone technique, it is limited in glycan analysis due to the presence of isomers. Isomerism in glycans arises from their composition, connectivity, configuration, and branching. Therefore, MS is often coupled to orthogonal techniques such as liquid chromatography (LC) and ion mobility spectrometry (IM-MS). Most recently, the combination of cryogenic IR spectroscopy in the gas phase with MS proved beneficial for the identification of smaller glycans. At low measurement temperatures, the IR spectrum of small glycans provides a unique fingerprint to the underlying chemical structure and conformation.In this thesis, cryogenic IR spectroscopy as an addition to the MS-based analytical toolbox was used to shed light on the migration of fucose residues in MS experiments. This elusive rearrangement reaction is not restricted to tandem MS workflows but is recently found to occur in intact ions without extensive activation. Here, the role of the proton in fucose migration reactions was investigated for the two glycan epitopes Lewis x and blood group H type 2. A systematic study of adduct ions and functional groups with competing proton affinities demonstrated that the proton can be selectively mobilized and demobilized. Planning MS-based experiments of fucosylated glycan cations certainly needs an effective strategy to circumvent the presence of a mobile proton in order to avoid erroneous sequence assignments.In a multidimensional approach, IR spectroscopy, IM-MS, RDD and computational modelling were combined to decode the rearrangement product and the reaction mechanism. The trisaccharides Lewis x and blood group H type 2 were found to migrate to a third chemical structure, in which the fucose moiety is most likely 1,6-linked to galactose. The barrier is much higher for blood group H type 2 compared to Lewis x and it is feasible that the latter is never detected in its original chemical structure in the mass spectrometer. These results generalize fucose migration to a universal issue in any mass spectrometer to which even various orthogonal MS-based techniques can be blind.In the second part of this thesis, cryogenic IR spectroscopy in combination with computational modelling was employed for the structural analysis of sulfated glycosaminoglycans (GAGs). Diversity in the chemical structure of linear and acidic GAGs arises from the GAG class, sulfation, epimerization and acetylation. Using messenger tagging IR spectroscopy, sulfated mono- and disaccharides have been characterized successfully recently. In the present thesis, the prominent anticoagulant pentasaccharide fondaparinux which carries eight sulfate functional groups was investigated using cryogenic IR spectroscopy in helium nanodroplets as a proof-of-concept. The spectroscopic fingerprint features unique absorption bands in the mid-IR range for the sulfate functional groups. With this knowledge, a systematic set of all naturally occurring sulfation variations in chondroitin and dermatan sulfate (CS/DS) further demonstrated the capabilities of cryogenic IR spectroscopy for their differentiation. Moreover, from their IR fingerprints in combination with computational modelling, conformational diversity arising from sulfation and charge density distribution could be derived. In a different study, the IR fingerprints of four heparan sulfate (HS) diastereomers revealed a modularity in their chemical structure which was explained, using computational modelling, from their unique hydrogen bonding patterns. The knowledge of the preferred hydrogen bonding pattern could aid e.g. the development for labelling strategies in IM-MS. The results show that the high resolution in the optical fingerprints of GAGs allows to unambiguously resolve their diversity arising from GAG class, sulfation and epimerization. The results exemplify the importance of gas- phase cryogenic IR spectroscopy to enhance future analytical workflows for GAG sequencing. A fully MS-based workflow could involve the ionization of an intact GAG chain and combine tandem MS with IM-MS and cryogenic IR spectroscopy of respective fragments to unambiguously characterize a GAG chain in a single MS experiment.In the last part, cryogenic IR spectroscopy was combined with random forest modelling to extract vibrational features that are characteristic to structural features in GAGs. The selected structural features included the GAG class and sulfation and therefore, almost fully characterize the underlying chemical structure. In a proof-of-concept study, a prediction score of >97% could be achieved for HS tetra- and hexasaccharides based on a training set of only 21 spectra. Especially for certain marker motifs, such as 3-O-sulfation in cancer cells, this workflow could prove beneficial. With machine learning algorithms, the need for comprehensive spectral databases could be circumvented for the identification of unknowns. Overall, the results show that MS-based IR spectroscopy certainly has the potential to leave the framework of academic basic research and add as a valuable addition to the MS-based analytical toolbox.Weinig voorkomende monosachariden (fucose), covalente modificaties van glycanen (sulfering) en terminale sequenties spelen belangrijke rollen in de fysiologie en pathologie van levende organismen. Weinig voorkomende structuren zijn in evolutionaire zin vaak het resultaat van selectiedruk en kunnen derhalve een dieper inzicht leveren in de evolutie van glycosylering. Gefucosyleerde glycanen en gesulfoneerde glycanen vormen echter nog steeds een uitdaging voor standaard workflows in glycaananalyse. Massaspectrometrie (MS) heeft zich in het laatste decennium ontwikkeld tot de meest gebruikte techniek voor glycaananalyse, maar is beperkt door de aanwezigheid van isomeren. Isomeren van glycanen zijn het gevolg van hun samenstelling, connectiviteit, configuratie en vertakking. MS wordt daarom vaak gekoppeld aan complementaire technieken zoals vloeistofchromatografie (LC) en ion- mobiliteitsspectrometrie (IM-MS). Gedurende de laatste jaren is de combinatie van cryogene infrarood (IR)-spectroscopie in de gasfase met MS van grote waarde gebleken voor de identificatie van kleinere glycanen. Bij lage meettemperaturen geeft het IR spectrum van kleine glycanen een unieke vingerafdruk van de onderliggende chemische structuur en conformatie.In dit proefschrift is cryogene IR-spectroscopie in combinatie met MS- gebaseerde analytische technieken gebruikt om licht te werpen op de migratie van fucose in MS-experimenten. Deze ongrijpbare migratiereactie is niet beperkt tot tandem MS workflows, maar is recentelijk ook waargenomen in intacte ionen zonder uitgebreide activering. De rol van het proton in fucose- migratiereacties is onderzocht voor de twee glycaanepitopen Lewis x en bloedgroep H type 2. In een systematische studie van adductie-ionen en functionele groepen met concurrerende protonaffiniteiten is aangetoond dat het proton selectief gemobiliseerd en gedemobiliseerd kan worden. Het meten van gefucosyleerde glycaan-kationen met MS vereist een effectieve strategie om de aanwezigheid van een mobiel proton te omzeilen om foutieve sequentie- toewijzingen te voorkomen.In een multidimensionele benadering zijn IR spectroscopie, IM-MS, radical- directed dissociation (RDD) MS en computationele modellering gecombineerd om het migratieproduct en het reactiemechanisme te ontcijferen. De trisachariden Lewis x en bloedgroep H type 2 blijken te migreren naar een chemische structuur, waarin fucose hoogstwaarschijnlijk 1,6-gekoppeld is aan galactose. De barriËre is veel hoger voor bloedgroep H type 2 dan voor Lewis x en het is goed mogelijk dat de laatste nooit in zijn oorspronkelijke chemische structuur gedetecteerd is in de massaspectrometer. Uit deze resultaten blijkt dat fucose-migratie een universeel probleem is in elke massaspectrometer en dat ook het gebruik van verschillende complementaire MS-gebaseerde technieken dit probleem niet geheel kan oplossen.In het tweede deel van dit proefschrift is cryogene IR spectroscopie in combinatie met computationele modellering gebruikt voor de structurele analyse van gesulfoneerde glycosaminoglycanen (GAG9s). De verscheidenheid in de chemische structuur van lineaire zure GAG9s komt voort uit de GAG klasse, sulfatie, epimerisatie en acetylatie. Met behulp van messenger tagging IR spectroscopie zijn recentelijk met succes gesulfoneerde mono- en disachariden gekarakteriseerd. In dit proefschrift is het anticoagulant pentasaccharide fondaparinux, dat acht sulfaatgroepen bevat, onderzocht met behulp van cryogene IR spectroscopie in helium nanodruppels om het werkingsprincipe van de meting aan te tonen. De spectroscopische vingerafdruk toont unieke absorptiebanden in het midden-IR bereik voor de sulfaatgroepen. Het meten van een systematische set van alle natuurlijk voorkomende sulfatievariaties in chondroÔtine- en dermatan-sulfaat (CS/DS) heeft de differentiatie mogelijkheden met behulp van cryogene IR spectroscopie verder aangetoond. Uit de IR-vingerafdruk in combinatie met computationele modellering kan bovendien conformationele diversiteit als gevolg van sulfatie en ladingsdichtheidsverdeling worden afgeleid. In een andere studie onthullen de IR-vingerafdrukken van vier heparansulfaat (HS) diastereomeren een modulariteit in hun chemische structuur die verklaard is met behulp van computationele modellering door hun unieke waterstofbrugpatronen. De kennis van het geprefereerde waterstofbindingspatroon zou bijvoorbeeld kunnen helpen bij de ontwikkeling van labelingstrategieÎn in IM-MS. De resultaten laten zien dat de hoge resolutie in de optische vingerafdrukken van GAG9s het mogelijk maakt om eenduidig de diversiteit op te lossen dievoortkomt uit GAG klasse, sulfatie en epimerisatie. De resultaten illustreren het belang van gas-fase cryogene IR spectroscopie om toekomstige analytische workflows voor GAG sequencing te verbeteren. Een volledig op MS gebaseerde workflow zou de ionisatie van een intacte GAG-keten kunnen omvatten en tandem MS met IM-MS en cryogene IR-spectroscopie van de respectieve fragmenten kunnen combineren om een GAG-keten eenduidig te karakteriseren in ÈÈn enkel MS-experiment.In het laatste deel van het proefschrift is cryogene IR-spectroscopie gecombineerd met random forest modellering om vibratie patronen die kenmerkend zijn voor structurele eigenschappen in GAG9s aan te tonen. De geselecteerde structurele eigenschappen omvatten de GAG-klasse en sulfatie en karakteriseren derhalve bijna volledig de onderliggende chemische structuur. In een proof-of-concept studie is een voorspellingsscore van >97% bereikt voor HS tetra- en hexasachariden op basis van een trainingsset van slechts 21 spectra. Vooral voor bepaalde markermotieven, zoals 3-O-sulfatie in kankercellen, zou deze workflow nuttig kunnen blijken. Met algoritmen voor machine learning zou de noodzaak voor het gebruik van uitgebreide spectrale databanken voor de identificatie van onbekende GAG9s kunnen worden omzeild. Concluderend kan gesteld worden dat de resultaten zoals beschreven in dit proefschrift aantonen dat IR-spectroscopie op basis van MS zeker het potentieel heeft om het stadium van het academisch basisonderzoek te verlaten en een waardevolle aanvulling vormt op MS gebaseerde analytische technieken

    Comprehensive Overview of Bottom-up Proteomics using Mass Spectrometry

    Full text link
    Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods to aid the novice and experienced researcher. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this work to serve as a basic resource for new practitioners in the field of shotgun or bottom-up proteomics

    Protein glycosylation in Helicobacter pylori

    Get PDF
    The glycosylation of the flagellins of Helicobacter pylori with pseudaminic acid (Pse) is absolutely required for the motility and virulence of this gastric pathogen. We hypothesize that protein glycosylation extends to proteins other than flagellins. Soluble and membrane proteins from wild type H. pylori and from Pse biosynthesis pathway mutants were separated by SDS- PAGE. Glycosylated proteins were detected via chemical labeling of the sugar groups by DIG- hydrazide, showing that several proteins aside from the flagellins are glycosylated, and not dependant on the Pse glycosylation pathway. Soluble proteins were fractionated by anion and cation exchange chromatography and the fractions were separated by SDS-PAGE and DIG- labeled, demonstrating the enrichment of several glycoproteins. Free monosaccharides were released from the glycoproteins by acid hydrolysis in 2M trifluoroacetic acid (TFA). The free carbohydrates were separated from the intact proteins by ultrafiltration, and the protein-free carbohydrate mixtures were analyzed by high performance anion exchange chromatography with pulsed amperometric detection, revealing characteristic monosaccharide peaks in these fractions. The carbohydrate mixtures were then analyzed by LC-ESI MS to identify the monosaccharide, revealing a number of sugar matches. Among the identified sugars, the presence of 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), not previousy identified in H.pylori, was confirmed by MS/MS. The initial list of sugar matches was used to prepare a list for subsequent MS/MS analysis to confirm the sugar . identities. Tryptic digests of the proteins of interest chemically deglycosylated by TFA hydrolysis were compared to untreated tryptic peptides by RP-HPLC, revealing a number of TFA-sensitive glycopeptides. The observed glycopeptides are being analyzed by MS/MS to specifically map iii the glycosylation site. The results presented here demonstrate that the glycosylation of flagellins with Pse is not the only glycosylation that occurs in H. pylori, and identifies some of the sugars present in these glycans. The glycan sugar composition and protein glycosylation map will allow us to address the mechanism and function of glycosylation in H. pylori

    Algorithms for integrated analysis of glycomics and glycoproteomics by LC-MS/MS

    Get PDF
    The glycoproteome is an intricate and diverse component of a cell, and it plays a key role in the definition of the interface between that cell and the rest of its world. Methods for studying the glycoproteome have been developed for released glycan glycomics and site-localized bottom-up glycoproteomics using liquid chromatography-coupled mass spectrometry and tandem mass spectrometry (LC-MS/MS), which is itself a complex problem. Algorithms for interpreting these data are necessary to be able to extract biologically meaningful information in a high throughput, automated context. Several existing solutions have been proposed but may be found lacking for larger glycopeptides, for complex samples, different experimental conditions, different instrument vendors, or even because they simply ignore fundamentals of glycobiology. I present a series of open algorithms that approach the problem from an instrument vendor neutral, cross-platform fashion to address these challenges, and integrate key concepts from the underlying biochemical context into the interpretation process. In this work, I created a suite of deisotoping and charge state deconvolution algorithms for processing raw mass spectra at an LC scale from a variety of instrument types. These tools performed better than previously published algorithms by enforcing the underlying chemical model more strictly, while maintaining a higher degree of signal fidelity. From this summarized, vendor-normalized data, I composed a set of algorithms for interpreting glycan profiling experiments that can be used to quantify glycan expression. From this I constructed a graphical method to model the active biosynthetic pathways of the sample glycome and dig deeper into those signals than would be possible from the raw data alone. Lastly, I created a glycopeptide database search engine from these components which is capable of identifying the widest array of glycosylation types available, and demonstrate a learning algorithm which can be used to tune the model to better understand the process of glycopeptide fragmentation under specific experimental conditions to outperform a simpler model by between 10% and 15%. This approach can be further augmented with sample-wide or site-specific glycome models to increase depth-of-coverage for glycoforms consistent with prior beliefs

    Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects

    Get PDF
    Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma’s current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field

    Advances in neuroproteomics for neurotrauma: unraveling insights for personalized medicine and future prospects

    Get PDF
    Neuroproteomics, an emerging field at the intersection of neuroscience and proteomics, has garnered significant attention in the context of neurotrauma research. Neuroproteomics involves the quantitative and qualitative analysis of nervous system components, essential for understanding the dynamic events involved in the vast areas of neuroscience, including, but not limited to, neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic brain injury, chronic traumatic encephalopathy, and other neurodegenerative diseases. With advancements in mass spectrometry coupled with bioinformatics and systems biology, neuroproteomics has led to the development of innovative techniques such as microproteomics, single-cell proteomics, and imaging mass spectrometry, which have significantly impacted neuronal biomarker research. By analyzing the complex protein interactions and alterations that occur in the injured brain, neuroproteomics provides valuable insights into the pathophysiological mechanisms underlying neurotrauma. This review explores how such insights can be harnessed to advance personalized medicine (PM) approaches, tailoring treatments based on individual patient profiles. Additionally, we highlight the potential future prospects of neuroproteomics, such as identifying novel biomarkers and developing targeted therapies by employing artificial intelligence (AI) and machine learning (ML). By shedding light on neurotrauma’s current state and future directions, this review aims to stimulate further research and collaboration in this promising and transformative field

    An interdisciplinary approach to developing tools to study antibiotic permeability in Gram-negative bacteria

    Get PDF
    Rising antibiotic resistance is an imminent threat to modern healthcare. Most new antibiotics have a narrower spectrum of activity and work only in Gram-positive bacteria. The World Health Organisation published a list of high priority bacteria with startling emerging resistance, including Gram-negative bacteria such as Pseudomonas , Klebsiell a, and Escherichia . Gram-negative bacteria are inherently more resistant to antimicrobials, due to their outer membrane, which reduces the permeability of antimicrobials. This innate resistance presents challenges in developing novel antibiotics. A high-throughput universal Gram-negative permeability assay would streamline the drug development process, enabling new broad-spectrum antibiotics to reinvigorate the drug pipeline. This thesis will explore potential avenues for monitoring and predicting permeability. The following work is an interdisciplinary investigation into Gram-negative permeability and toolkit development. This project has utilised tools from biochemistry such as enzyme assays and mass spectrometry to synthetic biology and computer science. This work approaches permeability in four ways. Firstly a potential fluorescent derivative of ampicillin was synthesised and analysed. Secondly, various proteomic techniques were utilised to monitor the covalent binding of β-lactams to penicillin-binding proteins, as a proxy of β-lactam permeability. Thirdly, bottom-up synthetic cells were created to model permeability in bacteria. Finally, machine learning algorithms consisting of supervised and unsupervised techniques were used to predict permeability. In this work alternative methods to quantifying β-lactam permeability were trialled in chapters 3 and 4. Whereas in chapters 5 and 6, the foundations to a new permeability assay and permeability predictions were laid. Ultimately, the creation of tools to predict and quantify permeability will come from many fields. Without a better understanding of permeability, antimicrobial drug development will stagnate. Therefore, to deter the impending antimicrobial resistance crisis, drug development needs to be faster, more intelligent, and better thought out; this could be achieved with a permeability assay used in conjunction with activity screens

    Glycomic Analysis of Biomedically Important O-glycoconjugates

    No full text
    It has been established that all cells carry an array of glycans attached to proteins and lipids that are crucial in the interaction between cells and the surrounding matrix. Proteins are mainly glycosylated on asparagines (N-glycosylation) and serine or threonine residues (O-glycosylation). Compared to N-glycans, O-glycans offer a higher degree of structural ambiguity due to the existence of several types and cores. This is believed to contribute to the relative lack of knowledge on these molecules. Therefore, improvement to the current methodologies of structural studies is a prerequisite to complement the immense functional findings of O-glycoconjugates in biological systems. This thesis discusses the structural characterisation, regulation and biological roles of O-glycans. The overall aim was to optimise O-glycomic mass spectrometric analysis to help illuminate the phenotypic findings from our collaborators in three separate but related projects. The methodologies utilised involving MALDI-TOF/TOF-MS, GC-EI-MS, ESI-QTOF-MS and MALDI-QIT-TOF-MS. The first project investigated the effects of core 2 GlcNAc transferase (C2GnT) deficiency in mice. This enzyme exists in three isoforms which are expressed differently in different tissues. Analysis of the single knockout of each of these isoenzymes as well as the triple knockouts has allowed the investigation of their unique and overlapping functions. The outcomes of this study include characterisation of alterations of not just mucin-type O-glycans but also O-mannose glycan, which could be associated with several organ lesions and system failures. The second project focused on the gastric mucosa of mice with deficiency in α1,2-fucosyltranferase (FuT2). This enzyme plays an important role in decorating the mucosal mucins with ABH-blood group and Lewis antigens that are known to interact with various gut flora including the pathogen Helicobacter pylori. It has been shown that the binding of H. pylori via BabA adhesins was significantly impaired with the loss of H antigens and Lewis y on O-glycans. The third project investigated the regulation of mucin-type O-glycosylation. The protein Src has been recognised to play an essential role in the localisation of ppGalNAc transferases, the initiating enzyme of O-glycosylation, in the endoplasmic reticulum and Golgi apparatus. Therefore, it could be inferred that Src influences the regulation of protein O-glycosylation. The NIH3T3 and NBT-II cell lines with different levels of Src or different localisation of ppGalNAcT-2 have been analysed in order to identify the changes on the structures of O-glycans and the relative abundances of cores 1 and 2. Valuable information has been gathered which could lead to further investigative work to better understand the role of Src in the regulation of protein O-glycosylation
    • …
    corecore