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ABSTRACT

The glycoproteome is an intricate and diverse component of a cell, and it plays a
key role in the definition of the interface between that cell and the rest of its world.
Methods for studying the glycoproteome have been developed for released glycan
glycomics and site-localized bottom-upglycoproteomics using liquid chromatography-
coupled mass spectrometry and tandem mass spectrometry (LC-MS/MS), which is
itself a complex problem.

Algorithms for interpreting these data are necessary to be able to extract bio-
logically meaningful information in a high throughput, automated context. Several
existing solutions have been proposed but may be found lacking for larger glycopep-
tides, for complex samples, different experimental conditions, different instrument
vendors, or even because they simply ignore fundamentals of glycobiology. I present
a series of open algorithms that approach the problem from an instrument vendor
neutral, cross-platform fashion to address these challenges, and integrate key con-
cepts from the underlying biochemical context into the interpretation process.

In this work, I created a suite of deisotoping and charge state deconvolution algo-
rithms for processing raw mass spectra at an LC scale from a variety of instrument
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types. These tools performed better than previously published algorithms by enforc-
ing the underlying chemicalmodelmore strictly, whilemaintaining a higher degree of
signal fidelity. From this summarized, vendor-normalized data, I composed a set of
algorithms for interpreting glycan profiling experiments that can be used to quantify
glycan expression. From this I constructed a graphical method to model the active
biosynthetic pathways of the sample glycome and dig deeper into those signals than
would be possible from the raw data alone. Lastly, I created a glycopeptide database
search engine from these components which is capable of identifying the widest ar-
ray of glycosylation types available, and demonstrate a learning algorithmwhich can
be used to tune the model to better understand the process of glycopeptide frag-
mentation under specific experimental conditions to outperform a simpler model by
between 10% and 15%. This approach can be further augmented with sample-wide
or site-specific glycome models to increase depth-of-coverage for glycoforms con-
sistent with prior beliefs.
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Chapter 1

Introduction

Glycobiology is one of the most complex branches of molecular biology, and an crit-
ical component to our understanding of modern systems biology [9]. Glycans and
glycoconjugates are required for all forms of life and play an essential role in a vast
number of physiological functions [9]. Glycosylation is one of the most complex and
varied protein post- and co-translational modification found on proteins, modulating
folding, trafficking, binding, and function [10]. Glycoconjugates are found in intra-
cellular vesicles, on cell surfaces/glycocalyx, basement membranes, and extracel-
lular matrices. They modulate protein physio-chemical and adhesive properties, en-
abling bindingwith lectin domain-containing partners. Glycoconjugate-lectin binding
is a key part of signal transduction at many levels, impacting downstream biological
processes including immunity, cancer, extracellular architecture, and differentiation
[9, 11–15].

1.1 Wherein We Beg You To Care

All living cells, unicellular or otherwise, are covered in a dense and complex coat of
glycans, the glycocalyx [16], and secrete glycosylated molecules into their environ-
ment. Glycosylation is conserved across whole taxonomic kingdoms [9], and there
exist visible common roots between kingdoms [17]. It functions at the interface be-
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tween the interior and exterior of the cell, supporting the signal transduction that
allows cells to communicate with their environment. Protein glycosylation is driven
by selection pressure [18], is capable of respond rapidly in response to transcrip-
tional changes [19, 20]. Whole cell types in complex organisms have tightly coupled
themselves to a specific set of glycans [21] while others undergo constant shifts in
the unending adaption race against pathogens [22]. The loss of epitope patterns or
whole monosaccharides in response to selective pressures has striking effects on
the speciation process, even in humans [16].

Glycosylation plays many important roles in infectious diseases. Viruses such
as Influenza A Virus (IAV) [23] and human immunodeficiency virus (HIV) [24–26] use
glycosylation to shield immunogenic protein sites on their capsid proteins. IAV’s cap-
sid is covered in trimers of hemagluttinin, a glycoprotein that binds to sialylated gly-
cans on the surface of host cells to initiate membrane fusion [27]. Bacteria use a
diverse array of membrane bound glycoproteins, peptidoglycan and glycolipid com-
plexes such as lipopolysaccharides (LPS) [28–30] to adaptively evade the host im-
mune system. The ability to measure and quantify these biomolecules could help
lead to better understanding of their mechanisms and how they might be controlled
or negated.

Glycosylation is involved in host immunity. Immunoglobulins, or antibodies, come
in many varieties. Humans and other mammals produce IgG, IgA, IgM, IgD, and IgE
and all are glycoproteins with multiple sites of glycosylation [31–35]. The glycosyla-
tion at each site on these proteins influences their physio-chemical properties and
binding affinities, which in turn impact their effector functions [31, 32]. This makes
tracking and controlling antibody glycosylation a critical part of therapeutic antibody
development and quality control [36]. Techniques for interpreting glycosylation are
essential for effective antibody engineering applications, such as vaccinating against

2



exogenous infectious diseases [37] or detecting the presence of endogenous malig-
nant molecule or cell populations such as tumors [9, 38].

Glycosylation is altered in cancer, one of the most diverse and complex disease
families we face [9, 38, 39]. Cancer is driven by cellular growth and replication, and
alterations in glycosylation can dysregulate growth signals and resource consump-
tion [40, 41]. There is a litany of different ways in which aberrant glycosylation is
involved in altering the behavior of normal proteins post-translationally to proliferate
or protect tumors, it’s microenvironment or surrounding Extracellular Matrix (ECM)
[12, 42]. To use a computing analogy, if the genetic changes to a tumor cell genome
are alterations to the executing instructions of the a cell or tissue, changes to the
glycosylation pattern are alterations to the run time state of that cell or tissue. Circu-
lating tumors can be easily detected by screening for these hyper-glycosylated cells
[43]. These altered patterns of glycosylation are not static, and change as the tumor
cells do [44]. High throughput methods for identifying the types of glycosylation that
occur on normal cells and cancer cells would be invaluable for learning how cancer
circumvents normal regulatory mechanisms and how it suborns nearby tissue.

Broader assemblages that provide physical support or behaviors such as wound
healing and tissue boundaries are governed in part by glycoconjugates [45, 46]. Cer-
tain types of tissue differentiation are believed to be governed by proteoglycan iso-
form expression [47]. The physio-mechanical properties of the extracellular matrix
can affect cell organization, migration, and even gene expression [48–50]. There is
evidence that proteoglycan glycosylation is involved in learning and synaptic plastic-
ity [51, 52], and the ECM is implicated in a range of disease mechanisms in the brain
[53]. The experimental techniques needed to study these molecules are just becom-
ing practical, but still well below what is needed for clinically relevant research, and
the computational methods are still to follow [54].
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1.2 What Are Glycans?

The units of interest in glycobiology are glycans, carbohydrate molecules composed
of oneormoremonosaccharides and substituent groups, andglycoconjugates,molec-
ular complexes with glycan and non-glycan moieties such as proteins or lipids. Gly-
cans are enzymatically synthesized predominantly in the Endoplasmic Reticulum
(ER) and the Golgi Apparatus (GA) in eukaryotes, and at the cytoplasmic membrane
in prokaryotes and to a limited extent in eukaryotes as well [55]. Their biosynthesis is
not template-driven, in that their structure depends upon biosynthetic reactions that
are not strictly specified by a template, as is the case with proteins[10]. They are in-
stead assembled and degraded stochastically by a range of glycoenzymes such as
glycosyltransferases, which transfer monosaccharides or substituent groups onto a
substrate, or glycosidases, which cleave glycosidic bonds connecting monosaccha-
rides to one-another [56]. As mentioned before, glycans may be branched, and the
degree of which is also influenced by specific enzymatic reactions. The branching
pattern of a glycan influences its binding specificitieswith lectins andothermolecules
[5]. This work will discuss N-glycans, mucin-type O-glycans, and glycosaminogly-
cans from mammals, though there are other types of glycosylation, and notable dif-
ferences between the discussed glycosylation classes in even closely related phy-
logenies. Glycosyltransferases and monosaccharides found active within one type
of cell may not be found in other cell types of that same organism [57]. There may
be marked changes in glycosylation patterns between closely related species, such
as the loss of N-glycolylneuarminic Acid (NeuGc) in humans shortly after diverging
from chimpanzees [58].

Glycoconjugates often have multiple sites of glycosylation with sub-populations
with different sites occupied simultaneously, a phenomenon called macrohetero-
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geneity. Each glycosylation site may be occupied by different glycans with varying
frequency further dividing sub-populations by site-specific patterns of glycosylation,
a phenomenon called microheterogeneity. The combination of macro- and micro-
heterogeneity give rise to diverse and complex populations of molecules derived
from a single core molecule or gene product. Small changes in glycosylation can
dramatically alter binding properties [59], potentially causing a cascading change in
function [42].

In genomics, where the sequence alphabet is made up of four or five nucleotide
bases and in proteomics, the alphabet is made up of the twenty standard amino
acids. The glycomics alphabet depends on family, genus, and species. Mammalian
glycans are constructed from ten monosaccharide precursors, some of which be-
come modified after glycosidic bond formation. Each glycosidic bond has a de-
fined stereoconfiguration and anomericity. Additionally, glycans commonly form
branching structures, making representing them as linear sequences in text diffi-
cult. Unless otherwise noted, this work will use the IUPAC [60] nomenclature for writ-
ing monosaccharide chains. For example, b-D-Glcp2NAc denotes β-n-acetyl-dextro-
glucopyranosamine. Here, b refers to the anomericity of the monosaccharide, the
orientation of its first carbon, with b = β and a = α, or ? if unknown. The D refers to
the molecule’s chiral state which may be in Dextro or Laevo configuration. Glc refers
to the stereo-centers of the carbon backbone’s orientation, where for each carbon
atom the hydroxyl group or its substitution may be up or down and each arrange-
ment has its own name, sometimes this is called the “stem” [61]. The p following the
stem indicates the ring type of the carbon backbone pyranose corresponding to a
five member ring and furanose to a four member ring, with excess carbons forming
a linear chain on either side of the ring. The subsequent notation 2NAc indicates that
at the second carbon there is a substitution of the hydroxyl group with an N-acetyl
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group. Many features of canonical monosaccharides are known, but most assays
we will discuss cannot discriminate between their chiral states or stereo-center con-
figurations, so thesemay be omitted. Amass spectrometer, nomatter how sensitive,
cannot determine stereo-centers, chirality, or anomericity frommass directly, and so
b-D-Glcp2NAc would instead be written HexNAc, simplifying glucose to hexose, and
removing any positional information from the name.

1.2.1 N-glycans

N-glycans are essential parts of the protein folding, quality control, and routing of
secretory proteins in eukaryotes[18, 62]. They are also part of the hallmark glyco-
sylation of many antibody and virus proteins, and play many other roles in biology
[9]. The N-glycan synthesis process begins with a highly conserved construction
of a high mannose precursor molecule with a glucose non-reducing end cap in the
ER that is co-translationally attached to a protein at a conserved glycosylation se-
quon /N[^P][ST]/ or sometimes /N[^P][STC]/, forming an amide bond between
the reducing end monosaccharide and the free amine of N, an example cartoon
is shown in Figure 1.2. After the protein transits from the ER to the Golgi appa-
ratus, the high mannose precursor is sequentially digested by mannosidases and
glucosidases, removing monosaccharides from the termini inward towards the re-
ducing end. The glycoprotein may leave the Golgi at any point during this enzy-
matic trimming, or these enzymes may not be able to physically access the gly-
can, resulting in a “high mannose type” N-glycan (See Figure 1.1a). If processing
successfully trims one branch of the high mannose precursor, it can begin to be
extended by a series of n-acetyl glucosaminyltransferases, galactosyltransferase,
fucosyltransferase, sialyltransferase, and other monosaccharide- and substituent-
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adding enzymes (See Figure 1.1b). These enzymes are organized spatially through-
out the Golgi, and can only act on an glycan if they physically accessible and co-
localized, depending upon substrate availability and transport mechanisms that are
not well understood. This means that stochastic, time- and space-dependent fac-
tors are strong determinants of glycan structure. While the glycan is attached and
being enzymatically transformed, the protein is simultaneously undergoing folding,
which is a complex, stochastic and cooperative process in its own right, governed
by thermodynamics and kinetics [63]. The concurrent processes interact with each
other [64–66], and it remains a challenging problem in the field to predict how protein
structure and glycosylation affect each other [23, 67]. All eukaryotic N-glycans share
a common reducing end core structure, called the tri-mannosyl core or the chito-
biose core, with the structure a-D-Manp-(1-6)[a-D-Manp-(1-3)]b-D-Manp-(1-4)-

b-D-Glcp2NAc-(1-4)b-D-Glcp2NAc.

(a) A High Mannose
N-glycan (b) A Hybrid N-glycan (c) A Large Complex N-glycan

Figure 1.1: Common Types of N-glycan structures drawn using SNFG [1]

Figure 1.2: An example N-linked glycopeptide. The glycan is attached to the as-paragine residue (position 7) at the beginning of the sequon NIT.
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Because of the range of substrate and enzyme reaction pairs is unbounded, the
set of structures found in nature is effectively unknown, though the set existing in a
given biological context is far smaller than the potential combinatorial space. Many
have tried to model N-glycan biosynthesis to understand how the glycosylation pat-
terns of a protein or cell population change in response to a stimulus [68, 69]. These
models often omit unusual but biologically relevant enzymes in order to remain com-
putationally tractable, but can capture the common glycans for a system well. Oth-
ers have pursued a broader enumeration in order to define the space of possible
structures for exploratory applications [70] by removing the spatial component while
addingmore enzymes to their model. Thesemodels have been targeted at human or
mammalian systems out of practical considerations, and it is well known that other
phyla express a different panoply of glycoenzymes that still align with the N-glycan
biosynthetic pathways in mammals [10, 17, 66].

1.2.2 Mucin-type O-glycans

O-Glycans are another family of glycosylation that are different thanN-glycans in two
mainways. Firstly,O-glycan core structures aremore varied, with different classes of
O-glycan havingmany different cores and epitopes. Secondly, O-glycans do not have
a precise sequon, with many targeting any accessible serine or threonine residue,
forming a glycosidic bond with a free hydroxyl group. There appears to be a prefer-
ence towards sites preceded by a proline residue. One prominent class of O-glycan
is the mucin-type, or the “O-GalNAc” O-glycan[71].

Mucin-type O-glycans have between 4 [71] and 8 [72] core patterns, depending
upon the source and definition of a core motif versus an epitope, and not all are
present in all species or tissues [73]. The only conserved component amongst these
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(a) O-glycan Core 1 (b) O-glycan Core 2 (c) O-glycan Core 3 (d) O-glycan Core 4
Figure 1.3: Common Mucin O-glycan cores drawn using SNFG [1]

structures are that they all have a reducing terminal b-D-Galp2NAc. The four com-
mon cores are shown in Figure 1.3. These types of glycans havemore varied branch-
ing patterns than N-glycans, though they tend not to be as large as many complex
and high mannose N-glycans.

Mucin-type O-glycans get their name frommucins, a family of glycoproteins with
hundreds of O-GalNAc glycans attached along their length at dense regions of re-
peated serine, threonine and prolines created by variable number tandem repeats
(VNTR) [74, 75]. These dense regions of glycosylation havemarked effects on the gly-
coprotein’s 3D structure and give them a “bottle-brush” like appearance [71, 76]. Many
other glycoproteins and proteoglycans exhibit this type of O-glycosylation, though to
a lesser degree [45, 54].

Mucin-type O-glycan synthesis happens entirely in the Golgi, without any compo-
nent in the ER as in N-glycans. There are many glycosyltransferases for attaching
b-D-Galp2NAc to a serine or threonine, but they each have broader sequence speci-
ficities. There are also cooperative effects where one glycosyltransferase will bind to
an already attached glycan to increase their efficiency [71]. There are glycosyltrans-
ferases dedicated to extending the initial b-D-Galp2NAc into the core motifs, and for
building up the initial branching patterns, but after this first initial extension, many
enzymes share specificity between N-glycans and mucin-type O-glycans. Just as in
N-glycans, the degree to which an O-glycan is extended depends upon the duration
the protein spends in each compartment of the Golgi, the abundance and activity
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of the localized glycosyltransferases, and the accessibility of the glycosylation sites.
As in N-glycans, so too is the full range of possible O-glycans unbounded and the
true number of possible structures unknown. Less work has been done to predict
the space of possibilities as well, though some limited work has been done [77].

1.2.3 Glycosaminoglycans

“Without glycosaminoglycans, we’d all be boring old house plants” - Joseph
Zaia

The third and final class of glycan to be discussed in this work is glycosaminogly-
cans (GAGs), formerly called “mucopolysaccharides”. As the name suggests, these
glycans carry an abundance of amines, though these groups are often modified
by acetyl or sulfate groups. GAGs are linear carbohydrate chains which are com-
posed of alternating disaccharide repeats of the form Hex*-Hex2N*where the stem
type that replaces the Hex depends upon the family of GAG [78]. Chondroitin sulfate
(CS)’s disaccharide pair is -(1-4)b-D-Glcp6A-(1-3)b-D-Galp2NAcwith optional sul-
fate groups at the 4 and 6 positions of the GalNAc. Dermatan sulfate (DS) is a variant
of CS where the Glcp6A may be replaced with Idop6A. Heparin and Heparan sulfate
(HS)’s pattern is more complex, having the disaccharide -(1-4)a-D-Idop6A-(1-4)-

a-D-Glcp2Nwith optional sulfate groups at the 2 position of IdoA and optional sulfate
groups at the 3 and 6 position of the GlcN, and variable acetylation or sulfation of the
amine of the GlcN at the 2 position. Keratan sulfate (KS)’s disaccharide is -(1-3)-

b-D-Galp-(1-4)b-D-Glcp2NAc, with optional sulfate groups at the 6 position of both
monosaccharides, resembling a variably sulfated lactosamine repeat. Hyaluronan is
an unsulfated GAG that is synthesized at the plasma membrane of eukaryotic cells
and cytoplasmic membrane of prokaryotic cells [79]. HS and CS/DS are both con-
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nected to a protein by a common linker tetrasaccharide ?-?-6-a-Glcp-(1-3)b-D-G

alp-(1-3)b-D-Galp-(1-4)b-D-Xylp, with the disaccharide repeat beginning at the
non-reducing glucurionic acid, with the CS linker shown in Figure 1.4. KS does not
have a linker, instead it occurs on otherwise normal N- and O-glycans through an as
yet poorly understoodmechanismwhere by extended lactosamine units are sulfated
in certain tissue types.

Figure 1.4: Chondroitin Sulfate Linker Saccharide
While there are hundreds if not thousands of glycoproteins in the proteomewhich

carry N- and O-glycosylation, there are only a few dozen that are GAGylated [78]. HS
and CS share the same linker biosynthetic process up to the first GlcA residue. There
is some evidence suggesting that GAGylation has a targetmotif S[GA] and efficiency
will depend upon the distribution of properties of nearby amino acids including hy-
drophobicity, acidity, and nearby glycosylation sites [80]. There is also someevidence
that the second residue is strictly required [54]. The GAGylation process starts by
transferring a xylose residue onto the serine, forming a glycosidic bond with a free
oxygen, and making HS and CS GAGylation another class of O-glycosylation.

HS GAGs are polymerized to variable lengths, and depending upon conditions
may be as many as 40 monosaccharides long, longer in some cases [78, 79]. There
are alternating domains of high, low, and no sulfation which tune the binding speci-
ficities of the GAG chain, and the proteoglycan they are attached to [81]. Techniques
for sequencing GAGs are complicated by the ease with which sulfate groups are lost
during analysis [82–84]. Because of their size, it is often difficult to study intact GAG
chains directly, so they must be summarized by first enzymatically digesting them
into smaller pieces prior to analysis. Different enzymes are necessary for different
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types of GAG such as chondroitinase for CS or heparinase for HS.

1.3 Analytical Chemistry Tools For Studying Glycans and Glycoconjugates

There are many ways to study the structure and function of glycans and glycocon-
jugates such as glycoproteins. Techniques involving glycan-binding molecules such
as lectins, endo- and exoglycosidases produce low throughput measures of a gly-
can or glycoconjugate’s form or function [85]. High throughputmethods for studying
these topics predominantly involveMass Spectrometry (MS), and High Performance
Liquid Chromatography (HPLC) and their related technologies. This work will focus
on applications ofmass spectrometry and tandemmass spectrometry coupled with
liquid chromatography.

1.3.1 Mass Spectrometry

Amass spectrometer is a device thatmeasures the exactmass-to-charge ratio (m/z)
of molecules in a sample, and report on their relative abundances. A mass spec-
trometer is composed, abstractly, of an ionization source, a mass analyzers, and a
detector.

The ionization source influences the type of ionization the sample undergoes and
the types of molecules that can be ionized. For the purposes of this work we will
deal entirely with electrospray or nanoelectrospray ionization. Both methods are ef-
fective at ionizing polar molecules, and they can be tuned for smaller or larger ana-
lytes [86]. The mass analyzer is responsible for resolving ion m/z, and operates by
scanning along am/z interval, effectively allowing ions in a narrowm/z interval pass
through to the detector. Different mass analyzers use very different mechanisms to
accomplish this task, and have differing mass accuracy and resolution. Mass accu-
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racy measures the fidelity of the mass measured compared to the true mass of the
molecule. The resolution R of a mass analyzer is given by Eq. (1.1) where m is the
m/z of a peak and ∆m is the m/z difference betweenm and a second peak of equal
height where 10% of the peak overlap [4, 87].

R = m

∆m (1.1)

Naturally, for the same ∆m at higher mass, greater resolution is required. With high
resolution, a mass analyzer is able measure ions which have a different number of
neutrons but share the same elemental composition, or “isotopologue”, forming an
isotopic distribution for that ion species. When isotopologues are resolvable, it is
possible to infer the charge state z of an ion and convert m/z to mass by decon-
volving the isotopic pattern from the m/z compression caused by increased charge
state. Given an ion with mass m and a charge z and a charge carrier with mass c,
the m/z is calculated using Eq. (m/z), and the original mass can be recovered given
that we know the charge by Eq. (neutral mass).

m/z = m+ zc

|z|
(m/z)

m = m/z ∗ |z| − zc (neutral mass)

The charge carrier is usually a proton, written H+, withmass 1.00728, thoughmetallic
cations such as Na+ and Ca2+, and other charged molecules may also play this role.
Charge may be positive or negative, depending upon the polarity of the instrument.

This work deals only with high resolution mass spectra from Quadrupole Time-
of-Flight (Q-TOF), Orbitrap, and Fourier Transform Ion Cyclotron Resonance (FTICR)
mass analyzers. The detector responds to the ion beam selected by the mass ana-
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Figure 1.5: A Mass Spectrum
lyzer, measuring the abundance of that m/z interval. This measurement procedure
is usually displayed as a plot of m/z by intensity, as shown in Figure 1.5. A mass
spectrum may be a profile with continuous data points or centroided with discrete
peaks. The process of converting from profile to centroid is called peak picking or
centroiding, discussed later in this chapter.

Amass spectrometermay containmultiplemass analyzers, and they can be used
individually or in tandem to isolate specific ions or m/z intervals. The selected ion
may be “activated” in some way, causing it to dissociate into a new population of
product ions, and then havemeasure the product ions. This is called a tandemmass
spectrum, and an example derived is shown in Figure 1.6, derived from Figure 1.5.
The selected ion is called the “precursor ion” and the spectrum the precursor ion
was isolated from is called the “precursor spectrum”, and the spectrum the product
ions are measured in is called the “product ion spectrum”. This fragmentation pro-
cess is called “tandem mass spectrometry”, or “MS/MS”, or “MS2”. Higher degrees
of exponentiation are possible and collectively they are called “MSn”.
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(b) The product ions captured from theselected isolation window.
Figure 1.6: The tandem mass spectrum from the ions captured in the isolation win-dow

1.3.2 Fragmentation Techniques

There are several common dissociationmethods used for peptides, glycans and gly-
copeptides. Collision Induced Dissociation (CID) operates by colliding the precursor
ionwith a neutral gaswith a certain energy, usuallymeasured in electron-volts (eV) or
normalized electron volts (neV). CID fragments peptides primarily at the amide bond
junctions between C(=O)1-N(H)2, producing N-terminal fragments called b ions and
C-terminal fragments called y ions as shown in Figure 1.7 [2, 86]. These ion types
induce constant gain or loss of mass, giving them a distinct signature in m/z space
. CID fragments glycans primarily at glycosidic bonds, analogously to peptides, pro-
ducing B ions from non-reducing end fragments and Y ions from reducing end frag-
ments as shown in Figure 1.8 [3]. B andY ionsmay be able to definewhichmonosac-
charides make up a glycan, but they cannot determine the positions at which those
monosaccharides are attached to each other, nor where on the carbon backbone
a substituent group is attached. Low mass b and B ions are called immonium and
oxonium ions, respectively. Under CID, the glycan component of a glycopeptide frag-
ments preferentially, producing B ions from the non-reducing termini of the glycan,
producing abundant oxonium ions and Y ions with the intact peptide attached, pro-
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ducing limited information about what the peptide is and where on the peptide the
glycan is attached. The intact peptide-containing Y ions are sometimes called pep-

tide + Y or “stub glycopeptides”.
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Higher Energy Collisional Dissociation (HCD) is similar to CID, though more en-

ergy is used. It produces the same ion types as CID, though HCD is more effective at
fragmenting larger molecules. HCD fragmentation of glycopeptidesmore effectively
dissociates the glycanmoiety, and any remaining energy produces peptide backbone
b and y ions with or without a small piece of the glycan reducing end still attached.
These peptide backbone fragments can be used to identify the peptide sequence,
and may be able to localize the site of glycosylation. The identity of the glycan at
that site cannot be determined because these site-localizing fragments only retain
a small component of the glycan reducing end, making identifying multiply glycosy-
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lated peptides difficult [88].
Electron Transfer Dissociation (ETD) and Electron Capture Dissociation (ECD) are

techniques that destabilize a molecule by adding or removing electrons, collectively
referred to as ExD. Both of thesemethods produce c and z ions from peptides, which
are complementary to b and y ions, respectively. For glycans, ExD methods produce
C and Z ions, complementary to B and Y ions, as well as abundant cross-ring frag-
ments called A and X ions [3], depending upon whether or not a non-reducing or
reducing terminal is included. These cross-ring fragments can localize bonds on the
monosaccharide’s carbon backbone, determining linkage. For glycopeptides, ExD
preferentially produces peptide c and z ions without dissociating the glycan, allow-
ing for site specific localization of multiple glycans on the same peptide [86, 88, 89].
ExD methods are much slower than collisional dissociation, and require a higher
charge state ion to produce abundant fragment ions [90]. The reaction may lead
to a bond breaking but the fragment ions remaining associated in the gas phase,
called “ETnoD”. This can be avoided by mixing ExD activation with supplemental col-
lisional activation, going by monikers including “Hot ECD” or “EThcD”. For glycopep-
tides, these methods produce b, c, y , z , B , peptide + Y and b/y/c/z + Y ions in
varying proportions depending upon ExD reaction time and supplemental collision
energy [88]. Glycans dissociated with these techniques yield A, B , C , X , Y , and Z

ions, as well as many neutral losses thereof [91]. ExD also can also produce addi-
tional radical ions which further split signal from the same bond cleavage over mul-
tiple peaks. These extra radical series are expressed by adding · to their name i.e.
z·.

There are other ion series that these dissociation methods produce, such as a,
x , d , v , and w peptide fragments which may have diagnostic value but occur less
frequently [86]. Other less common fragmentation pathways involve neutral losses
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from canonical fragments, such as the loss of NH3 from a C-terminal fragment or
the loss of H2O from an N-terminal peptide fragment or from any monosaccharide
fragment. There are also other dissociation methods, such as infrared multi-photon
dissociation (IRMPD) and ultraviolet photon dissociation (UVPD) which produce the
common fragment ions aswell as other uncommon fragment series, but the required
instrumentation is not commonly available.

Each fragmentation method has strengths and weaknesses, and the method
used still must be calibrated for a given problem. This work will deal primarily with
HCD-type dissociation methods with some variation for glycopeptides in Chapter 4,
and limited coverage of HCD and ExD methods for glycans in Chapter 3.

1.3.3 Chromatography

A mass spectrometer is often coupled to a Liquid Chromatography (LC) system, or
another separation system like Capillary Electrophoretic device (CE) [92]. These tools
causematerials passed through them to travel at different rates depending upon one
or more physical properties such as hydrophobicity for Reverse Phase Chromatog-
raphy (RPC), hydrophilicity for HILIC or molecule size for Size Exclusion Chromatog-
raphy (SEC), separating them in time. When combined with a mass spectrometer,
the chromatography system introduces only a small fraction of the sample mixture
into the mass analyzer at a time, yielding a granular view of the sample [93]. This re-
quires the mass spectrometer operate at a speed compatible with the rate at which
analytes elute, limiting the time themass analyzer may spend on any single scan but
increasing the amount of time spent analyzing a sample compared to a case where
no chromatography system is used.

An analyte’s abundance over chromatographic elution time is the chromatogram
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of that analyte, and it is often visualized as a smoothed curve, with the area under
that curve being proportional to the total abundance of the analyte. This is a form
of Label-Free Quantification (LFQ). The shape of this curve is called the “chromato-
graphic peak shape”, and can be used to measure whether an analyte’s signal is dis-
tinguishable from noise [94–99], which can be useful when assessing experimental
data where fragmentation data is unavailable or in targeted experiments where even
product ions have chromatograms [98, 100].

The time of peak elution from the separation device can also be used diagnos-
tically with known standards or a library of references [101–104]. A common tech-
nique for profiling glycans by LC-MS involves spiking in reference polymers of glu-
cose which can be used to predict whether a another glycan identified by mass is
eluting at the correct time relative to these references [105]. An equivalent technique
is used in proteomics by spiking in a set of known peptides to transform retention
time into an approximate normalized retention time, called iRT peptides [106].

1.3.4 Sample Preparation, Transformation, and Simplification

There are a multitude of different ways that glycan, peptide and glycopeptide sam-
ples can be prepared for analysis. This work will highlight a few steps that will be-
come relevant later.

Glycan Digestion and Release

In order to measure the glycome of a glycoprotein sample, a release step is required.
For N-glycans, there is a single endoglycosidase enzyme that works on all mam-
malian N-glycans Peptide N-glycosidase F (PNGase F). This enzyme cleaves the
bond between the N-glycan reducing end and the asparagine, resulting in a deami-
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dation of the peptide or protein, and a free N-glycan. PNGase F cleaves α-(1-3) fuco-
sylated N-glycans such as those found in invertebrates and plants inefficiently. For
O-glycans, there is no one enzyme that can release everything, even within the sub-
set ofmucin-typeO-glycans. The only universalmethods involve harsher procedures
using reductive β-elimination [107] or hydrazinolysis [108] which chemically alter the
glycan and protein.

Once a glycan is enzymatically released, its free reducing end may be modified
to improve its analytical properties. These improvements may range from better
chromatographic retention, fluorescence for optical detection, increased charge for
better ionization, MSn quantification and multiplexing, or asymmetric MSn fragmen-
tation. It may also be desirable to derivatize glycans for similar effects with common
treatments, such as permethylation [109].

Both free and attached glycans may be simplified by applying exoglycosidases,
such as sialidases or fucosidases to collapse multiple glycoforms into a single core
glycan. This may be advantageous when the sample material is limited or too com-
plex to interpret all individual forms simultaneously.

Analyzing released glycans costs losing site-specific information, but concen-
trates signal from all glycosites carrying each glycan, and allows one to fragment
a glycan to get linkage-defining fragments. It can also be used to define the sample’s
glycome, narrowing the range of compositions one must consider when analyzing
the glycoproteome. This topic will be returned to in Chapters 3 and 4.

Protein Digestion

Intact proteins are challenging to study in a “top-down” fashion [110] and glycopro-
teins are even more difficult due to the heterogeneity of glycosylation, so it is stan-
dard practice to digest protein mixtures with one or more proteases to produce pep-
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tide mixtures instead. The most commonly used protease is trypsin [93, 111], which
cleaves at the C-terminus of arginine and lysine, or more precisely, cleaves the pro-
tein at every match to the regular expression /[KR](?=[^P])/ [112], though there are
many other popular candidates such as chymotrypsin /(?<=[FYWL])(?!P)/, or glu-
tamyl endopeptidase /E/ commonly called “Glu-C”. Before digestion, it is common to
alkylate cysteines to prevent them from cross-linking, usually using iodoacetamide
to carbamidomethylate the cysteine side chain. Other chemical modifications may
be added such as stable isotope labels or TandemMass Tags (TMT) formultiplexing
and quantification.

If glycans were not released, the sample may contain a mixture of peptides and
glycopeptides. Glycopeptides do not ionize as well as peptides [113], and can be
hard to reliably detect against the background complexity of a complete proteome
because microheterogeneity splits the signal for a single glycosite across multiple
glycoforms. To obtain deeper coverage of the glycoproteome, an online or offline
glycopeptide enrichment method can separate the glycopeptides from the peptides
[114].

If glycans were released, the deglycosylated peptides can be analyzed using a
traditional peptide and protein identification tool to identify the proteins and other
PTMs present in the sample. Thismakes a future glycopeptide identification process
more accurate, though potentially much more complex. This topic will be returned
to in Chapter 4.

1.4 Computational Methods

At its core, computational methods for interpreting or annotating mass spectra in-
volve transforming amass spectrum fromm/z space into neutralmass space (neutral mass),
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or a database of intact molecules or building blocks from theoretical neutral mass
space to theoretical m/z space (m/z), and looking for close by values within an error
tolerance window. There are two types of error tolerances in common use, absolute
error tolerance shown in Eq. 1.2

|e− t| < k (1.2)
|e− t|
t
∗ 106 < k (1.3)

where e is the experimental measure, t is the theoretical measure, and k is the error
limit, and relative error tolerance such as Parts Per Million (PPM) is shown in Eq. 1.3
where the same absolute error may be accepted when t is larger. PPM is preferred
for higher resolution instruments to reflect the mass-dependent nature of their mea-
surements [4]. Common mass analyzer mass accuracies are shown in Table 1.1.

Mass Analyzer Mass Accuracy in PPM Resolution
Quadrupole 100 2000Ion Trap 100 4000TOF 200 5000TOF (reflectron) <10 20 000Magnetic Sector <10 10 000FTICR <5 500 000Orbitrap <5 100 000

Table 1.1: Mass Analyzer Accuracy and Resolution [4]

1.4.1 Signal Processing

Prior to performing any mass comparison, a profile mode spectrum must be cen-
troided before any other comparisons are done. Peak picking converts continuous
profiles into a set of discrete centroids or “peak lists”, shown in Figure 1.9. These
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Figure 1.9: The peak picking process converting a profile mass spectrum into a cen-troided list of peaks with discrete m/z and intensity values. The model used was aGaussian peak shape with σ = 0.005035

peaks represent scalar m/z values or masses which correspond to the abundance-
weighted average measured value for each observed ion. Peak picking may be done
in many ways, starting from simple apex selection, with intensity or signal-to-noise
ratio (SNR) thresholds [115], to wavelet based methods [116, 117] and peak shape
model basedmethods [116, 118, 119]; howevermanymass spectrometry-related tools
assume that spectra are already centroided by instrument vendor software [120].
Other signal processing techniques are often applied concurrently, such as back-
ground noise reduction, interpolation and smoothing [103, 120, 121]. Another, more
complex problem is often addressed simultaneously, which is deisotoping and charge
state deconvolution, and is often referred to as peak picking, incorrectly1 [122, 123].

1.4.2 Deisotoping and Charge State Deconvolution

It is not uncommon to assume the charge state of a small molecule or fragment ion
is 1. Most high resolution instruments report the charge state of selected ions when
acquiring MSn spectra, obviating the need to estimate it directly. Instrument control

1Peoplemaking this mistake will have the PSI-MS Controlled Vocabulary thrown at them. It is 326pages at 12px font as of 4.1.13.
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software do not guarantee that they select the monoisotopic peak, and they do not
determine the charge states of all other peaks in each spectrum. A high resolution
raw or merely centroided mass spectrum contains resolved isotopologues forming
an isotopic pattern. For biomolecules, the most abundant isotopologues differ by
approximately 1.0033/z m/z apart from one another, the mass difference between
C13 and C12 divided by the charge state of the ion.

Simplistic deisotoping and charge state deconvolution techniques may try to de-
termine the peak spacing with the highest charge state with the fewest missing
peaks [124–126]. While this technique works for high mass accuracy instruments
it is still error-prone for complex spectra. Each peak in an isotopic pattern has an
abundance value based upon the isotopic abundance ratios of each element and the
amount of those elements in the ion’s composition. Given a chemical composition,
it is possible to predict the isotopic pattern using a variety of methods for different
mass resolutions [127–131], and this theoretical pattern can be compared to the data
to determine both whether a peak is a member of a particular isotopic pattern at a
particular charge and whether a peak is the monoisotopic peak of an isotopic pat-
tern. Methods for measuring goodness-of-fit for isotopic patterns are discussed in
greater detail in Chapter 2.

While precursor ions for typical tryptic peptides and glycans aremultiply charged,
their product ions are usually singly charged. By contrast, glycopeptide MS2 spectra
are often dominated bymultiply charged peaks as shown in Figure 1.10, making it an
essential component for glycopeptide identification [54, 132, 133].
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Figure 1.10: An example annotated glycopeptide MS2 spectrum for the glycopeptide
GESEETGSSEGAPS(O-Glycosylation)LLPAT(O-Glycosylation)RAPEGTR{Fuc:1;
Hex:3; HexNAc:2; Neu5Ac:3} with many doubly charged peaks

1.4.3 Database Search Methods

Search Engines

One of the first computational tools created to try to interpret peptide mass spectra
was SEQUEST [134] in 1994. It was purportedly the first peptide database search en-
gine, and it used a heuristic theoretical spectrum alignment algorithm to evaluate a
Peptide-Spectrum Match (PSM) based on the scoring function Xcorr which counted
the number of common peaks in the alignment. The proteomics database search
engines have diversified and multiplied since then [6, 125, 135–138], spawning new
classes of search engine but they all share some common features. First, they all
begin with a protein database and a set of mass spectra, either raw or converted
into simplified peak lists. Second, they convert the protein database into peptides by
emulating a protease, such as by splitting on a regular expression, or assume non-
specific digestion to produce a set of peptides derived from those proteins, optionally
modified using fixed or variable modifications from either a database of modifica-
tions like UNIMOD [139] or a user-defined list of rules. Finally, they evaluate PSMs
by computing a score relating how well theoretical structure Pi matched spectrum

25



Sj within a specified mass error tolerance where scores are orderable between all
Pi ∈ P within the scope of Sj such that the best scoring PSM for Sj can be selected
exclusively. The database search paradigm may be applied to glycans [140, 141],
metabolites [142, 143], lipids [144], intact proteins [145, 146], RNA [147], cross-linked
peptides [148, 149], and of course, glycopeptides [54, 132, 133, 150–153]. There are
some analogs between the database search process and the more common se-
quence alignment problem in bioinformatics [154, 155].

The scoring functions commonly used by these algorithms are often posed as
heuristicmeasures of goodness of fit like Xcorr [134], dot product [136] or Hyperscore
[125, 138, 156, 157] as shown in Eq. 1.5

dot =
∑
i

FiIi (1.4)
hyperscore = log

Nb!Ny!
Nb∑
i=1

Ib,i

Ny∑
i=1

Iy,i

 (1.5)

or take the form of a probability model expressing the probability of the spectrum S

given the structure p and some likelihood or indicator functions F (p, i) to denote one
or more fragment ion matches [158]. In many cases, a heuristic will be posed with a
probabilistic interpretation as a foundation, but the final metric will not be meaning-
fully interpretable as a probability [145, 159–162] such as a binomial tail probability
shown in Eq. 1.6.

B(n, k, p) =
n∑
i=k

(
n

i

)
pi(1− p)n−i (1.6)

Intensity information may or may not be used directly, depending upon the scoring
function. Few probability models exist for accurately predicting the probability of
a peak being of a certain intensity or relative intensity, though some more general
predictivemodels do exist [163, 164]. Manymodels approach the problem by instead
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modeling the frequency with which particular amino acids from different ion series
dissociate [136, 145, 160, 165, 166].

Very few of these scoring functions are characterizable in a sufficiently rigorous
manner that an error model is known a priori, leading to a variety of different strate-
gies for estimating the null model at an experiment or spectrum level [136, 167–170].
Many search engines attempted to estimate the relative uncertainty of a PSM by cal-
culating an expectation-value for each PSM’s score from the distribution of scores
measured for that search [6, 156]. OMSSA [159] modeled its expectation approach
after the method used by BLAST [171]. PeptideProphet [169, 172] used a large corpus
of training data with known correct (Ti = 1) and incorrect (Ti = 0) labels and k scor-
ing functions evaluated on each PSM, the charge of the precursor ion, and a set of
structure features s for each sequence to learn a mixture model-based discriminant
function F (x1, ..., xk) that combines these scores in a way. This model could then
be used to estimate the Posterior Error Probability (PEP), and in turn False Discovery
Rate (FDR). While this technique was successful, it had to be trained anew for each
new class of scoring function or dissociation technique, and as withmany ensemble
methods, as k → ∞ it grows less interpretable. Target Decoy Analysis (TDA) [170]
obviated the need for labeled data by searching both a “target” database of the pro-
teins of interest and a “decoy” database of false but valid sequences that are known
to not be in the sample, and used the proportion of decoys above a score threshold to
estimate the FDR, though only under asymptotic conditions with many, many PSMs.
Percolator went on to incorporate a semi-supervised learning strategy for using ad-
ditional arbitrary sequence-level features into TDA. Many approaches treated TDA
as a black box and violate its assumptions, limiting its efficacy as a rigorous FDR
control [173], and it remains an experiment-wide feature. In MS-GF+ [136], a brute-
force dynamic programming approach to efficiently calculated the scores of every
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“reasonable” candidate for a single spectrum to estimate a spectrum level E-value,
though the community still prefers to use it in conjunction with TDA [124].

Many database search engines and scoring techniques have been designed for
emphasis on PTM discovery, and relax or alter the requirements for identifying mod-
ifications [137, 138, 161, 174, 175]. Some augment an existing database search al-
gorithm with a modification localization auxiliary scoring criterion [176–179]. Others
introduce multiple rounds of search to refine the modifications used [125, 137, 175,
180]. Another group, called “open search engines” [138, 174], allow unknown or arbi-
trary mass differences between the precursor ion mass and the candidate structure
mass, as well as between theoretical fragment masses, provided that the solution
is bounded by the precursor ion mass in some way. Many of these techniques were
developed to localize biologically relevant modifications such as phosphorylation
[161, 177, 178], though they may be used to report any sort of peptide-variant PTM
or amino acid substitution, depending upon configuration. While some claims have
been made that open search algorithms can be used to identify glycosylation, little
evidence has been presented to validate these claims.

Glycopeptide identification by database search has gone through many stages
of development. Early methods attempted to identify glycopeptides using CID frag-
mentation as in GlycopeptideSearch [181], where the precursor mass was used to
constrain the possible peptide + glycan combinations, and the peptide + Y ions were
used to assign the glycan topology which in turn constrains the peptide, with a small
amount of peptide backbone fragmentation. This method did not guarantee that the
peptide sequence could be identified, and could not be easily adapted to existing
null models from proteomics [182]. Later methods attempted to use HCD directly
[54, 153, 183], or combinations of CID, HCD, and/or ETD [132, 184–186]. HCD alone
could identify the peptide sequence and localizeN-glycan sites, but could not reliably
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characterize the glycan composition, and faced challenges localizing O-glycan sites.
Multiple dissociation techniques provided complementary information, but had tech-
nical challenges integrating data from multiple sources. GlycoFragWork [184] used
linear discriminant analysis (LDA) to combine CID and ETD scoring systems into a
single score for a TDA-like evaluation in two dimensions. pGlyco [132, 186] used a
mixture model over combinations of target peptides, target glycans, decoy peptides
and decoy glycans to combine stepped collision energy HCD scans acquired in the
same run, only possible onmore recent instrumentmodels. Thesemethods ensured
that both the peptide and the glycan components are well characterized, but they re-
quire substantially greater analysis time [132, 187] as the mass spectrometer must
cycle through multiple configurations on the same precursor ion, leading to longer
experiment runs. Chapter 4 will discuss these methods in greater detail.

There aremany commercially available database search engines, includingMAS-
COT [6] (http://www.matrixscience.com/), PEAKS-DB [166] (http://www.bioinfor.com/
peaksdb/), Byonic (https://www.proteinmetrics.com/products/byonic/). We will re-
visit Byonic in Chapter 4, as it is the only commercial search engine that attempts to
properly cover glycopeptides. Few companies have branched out into the other MS-
based search engine markets, notably Premier BioSoft (http://www.premierbiosoft
.com/products/products.html) markets tools for identifying lipids, glycans [188], and
metabolites, but the company’s databases of structures remain proprietary. These
tools see regular use in industrial and academic settings, but remain closed and
charge a yearly licensing fee for each installation. Little is known about the inner
workings of their algorithms and implementations, beyond what they appear to re-
port. Most if not all are associated with a heavy desktop client interface, a suite of
signal processing tools, and integrated project management systems for working
with many samples simultaneously.
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Search Databases

A proteomics database search engine naturally requires a database to search. This
is usually derived from a list of proteins provided by the user in FASTA format, but the
user has to get those sequences from somewhere. The two most common sources
for model organism databases are UniProt [189] and GenBank [190], where curated
both predicted and curated protein sequences can be found. Though it is not un-
common for users to search against large portions of these databases from many
taxa in order to avoidmis-identification [191], it costs time and statistical power [192].
A list of common contaminants from sample preparation is usually recommended
for inclusion in any search database [193, 194].

A FASTA file might specify the protein sequence, and some database-specific
metadata to identify the protein. It contains nothing else useful for defining what
kinds of endogenous biological processes might do to that protein, whether modi-
fying the sequence or cleaving it at certain sites. G-PTM [195] worked around this
issue by instead using an XML file to build its database, tailored to parse the UniProt
XML schema. This feature has since been integrated into MetaMorpheus [137]. This
issue has been recognized by the community, and a file format is undergoing stan-
dardization, the “PSI Extended Fasta Format” (PEFF) [111, 123, 196, 197]. PEFF aims to
augment FASTA files with consistent mechanisms for multiple databases to encode
information regarding PTMs, sequence cleavage and processing, genetic variants,
and other instructions.

Mass Fingerprinting and Intact Profiling

LC-MS data may be acquired without fragmentation, and identification may be done
based upon only the intact mass of the measured molecules alone. This method
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is referred to by a variation on the phrase “mass fingerprinting” or “intact profiling”.
This is often done as a first pass or the sample is simple, andmay not even include a
separation component as in MALDI [198], especially common for glycans [199, 200].
Because of the enormous range of possible sequences from even moderately long
peptides this technique is of limited use in proteomics, though some propose that
multiple enzyme digests combined with physical property assays can perform com-
petitively with LC-MS2 [201].

This approach sees commonuse in glycomicswhere there are fewdistinctmasses
of building blocks [82, 94, 97, 99, 141, 199, 202]. These algorithms combine theMS di-
mension with the LC time dimension to evaluate whether a particular signal is differ-
entiable from noise, and attempt to use the mass of one or more analytes to assign
composition-level identifications to LC-MS features from a database. When LC con-
ditions are held constant, some algorithms use a reference chromatographic peak
time when assigning identities [202, 203]. This topic will be returned to in greater
detail in Chapter 3.

1.4.4 De Novo Sequencing

A complementary approach to database search methods is to attempt to recon-
struct the sequence of the structure fromamass spectrum de novo using just known
structural building blocks like amino acid and modification masses. This approach
is used widely in genomics and other areas, but was first formalized for peptide se-
quencing in 1999 with SHERENGA [204]. It, like database search, has proliferated,
yielding many new approaches to the problem [8, 163, 205–207]. It has been com-
bined with database search to create hybrid search [136, 166], or tag-basedmethods
[208, 209]. It sees common use in other molecule classes like glycans [210–212],
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where a comprehensive database is often not available [70, 213, 214]. The major
drawback to de novo sequencing is the need for high quality mass spectra [215],
having few missing product ion peaks and separable noise.

De novo sequencing methods often approach topics like sequence coverage dif-
ferently than database search engines, and so use different kinds of scoring func-
tions, though the twomay be combined to produce a stronger identification [166]. As
open search strategies growmore prominent, wemaybegin to seemore sequencing-
like criteria in how they select the best solution [207, 216]. PepNovo [163] was one
of the first approaches that attempted to incorporate product ion intensity predic-
tion into its scoring process to put more weight on solutions which were consistent
with its expectations without absolutely biasing towards the most abundant solu-
tion. The recent popularity of deep learning has shown this approach can produce
very consistent predictions [164, 206]. While powerful, these methods are sensi-
tive to instrument- and acquisition parameter-specific properties, making them less
portable [163, 164].

1.4.5 Spectral Library Search

If we can reliably predict what a structure’s mass spectrum would look like it could
greatly improve the sensitivity of the identification process as previously mentioned.
Even with millions of examples, however, these methods still fail to assign the abun-
dances of all product ions correctly, and do not generalize well to new dissociation
conditions, and acquiring many more millions of spectra is often impractical. Spec-
tral clustering [217] and spectral library search attempt to avoid this issue by using the
experimentally collected mass spectrum identified by database search or another
technique [218]. This method works well for peptides, as well as for small molecules
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likemetabolites where there are no canonical fragmentation pathways generalizable
to all molecules [143]. It has also been used for glycopeptides in GPQuest [219],
and just clustering has been used for spectral networks in SweetNET [133]. Spec-
tral library search suffers from the same portability problem that intensity prediction
methods do, stemming from the same changes in fragmentation process, making it
less sensitive the more different acquisition conditions are from the original library
construction conditions. Spectral libraries have seen extensions for clustering both
identified and unidentified spectra [220], and forMultiple ReactionMonitoring (MRM)
identification and quantification with SWATH [98].

1.5 Aims

Mass spectrometry-based glycomics and glycoproteomics data are complex and
noisy, withmany interconnected components. While they sharemany related signal-
level characteristics, these two problems operate at different scales, calling for dis-
tinct approaches for molecule identification. These solutions require methods dif-
ferent from those previously published for unmodified peptides. Many tools have
been proposed, but few provide an acceptable solution to the problems faced, either
because of neglect of fundamental properties of the data or because of restricted
scope or scale.

Within this dissertation, Chapter 2 introduces the problems related to spectral
processing and transformation that must be done to interpret mass spectra, and
algorithmic approaches to solve them. Chapter 3 expands on the problem of gly-
can profiling by LC-MS, including introducing an algorithm for sharing information
amongst related glycan compositions through biosynthetic network smoothing, sep-
arately covered in [94]. Chapter 4 introduces the glycopeptide identification problem,
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and a set of algorithms partially covered in [23] and [54]. Chapter 5 will summarize
the future direction of the described work, and the field of glycoproteomics.
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Chapter 2

Preprocessing Complex Raw Mass Spectra

Mass spectrometry data contain complex structure, technical noise, and instrument-
component dependent behavior [4]. As previously noted, mass spectrometers mea-
sure the mass-to-charge ratio (m/z) of ionized molecules, as well as their abun-
dances. This work will deal with high resolution mass spectrometry where the iso-
topic distribution of these ions becomes resolvable. In order to compare a mass
spectrum to predicted molecules, the mass spectrummust be converted fromm/z-
space to neutral mass space. When the monoisotopic peak of an ion and its charge
state are known, this is trivial using Eq. (neutral mass). As is usually the case for any
non-trivial molecule, these are not known a priori, and must be estimated from the
data.

This topic is relevant for glycan and glycopeptide identification because most of
these molecules are large, multiply charged, and produce complex mass spectra.
The average monosaccharide mass is in the range of 176.68 Da, while the average
amino acid mass is 127.95 Da. They also form mass clusters where two distinct
molecule compositions may have very similar masses, requiring accurate and pre-
cise monoisotopic mass determination to discriminate them. This is especially im-
portant when fragmentation is not used or when the type of fragmentation used
cannot produce discriminating fragments, commonly seen with CID fragmentation.

35



When MS2 scans are acquired, the instrument records information about which
ion it selected to be the “precursor”, and them/z window it isolated. Each instrument
vendor’s acquisition software tracks this information differently and depending upon
configuration, reports different things in the scan metadata. The acquisition soft-
ware reports the selected ion m/z and optionally, the predicted charge state(s) of
that ion. The selected m/z is derived from a peak, but different vendors and different
configurations for the same vendor choose which peak to report differently. In some
cases, the acquisition software will report it’s estimated monoisotopic peak, in other
cases it will report the most abundant peak in the isolation window, in some cases
doing both at different points in the same acquisition. This reported m/z tells down-
stream analyses what the precursor’s mass is, or at least where to start looking for
it, and it is important to assign this value accurately for database search algorithms
to work well.

It is because of this failure that many algorithm designers decided to instead
include “isotope errors” [136–138, 219] into their search engines to account for this
problem. This linear probing schememakes it possible to resolve off-by-1 neutron er-
rors when the fragments can discriminate the two candidate precursor masses, but
this does not always occur. For example, the mass difference of a neutron (1.0033)
is close to the mass difference of a amino acid deamidation artefact (0.9840), or the
substitution of 2Fuc for NeuAc (1.0204), all of which can occur regularly in the same
sample. Therefore, precursor correction is essential for glycan and glycopeptideMSn

experiments which do not produce discriminating ions consistently. For example, if
a glycan composition with at least 2 NeuAc and 1 Fuc is incorrectly extracted, it may
be mis-matched to a glycan with -1 NeuAc and +2 Fuc in the absence of a high qual-
ity mass spectrum. Worse, both forms may be present and their signal in the MS1

spectrum will overlap and be summed, creating an isotopic pattern that would be
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very difficult to deconvolve correctly unless one knew of it a priori. Deconvolution
algorithms including features like Hardklör’s [221] have been devised to address this
overlapping issue. Nonetheless, determining when an isotopic pattern is the sum of
two well formed isotopic patterns versus a single, noise distorted pattern remains
an unsolved problem.

Three glycan LC-MS tools have been published, each built directly or indirectly
on top of Decon2LS [119]: GlycReSoft [97], Multiglycan-ESI [96], and GlyQ-IQ [99].
This is likely due to Decon2LS being only LC-scale deisotoping algorithm that was
published openly and freely at the time, though others have since been published,
including Dinosaur [222], and the FeatureFinder programs in OpenMS [115]. These
tools used the deisotoping process as an opaque quality filter as well as for neutral
mass determination.

Glycopeptides inherit the mass scaling problems of both glycans and peptides,
and can cause precursor charge states to vary over a larger range than for bare
peptides, from 2-9+ for tryptic glycopeptides versus peptides’ 2-4+. This translates
into higher charge states on glycopeptide product ions as shown in Figure 1.10, but
the problem may be much worse depending upon the dissociation method used as
shown in Figure 2.1 when the product ion is a mostly intact precursor glycopeptide.
SweetNet [133] used MS-DeconV [223] to perform its deconvolution, including pre-
cursor recalculation, though due to its polyglot nature, also depends upon Mascot’s
handling of charge determination. GPQuest used an undisclosed isotopic pattern
fittingmethod and a spectral averagingmethod for precursor recalculation [219], but
they do not appear to examine product ion charge states [183]. pGlyco [132] used
pParse [224], developed by the same group for both precursor and product ion de-
convolution. GlycoPAT [225] deconvolves precursors but not the product ions. glyX-
toolMS [226] uses an OpenMS [115] FeatureFinder to recalculate precursor masses,
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though the runtime of such an algorithm may be impractical for large datasets.
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Figure 2.1: A highly charged spread of product ions from an N-glycopeptide usingstepped HCD fragmentation with a precursor charge state of 4+ with abundant 4+,3+, and 2+ product ions dominating the 1+ ions in the spectrum. Spectrum from datapublished with pGlyco2 [132], annotation produced by my algorithm.
Early signal processing and charge state deconvolution decisions can make the

difference between whether the identification process returns correct or spurious
assignments. I implemented these steps from scratch to be able to take full control
over how the process is handled, to prevent the deconvolution from being opaque,
and to be able to detect failures downstream. The building blocks of the decon-
volution process are described in this chapter, with various alternatives for testing
goodness of fit (Section 2.3.2) and solution extraction (Section 2.3.3). Additionally,
because the previous implementations of these tasks were not as part of re-usable
libraries but tightly coupled to an executable, I first implemented the algorithms I con-
sidered in a set of Python libraries with a high level interface package, ms_deisotope,
and used that library to build a separate deconvolution tool, with the overly-optimistic
hope that some of those features could be reused elsewhere.

The sequence of steps involved in this process is described in Algorithm 1, and
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this chapter will walk through the sub-problems in each of these steps. The degree
of signal cleaning depends upon the characteristic signal properties of the mass
spectrometer used, described in Section 2.1, and how those properties interact with
peak picking. Peak picking in turn influences what the deconvolution process sees,
and how accurate it can be.
Algorithm 1: Spectrum Preprocessing
Data: Raw Spectrum S
Result: Deconvoluted Neutral Mass Peak ListD from S
D ← ∅;
S ′ ← CleanSignal(S);
P ← PickPeaks(S’);
i← 0;
maxiter← 10;
while HasRemainingPeaks(P) and i <maxiter dosolutions← FitIsotopicPatterns(P);

P ← SubtractIsotopicPatterns(P , solutions);
D ← D+ solutions;
i← i+ 1;

end
returnD

2.1 Instrument Types and Data Characteristics

A mass spectrum’s properties depend heavily upon the instrument type that was
used to produce it. A mass analyzer’s resolution plays a major role in determining
how a mass spectrum looks, influencing peak width, and the mass analyzer sets
which physical principles are used to measure the the ion’s properties, which in turn
defines a set of baseline characteristics or noise patterns.
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2.1.1 TOF Mass Spectrometers

A Time-of-Flight (TOF) instrument, such as a Q-TOF is a high resolution instrument,
data from which consists of unfiltered detector signal, including electronic noise.
Each spectrum has a dense layer of random noise in the low abundance range as
shown in Figure 2.2. This also shows jagged, asymmetric peaks which may intro-
duce complications during peak picking.
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Figure 2.2: An example Q-TOF mass spectrum, showing the dense noise in the lowabundance range and jagged peaks. This spectrum is from an Agilent 6550 modelinstrument, from data derived from IAV released glycans [23]

2.1.2 FTICR Mass Spectrometers

A Fourier Transform Ion Cyclotron Resonance (FTICR) instrument produces an ion
image current that is Fourier transformed from frequency domain to m/z domain.
The FT removes some of the electronic noise, but may introduce other artefacts.
The FTICR has much greater resolving power andmass accuracy than a TOF instru-
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ment (See Table 1.1), and this is reflected in the sharpness of the peak shape shown
in Figure 2.3. Similar to TOF spectra, any algorithms written to handle FTICR spectra
must be able to take into account the dense, very low abundance signal which may
have varying SNR between 1 and 3. The Fourier Transform also introduces some
artifact peaks at either shoulder of abundant peaks, shown in the inset of the Fig-
ure 2.3. These shoulders may be accounted for by using a smoothing technique,
such as Savitzky-Golay or Gaussian smoothing, or another more Fourier Transform
specific apodization technique.
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Figure 2.3: An example FTICRmass spectrum, showing the Fourier Transform base-line in the very low abundance range and sharp, narrow peaks. This spectrum is froma Bruker SolariX model instrument, from data derived from a commercially availablesynthetic deuteroreudced and permethylated N-glycan [210]

2.1.3 Orbitrap Mass Spectrometers

The Orbitrap instrument series from Thermo Fisher Scientific show resolution and
mass accuracy similar to the FTICR as they are also based on a Fourier Transform.
Spectra acquired with an Orbitrap undergo substantially more processing during ac-
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quisition and do not appear to have a constant noise baseline as in TOF or FTICR
spectra, as shown in Figure 2.4. This preprocessing can also substantially alter or
delete peaks which are either low abundance or not expected by the instrument’s
proprietary processing method. This “simplification” of the data can introduce extra
complexity when attempting to recover some of that lost information, either by re-
quiring a stabilizing method like scan averaging to try to fill back in lost peaks, or by
forcing any modeling technique to deal with missing data.
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Figure 2.4: An example Orbitrap mass spectrum, showing the general absence ofnoise peaks, and irregular peak heights caused by the acquisition software. Thisspectrum is from a Thermo-Fisher Scientific QExactive-HF model instrument, fromdata derived from a tryptic digest of commercially available purified α-1 Acid Glyco-protein (AGP).

In each of the instrument characteristic examples shown earlier, we are able to ob-
serve isotopic peaks, as all of these are considered high resolution mass analyzers.
These isotopic peaks can be used to estimate the monoisotopic peak of a molecule
and the charge state of the ions forming that isotopic pattern. Because the isotopic
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pattern is “mixed” with the charge state, this is called “charge state deconvolution”.
The process of collapsing isotopologues is called “deisotoping”, which will be the
main topic of this chapter.

2.2 Signal Transformations

Deisotoping and charge state deconvolution depend upon the peak picking method
used, and the peak picking method depends upon the quality of the raw signal it
is interpreting. The raw signal is usually perturbed in some way by the instrument
specific properties mentioned earlier, and cleaning the raw signal may improve the
resulting centroids.

2.2.1 Background Reduction

The background noise of amass spectrummay easily introduce spurious peaks dur-
ing peak picking, and even with a global intensity or SNR threshold can drastically in-
crease the computational workload. Some common signal filters like Fourier trans-
form, auto-correlation, moving average, high pass, and low pass filters [227, 228]
can be used to eliminate periodic noise. The background reduction techniques use
an estimate of the local SNR [229, 230] to determine which data points can be used
for peak fitting and what can be ignored. Most of these techniques rely on profile
spectra, and cannot be used directly on centroid spectra. When this work refers to
background reduction, it means the method described in [229] followed by Savitsky-
Golay smoothing. This method was applied to the Q-TOF and FTICR spectra shown
above, and the change can be seen in Figure 2.5.
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(a) The background reduced version ofFigure 2.2

1399 1400 1401 1402 1403 1404
m/z

0.0

0.5

1.0

1.5

2.0

2.5

Re
la
tiv

e 
In
te
ns
ity

1e8

Characteristic FTICR
Mass Spectrum

Raw Profile
Centroided
Noise Level

1400.0 1400.5 1401.0
0

2

4

1e7

(b) The background reduced version ofFigure 2.3
Figure 2.5: A demonstration of the effects of background reduction on previouslyshown mass spectra with dense noise

2.2.2 Scan Programs and Spectrum Averaging

A mass spectrometer may acquire only MS1 spectra, or it may acquire MS1 spectra
intermixed withMSn spectra when certain conditions are satisfied, or onlyMSn spec-
tra of a pre-specified ion list. When MS2 spectra are acquired, the instrument must
first isolate the precursor ion to be fragmented, as shown in Figure 1.6a, recording
information about the selected ion in the metadata of the product ion scan. These
scan “programs” may be combined with a separation device like an LC column, in-
ducing to a temporal ordering relationship, or be done on a simple direct infusion of
the sample.

When no MSn scans are acquired and multiple MS1 scans are acquired as when
using an LC system, the kth scan should contain very similar ions to the k−1th scan
and k+1th scan. In this case, we can stabilize the signal and reduce the noise level of
the kth scan by averaging it with its preceding and following scans. WhenMSn scans
are acquired, the previous MS1 scan is separated in time by the time spent acquiring
the intercedingMSn scans. Depending upon the speed of the separation device, may
no longer be as similar, though the width of an LC peak under common conditions
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(1-2 minutes) tend to still be broad enough that averaging is useful. Scan averaging
must be handled differently for profile spectra and centroid spectra. Averaging a set
of profile spectra can be done using a linear interpolation as described in Eq. 2.1,
where Ii is the averaged intensity at the ith point, mzi is the m/z at the ith point in
the averaged scan, K is the number of scans to average, mzk,i is the m/z in the kth
scan closest tomzi,mzk,i+1 is the next closest point, and their respective intensities
Ik,i and Ik,i+1.

Ii = 1
K

K∑
k

Ik,i+1(mzk,i+1 −mzi) + Ik,i(mzi −mzk,i)
mzk,i+1 −mzk,i

(2.1)

Averaging centroid spectra is less well defined, with methods for producing “consen-
sus spectra” described in [220]. It is also simple to convert centroid spectra with
known or assumed peak widths back to a profile spectrum using a theoretical peak
shapemodel and average the “re-profiled” spectra. This work will only deal with aver-
agedMS1 spectra as averagedMS2 spectra cannot be used to localize variable mod-
ifications. An example of the effect spectrum averaging has is shown in Figure 2.6,
demonstrating improved isotopic pattern fitting, even in the presence of noise

2.2.3 Peak Picking

Peak picking can be made as complex or as simple as needed, though given that it
is the first step to getting accurate masses, it must be done right, or else all other
steps are moot. As mentioned in Section 1.4.1, there are a variety of methods for ap-
proaching the problem. The model-fitting-based approaches like those described in
[116, 118, 229, 230] were too computationally expensive as they required a first pass
to identify where to attempt peak fitting prior to executing a non-linear optimization
for each peak. The method used in [119] combined peak detection and peak fitting
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(a) The deconvolution result annotatedOrbitrap spectrum without averaging.Pearson Correlation of ρ = 0.8713 be-tween the theoretical and experimentalisotopic pattern for the ion in the isolationwindow.
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(b) The deconvolution result annotatedOrbitrap spectrum averaged with four ad-jacentMS1 scans. PearsonCorrelation of
ρ = 0.9525 between the theoretical andexperimental isotopic pattern for the ionin the isolation window.

Figure 2.6: A demonstration of the effects of spectrum averaging for stabilizing iso-topic patterns for complex Orbitrap spectra, using the spectrum shown in Figure 2.4as an example. The averaged spectrum shows better correlation with the theoret-ical pattern, and shows more accurate isotopic pattern fitting among overlappingisotopic clusters.
into a single process, and had a convenient closed form quadratic estimation proce-
dure for Gaussian peak shapes. Peak shape selection may be critical for detecting
overlapping peaks, but also requires making strong assumptions about the instru-
ment used. The peak picking algorithm implemented in this work consumes a paired
m/z array and intensity array, and produces a peak list object corresponding to the
picked centroids in the input arrays.
Why Implement Peak Picking

As previously mentioned, most software written for interpreting mass spectrometry
data expects to receive centroided peak lists. We, as a field, have left the problem
for the instrument vendor to solve, and let each vendor do as good a job or as bad
a job as they wish. Additionally, as previously mentioned, many noise reducing or
stabilizing transformations of signal only work on profile mode spectra, and cannot
be used in conjunction with vendor peak picking through ProteoWizard [120] or the
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vendor’s commercial software. I implemented peak picking to be able to use a wider
range of signal transformations and to be able to handle data from different vendors
and formats more consistently.

2.3 Deisotoping and Charge State Deconvolution

Once a peak list has been produced, we can identify putative isotopic patterns by
looking for peaks which are within 1.0033

z
m/z away from each other, the mass dif-

ference between C13 and C12 divided by the supposed charge, as is done in simple
deconvolution schemes [124, 126]. This method cannot discriminate between the
serendipitous alignment of peaks and a real isotopic pattern, and such peak align-
ments may happen regularly, as shown in Figure 2.4. Others attempt to be more
specific by adding some constant proportional rule such as that the monoisotopic
peak is always themost intense [125, 225], but these cannot account for the way that
isotopic patterns change as mass increases [231].
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2.3.1 Isotopic Patterns

To be able to discriminate these examples, we can look for isotopic patterns which
use the known abundances of different isotopes to predict the abundance of the
component peaks. To do this, wemust have compositions, drawn either from known
molecular formulae or interpolated from a linear scaling composition model called
an “averagine” [232]. An averagine, as published in 1995, was a biologically weighted
average amino acid composition. An average peptidewithmassmwould have there-
fore have been made up of k averagine residues, where k can be computed by divid-
ing m by the mass of the averagine, rounding k to an integer, and then deducting
hydrogens from k× averagine’s composition. This approach assumes that asmass
increases, the molecule’s composition changes the same way, but it can produce an
average elemental composition for any non-zero mass.

Generating Theoretical Isotopic Patterns

Given a composition, there are many algorithms for generating isotopic patterns
[127–131, 233, 234] at coarse or fine scale. When fine isotopic structure is desired, an
algorithm like IsoSpec [130] takes into account the minute differences in mass that
the extra neutrons of isotopes different elements have to producemultiple peaks for
each additional neutron with abundance corresponding to the abundance of that el-
emental isotope. These peaks are only distinguishable at very high resolution which
means that they are seldom observed when running an instrument in a high through-
put mode for molecules larger than small metabolites. When resolution is insuffi-
cient to tease apart isotopic fine structure, it may still influence the shape of the
aggregated peak. As resolution increases, peaks become asymmetric in an elemen-
tal composition dependent manner before deforming into sub-peaks, which in turn
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split into sub-peaks until each isotopologue is perfectly resolved. This process is
shown Figure 2.7. For a coarse isotopic pattern which collapses all isotopologues
with the samenumber of extra neutrons into a single peak, algorithms such asBRAIN
[127, 128, 234], Mercury [235], or other methods based on Fourier transforms [233]
are more appropriate, and far faster. There are minor differences in the end product
of these isotopic pattern generators, but the choice of which to use is more a matter
of compute time, required memory for large molecules, and stopping conditions.
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Figure 2.7: A demonstration of the effect of resolution on peak shape in the pres-ence of isotopic fine structure for a large GAG, {@sulfate:16; HexN:4; a-Hex:10;
HexN(S):6} (C120H192N10O167S22). As resolution increases, the peak shape changesfrom seemingly symmetric (blue) to slightly asymmetric (orange), deformed (green),splitting (red), sub-peaks (purple), and repeating this process again (brown and pink)until each isotopologue is perfectly isolated (black). Because resolution dependsupon the mass being measured, I instead use the peak full width at half maximum(FWHM) definition of ∆mwhich can be used to find the required resolution by Eq. 1.1.

Previous work in the Zaia lab included an implementation of BRAIN in C++03
and Boost 1.43 [211, 234], and I have since moved that code into C 89, without a
dependency on Boost, and include a Python binding. This library, brainpy [236], has
comparable speed to state of the art C++ implementations [115], and has been used
in multiple publications by members of the Zaia lab [54, 83, 94, 237] and by others
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[238].

Alternative Averagine Models

There are flaws to the averaginemodel that arise from the assumption that the com-
position of a molecule scales uniformly with its mass. This was evident in the case
of HS, where the degree of sulfation may increase, or the chain length may increase,
changing the isotopic distribution in differentways [211]. In the case of glycopeptides,
the glycan moiety may grow, or the peptide moiety may grow, skewing the isotopic
distribution more towards the average for those molecule types. For HS and other
sulfated GAGs, a solution is to have a high sulfation averagine and a low sulfation
averagine, and to try both on every candidate mass and take whichever is better. For
glycopeptides, this would mean a glycan heavy, peptide heavy, and a “balanced” gly-
copeptide averagine model. Using the correct averagine model for the data given
is crucial, especially at higher masses. For the purposes of this study, I used the
formulae shown in Table 2.1 for the glycan, peptide, and glycopeptide averagines. A
comparison of their performance at a fixed theoretical m/z and z is shown in Fig-
ure 2.8. The Peptide model is notably more back-heavy compared to the Glycan
and Glycopeptide because of the proportional abundance of 15N to 14N compared
to the abundance of 18O to 16O. It is worth noting that this Glycan model is based
upon the pattern common to N-glycans which span multiple sub-groups with vari-
able amounts of nitrogen, for example high mannose N-glycans will contain fewer
nitrogens than sialylated complex type N-glycans.

Another alternative approach to this problem, when the set of possiblemolecules
to consider is tractable, is to search for the isotopic pattern of every molecule in the
search space in the spectrum, at every charge. This method steps around the prob-
lem of selecting an appropriate averagine model, and should theoretically be better
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Model Name Formula Monomer Mass
Peptide H7.76C4.94S0.04O1.48N1.36 111.054 31Glycan H11.83C7.00O5.17N0.50 185.5677Glycopeptide H15.75C10.93S0.02O6.48N1.66 274.5067

Table 2.1: Averagine formulae used in this chapter. Note that the Peptidemodel is theoriginal Senko Averagine [232], while the Glycan Averagine was manually estimatedfrom a representative subset of N-glycans. The Glycopeptide Averagine ≈ PeptideAveragine + (HexNAc+Hexose)
2 respectively.

than an averagine for high fidelity signal. In previous work, we used this approach
for various types of GAG deconvolution [83, 237]. This significantly changes the time
complexity and interpretation of the results, and is not tractable for direct use with
whole glycoproteomes.

Isotopic Pattern Width

Asmolecules grow, the number of isotopic peaks abundant isotopic peaks grows as
well, the trend shown in Figure 2.9. As the isotopic pattern grows more complex, the
number of trivial low abundance peaks increases, first in the right tail, and later, as
the heavier peaks of the isotopic pattern shift towards the center, the left tail begins
to become trivial as well. Searching for ever peak in an isotopic pattern is not useful
asmost low abundance peaks do not help us find the correct pattern. The number of
peaks to include in a theoretical isotopic pattern has been debated in [224, 233, 234]
discuss number of peaks to use when constructing a theoretical isotopic pattern,
but no consensus is reached.When an analyte is not abundant, many of its later
isotopic peaks are indistinguishable fromnoise, so looking beyond the first fewpeaks
is impractical. In this work when I consider MS1 spectra I use the first 95% of the
isotopic pattern signal, and for MS2 spectra I use the first 80% of the isotopic pattern
signal. This produces a stronger fit for the wide, complex isotopic patterns in MS1,
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but avoids having many missed peaks in low abundance MS2.
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2.3.2 Goodness of Fit

Given a theoretical isotopic peak intensities T and a set of matched observed peak
intensities O, we need a function f(O, T ) to determine how well T fits O. First, to
make the comparison fair, we must scale T such that ∑k

i ti ≈
∑k
i oi. The simplest

normalization is to begin with the precondition that ∑k
i ti = 1.0, and then simply

set T̂ = T
∑k
i oi, though there are many other techniques. One example is non-

negative least squares [118, 230], another is scaling every peak by a constant c such
that cTargmax(O) = max(O), or a weighted average over possible values of c, though
each introduces its own complications when deconvolving overlaps [221].

Minimizing Functions and Fit Constraints

We have an abundance of goodness-of-fit scores to choose from, with some meth-
ods growingmore optimal as f(O, T )→ 0, minimizing functions, and othermethods
grow more optimal as f(O, T ) → ∞, maximizing functions. Minimizing functions
come naturally from common statistical tests. The χ2-test (Eq. 2.2) is one such ex-
ample used in foundational work by Senko [232] and it is used as a reference for
others [119, 239].

χ2(O, T ) =
k∑
i

(t̂i − oi)2

oi
(2.2)

When T̂ = O, χ2 = 0, and it reflects a perfect fit, though the error is on the scale
of the absolute intensity, making selecting a maximum error threshold problematic.
A related measure used by Decon2LS [119] which they refer to as a “AreaFit” works
around this scale issue by instead operating on themax-normalized versions of both
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Figure 2.10: A comparison of Decon2LS [119] with ms_deisotopederived deconvo-lution. Decon2LS produces many spurious peaks, and does not reliably select themonoisotopic peak.
T and O in Eq. 2.3.

AreaFit(O, T ) =
∑k
i ((ti/max(T ))− (oi/max(O)))2∑k

i (ti/max(T ))2 (2.3)

This lets us set a goodness-of-fit threshold that is independent of the magnitude of
O, and we can instead employ the same scaling method on the χ2 function to step
around this problem too. Previous work by the Zaia lab had used Decon2LS [119]
for glycomics [97] and attempted to use it for glycoproteomics. The goodness-of-
fit function used by Decon2LS is the AreaFit shown in Eq. 2.3 and does not reliably
select the monoisotopic peak, as shown in Figure 2.10.

A third function that behaves similarly is the G-test shown in Eq. 2.4. The G-test
is more stringent than χ2, though the two tests are related.

G(O, T ) = 2
k∑
i

oi log
(
oi

t̂i

)
(2.4)
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Maximizing Functions and Signal Usage

These minimizers are good at discriminating the real patterns from noise patterns,
and the scaled variants all work report proportional errors, in that they treat errors
of large peaks the same as the errors of small peaks. However, this means that
they will seriously consider every small peak, which makes the prior noise filtering
steps leading to peak picking more important. Additionally, these error minimizing
functions are biased against larger masses, as they require more points to follow
the same pattern, preferring fits that depend upon the fewest peaks. A maximizing
criterion like the Pearson correlation coefficient will have the same problem, as it
will penalize including additional sub-optimal peaks in a fit. Hardklör [221] uses a
normalized dot product between the theoretical and experimental isotopic pattern
to select the best fit shown in Eq. 2.5.

d(O, T ) = O · T̂√
T̂ · T̂

√
O ·O

(2.5)

Using Hardklör on glycopeptide MS1 spectra produced some correct monoisotopic
peaks, though it missed many isotopic patterns, shown in Figure 2.11

A goodness-of-fit score that uses an additive model which does not directly re-
duce the quality by adding a sub-optimal peakwould be biased towards solutions us-
ing more peaks. An unscaled dot product score for example would have this pathol-
ogy. The MS-Deconv [223] scoring function is more complex, shown in Eq. 2.6, uses
both intensity and m/z information, where mz(o) corresponds to the observed m/z
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Figure 2.11: A visual comparison of the published Hardklör’s [221] selected monoiso-topic peaks and the manually selected correct precursor peaks.
for the observed peak andmz(t) corresponds to the m/z of the theoretical peak.

smz(o, t) =


1− |mz(o)−mz(t̂)|

d

∣∣∣mz(o)−mz(t̂)
∣∣∣ ≤ d

0 Otherwise
(2.6)

si(o, t) =



1− t̂−o
o

if o < t̂ and t̂−o
o
≤ 1√

1− o−t̂
o

if o ≥ t̂ and o−t̂
o
≤ 1

0 Otherwise
(2.7)

MS-Deconv(O, T ) =
k∑
i

√
t̂i × smz(oi, t̂i)× si(oi, t̂i) (2.8)

This goodness-of-fit score is on the order of √T̂ when optimal, and the addition of
an extra peak does not improve the fit, but does not penalize it either. The si function
penalizes deviation from the theoretical distribution, but it penalizes exceeding the
expected intensity less, presumably because it can be caused by overlapping peaks
pooling signal intensity. The authors of MS-Deconv recognized that their goodness-
of-fit criterion did not reliably select the monoisotopic peak, so they added post-hoc
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monoisotopic peak recalculation that tests to determine whether the best alignment
betweenO and T̂ arises at the selectedmonoisotopic peak, or at the peak atmz(o1)−
1
z
. In practice, these errors may be larger than a single neutron error for overlapped

isotopic patterns, and the overlapping pattern may be more complicated. While MS-
Deconv is freely available, its source code is not, and it is not possible to adjust the
averaginemodel it uses. The published executable was not successful when applied
to complex glycopeptide MS1 data, shown in Figure 2.12a. Its goodness-of-fit score
is simple to implement, and performs reasonably well. The algorithm performed
well on glycopeptideMS2 data, particularly for the smaller peptide backbone product
ions, but did not achieve full coverage of the high mass range fragments shown in
Figure 2.12d. My re-implementation of the scoring function in ms_deisotope was
able to capture those missing isotopic patterns, with a spectral similarity of 0.98
with the MS-Deconv result.

The score used in MetaMorpheus’s mzLib [137] is less modular, not being con-
strained by MS-Deconv’s design requirements for dynamic programming. The full
expression is shown in Eq. 2.12.

ri = t̂i
oi

(2.9)

σ(O, T ) =

√√√√√ 1
k − 1

k∑
i

(
ri −

(
1
k

k∑
i

ri

))2

(2.10)
z(O, T ) =

⌊
1.0033

mz(o2)−mz(o1)

⌋
(2.11)

M(O, T ) =
∑k
i oi

σ(O, T )0.13 ×
|O|0.4

z(O, T )0.06 (2.12)

This score places an explicit preference for the fit which uses the most peaks and
the smallest charge state (Eq. 2.11). The three constant exponents may be tunable
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parameters to adjust the biases, though the method as implemented uses them as
constants. The constraint on the isotopic pattern fit is vulnerable to being washed
out abundancemuch faster than in MS-Deconv’s due the use of intensity rather than
its square root as in MS-Deconv.

I propose a variant of MS-Deconv shown in Eq. 2.15 which is scaled down by a
scaled version of the G test statistic shown in Eq. 2.14.

ôi = oi∑k
j oj

(2.13)
Ĝ(O, T ) =2

k∑
i

ôi log
(
ôi
ti

)
(2.14)

P-MS-Deconv(O, T ) =MS-Deconv(O, T )× (1− γ
∣∣∣Ĝ(O, T )

∣∣∣) (2.15)

This method augments the parameterization of MS-Deconv with a second term γ

which controls howstrong the penalty is for deviating from the expected isotopic pat-
tern. This method is not monotonic, as adding peaks to the fit can lead to a worse fit,
but when it is applied, it can prevent non-optimal patterns from being proposed un-
less no other solution is found. A partitioning of hypothetical score spaces is shown
in Figure 2.13.

All additive scores must be thresholded at some value to select only real fits
and omit spurious ones, like non-additive or or scaled scores. While non-additive or
scaled additive scores may not be on the order of the intensity, all of the maximizing
additive scores shown here are. Selecting a threshold for such scores depends upon
the the magnitude of the intensity measure used, which can vary wildly from instru-
ment to instrument. Another advantage of the penalized MS-Deconv score is that
while it does not put an upper limit on the score, it does make many poor fits have a
score less 0, proposing a natural threshold. Because the penalty is multiplicative, it
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cannot be reproduced by first filtering by a scaled G-test followed by MS-Deconv.
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(b) Re-implementation of MS-Deconv inms_deisotope used with the Peptide aver-aginemodel. Several isotopic patterns lackfits, though the precursor isotopic patternsare correctly resolved.
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(d) The published MS-Deconv’s se-lected monoisotopic peaks from a sub-sequent glycopeptide MS2 spectrum.
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(e) Re-implementation ofMS-Deconv inms_deisotope usedwith the Peptide av-eraginemodel on the same subsequentglycopeptide MS2 spectrum.
Figure 2.12: Application ofMS-Deconv to the complex glycopeptide spectrum shownin Figure 2.6b, and the precursor isolated at 1354.78 m/z
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2.3.3 Solution Search Strategy

The strategy that uses oneormore of these goodness-of-fit scores to choose amongst
a set of possible deconvolution solutions is just as important as the goodness-of-fit
metric. There are two broad classes of deconvolution strategy with representative
implementations, THRASH [240] and dependency tracking [223].

THRASH

Thorough high resolution analysis of spectra by Horn (THRASH) [240], was the first
successful automated mass spectrum deconvolution algorithm, laid the foundation
for much later work [119, 221, 229]. THRASH works by aligning a theoretical iso-
topic pattern at every ±1.0033

z
m/z increment from a reference peak in a 2 m/z inter-

val around that peak, or until the score stops improving from steps either direction.
This search finds a locally optimal alignment, which is then recorded and subtracted
from the spectrum, and the search repeats until there are no more solutions to find.
Because THRASH’s solution is only a local optimum, it does not take into account
nearby peakswhichmay be part of an isotopic pattern that shares one ormore peaks
with its local solution, leading to whichever reference peak that is chosen as the first
reference peak having an arbitrary advantage.

Dependency Graphs

This prompted the development of a set of related dependency tracking approaches,
where all possible solutions that depend on a subset of peaks are solved simultane-
ously. MS-Deconv [223] first presented this approach, where it constructed a de-
pendency graph, and then evaluated every combination of isotopic pattern to peak
assignments that allowed either binary or partial but equal peak ownership sharing.
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The solution could be found in a reasonable amount of time by constraining the com-
binatorial search of peak ownership to just those fits that were not disjoint and by
using an additive score that permitted a dynamic programming solution. A feature
based deisotoping scheme [241] expanded on this idea by incorporating information
about related isotopic fits into the isotopic fit’s score. These approaches are good
for complex, overlapping mass spectra where the local greedy solution may not be
the globally optimal solution. It is worth noting that MS-Deconv does not use itera-
tive signal removal as THRASH does, so all overlapped peaks are taken entirely or
shared evenly between all claiming isotopic fits in a solution, they cannot account
for unequal sharing when scoring isotopic patterns, trickling down as lower scores
due to Eq. 2.7.

Another approach to solving this problemwas to try to solve the whole spectrum
simultaneously, as done by IPPD [230]. IPPD estimates an abundance coefficient
for each possible pattern using `1-regularized non-negative least squares. The reg-
ularization forces poor fits to have a coefficient zero, but this constrains the type
of isotopic fit score used, requiring multiple postprocessing steps to select the real
fits from spurious ones. `1-regularized non-negative least squares also has the ad-
vantage of simultaneously determining both the placement and the scale of isotopic
patterns, as well as allowing unequal peak sharing between multiple isotopic pat-
terns.

When the set of possible compositions is known and tractable, other solutions
may be used to deconvolve complex mixtures. MassTodon [242] approaches the
problem by first computing every fragment from a query structure, and then esti-
mates an isotopic pattern for each product ion based on the theoretical composi-
tion of each fragment, maps each isotopologue to experimental signal, and casts the
problem of assigning signal abundance as a constrainedMax-Flow problemwith eu-
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clidean distance penalties for imperfect fits. This operates on top-downprotein spec-
tra from ultra-high resolution instruments, where isotopic fine structure is present
[130], which also reduces the efficiency of an averagine model.

2.3.4 Why Implement Deisotoping and Charge State Deconvolu-

tion?

With so many well made deconvolution algorithms already published, implementing
another does not seem like productive venture. Thismay be true in theory, but design
decisions make re-use of the implementations of these ideas difficult.

Specialization

As shown in Section 2.3.1, glycans and glycopeptides follow different average ele-
mental trends compared to bare peptides, but not all tools allow users to change
their averagine models, nor do they allow the averagine model to differ betweenMS1

and MS2 spectra. For example, a glycopeptide, when intact, has a glycopeptide-like
isotopic pattern, but under HCD dissociation it’s product ions may be bare peptide
backbone ions following a peptide-like isotopic pattern, partially intact glycan on an
intact peptide be glycopeptide-like. Additionally, the noise types of each implemen-
tation assume that the same model is applicable to both MS1 and MS2, and that the
noise level is global [119, 223] when it is known it may vary with location [229, 230].
For example, applying a global noise level estimation according to themean signal in
a spectrum with abundant oxonium ions may skew the threshold too high to reliably
assign glycopeptide backbone product ionmonoisotopic peaks fromTOF data. Like-
wise, even with a high quality scoring function, attempting to interpret every jagged
peak in a TOF spectrum will be impractically slow, even with a SNR threshold those
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non-zero points need to be visited, a pathology suffered by Decon2LS [119]. Other
tools like Dinosaur [222] explicitly do not attempt to defend against peak noise be-
cause Orbitrap instruments do not exhibit it.

File Formats and Runtimes

Each tool also reads data in mass spectra in different formats, and writes data out in
its own ad hoc text file format. MS-Deconv [223] (Java) can read MGF and mzXML,
and can write out MGF or a tabular format of its own devising, stripped of metadata.
Decon2LS [119] (MSVC++ and .NET) can read from raw files, mzML, and mzXML for-
mats using a CLR binding for ProteoWizard [120], and writes its output in a set of
CSV files, also stripped of metadata. Hardklör [221] (C++) reads mzML and mzXML
format files, and writes its output in a tabular text file. IPPD [230] is an R library,
and MasSpike/BUDA [229] and the feature-based deisotoping technique described
in [241] are MATLAB libraries, but require their own run-times environments as well
as metadata and I/O management. pParse [224] (.NET/C++) can only read Thermo
Fisher’s raw file format or MGF files, and writes its output in binary files to be read
by other tools of the pFind suite. This makes it difficult to write software to read
modern, metadata-rich mzML files when the legacy system being used for decon-
volution is unable to read them. One alternative is to use msconvert [120] to convert
from mzML to the desired legacy format, run the deconvolution, and then map the
deconvoluted results back to the original file, but this may involve copying tens to
hundreds of gigabytes of data, and the deconvolution process remains a black box.
Additionally, it would make it difficult to add new features to the neutral mass deter-
mination process such as for co-isolation detection [137] or make decisions based
upon metadata not available in the chosen format.
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2.4 Design of ms_deisotope

2.4.1 Signal Processing Pipeline

Prior to peak picking of MS1 spectra, I included a signal averaging step as described
in Section 2.2.2. Next, I employed a background noise reductionmethod based upon
[229], followedby aSavitsky-Golay smoother, as described in Section 2.2.1. Following
this denoising step, I used a fast least-squares peak picking method derived from
[119] to centroid profile peaks. Unless explicitly requested, no denoising is done to
MSn spectra which do not have the same noise characteristics. Additional signal
transforms may be specified by the user.

2.4.2 Pattern Search Algorithm

From the development of dependency graphs described in 2.3.3, I knew the short-
comings of THRASH, but that the dependency graph method did not reliably work
on complex glycopeptide spectra. To this end, I used the dependency graph method
to determine which isotopic fits share peaks, and then extract greedy solutions. For
MS1 spectra, which are farmore complex thanMS2 spectra, thePenalizedMS-Deconv
score worked best for enforcing the selection of valid isotopic patterns. As shown
previously in Figures 2.12 and 2.10, MS-Deconv and Decon2LS were insufficient. I
combined ideas from THRASH and dependency graphs by constructing the depen-
dency graph using a normal traversal of the spectrum shown in Alg. 2, but used an
iterativemonoisotopic peak recalibration fromTHRASH to generate alternative start-
ing points described in Alg. 3. Because I cannot guarantee the scoring function will
behave as MS-Deconv’s does, I solve each subgraph greedily. This prevents arbi-
trary traversal order from favoring one isotopic pattern over another, as in traditional
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Algorithm 2: FitIsotopicPatterns
Data: Peak List P
Data: Charge Range C
Data: Isotopic Fit Graph G
Data: Isotopic Fit Score Threshold t
Result: Solution SetD
foreach pseed in P do

foreach c in C do
// Recalibrate p from other nearby peaks given c
M ←MonoisotopicPeakRecalibration(P, pi, c);
foreach p inM do

tid← CreateIsotopicPattern(p, c);
// Match experimental peaks and construct an
// Isotopic Fit
fit← MatchIsotopicPattern(P, tid, 10ppm);
fit.score← ScoreIsotopicFit(fit);
if fit.score > t thenput fit in G;
end

end
end

end
D ← ∅;
foreach g in FindDisjointSubgraphs(G) do

D ← D ∪ SolveSubgraph(g);
end
returnD

THRASH. I subtract the used signal and repeat the process until either the peak list
stops changing significantly from subtraction or after n = 10 iterations, letting the
algorithm remove overlaps and uncover distorted patterns.

Because precursor recalculation was an important part of the deconvolution pro-
cess, they are queried first, and with greater stringency. When the deconvolution pro-
cess fails to locate an acceptable solution that spans the provided isolation window,
matches the vendor selected charge state if given, and includes the centroid peak
nearest to the vendor reportedm/z, the precursor is marked as “defaulted”, signaling
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Algorithm 3: MonoisotopicPeakRecalibration
Data: Peak List P
Data: Starting Peak pstart
Data: Putative Charge State c
Data: Max Step Count k
Result: Monoisotopic Peak CandidatesM
M ← {(pstart, c)};
i← 1;
while i < k do

// Search for better monoisotopic peaks in the lower mass
// range to the left of pstart
mzi ← pstart.mz − (1.0033/c) ∗ i;
Pmzi ← AllPeaksFor(P,mzi, 10ppm);
M ←M ∪ {PlaceholderPeak(pj.mz − (1.0033/c) ∗ i) : pj ∈ Pmzi};
i← i+ 1;

end
returnM

to downstream processes that they should not trust the reported mass as shown
in Alg. 4. Additionally, the isolation window is queried for overlap with other abun-
dant isotopic patterns, which introduce co-isolated fragmentation products to the
associated MS2 spectrum.

2.4.3 Test and Comparison

I tested the algorithm on several datasets used in [23, 243] to select which features
should be used for streamlined processing. The Penalized MS-Deconv scoring func-
tion worked well for MS1 spectra where the ions are abundant and isotopic patterns
are complex, and produced fewer spurious solutions than the original MS-Deconv
scoring function. In MS2 spectra, I found the MS-Deconv scoring function worked
better under less ideal circumstances common to glycopeptide spectra, while still be-
ing able to reliably recover the charge state andmonoisotopic peak when an isotopic
patternwas observed. Compared toDecon2LS,ms_deisotope’s implementationwas
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Algorithm 4: PrecursorIsotopicFitExtraction
Data: Isotopic Fit Graph G
Data: Query Peak p
Result: Best Spanning Isotopic Fit fit
fit← NULL;
fits← FindDependentSolutions(G, p);
if fits 6= ∅ then

fit← arg maxfit {fit.score : fits};
else

fits← FindDisjointInterval(G, p.mz);
if fits 6= ∅ then

fit← arg minfit
{
|fit.monoisotopic_mz−p.mz|

fit.score
: fits

};
end

end
return fit

substantially better at selecting the monoisotopic peak for the glycan LC-MS sam-
ples, all of whichwere ran on a Q-TOF-based instrument, and Decon2LSwas not suc-
cessful when deconvolving product ion peaks for glycopeptides. The consequences
of this difference is partially described in [94], discussed in more detail in Chapter 3.
It is not possible to do a fair side-by-side comparison of deconvolution results be-
tween Decon2LS and thems_deisotope deconvoluter using GlycReSoft because the
downstreammethod uses information passed along byms_deisotope that would be
absent in the Decon2LS workflow.

To demonstrate the performance of the efficacy of ms_deisotope on glycopep-
tide data when compared to a separately published deconvoluter, I used MS-Deconv
[223] and ms_deisotope on a tryptic AGP digest sample ran on a Thermo Fisher QE-
HF used for internal calibration. As a crude first measure I compared the precursor
masses reported by both tools for each MS2 spectrum, shown in Figure 2.14. The
nature of ms_deisotope’s precursor recalculation policy stipulates that it cannot be
more than 3 Da away from the vendor reported precursor peak, which accounts for
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12.5% of the differences in precursor masses reported. Of the remaining spectra,
20.3% have a mass difference between 0.2 to 3 Da, which may account for differ-
ences in isotopic peak selection or precursor peak. An error of 0.2 Da is sufficient to
violate a 10 ppm mass accuracy constraint even over 12,000 Da.

−5000 −2500 0 2500 5000 7500 10000 12500
Mass Difference

100

101

102

103

Co
un

t

−15 −10 −5 0 5
100

101

102

103

Figure 2.14: A histogram of the difference between MS-Deconv [223] vsms_deisotope for a tryptic AGP digest. The counts are shown in log-scale, show-ing that most reported precursor masses were very close between the two tools.The plot however shows many large errors on the scale of hundreds to thousandsof Da. These errors are the result of MS-Deconv failing to find a satisfactory solutionfor the instrument reported peak and charge, and either reporting a different chargeor finding the nearest fitted peak to report. The inset plot shows the breakdown ofmass differences close to zero, which still shows substantial deviations.
While MS1 errors are substantial, they are considerably more complex than what

MS-Deconv was originally intended to solve, and are governed by different isotopic
models. Glycopeptide product ions producedbyHCD tend to be dominated by peptide-
like ions with a smaller number of monosaccharides present. To measure MS2 simi-
larity, I extracted each scan and calculated the cosine similarity betweenMS-Deconv’s
interpretation andms_deisotope’s, using precision to the second decimal place. The
resulting similarity trend is shown in Figure 2.15. This method of comparison re-
mains crude as well, but an error of 0.001 Da will not be missed at 20 ppm mass
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accuracy for a mass greater than 500 Da.
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Figure 2.15: A histogram of the cosine similarity between MS-Deconv andms_deisotope MS2 spectra.

2.4.4 Conclusion

These comparisons demonstrate that the deisotoping and charge state deconvo-
lution method selected suitable for glycans and glycopeptides. The integrated sig-
nal processing tools make it possible to interpret both Q-TOF and Orbitrap data, en-
abling downstream tools to be written with fewer mass analyzer specific concerns.
Additionally, the spectrum representation chosen for the implementation was built
directly on the metadata rich mzML standard [244], and I use a streaming mzML se-
rializer in the deconvolution pipeline to write the results, including source metadata
and additional annotations acquired during processing to a standard compliant file.
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Chapter 3

Glycan Identification and Glycome Inference from LC-MS and LC-MS/MS Experi-

ments

This work was originally published in “Klein, J., Carvalho, L., & Zaia, J.
(2018). Application of network smoothing to glycan LC-MS profiling.

Bioinformatics, 34(20), 3511–3518.
https://doi.org/10.1093/bioinformatics/bty397”

Glycosylation modulates the structures and functions of proteins and lipids in
a broad class of biological processes [9]. Accurate mass measurement defines
monosaccharide composition given assumptions regarding glycan class andbiosyn-
thesis [245]. For unseparated mixtures, mass spectrometry analysis determines the
mass-to-charge ratio values for only the most abundant glycans; dynamic range for
detection of glycans is poor because of ion suppression [246]. By contrast, online
separations coupled with mass spectrometry improve dynamic range and repro-
ducibility of glycan analysis, at the cost of increased analysis time and workflow
complexity.

There are many tools for interpreting glycan mass spectral datasets [96, 97, 99,
141, 199, 246, 247] for both unseparated and separated experimental protocols. These
programs address instrument-specific signal processing requirements. For exam-
ple SysBioWare [247] performs sophisticated baseline removal prior to fitting peaks,
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while GlyQ-IQ [99] was written for cleaner Fourier Transform MS (FTMS) that does
not require such a baseline removal step. Tools that build on the THRASH implemen-
tation from Decon2LS [96, 97, 119] are unable to deal with variable baseline noise or
extreme dynamic range.

Each tool also has its own format for defining glycan structures or composi-
tions, some even bundling a large database with their software to remove the burden
from the user to build a list of candidates themselves [96, 99, 199] while others de-
fine methods for building glycan databases as part of the program [97, 141]. Many
of these tools are designed for specific glycan subclass such as N-glycans or gly-
cosaminoglycans and/or organisms, limiting their vocabulary of possible monosac-
charides to just those commonly found in that subgroup [96, 99, 199, 246]. Often,
these tools are tailored for analysis of a particular derivatization state, adduction
conditions, or neutral loss pattern [96, 97, 246]. Work has been done to construct a
standardized namespace and representation for glycans, glySpace including both
structures and compositions [213, 214]. This data is publicly accessible, including a
programmatic query interface using SPARQL over HTTPS [248]. Tools that can com-
municate with these services have the potential to lead researchers to find deeper
connections from cross-referenced information, and other researchers can more
readily find and use their work.

These spectral processing and glycan library properties are reflected in the scor-
ing function that each program uses to discriminate glycan signal from the back-
ground noise and contaminants. Several methods have been developed using differ-
ent facets of the observed data. [96] used the isotopic pattern goodness-of-fit while
[246] used intensity features of associated MS2 scans to evaluate partial structure
and compositionmatch quality. [99] combined several features of the MS1 evidence,
including elution profile peak shape goodness-of-fit, isotopic fit, mass accuracy, scan
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count, and in-source fragmentation correlation. Some of these methods are well-
defined and invariant from instrument to instrument in this era of high resolution
mass spectrometry, but others are tightly coupled to the experimental equipment.
Missing from this list are methods to target a glycan’s intrinsic properties, such as
charge state distribution or facility in acquiring adducts, which can increase the num-
ber of spurious assignments if not considered. We propose a new scoring function
which is able to combine those properties which are independent of experimental
setup with these glycan-aware features.

As observed by [199], there is also value in including related glycan composi-
tion identifications in how much confidence one assigns to a given glycan compo-
sition assignment. They used a method to exploit the known biosynthetic rules of
N-glycans to connect peaks in a MALDI mass spectrum assigned to a particular N-
glycan by intact mass alone. Their method using the maximum weighted subgraph
of the biosynthetic network had demonstrably better performance than chance with
their expert system annotation method. [99] considered a similar idea with more
emphasis on handling in-source fragmentation observed in LC-MS and LC-MS/MS
experiments.

We extend this notion of a glycan family to covermore sectors of the biosynthetic
landscapewhichwe term “neighborhoods”, and present an algorithm for learning the
importance of each neighborhood from observed data, which can in turn be used to
improve glycan composition assignment performance. We also apply our method
using three different glycan composition search spaces to show how the underly-
ing database can influence results. We present our method on typical N-glycans
in humans, though our method can be applied to any variety of glycan composition
whosemonosaccharides can be described using IUPAC trivial names orwhose com-
ponents can be described in terms of chemical formulae.
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3.1 Methods

3.1.1 Glycan Hypothesis Generation

In eukaryotes, a 14monosaccharideN-glycanof composition HexNAc2 Hex12 is trans-
ferred to a newly synthesized protein in the endoplasmic reticulum by the oligosac-
charyl transferase protein complex. This glycan is trimmed to HexNAc2 Hex9 during
protein folding and quality control. As the glycoprotein transits the Golgi appara-
tus, N-glycans are trimmed to HexNAc2 Hex5 before being elaborated into hybrid and
complex N-glycan classes [5]. Glycan structures are refined by a series of reactions
that yield over amillion possibleN-glycan topologies, as shown in [70]. These topolo-
gies define the glycan’s geometry and protein binding properties. Neither MS1 nor
collisional tandem MS of glycans can capture the full tree or graph structure of an
N-glycan, so we reduced the topology to a count of each type of residue, a composi-
tion.

Starting with the core motif HexNAc2 Hex3, we generated all combinations of
monosaccharides ranging between the limits in Table 3.1 to build a human N-glycan
composition database, which produced 1240 distinct compositions. These rules are
able to efficiently generate all glycan compositions from canonical branching pat-
terns and lactosamine extensions, as well as rarer constructs such as LacdiNAc
[199] at the cost of including some wholly improbable compositions. To perform a
side-by-side comparison we also extracted the glycan list from [96]derived from the
biosynthetic rules in [249] with 319 compositions, and another database using all cu-
rated N-glycans from glySpace via GlyTouCan [213] containing only [Hex, HexNAc,

Fuc, Neu5Ac, sulfate], with 275 distinct compositions. As previous analysis of
Influenza A virus samples detected sulfated N-glycans [23], we also created a com-
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Monosaccharide Lower Limit Upper Limit Constraints
HexNAc 2 9

Hex 3 10
Fuc 0 4 HexNAc > Fuc

NeuAc 0 5 (HexNAc− 1) > NeuAc

Table 3.1: Human N-glycan Composition Bounds [5]
binatorial database with up to one sulfate included, for a total of 2480 compositions.
As our algorithm treats HexNAc and HexNAc(S) as distinct entities, for all monosac-
charides with post-attachment substituents such as sulfate and phosphate, we de-
tached the substituent from the core monosaccharide. Our implementation is able
to interpret IUPAC trivial names and compositions thereof with standard substituent
and unambiguous backbone modifications, permitting a wide range of possible gly-
can compositions.

3.1.2 LC-MS Data Preprocessing

We analyzed samples from several sources, including both Q-TOF and Orbitrap in-
struments as shown in Table 3.6. For details on sample preparation and data ac-
quisition, please see the source citations in the referenced table. We converted all
datasets tomzML format [244] using Proteowizard [120] without any data transform-
ing filters. We applied the deconvolution procedure described in Chapter 2 using an
averagine [232] formula appropriate to the molecule under study. For native glycans,
the formula was H1.690C1.0O0.738N0.071, for permethylated glycans, the formula
was H1.819C1.0O0.431N0.042.

77



3.1.3 Chromatogram Aggregation

We clustered peaks whose neutral masses were within δmass = 15 parts-per-million
error (PPM) of each other. When there were multiple candidate clusters for a single
peak, we used the cluster with the lowest mass error. Next, we sorted each cluster
by time, creating a list of aggregated chromatograms. To account for small mass
differences, we found all chromatograms which were within δmass = 10 PPM of each
other and which overlap in time and merge them. These mass tolerances were se-
lected empirically, and can be adjusted as needed by the user.

3.1.4 Glycan Composition Matching

For each chromatogram,we searched eachglycandatabase for compositionswhose
masses were within δmass = 10 PPM for QTOF data, 5 PPM for FTMS data. These
values are commonly used for data from these instruments based upon informa-
tion from their manufacturers. We merged all chromatograms matching the same
composition. Then, for each mass shift combination expected for each sample, we
searched each glycan database for compositions whose neutral mass were within
δmass of the observed neutral mass - mass shift combination mass, followed by an-
other round of merging chromatograms with the same assigned composition. We
reduced the data by splitting each feature where the time between sequential ob-
servation was greater than δrt = 0.25 minutes and removed chromatograms with
fewer than k = 5 data points. The same chromatogram may be given multiple as-
signments and designatedmultiplemass shifts, and chromatogramswithout glycan
assignments may use chromatograms with glycan assignments as mass shifted
components. This ambiguity information was propagated through each merge and
split step. We termed these remaining assigned and unassigned chromatograms
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candidate features.

3.1.5 Feature Evaluation

We computed several metrics to estimate how distinguishable each candidate fea-
ture was from random noise. The metrics are mentioned in List 3.1, but for more
information see Sec. 3.5.3.

1. Goodness-of-fit of chromatographic peak shape to a model function [99, 250].
2. Goodness-of-fit of isotopic pattern to glycan composition weighted by peakabundance [97].
3. Observed charge states with respect to glycan composition and mass.
4. Time gap between MS1 observations detecting missing peaks and interfer-ence.
5. Adduction states with respect to glycan composition and mass.

List 3.1: Chromatographic Feature Metrics

Thesemetrics are bounded in (−∞, 1). Any observation for which anymetric was
observed below a feature specific threshold was discarded as having insufficient evi-
dence for consideration. The observed score s for each candidate feature is the sum
of the logit-transformation of thesemetrics. This produces a single value bounded in
(−∞,∞), whose distribution we assume is asymptotically normal. A value of s < 8

reflects a low confidencematch, with confidence increasing as s does. As thesemet-
rics are tied to reliable detection of the the glycan by the mass spectrometer, they
depend upon glycan abundance, sample quality andmass spectrometer resolution.

3.1.6 Glycan Composition Network Smoothing

Ideally, each glycan present in a sample under analysis would produce sufficient ex-
perimental evidence that they can be identified. In practice, glycan compositions
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with lower abundances may not present strong evidence, leading to those glycan
compositions being discarded. Others have demonstrated that it is advantageous
to use relationships between glycans based on biosynthetic or structural rules to
adjust the score of a single glycan assignment [99, 199]. To improve performance,
we propose a method based on Laplacian regularized least squares [251] to use evi-
dence from glycan compositions related over a network to smooth its evaluation of
glycan composition feature matching.

Previous approaches to using information regarding identification of one glycan
composition to increase the confidence in another have been proposed by [199] and
[99] using different techniques. [199] used random walks along the biosynthetic net-
work between identified glycan compositions to increase the confidence of those
connected compositions. This method works well but requires that the parameters
of the randomwalk be properly tuned for the biosynthetic network being used. Lapla-
cian regularized least squares is more robust to small changes to the network and
is able to use the entire network. [99] included a term in their criterion for detec-
tion requiring the presence of another glycan composition with onemore or one less
monosaccharide to permit identification. This puts substantial weight on a boolean
term, giving it the ability to overrule other experimental evidence. Similar methods
could be devised using methods like ant colony optimization to traverse the biosyn-
thetic graph, or a a database-specific belief network, but these methods would re-
quire considerable manual tuning for each new database to be tested.

Glycan Composition Graph

For each database of theoretical glycan compositions we create, we define each
composition to be a coordinate vector in aZ+c space where c is the number of com-
ponents in any glycan composition, and represented by a node in an undirected gly-
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can composition graph G. Under this interpretation, we can compute theL1-distance
between two glycan compositions, representing the biosynthetic distance between
the two compositions, an analog for the number of enzymatic steps needed to go
from one glycan to the other. For any two glycan compositions gu, gv , ifL1(gu, gv) = 1

we add an edge connecting gu and gv to G with weight w = 1.

Neighborhood Definition

Our definition of distance connects glycan compositions which differ by a sin-
gle monosaccharide, but we can assert how larger collections of glycan compo-
sitions are related. To this end, we extend the definition of neighborhoods for N-
glycansusing intervals over monosaccharide counts shown in Table 3.2. These
neighborhoods are arranged to span particular epitopes or biosynthetically related
subtypes of N-glycans, such as sialylation state or branching pattern. Neighbor-
hoods overlap sets of glycan compositions which are also biosynthetically related.
Each neighborhood spans the eponymous class of glycan compositions, as well as
the preceding class and proceeding class. For example, the Tri-Antennary neighbor-
hood spans Bi-Antennary and Tetra-Antennary compositions. This helps to chan-
nel the estimation of τ among related groups. The Hybrid, Bi-Antennary and Asialo-
Bi-Antennary neighborhoods introduce complications because they are biosynthet-
ically close to each other. For the simplicity, we chose to include all of Hybrid in
Asialo-Bi-Antennary and permit up to one NeuAc in its members.

Glycan compositions may belong to zero or more neighborhoods, as there are
unusual glycan compositions which do not satisfy any neighborhood’s rules, and
several neighborhoods intentionally overlap to express broad relationships between
groups.

We define a matrix A as an n × k matrix where Ai,k is the degree to which gi
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Name HexNAC Hex NeuAc SizeMin Max Min Max Min Max
High Mannose 2 2 3 10 0 0 16Hybrid 2 4 2 6 0 2 80Bi-Antennary 3 5 3 6 1 3 104Asialo-Bi-Antennary 3 5 3 6 0 1 96Tri-Antennary 4 6 4 7 1 4 172Asialo-Tri-Antennary 4 6 4 7 0 0 56Tetra-Antennary 5 7 5 8 1 5 240Asialo-Tetra-Antennary 5 7 5 8 0 0 60Penta-Antennary 6 8 6 9 1 5 280Asialo-Penta-Antennary 6 8 6 9 0 0 60Hexa-Antennary 7 9 7 10 1 6 300Asialo-Hexa-Antennary 7 9 7 10 0 0 60Hepta-Antennary 8 10 8 11 1 7 150Asialo-Hepta-Antennary 8 10 8 11 0 0 30

Table 3.2: N-Glycan Neighborhood Definitions. These define the ranges ofmonosac-charides which will be used to classify a glycan composition as being a member ofeach neighborhood, and the number of combinatorial N-glycan compositions in eachneighborhood.
belongs kth neighborhood:

Ai,k = 1
|neighborhoodk|

∑
g∗∈neighborhoodk

L1(gi, g∗) (3.1)

To reduce the impact of neighborhood size on the elements of A, the columns of A

are first normalized to sum to 1, and then the rows of A are normalized to sum to 1.
We assume that members of the same neighborhood will share a central tendency
τ .

Laplacian Regularization

To accomplish our goal, we can use Laplacian regularized least squares to find a new
score φ, based upon s and relationships among the observed glycans described by
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our biosynthetic graphG. These relationships can be directed tomove towards some
central tendency τ using the Laplacian of G and some definitions of broad groups in
G.

We combine the observed score s and the structure of G to estimate a smoothed
score φ that combines the evidence for each individual glycan composition as well
as its relatives. As s is the size of the set of observed glycan composition p while φ
is of size n, we partition φ into a block vector

φo
φm

 with dimensions
 p

n− p

.
Let L be the weighted Laplacian matrix of G , which is an n× nmatrix. To ensure

L is invertible, we add In to L. We partition L into blocks
Loo Lom

Lmo Lmm

. We also

partition A into
Ao

Am

 and τo = Aoτ , τm = Amτ .
We find the φ that minimizes the expression

` = (s− φo)t(s− φo) + λS(L, φ, τ) (3.2)
S(L, φ, τ) =

 φo − τo
φm − τm


t Loo Lom

Lmo Lmm


 φo − τo
φm − τm

 (3.3)

(3.4)

where λ controls how much weight is placed on the network structure and τ .
To obtain the optimal φ, we take the partial derivative of ` w.r.t φm:

0 = ∂`

∂φm

(
(s− φo)t(s− φo) + λS(L, φ, τ)

) (3.5)
φ̂m = −Lmm

−1Lmo(φo − τo) + τm (3.6)
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and w.r.t. φo

0 = ∂`

∂φo

(
(s− φo)t(s− φo) + λS(L, φ, τ)

) (3.7)
φ̂o =

[
I + λ

(
Loo − LomL−1

mmLmo
)]−1

(s− τo) + τo (3.8)

To use thismethod, wemust provide values for λ and τ . While these values could
be chosen based on the expectations of the user for a given experiment, we provide
an algorithm for selecting their values in Section 3.5.5. These methods use the
topology of the glycan composition graph and the distribution of observed scores,
and cannot fully capture boundary cases or related but disconnected parts of the
graph.

3.2 Results

Wedemonstrated the performance of our algorithmusing released influenza hemag-
glutinin data set 20141103-02-Phil-BS and a serum glycan data set Perm-BS-070111-

04-Serum. Please refer to section 3.5.7 for all other datasets. For each comparison,
the unregularized case is not smoothed, effectively λ = 0, the partially regularized
case uses the grid search fitted values of τ but uses a fixed λ = 0.2, and the fully
regularized case uses the grid search fitted values of both τ and λ.

3.2.1 Chromatogram Assignment Performance for 20141103-02-

Phil-BS

Thefitted parameters for the network constructed for20141103-02-Phil-BS are shown
in Table 3.3. The assigned chromatograms are shown in Figure 3.1. We observe up
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Neighborhood τ Phil-BS SerumCombinatorial + glySpace Krambeck Combinatorial glySpace KrambeckSulfate
high-mannose 18.008 15.061 17.089 20.328 19.392 19.720hybrid 13.440 12.435 12.503 20.997 18.610 20.056bi-antennary 0.000 0.000 0.000 15.901 16.826 17.593asialo-bi-antennary 14.078 10.916 13.591 22.585 21.563 21.827tri-antennary 0.000 0.000 0.000 26.420 19.605 23.644asialo-tri-antennary 14.538 6.565 11.952 20.025 21.128 19.764tetra-antennary 0.000 0.000 0.000 19.508 18.542 17.674asialo-tetra-antennary 14.331 4.842 12.373 2.472 7.180 2.568penta-antennary 0.000 0.000 0.000 11.878 15.035 11.682asialo-penta-antennary 11.588 1.255 9.784 0.000 0.000 0.000hexa-antennary 0.000 0.000 0.000 0.000 0.000 0.000asialo-hexa-antennary 11.094 3.883 13.223 0.000 0.000 0.000hepta-antennary 0.000 0.000 0.000 0.000 0.000 0.000asialo-hepta-antennary 3.117 1.529 2.703 0.000 0.000 0.000

λ̂ 0.99 0.69 0.99 0.99 0.99 0.99
γ̂ 11.39 14.60 10.42 20.57 18.42 20.72

Table 3.3: Estimated values of smoothing parameters τ , λ, and γ for each datasetand database
to seven branch structures in this sample, consistent with these N-glycans being de-
rived from an avian context (5, 23).
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Figure 3.1: Chromatogram Assignments and Quantification for 20141103-02-Phil-
BSUsing the Combinatorial + Sulfate database. The Retention Time (Min) axis showsthe experimental retention time in minutes, and the Relative Abundance axis showsthe intensity of the signal from each aggregated ion species. The identified glycancompositions are labeled with a tuple describing the number of each component ofthe form [HexNAc, Hex, Fuc, NeuAc, SO3]

85



0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

Receiver-Operator Characteristic Curve

Combinatorial Grid (0.991 AUC)
Combinatorial Partial (0.995 AUC)
Combinatorial Unregularized (0.882 AUC)
Glyspace Grid (0.802 AUC)
Glyspace Partial (0.808 AUC)
Glyspace Unregularized (0.811 AUC)
Krambeck Grid (0.742 AUC)
Krambeck Partial (0.742 AUC)
Krambeck Unregularized (0.742 AUC)

Figure 3.2: Performance Comparison with and without Network Smoothing for
20141103-02-Phil-BS. The ROC comparing TPR to FPR shows how each databaseperformed under different regularization conditions, summarized with the AUC inthe legend. The Combinatorial + Sulfate database showed the best performance,and improved with regularization.

The comparison of assignment performancewith differing degrees of smoothing
for each database are shown in Figure 3.2 and Table 3.4. We used the Receiver
Operator Characteristic (ROC) Area Under the Curve (AUC) tomeasure performance,
using manually validated compositions as ground truth. We observed the greatest
number of assignments using theCombinatorial + Sulfate database, and the greatest
ROC AUC in the partially regularized condition.

Name ROC AUC True Matchesa
Combinatorial Unregularized 0.882 56Combinatorial Partial 0.995 57Combinatorial Grid 0.991 57GlySpace Unregularized 0.811 40GlySpace Partial 0.808 38GlySpace Grid 0.802 31Krambeck Unregularized 0.742 28Krambeck Partial 0.742 29Krambeck Grid 0.742 29[23] - 46
a Selected at φo > 5.0

Table 3.4: Performance Comparison for
20141103-02-Phil-BS using ROC AUC. TheCombinatorial Partial Regularization ap-proach performed best.

86



3.2.2 ChromatogramAssignmentPerformance forPerm-BS-070111-

04-Serum

The fitted parameters for the network constructed for Perm-BS-070111-04-Serum are
shown in Table 3.3. The assigned chromatograms are shown in Figure 3.4.
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Krambeck Unregularized (0.866 AUC)

Receiver-Operator Characteristic Curve

Figure 3.3: PerformanceComparisonwith andwithoutNetwork Smoothing forPerm-
BS-070111-04-Serum . The Receiver Operator Characteristic Curve (ROC) comparingTrue Positive Rate (TPR) to False Positive Rate (FPR) shows how each database per-formed under different regularization conditions, summarized with the Area Underthe Curve (AUC) in the legend

The comparison of assignment performancewith differing degrees of smoothing
is shown in Figure 3.3. We observe the greatest number of total true identifications
using the partially regularized Combinatorial database. However, the Combinato-
rial database also has many more false positives, with a ROC AUC of 0.816. These
false positives do not appear in the biosynthetically constrained Krambeck database
which maximizes its ROC AUC in the partially regularized condition at 0.883. After
removing all ambiguous matches, the Krambeck database also has nearly the same
number of true matches as the Combinatorial database.
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Figure 3.4: Chromatogram Assignments for Perm-BS-070111-04-Serum. In all pan-els, the Retention Time (Min) axis shows the experimental retention time in minutes,and the Relative Abundance axis shows the intensity of the signal from each ag-gregated ion species. The identified glycan compositions are labeled with a tupledescribing the number of each component of the form [HexNAc, Hex, Fuc, NeuAc] (a)Features Assigned After Grid Regularization of Perm-BS-070111-04-Serum (b) Thissample contains heavy ammonium adduction which introduces ambiguity in intactmass based assignments (c) Low scoring features which may be discarded basedon individual evidence alonemay bemore reasonable to accept given evidence fromrelated composition, such as our network smoothing method
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Name ROCAUC True Matchesa Non-Ambiguous Matches
Combinatorial Unregu-larized 0.679 86 61
Combinatorial Partial 0.816 87 62Combinatorial Grid 0.804 86 61GlySpace Unregularized 0.788 59 51GlySpace Partial 0.803 60 52GlySpace Grid 0.809 60 52Krambeck Unregularized 0.866 70 60Krambeck Partial 0.883 70 60Krambeck Grid 0.882 69 59[96] - 72b 59
a Selected at φo > 5.0b Only includes cases with sufficient MS1 scans available for comparison

Table 3.5: Performance Comparison for Perm-BS-070111-04-Serum using ReceiverOperator Characteristic (ROC) Area Under the Curve (AUC) and number of non-ambiguousmatches. While the Krambeck database had a better ROCAUC, the Com-binatorial database had more true matches.
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3.3 Discussion

We demonstrated that the regularization method improved the sensitivity and speci-
ficity of glycan composition assignment for LC-MS based experiments. The method
used similar assumptions about the importance of commonsub-structural elements
of N-glycans to [199], but we extend this concept with the addition of a procedure for
learning the relationship strengths and use broader groups of structures.

The experimental results from the original analysis of 20141103-02-Phil-BS and
20141031-07-Phil-8282demonstrated thatwhile both strains expressedpredominantly
high-mannose glycosylation, 20141103-02-Phil-BS expressed more larger complex-
type structures [23]. In our findings shown in Figure 3.1, we recapitulate these re-
sults while reducing the number of false assignments, Table 3.4. There are substan-
tial differences in both the mass spectral processing and scoring schemes which
contribute to these results, but the regularization procedure is responsible for recov-
ering many low abundance features from this comparison. As these samples are
derived from chicken eggs, we have observed larger branching patterns than are ob-
served in normalmammalian tissue [5]. There is evidence for this in the 20141103-02-

Phil-BSwith HexNAc9 Hex10-based compositions suggesting a seven branch pattern,
though this cannot be determined without high quality MS2 data. The τ fit for Phil-BS
(shown) and Phil-82 (supplement) have smaller values in the neighborhoods of their
largest glycan compositions as these features tended to be low in abundance and
not high scoring in their own right, but were partially supported by the overlap with
the next largest neighborhood, as expected. We observed the best performancewith
the Combinatorial + Sulfate database, which producedmore than half-again asmany
true matches than the other two databases. It produced several false matches as
well, but the smoothing process removed these while boosting the score of other
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low abundance matches which were consistent with higher scoring matches.
The Krambeck database performed identically in all smoothing conditions as it

was only able to match the common species, not including cases that were multiply
fucosylated or sulfated. It had no false matches ranked alongside its true matches
so smoothing could not change its performance. The glySpace-derived database
produced more true matches, but also lacked some of these more fucosylated and
complex compositions. Some of the compositions included by the glySpace-derived
databasewere lower scoring, but the chosen value of γ for that databasewas greater
than 18, causing the fitted values of τ to omit the larger, less abundant complex-type
N-glycans. This caused smoothing to lower the scores of these real matches rather
than raise them, as with the Combinatorial + Sulfate database.

As we show in Figure 3.3, regularization improves the predictive performance of
the identification algorithm on Perm-BS-070111-04-Serum for all databases. We re-
produce the majority of the glycan assignments from [96], but the ambiguity caused
by ammonium adduction as shown in Figure 3.4makes a direct comparison of com-
position assignment lists difficult. Our algorithm requires aminimumamount ofMS1
information in order to compute a score, which some of the assignments in the orig-
inal published results do not possess, and are omitted from the count in Table 3.5.
After accounting for ambiguity, we were able to assign all of the compositions pre-
viously reported using the Krambeck database, which was used by [96], and with
the combinatorial database. The glySpace-derived database did not contain all of
these compositions, but performed competitively with the combinatorial database’s
ROC AUC. The combinatorial database matched a small number of glycan compo-
sitions which were not in Krambeck but which were consistent with other glycan
compositions observed nearby in retention time. The combinatorial database also
benefited most substantially from smoothing, discarding many false positives while
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retaining many more true positives at the same false positive rate compared to the
other databases. These invalid glycan compositions can match LC-MS features at
any point in the elution profile, though in this dataset the majority of these matches
appear to be in the time range between 10 and 22 minutes, and similar glycan com-
positions that are biosynthetically valid elute later on in the experiment. Therefore a
for a retention-time aware approach to evaluating glycan composition assignments,
as described in [203] could also be useful, but this is likely dependent upon the ex-
perimental workup and separation technique used.

While the biosynthetically constrained Krambeck database performed better on
Perm-BS-070111-04-Serum, it did not contain all of the reasonably assignable glycan
compositions, and it performed poorly on 20141103-02-Phil-BS with a false negative
rate of 50% compared to the combinatorial database. This is because the neces-
sary enzymatic pathways were either not considered in the original authors’ model
because either the enzyme was excluded for simplicity [68] or because the partic-
ular enzymes used were not within the scope of the model used [252, 253]. This
highlights the importance of selecting a good reference database, though a post-
processing step such as the we described here can help mitigate using too large a
database, but not a too small one.

In this work, we used the same network neighborhood imposed over different
underlying sets of composition nodes, and the connectivity of those networks did
not take into account the constraints of the biosynthetic process. It may be possible
to obtain better performance by defining network connectivity according to concrete
enzymatic relationships. This may also alter how the neighborhoods are defined
and how A is parameterized, and in turn how τ is learned. Similarly, this procedure
depends upon the scoring functions used, so selecting another set of functions for
the data to fit may lead to different parameter values.
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Lastly, while these case studies have demonstrated the algorithm’s ability to learn
network parameters from the data, an expert can define τ and A themselves or ob-
tain a model fitted on related data and apply it directly without a fitting step. An
expert could use this model specification to impose prior beliefs on the evaluation
process, and adjust λ to control the importance of the these beliefs. Similarly, one
could also use the derivation of φ̂m to estimate the score for an unobserved glycan
composition, given A and τ .

We used our glycoinformatics toolkit to produce a richer abstraction of glycans
and monosaccharides, including producing standard-compliant textual representa-
tions of these structures and compositions. We produced a text file containing all
of the glycan compositions found in the Krambeck and Combinatorial database but
not the glySpace-derived database in the above samples (see Sec. 3.5.9), and have
submit it to GlyTouCan [213] for registration so that future researchers can use these
structures.

3.4 Conclusions

In this study, we demonstrated the advantages of our application of Laplacian Reg-
ularization to smooth LC-MS assignments of glycan compositions across multiple
experimental protocols [23, 254]. Our algorithm’s performance is competitive with
existing tools for analyzing the same type of data, with the added benefit of more
flexible evaluation process and broader range of understood monosaccharides. Our
tools integrate with glySpace and allows users to leverage existing glycomics repos-
itories to build databases where applicable.

All of the methods demonstrated in this paper are available as part of the open
source, cross-platform glycomics and glycoproteomics software GlycReSoft, freely
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available at http://www.bumc.bu.edu/msr/glycresoft/.

3.5 Supplemental Materials

3.5.1 Experimental Samples Used

We demonstrate our algorithm on several samples from a variety of instruments
and conditions described in Table 3.6. We present two samples in the main text, Q-
TOF analysis of Native, Formate adducted N-glycans from Influenza strain Phil-BS
virions 20141103-02-Phil-BS, and Orbitrap analysis of Permethylated and Reduced
Ammonium adducted N-glycans from human serum Perm-BS-070111-04-Serum.

Sample Name Instrument Derivatization Adduction Source Taxon
20150930-06-AGP Q-TOF Native Formate (1) [23] Human20141031-07-Phil-82 Q-TOF Native Formate (3) [23] Human Virus in Avian Tissue20141103-02-Phil-BS Q-TOF Native Formate (3) [23] Human Virus in Avian Tissue20151002-02-IGG Q-TOF Native Formate (2) [243] Human
20141128-11-Phil-821 Q-TOF Deutero-reduced, Permethylated Ammonium (3) [23] Human Virus in Avian Tissue
AGP-DR-Perm-glycans-11 Orbitrap Deutero-reduced, Permethylated Ammonium (3) [23] Human
AGP-permethylated-2ul-inj-55-SLens1 Orbitrap Reduced, Permethylated Ammonium (3) [23] Human
Perm-BS-070111-04-Serum1 Orbitrap Reduced, Permethylated Ammonium (3) [96, 254] Human1 IncludedMSn Scans

Table 3.6: Samples Used
As Table 3.6 describes, we analyze data from several different combinations of

configurations of instrument, derivatization, and reduction.

3.5.2 Database Comparison

The three databases we used were overlapping but distinct. The size of these over-
laps is shown in Figure 3.5.

3.5.3 Chromatographic Feature Evaluation

For each candidate feature, we computed several metrics to estimate how distin-
guishable the observed signal was from random noise. We use the quantities de-
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Figure 3.5: The overlap of the source databases used. As expected, the combina-torial database contains an enormous number of compositions not found in eitherother database, many of which are not biosynthetically feasible for humans. Thosefound in the Krambeck database but not the combinatorial or glySpace database arederived from lactosamine extensions run to the limit of the biosynthetic process cov-ered in the original simulation [249]. The glySpace database contained compositionunits not found in the other two databases, such as Xylose, Sulfate, and Phosphate.
scribed in Table 3.7 from each LC-MS feature.

Allmetrics are penalized by an ε = 1e−6 to prevent scores fromactually achieving
a value of 1.0 which would make the logit value infinite. If a metric’s value would be
less than 0 + ε, it is given a value of ε instead to prevent the logit value from being
undefined.

95



Table 3.7: Chromatogram Feature Definitions
Mi The neutral mass of the ith chromatogram
Ii The total intensity array assigned to the ith chro-matogram
Ii,j The sumof all peak intensities for peaks observedin the jth scan for the ith chromatogram
Ii,j,k The intensity assigned to the kth peak at the jthscan for the ith chromatogram
ci The set of charge states observed for the ith chro-matogram
Ii,c=j The total intensity assigned to the ith chro-matogram with charge state j
ti,j The time of the jth scan of the ith chromatogram
Tj The time of the jth scan of the experiment
envi,j,k The normalized experimental isotopic envelopecomposing the kth peak of the jth scan of the ithchromatogram, whose members sum to 1

ai The set of adduction states observed for the ithchromatogram
Ii,a=j The total intensity assigned to the ith chro-matogram with adduct j
ĝi The glycan composition assigned to the ith chro-matogram, or Ø if there was no matched glycancomposition

Chromatographic Peak Shape

An LC-MS elution profile should be composed of one or more peak-like components,
each following a bi-Gaussian peak shape model [250] or in less ideal chromato-
graphic circumstances, a skewed Gaussian peak shape model. We fit these models
using non-linear least squares (NLS). As measures of goodness of fit are not gener-
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ally available for NLS, we use the following criterion:

ŷi = NLS(Ii, ti)

ei,NLS = Ii − ŷi

ȳi = ti
((

ttiti
)−1

tiIi
)

ei,null = Ii − ȳi

Li = 1−
∑
e2
i,NLS∑
e2
i,null

(3.9)

where line score describes howmuch the peak shape fit improves on a ordinary least
squares regression linear model.

We apply two competitive peak fitting strategies to address distorted, overlap-
ping, or multimodal elution profiles. The first works iteratively by finding a best-
matching peak shape using non-linear least squares, subtracting the fitted signal
and checks if there is another peak with at least half as tall as the removed peak,
if so repeating the process until no peak can be found, saving each peak model so
constructed. The second approach starts by locating local minima between putative
peaks, and partitioning the chromatogram into sub-groups which would are fit inde-
pendently. This method generates a candidate list of minima, and selects the case
which has the greatest difference between the minimum and its pair of maxima to
split the feature at. The strategy which produces the maximum Li is chosen. Li is
bounded in (−∞, 1], where 1 corresponds to a perfect fit, and 0 would correspond to
the peak shape fit being no better than the OLS straight line fit. This metric is thresh-
olded at 0.15, with any chromatogram scoring below 0.15 being discarded as having
insufficient peak shape evidence to interpret.

97



Composition Dependent Charge State Distribution

As the number of monosaccharides composing a glycan increases, the number of
possible sites for charge localization increases. This relationship is visualized in Fig-
ure 3.6. Under normal conditions, we would expect to observe the samemolecule in
multiple charge states [97] . Which charge states are expected would depend upon
the size of themolecule and it’s constituent units’ electronegativity. In it’s native state,
NeuAc’s acidic group causes glycans with one or more NeuAc to have a propensity
for higher negative charge states [10] . To capture this relationship, we modeled the
probability of observing a glycan composition for sialylated and unsialylated compo-
sitions separately. For permethylated glycans, charge is carried by protons or metal-
lic cation adducts like sodium, the relationship between acidicmonosaccharides and
charge state propensities is weaker.

mi = (b(Mi/w)/10c+ 1) ∗ 10

Hi,j = Ii,c=j
Ii

P (c,m) =
∑
mi∈mHi,j∑

j

∑
mi∈mHi,j

Ci =
∑

ci,j∈ci
P (ci,j,mi) (3.10)

where w is the width of the mass bin divided by 10 and P (c,m) is defined as part
of the model estimation procedure. If the model is complete, then this metric is
bounded within [0, 1] where 0 corresponds to having no observed charge states and
1 corresponds to all expected charge states being observed. In practice, themodel is
not complete, where an existingmass rangemay bemissing a charge state in which
case P (c,m) is the average over all known values of c in m. When a mass range is
required but missing from the model, the model will fall back to a naive model where
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Figure 3.6: The trend of charge state relative abundance for acidic glycans
P (c,m) = 0.4 ∀ c and as such this metric must be clamped to not exceed 1.0. This
metric has an exceptional threshold of 0.05 instead of 0.15.

Adduction Frequency

For the datasetsAGP-permethylated-2ul-inj-55-SLens andPerm-BS-070111-04-Human-

Serum we also include an adduction frequency model score Ai, following the same
pattern as the charge state distribution, with the same extension of justification from
[97]. We use one mass scaling model for all glycan compositions as ammonium ad-
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duction is not expected to be composition dependent.

mi = (b(Mi/w)/10c+ 1) ∗ 10

Hi,j = Ii,a=j

Ii

P (a,m) =
∑
mi∈mHi,j∑

j

∑
mi∈mHi,j

Ai =
∑

ai,j∈ai
P (ai,j,mi) (3.11)

We fit an ammonium adduction model on AGP-permethylated-2ul-inj-55-SLens in or-
der to make our comparison to third-party data less biased given limited sample
data. This metric is bounded within [0, 1] where 0 corresponds to having no ob-
served adduction states within the model and 1 corresponds to all observing all ad-
duction states in the model. This metric follows the same behavior as the charge
state distribution metric w.r.t. missing information within the model, but will reject
chromatograms when this metric score is below 0.15.

We fit a sialylation-aware formate adduction model on a collection of sialylated
and unsialylated native N-glycan samples from replicates of the 20150930-06-AGP,
20151002-02-IGG, and20141031-07-Phil-82datasets. Thismodelwas used for20150930-
06-AGP, 20151002-02-IGG, 20141031-07-Phil-82 and 20141103-02-Phil-BS. This model
had its upper limit set to 0.7, so it could not contribute a large positive number to the
score of a match after logit transformation. This is desirable because we want to be
able to eliminate matches which are made with improbable formate adducts when
no reasonable adduction state is present.
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Isotopic Pattern Consistency

Our ahead-of-time deconvolution procedure uses an averagine isotopic model and
does not capture the consistency of the isotopic pattern that was fit with the isotopic
pattern of the glycan composition that matched that peak. The criterion

Ii = 1− 2I−ti Ii
J∑
j

K∑
k

Ii,j,kenvti,j,k (ln envi,j,k − ln tidi) (3.12)

where tid is the theoretical isotopic pattern derived from either ĝi or an averagine in-
terpolated forMi if ĝi = Øand anymass shiftingmolecular adduct or neutral loss for
the matched peak. This computes a per-peak intensity weighted mean G-test com-
paring the goodness of fit between the experimental envelope and the theoretical
isotopic pattern. This metric is bounded within (−∞,∞) as the G-test achieves its
optimal value at 0, and can take on extreme values towards either signed∞, how-
ever because of the previous deconvolution process, in practice it cannot take on
such extreme values and is bounded within (−∞, 1]. This metric is thresholded at
0.15, with any chromatogram scoring below 0.15 being discarded as having insuffi-
cient isotopic consistency to interpret.

Observation Spacing Score

The less time between observations of a glycan composition the less likely the chro-
matogram is to contain peaks missing or caused by isotopic pattern interference or
missing information.

di = 1
Ti − Tj

Ti = 1− 2I−ti Ii
J∑
j=1
Ii,jf (di (ti,j − ti,j−1)) (3.13)
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Table 3.8: Score Thresholds
Chromatographic Peak Shape 0.15Charge State Distribution 0.05Adduction Frequency 0.15Isotopic Pattern Consistency 0.15Observation Spacing 0.15

As this metric depends heavily on the speed of the mass spectrometer, a scaling
function f must be estimated from the total ion chromatogram to reduce the penalty
on slower instruments. When 1

J

∑J
j Tj − Tj−1 > 0.2,

f(x) = x(
1
J

∑J
j Tj − Tj−1 × 15

) (3.14)

Otherwise, f(x) = x. Thismetric is boundedwithin (−∞, 1] as (ti,j − ti,j−1) is always
positive. This metric is thresholded at 0.15, with any chromatogram scoring below
0.15 being discarded as having insufficient detection consistency to interpret.

Summarization Score

Each scoring metric ∈ [Li,Ci,Ii,Ti,Ai] is penalized by ε = 1e−6 bounded in the
range [0, 1), with values below 0 set to ε.

si =
∑

fi,j∈featuresi
ln fi,j

1− fi,j
(3.15)

producing a value between (−∞,∞). si < 8 reflects multiple poor scores and is
unexpected to be real, while si > 15 is consistent with model expectations.

102



3.5.4 A more complete derivation of φ̂

To obtain the optimal φ, we take the partial derivative of ` w.r.t φm

S = λ
[
φo − τo, φm − τm

] Loo Lom

Lmo Lmm


 φo − τo
φm − τm


0 = ∂`

∂φm

(
(s− φo)t(s− φo) + S

) (3.16)
= λ(φo − τo)tLom + λLmo(φo − τo) + λ(φm − τm)t(Lmm

t + Lmm)

= 2λLmo(φo − τo) + 2λLmm(φm − τm)

−Lmm(φm − τm) = Lmo(φo − τo)

(φm − τm) = −Lmm
−1Lmo(φo − τo)

φ̂m = −Lmm
−1Lmo(φo − τo) + τm (3.17)
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and w.r.t. φo

S = λ
[
φo − τo, φm − τm

] Loo Lom

Lmo Lmm


 φo − τo
φm − τm


0 = ∂`

∂φo

(
(s− φo)t(s− φo) + S

) (3.18)
= −2s + 2φo + λ

(
Loo + Loo

t
)

(φo − τo) + λLom(φm − τm) + λLmo
t(φm − τm)

= −2s + 2φo + 2λLoo(φo − τo) + 2λLom(φm − τm)

s = φo + λ (Loo(φo − τo) + Lom(φm − τm))

= φo + λ
(
Loo(φo − τo) + Lom(−Lmm

−1Lmo(φo − τo) + τm − τm)
)

= φo + λ
(
Loo(φo − τo)− LomL−1

mmLmo(φo − τo)
)

s− τo = φo − τo + λ
(
Loo(φo − τo)− LomL−1

mmLmo(φo − τo)
)

= I(φo − τo) + λ
(
Loo(φo − τo)− LomL−1

mmLmo(φo − τo)
)

=
[
I + λ

(
Loo − LomL−1

mmLmo
)]

(φo − τo)

(φo − τo) =
[
I + λ

(
Loo − LomL−1

mmLmo
)]−1

(s− τo)

φ̂o =
[
I + λ

(
Loo − LomL−1

mmLmo
)]−1

(s− τo) + τo (3.19)

3.5.5 Estimation of Laplacian Regularization Parameters

We model the relationship between s, φo, and τ as a multivariate Gaussian distribu-
tion.

(s|φo, τ) ∼ N (φo,Σ) (3.20)
Σ = ρI (3.21)

104




φo

φm


∣∣∣∣∣∣∣∣τ
 ∼ N (Aτ , λ−1L−) (3.22)

(φo|τ) ∼ N (Aoτ,Σφo) (3.23)
Σφo = λ−1

(
Loo − LomL−1

mmLmo
)−1 (3.24)

τ ∼ N
(
0, σ2I

) (3.25)

Fully expanded, this becomes


s

φo

τ

 ∼ N



0

0

0

 ,


Σ + Σφo + σ2AoAo
t Σφo + σ2AoAo

t σ2Ao

Σφo + σ2AoAo
t Σφo + σ2AoAo

t σ2Ao

σ2Ao
t σ2Ao

t σ2I



 (3.26)

We can form the conditional distribution τ |s which has a mean

µτ |s = 0 + (σ2Ao
t)
(
Σ + Σφo + σ2AoAt

o

)−1
s (3.27)

= Ao
t
(
ρ̃I + 1

λ̃
L−oo + AoAt

o

)−1
s (3.28)

We assume that σ2 � 1, and treat λ and ρ as relative to σ2, as ρ̃ and λ̃. Thismodel
gives us an estimate for τ given a value for ρ and λ. As ρ has no direct role in the
central tendency of φ or s, we choose to fix the value of ρ̃ = 0.1, which leaves only
λ̃. We estimate the optimal λ̃ by grid search, minimizing the predicted residual error
sum of squares (PRESS) statistic.
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e = s− φ̂o (3.29)
H =

(
I + λ̃L

)−1 (3.30)
arg min

λ̃

n∑
i

(
ei

1− hi,i

)2 (3.31)

This formulation depends upon the value of s and is sensitive to low scoring
matches, which can lead to incorrect estimates of τ and PRESS. We therefore per-
form a grid search over both λ̃ and a minimum threshold for s, γ.

As we increase γ we remodel the graph G , removing nodes whose score is below
γ. For each pair of neighbors of removed node gm, (gu, gv), ifL1(gu, gv) > L1(gu, gm)+

L1(gm, gv), we add an edge from gu to gv with weight 1
L1(gu,gm)+L1(gm,gv) , up to a limit

of L1(gk, gm) < 5. We give the result of this grid search the name r. At each point, on
the grid, we save the value of τ in rλi,γj ,τ and the PRESS in rλi,γj ,PRESS . To select the
optimal parameters, we traverse the grid along γ, computing τγ :

λ̄j = arg min
λi

rλi,γj ,PRESS (3.32)
τγj = |rλ̄j ,γj ,τ | ∗

(
γj
b

+ (1− 1
b

)
) (3.33)

where b is a bias factor defining howmuch weight to give to higher values of γ which
correspond to networks made up of higher confidence assignments. We chose b =

4. We define τ̄γ = max τγ and define the vector γ̄ =
[
γj ← τγj ≥ τ̄γ ∗ 0.95

]. This favors
values of γ where large values of τ are selected, meaning that the neighborhoods
are well populated, while also giving an estimate for λ̃ that is non-zero. We term the
values of γ in γ̄ the target thresholds of s.

To estimate λ̃ and τ from these results, we select the columns of the grid r at
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each γj ∈ γ̄ and applied the following procedure:

τ̄γ = max τγ (3.34)
γ̄ =

{
γj ← τγj ≥ τ̄γ ∗ 0.9

} (3.35)
λ̄ =

{
λ̄j ← γj ∈ γ̄

} (3.36)
sγj = {si ← si > γj} (3.37)
τ̄j = µτ |sγj ,λ̄j (3.38)
λ̂ = 1
|λ̄|

∑
j

λ̄j (3.39)
τ̂ = 1
|τ̄ |

∑
j

τ̄j (3.40)
γ̂ = 1
|γ̄|

∑
j

γ̄j (3.41)

where sγj is the set of observed scores which are greater than γj , but where the esti-
mation of is carried out with the complete LaplacianL, not the reduced network used
to compute r. This set of averaged estimates of λ̂ and τ̂ are then used to estimate
φ̂o by 3.19, labeled 3.8 in the main text.

3.5.6 MSn Signature Ion Criterion

This feature was not used in the main article in order to make the comparison

between our results and previously published work more straight forward.

When MSn scans are present, it may be useful to consider only those MS1 fea-
tures which are associated with MSn scans that contain glycan-like signature ions.
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We include an algorithm for classifying an MSn scan as being "glycan-like":

I = max(intensity(p)) (3.42)
t = I ∗ 0.01 (3.43)

poxonium = {pi ← |ppmerror(mass(pj),mass(fg))| < e,

fg ∈ oxonium(g), fg 6= Fucose, intensity(pi) > t}
(3.44)

pedges = {(pi, pj)← |ppmerror(mass(pj)−mass(pi),mass(fg))| < e, (3.45)
oxonium(fg) ∈ g, intensity(pi) > t, intensity(pj) > t}

soxonium = 1
|poxonium|

poxonium∑
pi

(
intensity(pi)

I

)
∗min(log4|poxonium|, 1) (3.46)

sedges = 1
|pedges|

pedges∑
pi,pj

(
intensity(pi) + intensity(pj)

I

)
∗min(log4|pedges|, 1) (3.47)

sg = max(soxonium, sedges) (3.48)
(3.49)

Where p is the set of peaks in the scan, g is the glycan composition, e the re-
quired parts-per-million mass accuracy. oxonium() is a function that given a glycan
composition g, produces fragments fg of g composed of between one and three
monosaccharides, commonly observed as oxonium ions alone, or as the mass dif-
ference between two peaks formed from consecutive fragmentation of a glycosidic
bond. This method is not intended to identify a glycan structure, just detect patterns
in the signal peaks of theMSn scan that could indicate the fragmentation of a glycan.

3.5.7 Algorithmic Performance on All Datasets

For more details on each sample, please see Table 3.6.
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Results for AGP

Weanalyzed three different sampleworkups ofN-glycans released fromAlpha 1 Acid
Glycoprotein. See Table 3.9 for a comparison of estimated τ values for each sam-
ple. For AGP-DR-Perm-glycans-1 and AGP-permethylated-2ul-inj-55-SLens, we used
anMSn Signature Ion Criterion threshold of 0.17 to filter out large contaminants that
may be introduced by permethylation reagents.

The estimate of γ for 20150930-06-AGP was larger than the score for the larger
penta-antennary

τi 20150930-06-AGP AGP-DR-Perm-glycans-1 AGP-permethylated-2ul-inj-55-SLens

high-mannose 0.000 0.000 0.000hybrid 11.520 7.240 21.092bi-antennary 15.691 12.859 20.627asialo-bi-antennary 0.000 0.000 13.253tri-antennary 21.752 21.693 21.550asialo-tri-antennary 0.000 0.000 6.792tetra-antennary 15.993 15.276 17.452asialo-tetra-antennary 0.000 0.000 0.000penta-antennary 11.446 10.127 7.282asialo-penta-antennary 0.000 0.000 0.000hexa-antennary 2.211 0.000 0.000asialo-hexa-antennary 0.000 0.000 0.000hepta-antennary 0.000 0.000 0.000asialo-hepta-antennary 0.000 0.000 0.000

λ̂ 0.99 0.99 0.99
γ̂ 15.74 16.22 17.64

Table 3.9: Estimated values of smoothing parameters τ , λ, and γ for each AGP-baseddataset and using a combinatorial database
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Figure 3.7: Chromatogram Assignments for 20150930-06-AGP(a, b), AGP-DR-Perm-
glycans-1(c, d) and AGP-permethylated-2ul-inj-55-SLens(e, f)

Results for Phil-82

Weanalyzed native anddeutero-reduced andpermethylatedN-glycans released from
virions of Influenza-A Virus strain Phillipines 1982, both samples acquired on a Q-
TOFmass spectrometer. See Table 3.10 for a comparison of estimated τ values
for each sample. In the case of 20141128-11-Phil-82, MSn scans were acquired, re-
sulting in lower resolution chromatographic peaks. We observed little ammonium
adduction in 20141128-11-Phil-82. As expected, we observed abundant formate ad-
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duction in 20141031-07-Phil-82, particularly on the high mannose glycans. 20141128-
11-Phil-82 also displays considerable in-source fragmentation of the high mannose
series, defined by the multimodal chromatographic peaks of smaller high mannose
glycans appearing in lower abundance directly under larger peaks for high mannose
glycans. This fragmentation, combined with permethylation altering the ionization
efficiency of these analytes, makes a direct comparison of glycan composition abun-
dance between 20141031-07-Phil-82and 20141128-11-Phil-82inadvisable. We observe
markedly different peak shapes between 20141031-07-Phil-82 and 20141128-11-Phil-

82 but the relative order of elution is preserved, with the largest high mannose gly-
cans eluting later than the largest observed complex type.

τi 20141031-07-Phil-82 20141128-11-Phil-82
high-mannose 17.070 19.395hybrid 14.039 17.147bi-antennary 0.000 0.000asialo-bi-antennary 16.287 17.689tri-antennary 0.000 0.000asialo-tri-antennary 15.220 18.865tetra-antennary 0.000 0.000asialo-tetra-antennary 7.103 7.660penta-antennary 0.000 0.000asialo-penta-antennary 0.000 3.365hexa-antennary 0.000 0.000asialo-hexa-antennary 0.000 0.000hepta-antennary 0.000 0.000asialo-hepta-antennary 0.000 0.000

λ̂ 0.99 0.99
γ̂ 16.51 15.50

Table 3.10: Estimated values of smoothing parameters τ , λ, and γ for each Phil-82-based dataset and using a combinatorial database
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Figure 3.8: Chromatogram Assignments for 20141031-07-Phil-82(a, b) and 20141128-
11-Phil-82(c, d)

Results for IGG

We analyzed native N-glycansreleased from IgG. The estimated τ values shown in
Table 3.11are consistent with the expectation that IgG glycans will be either hybrid or
small complex-type structures. These findings are consistent with the results from
[246], though their study used different sample preparation and instrumentation, and
their data were not available for side-by-side comparison. The EICs and integrated
abundances for this sample are shown in Figure 3.9.

3.5.8 Differences in Assigned Glycans for Perm-BS-070111-04-

Serum

Of the compositions assigned by our algorithm that were not mentioned in [96] but
were annotated in the original publication of this dataset in [254] include HexNAc3
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τi 20151002-02-IGG
high-mannose 0.000hybrid 15.737bi-antennary 12.594asialo-bi-antennary 13.614tri-antennary 7.657asialo-tri-antennary 15.724tetra-antennary 4.252asialo-tetra-antennary 0.000penta-antennary 0.000asialo-penta-antennary 0.000hexa-antennary 0.000asialo-hexa-antennary 0.000hepta-antennary 0.000asialo-hepta-antennary 0.000

λ̂ 0.99
γ̂ 14.12

Table 3.11: Estimated values of smoothing parameters τ , λ, and γ for IGG using acombinatorial database
Hex4, HexNAc3 Hex4 NeuAc1, and HexNAc5 Hex3. Because our database was con-
structed based on combinatorial rules that did not take into account all biosynthetic
constraints, we include infeasible compositions in our search space, such as HexNAc2

Hex10 Fuc1 and HexNAc5 Hex3 Fuc1 NeuAc2. Future work could be done to restrict
the database to only biosynthetically feasible glycan compositions. This would also
have benefits for the construction of the composition networkwhere only those com-
positions which have an enzymatic reaction to from one to the other would have an
edge connecting them, such that HexNAc5 Hex6 NeuAc2 would not have an edge to
HexNAc5 Hex7 NeuAc2 as in our current model.
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Figure 3.9: Chromatogram Assignments for 20151002-02-IGG

3.5.9 glySpace Integration and Upload

WeextractedN-glycanstructures fromGlyTouCanQuery Endpoint (http://ts.glytoucan.
org/sparql) using the SPARQL query

PREFIX glycan: <http://purl.jp/bio/12/glyco/glycan#>

PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

PREFIX glycoinfo: <http://rdf.glycoinfo.org/glycan/>

SELECT DISTINCT ?saccharide ?glycoct ?motif WHERE {

?saccharide a glycan:saccharide .

?saccharide glycan:has_glycosequence ?sequence .

?saccharide skos:exactMatch ?gdb .

?gdb glycan:has_reference ?ref .

?ref glycan:is_from_source ?source .

?source glycan:has_taxon ?taxon

FILTER CONTAINS(str(?sequence), "glycoct") .

?sequence glycan:has_sequence ?glycoct .

?saccharide glycan:has_motif ?motif .
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FILTER(?motif in (glycoinfo:G00026MO))

}

and converted each structure into a glycan composition, followed by substituent sep-
aration for sulfated and phosphorylated monosaccharides, and filtering out compo-
sitions containing units not in [Hex, HexNAc, Fuc, Neu5Ac, sulfate]. This procedure
is implemented in Python in the included “glyspace_extract_nglycans.py” script.

Note that lines 4-7 restricts the query to only compositionswhichwere inGlycome-
DBwhich came from externally curated sources with taxonomic information, though
it is not limited to human N-glycansspecifically. If these lines are omitted, the query
will return over 800 compositions, compared to the expected 275, but the additional
compositions will not have been curated. The precise number of compositions re-
turned by this modified query is not fixed as GlyTouCan is a living database, accept-
ing new submissions.

We converted our N-glycancompositions into partially determined topologies as-
suming that the chitobios core was present to ensure that they were classified as
N-glycans.

From Perm-BS-070111-04-Serum

{Fuc:1; Hex:5; HexNAc:3; Neu5Ac:1}

{Fuc:2; Hex:5; HexNAc:4; Neu5Ac:2}

{Fuc:2; Hex:6; HexNAc:5; Neu5Ac:3}

{Fuc:2; Hex:7; HexNAc:6; Neu5Ac:3}

{Fuc:2; Hex:7; HexNAc:6; Neu5Ac:4}

{Hex:7; HexNAc:6; Neu5Ac:2}

{Hex:7; HexNAc:6; Neu5Ac:3}
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{Hex:8; HexNAc:7; Neu5Ac:3}

{Hex:8; HexNAc:7; Neu5Ac:4}

{Hex:9; HexNAc:8; Neu5Ac:2}

From 20141103-02-Phil-BS

{@sulfate:1; Fuc:1; Hex:4; HexNAc:5}

{@sulfate:1; Fuc:1; Hex:5; HexNAc:4}

{@sulfate:1; Fuc:1; Hex:5; HexNAc:5}

{@sulfate:1; Fuc:2; Hex:4; HexNAc:5}

{@sulfate:1; Fuc:2; Hex:6; HexNAc:5}

{@sulfate:1; Fuc:2; Hex:9; HexNAc:8}

{@sulfate:1; Fuc:3; Hex:4; HexNAc:5}

{@sulfate:1; Fuc:3; Hex:6; HexNAc:5}

{@sulfate:1; Fuc:3; Hex:9; HexNAc:8}

{@sulfate:1; Fuc:4; Hex:6; HexNAc:5}

{@sulfate:1; Fuc:4; Hex:8; HexNAc:7}

{@sulfate:1; Fuc:4; Hex:9; HexNAc:8}

{@sulfate:1; Hex:10; HexNAc:9}

{@sulfate:1; Hex:4; HexNAc:5}

{@sulfate:1; Hex:5; HexNAc:4}

{Fuc:2; Hex:8; HexNAc:7}

{Fuc:3; Hex:7; HexNAc:6}

{Fuc:3; Hex:8; HexNAc:7}

{Fuc:4; Hex:8; HexNAc:7}

{Hex:10; HexNAc:9}
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3.5.10 Simulation of Summarization Score

To simulate the summarization score, we assume that each component scoring fea-
ture is drawn from an independent uniform distribution. We sample these five distri-
butions 100,000 times, and for each set of five feature scores compute∑j logit(fi,j).
According to the central limit theorem, the distribution of the summarization score
should be normal, with amean at approximately 0. We noted two score thresholds, 8
and 15 for lower confidence and high confidence matches. We connect these score
thresholds to p values from one-sided tests for significance from thes simulated
distribution. The threshold of 8 has a p value of ∼ 0.025, while 15 has a p value of
∼ 1.1× 10−4. This distribution is visualized in Figure 3.10.

Figure 3.10: Simulation of Summarization Score
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Chapter 4

Integrated Glycopeptide Identification from LC-MS/MS Experiments

4.1 Introduction

Glycosylation is one of the most pervasive co- and post-translational protein mod-
ifications in nature [9, 255]. At least a third of the human proteome is believed to
be secreted or contain a transmembrane region [256], and 80% of proteins passing
through the secretory pathway have at least one N-glycan sequon [18], and often
these proteins carry multiple glycosylation sites. Measuring the released glycans
from a sample provides a crude measure of the broad range of different glycosyla-
tion pathways that are active in that sample. To capture where those glycans are
localized and infer more specific behavior, wemust analyze an intact glycoprotein or
the glycopeptides that cover its glycosites. This can tell us substantially more about
the state of each protein in a sample, at the cost of substantially greater complexity
compared to released glycomics and unglycosylated-peptide proteomics [257]. This
added complexity is necessary in order to study common and important classes of
molecules, like many classes of antibody [32, 34–36] and molecules they recognize
[14, 24, 42]. They are also needed to study other fundamental components of the
extracellular matrix including proteoglycans [45] and other secreted andmembrane-
bound glycoproteins [41].

Glycoproteins are proteins with one or more glycosylation sites. Each glycosyla-
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tion site may be occupied by a glycan drawn from a population of distinct structures,
microheterogeneity. Each glycosylation site is generally able to vary independently,
macroheterogeneity [59]. The glycans at each site influence the physical properties
of the protein, and in turn modulate its function through a number of channels [9].
These include cell-cell and cell-matrix adhesion [48], receptor/ligand recognition [12],
and more through complex binding interactions with other messengers [39, 42].

LC-MS is a high-throughput and relatively precise for studying protein glycosyla-
tion, as compared to broad physical property tests such as binding assays [23, 258,
259]. Studying intact glycoproteins is challenging because each distinct proteoform
[7] is large and complex, potentially too large or too complex for current instrumen-
tation to properly detect [260]. To make the problem tractable, we use proteases like
those introduced in 1.3.4 to reduce the total space of proteoforms to glycopeptides.
A glycopeptide is much simpler than a glycoprotein, with tryptic glycopeptides usu-
ally only containing a single N-glycosylation sequon, or a few O-glycosylation sites,
though if missed cleavages occur it is not uncommon to see these numbers grow
quickly as shown in Figure 4.1.

Figure 4.1: AGP isoform 1 withN-glycosites denoted in red, and tryptic cleavage sitesdenoted by the black bars. If a cleavage site were missed, an tryptic glycopeptidecould readily contain multiple glycosites.
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There are a variety of methods and techniques for studying glycopeptides by LC-
MS/MS, at different levels of detail. There are several approaches that partially or
completely remove the glycan while leaving a marker on the glycosylation site, such
as PNGase F induced deamidation [23, 261] or acid hydrolysis [262], that can be de-
tected with traditional proteomics search algorithms to measure site occupancy.
These methods can determine if a site is glycosylated or not, but can’t determine
what kind of glycan was at any site. Collisional dissociation applied to intact gly-
copeptides, as described in 1.3.2. These types of spectra can only be interpreted
by search engines that have been designed to take the dissociation of labile modifi-
cations into account [54, 132, 133, 153, 181, 183–186, 263]. Though ExD and EThcD
methods have been shown to be valuable for characterizing complex, multiply glyco-
sylated peptides, they are not widely available, and there are few published datasets
to draw on. This work will focus primarily on HCD and Stepped HCD.

4.1.1 How Glycopeptides Fragment Under HCD

When collisionally activated, a glycopeptide breaks down in an energy dependent
manner. The first bonds to break are theweakest, the glycosidic bonds [88, 187], lead-
ing toB ions fromattached glycans and complementary, oftenmultiply charged, pep-

tide+Y ions. If a peptide is multiply glycosylated, bonds may break in all glycans si-
multaneously, leading to complex ion ladders. At higher energies, the peptide+Y ions
are further dissociated, yielding smaller peptide+Y ions with lower charge states,
and the peptide bonds begin to break, producing b and y ions as described in 1.3.2.
This means that by the point at which we begin to observe substantial peptide back-
bone fragmentation, most of the structural information about the attached glycans
has been destroyed. Therefore, we can only localize the glycosylation by observation
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of the reducing end monosaccharide still attached to a peptide backbone fragment,
rather than the intact glycan. As a consequence, HCD cannot be used to disam-
biguate multiply glycosylated peptides.

4.1.2 Glycopeptide Representation

It is important to note that topological information is not necessary to predict the
masses of many of these fragments, particularly those from higher energies, which
means we can continue to use glycan compositions rather than fully specified struc-
tures. Additionally, because we do not attempt to assign a glycan composition to
a specific site, but just track an aggregate composition over the entire glycopeptide
and denote which sites may carry glycosylation markers. This leads to a simplified
representation of a glycopeptide, whichwe compare possible renderings in Table 4.1.
I implemented a set of data structures for all three levels of representation, and how
they can be used to generate theoretical fragments for MSn matching.

Search Engine
Configuration

Processed MS/MSRaw LC-MS/MS Run

Glycopeptide
Database

>sp|P02763|A1AG1_HUMAN Alpha-1-acid glycoprotein 1
MALSWVLTVLSLLPLLEAQIPLCANLVPVPITNATLDQITGKWFYIASAFRNEEYNKSVQ
EIQATFFYFTPNKTEDTIFLREYQTRQDQCIYNTTYLNVQRENGTISRYVGGQEHFAHLL
ILRDTKTYMLAFDVNDEKNWGLSVYADKPETTKEQLGEFYEALDCLRIPKSDVVYTDWKK
DKCEPLEKQHEKERKQEEGES

>sp|P19652|A1AG2_HUMAN Alpha-1-acid glycoprotein 2
MALSWVLTVLSLLPLLEAQIPLCANLVPVPITNATLDRITGKWFYIASAFRNEEYNKSVQ
EIQATFFYFTPNKTEDTIFLREYQTRQNQCFYNSSYLNVQRENGTVSRYEGGREHVAHLL
FLRDTKTLMFGSYLDDEKNWGLSFYADKPETTKEQLGEFYEALDCLCIPRSDVMYTDWKK
DKCEPLEKQHEKERKQEEGES

...

Protein Database

{Hex:5; HexNAc:4; Neu5Ac:1}  N-Glycan
{Hex:5; HexNAc:4; Neu5Ac:2}  N-Glycan
{Fuc:1; Hex:5; HexNAc:4; Neu5Ac:2}  N-Glycan
{Fuc:2; Hex:6; HexNAc:5; Neu5Ac:1}  N-Glycan
{Fuc:1; Hex:6; HexNAc:5; Neu5Ac:2}  N-Glycan
{Hex:6; HexNAc:5; Neu5Ac:3}  N-Glycan
...

Glycan Database

FYN(N-Glycosylation)SSYLNVQR{Hex:5; HexNAc:6; Neu5Ac:2}

SVQEIQATFFYFTPN(N-Glycosylation)K{Hex:5; HexNAc:4; Neu5Ac:2}

FFYFTPN(N-Glycosylation)K{Hex:6; HexNAc:5; Neu5Ac:3}

FYFTPN(N-Glycosylation)K{Hex:5; HexNAc:4; Neu5Ac:2}

FYN(N-Glycosylation)SSYLNVQR{Hex:5; HexNAc:6; Neu5Ac:2}

SVQEIQATFFYFTPN(N-Glycosylation)K{Hex:5; HexNAc:4; Neu5Ac:2}

FFYFTPN(N-Glycosylation)K{Hex:6; HexNAc:5; Neu5Ac:3}

FYFTPN(N-Glycosylation)K{Hex:5; HexNAc:4; Neu5Ac:2}

20.1

12.7

1.2

128.3

0.7

75.3

42.9

17.5

Search
Results

Spectrum Matches

User Input Search Engine Components Search Output

Figure 4.2: A schematic diagram of a glycoproteomics search engine, marking in-puts, outputs, and intermediate steps.
A database search engine has four basic components, a database or “search

space” construction and traversal procedure, amass spectrum preprocessor, a scor-
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Fully Specified Localized Composition Simplified
LSVQN(#:iupac_simple
,glycosylation_type=
n_linked:Fuc(a1-6)
[Neu5Ac(a2-6)Gal
(b1-4)Glc2NAc(b1-2)
Man(a1-6)[Neu5Ac
(a2-3)Gal
(b1-4)Glc2NAc
(b1-2)Man(a1-3)]Man
(b1-4)Glc2NAc(b1-4)]
Glc2NAc)ETLADR

LSVQN(
#:glycosylation_type=
n_linked:{Fuc:1;
Hex:5; HexNAc:4;
Neu5Ac:2})ETLADR

LSVQN(
N-Glycosylation)ETLADR{Fuc:1;
Hex:5; HexNAc:4;
Neu5Ac:2}

Table 4.1: Glycopeptide Textual Representations. A fully specified glycopeptide hasthe complete glycan topology localized on the peptide sequence, along with anyother modifications. Some metadata must be conserved in order to communicatethe type of glycan at a site and what the glycan’s encoding format is, IUPAC with“simple linkages” in this case. A topology can be collapsed into a composition, withmetadata describing conserved structure, but still localized on the peptide sequence.Finally, the glycosylation can be aggregated over the entire sequence, but the gly-cosites labeled with enough metadata to denote which motif was found there.
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ing model that is used to evaluate the quality of the match between a spectrum and
a structure, and a model for evaluating the uncertainty of an identification used to
estimate the FDR for reported PSMs. This schematic is described in Figure 4.2. In
Chapter 2, I discussed the tasks that a mass spectrum preprocessor must address,
and Chapter 3 introduced some topics related to the creation of a glycan search
space. This chapter will go into more detail on the database construction and traver-
sal topic, as well as on the statistical modeling and machine learning methods used
for building a scoring model and for estimating identification confidence.

4.2 Methods

4.2.1 Glycopeptide Search Space Construction

The database construction and traversal process defines how the search proce-
dure enumerates theoretical glycopeptides and determines which should be com-
pared against which spectra. While this notion may be viewed simply as an in-
terval search over the full cross-product between each peptide and the combina-
tion of glycans which it can host, this representation is impractical for large search
spaces. Given the 4762 proteins in the human proteome that are annotated as gly-
coproteins on UniProt [189], there are 597,219 tryptic peptides, and a lower bound
of 448 N-glycans. Of these peptides, 90,273 carry N-glycosites, which translates to
90, 273×448 = 40, 442, 304 N-glycopeptides assuming exactly one glycosite per pep-
tide. The actual number for 448 glycan compositions is 46,405,632 denoting several
thousand peptides with multiple glycosites. This is impractical to store in memory,
and does not take into account any other PTMs. This problem grows far worse when
O-glycans are considered. There are 22,252 N-glycosites in this space, but there are
387,165 O-glycosites in it as well, and O-glycosites tend to cluster together, mak-
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ing it common to have many sites per tryptic peptide. This implies two types of
alternative approaches, streaming generation of theoretical glycopeptides, and pre-
construction and indexed traversal of theoretical glycopeptides.

Construction and Traversal Strategies

Historically, streaming generation has been used because it is simpler to implement
and easier to optimize [136, 264], with only limited use of intermediary disk-stored
indices. Streaming generation works by iterating over the search space from start
to finish over a subset of the input spectra, and to optionally traverse multiple sub-
sets in multiple threads of execution. If spectra are sortable by precursor mass, then
the theoretical space to traverse can be constrained by not generating peptidoforms
of peptides whose mass does not fall within the mass range of the current sub-
set. Byonic [263] constrains the combinatorial expansion of modifications including
glycosylation by giving each PTM a probability, and setting a probability threshold
below which no joint set of modifications will be considered. This prevents catas-
trophic expansion of mucin domains. Methods like pGlyco2 [132] takes this process
one step further and only generates glycopeptides for which a theoretical peptide
mass can be inferred from one or more queried MS2 spectra, using the complemen-
tarity of the peptide+Y ions and the precursor to backsolve putative peptidemasses,
ranked by their “coarse score”. This approach was appropriate because they used a
stepped collision energy approach which ensured peptide+Y would be present. This
type of filtering approach has been proposed previously [150, 265], and I will refer
to this procedure as peptide mass prediction filter (PMPF). In all published, cases
they require complete glycan topologies rather than compositions. Under a simple
biosyntheticmodel, there are 448 distinctN-glycan compositions derived are distinct
19,194 topologies. If we expand this to accommodate NeuGc and Gal(α1-3)Gal com-
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monly found inmammals, we instead have 1,766 distinctN-glycan compositions and
296,514 distinct topologies.

Pre-construction involves a time-consuming initial enumeration of all possible
candidates and stores them on disk with an index for extracting structures by their
neutral mass. During runtime, when a precursor ion is considered, an interval around
the precursor ion mass is read from disk. Extensive use of caching and appropriate
batch management can be used to spread work out across multiple threads of exe-
cution to cover subgraphs of the spectrum-to-structure space while minimizing disk
traffic. If the cost to enumerate at runtime exceeds the cost of reading just the re-
quired structures from disk, then if the same search space is used multiple times,
the argument can be made that pre-construction strategy is optimal. In practice this
is difficult to measure because disk performance can vary considerably depending
upon system load and hardware. Because the pre-constructed search space must
be saved to disk, a fast-to-search, indexed storage format is necessary. Several
groups propose their own binary formats [136, 264, 266]. During an indexed traver-
sal of the search space at runtime can be combined with other filtering methods like
PMPF, though care must be taken when combining it with caching.

Search Space Components

As described in Sec. 1.4.3, the search space is comprised of an in-silico digestion
of an input protein list, combined with a list of constant and variable modification
rules, with the addition of glycosylation as a “variable modification”. The input pro-
tein list may be derived from a FASTA file or an annotated protein sequence for-
mat, such as PEFF [196] or UniProt XML [195] in the case of more general PTM pro-
teomics. It can also be advantageous to use existing proteomics search results on
a closely related sample for the basis of a glycoproteome as I showed in [243] using
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mzIdentML [267]. A deglycosylated proteome from the a sample is a closer match
to the glycoproteome of that sample than by simply guessing which glycoproteins
may be present. By usingmore sophisticatedmethods for identifying smaller PTMss
and non-specific cleavage sites, the peptidoforms can be specified exactly to reduce
combinatorial expansion ofmodified peptides prior to generating glycoforms. These
modifications can add several additional peptidoforms with glycosites that would
otherwise be unavailable to a naive search space construction, and would either go
unreported or mis-assigned.

When generating theoretical glycopeptides, each glycosite is combinedwith each
glycan of an appropriate type, N-glycans to N-glycosites, O-glycans to O-glycosites,
just aswith other PTMs, though itmay be far fewer if PMPF is used. If the correct gly-
can is missing from the database, spectra from that glycanmay bemis-assigned, so
the choice of glycan source is important. As discussed in Chapter 3, databases for
glycans are not nearly as well developed as those for proteins. GlyTouCan [213] pro-
vides a database of reported glycan structures, the successor to Glycome-DB [268],
while UnicarbKB [214] and GlyConnect [269] annotate their presence on known pro-
teins. Much of the space of glycan structures remain unexplored, and a comprehen-
sive database could be impractical to search against directly [70]. Approaches using
biosynthetic simulation [185, 249], “expert curation” [132, 150, 263], and combinato-
rial expansion [23, 54] have been proposed. A combinatorial space spans the same
region as de novo sequencing [270], though with many energies de novo sequencing
of the glycan is impossible. An alternative approachwas proposed in SweetNet [133],
which used a small combinatorial list of starting compositions to extrapolate the re-
maining space of N-glycans, O-glycans, and GAG linker saccharides by using spec-
tral networks to connect similar spectra and infer monosaccharide gain/loss from
the difference between precursor masses. Additionally, a glycan space defined over
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compositions ismuchmore compact than one over structures, but lacksmuchof the
information required to reason about biosynthetic properties without making broad
assumptions about potential motifs. These problems can be partially side-stepped
by constructing a glycan structure space first biosynthetically, and then reducing it
to compositions later, but it trades the assumption of biosynthetic pathways for the
assumption of biosynthetic enzymes.

Implementation

I implemented a pre-construction based procedure using SQLite3 [271] to store all
theoretical peptides, glycans, glycan combinations, and glycopeptides. This makes
my application’s performance sensitive to disk speed, disk page size, the SQLite3

query plan, and the average result set size. Thismethodworkedwell for small databases
and for large oneswhere the number of potential glycopeptides for a given querywas
relatively small but the space to traverse was large which held for Human data, but
not necessarily for more general mammalian data. The schema is shown in Fig-
ure 4.3. The query that all precursor mass searches execute is shown in Listing 1.
As there is considerable overhead to simply initiate a query against the database

SELECT Glycopeptide.id, Glycopeptide.calculated_mass,
Glycopeptide.glycopeptide_sequence, Glycopeptide.protein_id,
Peptide.start_position, Peptide.end_position,
Peptide.calculated_mass as peptide_mass,
Glycopeptide.hypothesis_id

FROM Glycopeptide JOIN Peptide on Glycopeptide.peptide_id = Peptide.id
WHERE Glycopeptide.hypothesis_id = :hypothesis_id AND

Glycopeptide.calculated_mass BETWEEN :lower_mass AND :upper_mass;

Listing 1: The mass search query used to extract theoretical glycopeptides from thedisk. This uses the index over Glycopeptide.calculated_mass to quickly filter outinvalid Glycopeptides, and uses a covering index over Peptide to retrieve only therelevant columns. The cost of the JOIN is trivial (≤ 5%) compared to the cost oftraversing the Glycopeptide index and table.
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on disk, I assume that precursor masses will be densely clustered around similar
locations, I extract intervals of 1 Da around the queried mass, not the exact mass
accuracy interval requested, and cache these glycopeptides in memory. Successive
queries check to see if they are fully contained in the cached interval and if so they
do not require going to the disk. Partially overlapped interval requests are serviced
using only the uncovered region of the mass interval, and include the same dense
assumption of the query mass interval. For low performance disks, this may be
prohibitively slow for very dense search spaces, like those of whole proteome glyco-
proteomes. In those cases, at least a partial runtime traversal of the search space
is necessary. An on disk index of peptides by mass and an in memory index of gly-
cans would perform well in both cases, particularly if combined with PMPF or other
branch-and-bound constrained traversal.

A Simple Integration of Glycomics While my overarching goal to integrate gly-
comics will be discussed later in Chapter 5, because my suite of tools included gly-
can composition and structure-related components, I provide several ways to gen-
erate a glycan database. The first and simplest method, from the user’s perspec-
tive, is an implementation of biosynthesis simulation. Using a set of taxonomy-
and glycan class-specific enzymes, I simulate the action of glycosidases and gly-
cosyltransferases, building up a graph of source-product relationships. This method
was inspired by work done by Krambeck [68, 249] and Liu [69, 77, 225], though to
my knowledge, neither attempted to deal with some common mammalian patterns
like Galα-Gal and multiple fucosylation. After the simulation, all structures are col-
lapsed into compositions, forming a multi-graph where each edge corresponds to
an enzyme, allowing the user to choose to opt out of a specific enzyme easily. The
complete simulation is saved to disk and common human and mammalian net-
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Gly canCombination

- calculated_mass : NUMERIC (12, 6)

- formula : VARCHAR(128)

- composition : VARCHAR(128)

- id : INTEGER

- count : INTEGER

- hypothesis_id : INTEGER

Gly copeptideHypothesis

- name : VARCHAR(128)

- uuid : VARCHAR(64)

- parameters : BLOB

- status : VARCHAR(28)

- gly can_hypothesis_id : INTEGER

- id : INTEGER

+ id

+ hypothesis_id

Gly copeptide

- calculated_mass : NUMERIC (12, 6)

- formula : VARCHAR(128)

- id : INTEGER

- peptide_id : INTEGER

- gly can_combination_id : INTEGER

- gly copeptide_sequence : VARCHAR(1024)

- hypothesis_id : INTEGER

- protein_id : INTEGER

+ id+ gly can_combination_id

+ id

+ hypothesis_id

Peptide

- calculated_mass : NUMERIC (12, 6)

- formula : VARCHAR(128)

- id : INTEGER

- count_gly cosy lation_sites : INTEGER

- count_missed_cleavages : INTEGER

- count_variable_modifications : INTEGER

- start_position : INTEGER

- end_position : INTEGER

- peptide_score : NUMERIC (12, 6)

- scores : TEXT

- peptide_score_type : VARCHAR(56)

- base_peptide_sequence : VARCHAR(512)

- modified_peptide_sequence : VARCHAR(512)

- sequence_length : INTEGER

- peptide_modifications : VARCHAR(128)

- n_gly cosy lation_sites : BLOB

- o_gly cosy lation_sites : BLOB

- gagy lation_sites : BLO B

- hypothesis_id : INTEGER

- protein_id : INTEGER

+ id

+ peptide_id

Protein

- id : INTEGER

- protein_sequence : TEXT

- name : VARCHAR(128)

- other : BLOB

- hypothesis_id : INTEGER

+ id

+ protein_id

Gly canHypothesis

- name : VARCHAR(128)

- uuid : VARCHAR(64)

- parameters : BLOB

- status : VARCHAR(28)

- id : INTEGER

+ id

+ gly can_hypothesis_id

+ id

+ hypothesis_id

+ id

+ protein_id

+ id

+ hypothesis_id

ProteinSite

- id : INTEGER

- name : VARCHAR(32)

- location : INTEGER

- protein_id : INTEGER

+ id

+ protein_id

Gly canC lass

- id : INTEGER

- name : VARCHAR(128)

Gly canCompositionToC lass

- gly can_id : INTEGER

- class_id : INTEGER

+ id

+ class_id

Gly canComposition

- calculated_mass : NUMERIC (12, 6)

- formula : VARCHAR(128)

- composition : VARCHAR(128)

- id : INTEGER

- hypothesis_id : INTEGER

+ id

+ hypothesis_id

+ id

+ gly can_id

Gly canCombinationGly canComposition

- gly can_id : INTEGER

- combination_id : INTEGER

- count : INTEGER

+ id

+ combination_id

+ id

+ gly can_id

Figure 4.3: The schema of the database for describing theoretical glycopeptidesearch spaces I used.
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works are pre-defined for convenience. The second method is through integration
with the glycan structure repository GlyTouCan [213, 248] using SPARQL queries to
pull down specific glycan classes and optionally taxonomic annotations carried over
from Glycome-DB [268]. Lastly, if the user has glycomics data from their sample
of interest, and a broader or unstructured glycan search space, my implementation
can identify glycan compositions using the algorithm discussed in Chapter 3 and
use them as the basis for the glycan combinations to construct. When no informa-
tion is known, I offer a simple combinatorial expansion method, or generation from
a user-provided text file.

Integration of Proteomics While proteomics database search engines have made
the concept of performing a combinatorial expansion of variable modifications over
an in-silico digest of the protein database almost pedestrian, there are still many
problems to address here. A single variable PTMcan expand the glycopeptide search
space exponentially when it has more than one site on a glycopeptide sequence,
making it challenging to includemore than a single variablemodificationwhen search-
ing a large glycoproteome [132, 263]. Including many missed cleavages, or even
semi-specific digests becomes intractable, making the direct identification of gly-
copeptides near to signal peptide cleavage sites or non-tryptic cleavage sites im-
practical. I implemented both a feature extraction procedure to read cleavage sites
from UniProt [189] inspired by G-PTM [195], and the ability to build a glycopeptide
search space from the identified peptides, including modifications, and baseline un-
modified peptides defined by an mzIdentML file [267]. This allows my method to
build peptides with a wide array of modification states based upon a measured pro-
teome, though it performs best with a deglycosylated proteome sample. This work
was discussed in [54] and [243].
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4.2.2 Complications

Glycopeptides are complicated enough on their own, but certain experimental con-
ditions can make them worse. Glycopeptides be adducted, adding to their intact
mass and changing the way they fragment. One common adduct found in several
published sources is ammonium, which replaces a proton for a net gain of NH3.
As previously mentioned in Sec. 4.2.3, this composition shift can introduce incor-
rect glycan composition assignment, NeuAc + NH3 into Hex + Fuc. The occurrence
of ammonium adduction appears to be rarely acknowledged, with the only other
glycoproteomics-specific discussion appearing in [133], where it was used as amod-
ification for adding edges between spectral clusters. In [219], the authors comment
upon the presence of an unidentified 17 Damass shift observed on several highman-
nose N-glycans they observed. Ammonium adducts do not induce a retention time
shift, and can be observed perfectly tracking with their unadducted parent species,
as shown in Figure 4.4 displaying the trace for TITNDQIEVTN(N-Glycosylation)ATE

LVQSSSTGR{Hex:7; HexNAc:2}.
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Figure 4.4: The extracted ion chromatogram of demonstrating theidentical elution profiles of the adducted and unadducted forms of
TITNDQIEVTN(N-Glycosylation)ATELVQSSSTGR{Hex:7; HexNAc:2}.
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Another mass similarity is Hex3 and HexNAc2 + SO3, which occurs readily on KS
glycans like those reported from proteoglycans in [54, 133] or on viral glycans re-
ported [94] and Ch. 3. Depending upon collision energy, HexNAc(S) may appear as
a low abundance oxonium ion, and the ambiguous high mannose-like glycan might
also be expected to produce an abundant Hex2 peak.

In the Orbitrap Phil-BS glycopeptide samples from [23], I applied the CovBinom
(Eq. 4.19) [54] scoring model to identify glycopeptides with sulfated glycans. An ex-
ample spectrum is shown in Figure 4.5. This glycopeptide, N(N-Glycosylation)C(

Carbamidomethyl)TLIDALLGDPHC(Carbamidomethyl)DGFQNEK{@sulfate:1;Hex:4

;HexNAc:4}, would be ambiguous with N(N-Glycosylation)C(Carbamidomethyl)

TLIDALLGDPHC(Carbamidomethyl)DGFQNEK{Hex:7;HexNAc:2}, and they are within
0.05 Da of each other, just over 10 PPM, though the sulfated glycopeptide has a
mass accuracy of 0.8 PPMwhile the alternative is 10.4 PPM. This is of particular rel-
evance because sulfated glycans are found on IAV that are actively circulating and
included in vaccines [272] and appears to impact viral infection severity [253]. Of the
622 GPSMs found in Phil-BS-tryp-GP-1.raw at [23] 5% FDR, 17.6% were identified with
either NH3 or Na adducts, and 24.5% had sulfated glycans. In addition to sodium,
other metallic cations can be found in attached to glycopeptides. The sample AGP-
tryp-GP-1.raw from the same PRIDE repository shows several adducts on abundant
species in Figure 4.6. These metallic cation adducts change the fragmentation pat-
tern of the glycopeptide, reducing the fragmentation efficiency of the glycan, and
splitting the signal between peaks with and without the cation adduct.
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Figure 4.5: An example spectrum for a sulfated glycopeptide from IAV Hemaglut-tinin, N(N-Glycosylation)C(Carbamidomethyl)TLIDALLGDPHC(Carbamidomethyl
)DGFQNEK{@sulfate:1;Hex:4;HexNAc:4}. Note the HexNAc(S) oxonium ion in theinset is low in abundance.
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4.2.3 Glycopeptide MS/MS Scoring Models

The design of the scoring models used by these algorithms depends upon the infor-
mation expected to be contained in a mass spectrum, which in turn depends upon
the collision energy or energies used [132], and the size of the glycopeptide [23]. This
means that there is no one “best”model for collisional dissociation spectra. Addition-
ally, there are electron-based dissociation techniques [88] which produce other types
of fragments that many of these search engines would not be able to assign, and for
which the technologies are not widely available. This work will focus on HCD- and
Stepped HCD-based models. Because of the assumptions made when designing
scoring functions, it is difficult to construct a fair comparison between two models
when they were designed for different collision energies. For example, a model de-
signed for lower energy HCD or CID would not be comparable to a model for higher
energy HCD data. Within the same energy range, there are many ways to approach
identification, and define an optimal identification.

Bond Coverage

A structure is matched against an MS2 spectrum by mapping experimental peaks
onto theoretical fragments. If we assume that only one precursor was fragmented,
each experimental peak corresponds to a fragment from that precursor. Each frag-
ment fi corresponds to a bond in the original structure breaking, and matching a
fragment implies that there is a bond in the precursor which connects a substructure
with massmi to the remainder of the structure. If all bonds in a theoretical structure
are observed, and the theoretical structure matches the precursor ion’s mass, then
the structure would be fully specified by the spectrum, and would constitute perfect
identification.
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This “coverage” model of identification makes two broad assumptions, the first
is that every bond can be enumerated and observed, the second is that peaks do not
match at random. The first assumption can be relaxed by defining what bonds can
be observed to break and whether they are sufficiently enumerable. For most HCD
spectra, these correspond to the peptide backbone bonds, which fragment to form
b and y ions, of which there are np − 1 bonds where np is the number of amino acid
residues in the peptide sequence of the query structure q. For notational brevity, the
spectrum is denoted s, bj , yj , and Y j are each indicator variables with value 1 if the
indicated fragment was observed and 0 otherwise.

Cp(s, q) = 1
2(np − 1)

np∑
i

(bi + ynp−i) (4.1)
Cp(s, q, k) = 1

np − 1

np∑
i

logk(bi + ynp−i + (k − 2)) (4.2)

Using Eq. 4.1 creates a balanced coverage, observing the either the b ion for the ith
bond or the corresponding y ion (ynp−i) is worth the same amount of coverage in-
formation, while Eq. 4.2 creates a weighted scheme placing more value on the first
fragment, proportional to logk(k−2) using an arbitrary base k s.t. k > 2. Glycan frag-
ments may still be observable, but not consistently among all peptide length and
glycan sizes, and if a glycan composition is used, there are no bonds to enumer-
ate. A conserved core motif might be generated for glycan classes for which they
are expected, as is the case for the three classes I consider here, N-glycans, mucin
O-glycans and GAG linker tetrasaccharides, but these cannot be used to completely
cover more elaborated structures. If all of these “pseudo-bonds” are expected to be
observed, then glycan coverage can be described over these bonds alone, however,
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this assumes that larger glycan fragments do not convey additional information.

Cg,s(s, q, h) =min(∑ng
i Yi, h)
h

(4.3)
(4.4)

Under this type of uncertainty, Eq. 4.3 defines a simple model of glycan coverage
where Yi corresponds to observing the ith glycan fragment and h is the number of
peptide+Y fragments observed on average in high confidence spectra.

Coverage may be further extended to peptide backbone fragments which are ex-
pected to carry glycosylation. For eachoccupied glycosylation site a fragment spans,
it may appear unmodified or carry a remnant of the glycan reducing end (HexNAc for
N-glycans and O-glycans, or Xyl for GAG linkers) cumulatively.

Cgp(s, q) =
∑np
i bi,g + ynp−i,g∑np
i b′i,g + y′np−i,g

(4.5)

Using Eq. 4.5, I express glycosylated backbone coverage as the sum over each pep-
tide bond position where the bi or the ynp−i were observed with a glycan remnant,
divided by the sum of the number of bond positions b′i and y ′np−iwhich were could
have produced a glycan carrying fragment. This expression will favor the solution
which has the most fragments supporting a particular localization of a glycan.

We can express an aggregate notion of coverage bymixing these concepts. Com-
bining Eqs. 4.2 and 4.5, we get a solution that favors peptide backbone coverage but
puts more weight on the observation of glycosylated backbone fragments shown in
Eq. 4.6. This construction uses a mixture parameter α ∈ [0, 1] which expresses how
much weight to put on the peptide coverage portion and puts the remaining weight
on the glycosylated coverage portion. When α = 0.5, each component is weighted
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equally, which is the value I choose to use.

Cbackbone(s, q, k, α) =αCp(s, q, k) + (1− α)Cgp(s, q) (4.6)

There has been little discussion in the literature of whether a glycosylation remnant
peptide backbone fragment such as b4 + HexNAc should be considered as evidence
for that the 4th peptide backbone bond was observed to break, if b4 is not observed.
From the limited description available [132, 153, 183, 185, 265] suggests that there is
no consensus, and that not all methods search for these localizing ions. Additionally,
for longer peptide sequences, the position of the glycosite becomes harder to reliably
determine using these ions. They are often lower in abundance than their unglyco-
sylated form and this can drive them below the limit of detection. Such pathological
cases are difficult to model without a notion of whether or not an ion is expected to
be abundant, and even then it is challenging to determine what the threshold would
be for omitting such fragments from the enumeration the denominator in Eq. 4.5.

For higher energy HCD data, a complete coverage model can be specified by fur-
ther mixing peptide coverage with the simple model of glycan coverage as shown in
Eq. 4.7. The parameter γ may be adjusted to put more or less weight on peptide+Y

fragments. I chose to use γ = 0.7 for most HCD datasets where the peptide+Y frag-
ments were not abundant. Independently, pGlyco2 chose a similar mixture model
with very close mixing parameters in [132, 186].

C(s, q, k, h, α, γ) =γCbackbone(s, q, k, α) + (1− γ)Cg,s(s, q, h) (4.7)

A coverage score alone has many shortcomings. The first is that it does not take
into account charge state at all. Observing the same fragment in a single charge
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state is worth the same as observing it in two, three, or ten charge states, which
means it discards valuable information. It also makes no difference whether a frag-
mentmatches a high intensity peak or a low intensity peak. Lastly, it places a heavier
burden of proof on longer sequences and larger structures as they havemore bonds
to cover to achieve the same score a smaller one would from a spectrum with the
same information content.

Fragment Match Counting

Coverage may be difficult to define because it assumes that all sequences can be
evenly covered independent of sequence length. An alternative is to simply count
fragment matches in some way.

Count(s, q) =
np∑
i

bi + yn−i +
ng∑
i

Yi (4.8)
FragBinom(s, q) =

np∑
i=k

(
np
i

)
pi(1− p)np−i (4.9)

In Eq. 4.8, the number of fragments matched is just counted. This simple score
was first used by Morpheus [126], and later adapted for glycopeptides by GPQuest
[183]. Another common approach shown in Eq. 4.9 is instead model the event that
k fragments matched out of np as a binomial event with some probability p which
is a function of the mass error tolerance used and the precursor mass. This can be
used to compute a probability of occurring by random chance using an upper tail
test [133, 160, 266].

Both of thesemethods are less constrained than coverage, but they can both still
misuse noisy spectra to assign many low abundance peaks to inflate a the score of
a low quality match over one that uses more high abundance peaks but matches
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fewer fragments overall.

Intensity Utilization

Many algorithms attempt to utilize intensity in some way to improve the score of a
glycopeptide. There aremany ways to do this, and each comeswith its own caveats.
For notational brevity, I is a vector of peak intensities from thematched spectrum of
size n andwi is an arbitrary weight for eachmatched peak and is 0 for all unmatched
peaks.

LogInt(s, q) =
n∑
i

log10 Iiwi (4.10)
PercInt(s, q) =I−1 ·

n∑
i

Iiwi (4.11)
BinomInt(s, q) =

4∏
a=1

s(ma−1)∑
i=s(ma)

(
s(ma−1)

i

)
pi(1− p)n−i (4.12)

In Eq. 4.10, the total score is simply a weighted sum of the log10 scaled intensities.
This is good in that it puts more weight on more intense peaks, but it makes the
overall intensity scale matter when comparing matches between spectra, as when
calculating anFDR. By using this construct, we implicitly trustmatches tomore abun-
dant precursors more. This formulation is used in parts of pGlyco2’s scoring func-
tions [132] where wi =

(
1−

∣∣∣ ei
etol
∣∣∣4), ei is the mass error of the ith peak, and etol is

the maximum mass error tolerated. This allows them to use a wider than expected
error tolerance window while managing score inflation from low accuracy fragment
matches, though thesematches still contribute to the coverage components equally
to other fragments.

In Eq. 4.11, if wi = 1 for all matched peaks, we obtain the percentage of intensity
matched. This construct is used in SweetNET [133] to build their Validation Score
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of FragBinom(s, q, n, k, p) × PercInt(s, q) (Eq. 4.9). The final score of GPQuest2
constitutes PercInt(s, q) + Count(s, q)

The construction in Eq. 4.12 uses s(ma) to denote the number of peaks in swhere
their intensity is >= the ath median intensity, with p = 0.5 from Peppy, described in
[160]. Successive medians are taken from only those peaks above the previous me-
dian. This is also combined with FragBinom in Peppy to form a log-transformed
p-value score. Unlike other features discussed so far, BinomInt is not monotonic
w.r.t. new peak matches, in that adding a new fragment match to a low abundance
peak can result in a lower score overall. In that sense, BinomInt enforces a parsi-
mony of matched fragments.

Auxiliary Features

Some components could not be used as scoring functions in their own right, but
serve to more gently guide other scoring functions or to work as pre-scoring filters.
For example, GPQuest2 [183] fit an SVM to predict whether a spectrumwasN-glycan-
like or O-glycan-like by looking at the ratio of the intensity of each oxonium ion with
the oxonium ion for HexNAc. SweetNet [133] used a similar intensity ratio of four neu-
tral losses of HexNAc to classify whether they were derived from GalNAc or GlcNAc,
which implied whether a spectrum were N-glycan-like or O-glycan-like through a dif-
ferent route. SweetNet also formalized a simple filter for classifying a spectrum as
being glycopeptide-like or not, the G-score shown in Eq. 4.14, unrelated to the G-test
from 2.3.2. The heuristic can be used to quickly filter out spectra from a sample con-
taining a mix of glycosylated and unglycosylated peptides. It uses several oxonium
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ions derived from HexNAc.

H =
{

203.079, 185.0688, 167.0582, 143.0582, 125.0476, 137.0476
} (4.13)

GScore(s) = 1
|H|

∑
o∈H

Io
max(I) ∗ 100 (4.14)

Some monosaccharides, such as NeuAc and NeuGc have distinguishing oxonium
ions which must be present for a match with thosemonosaccharides included to be
believable. This problem is exacerbated by the fact that NeuAc + Hex = NeuGc + Fuc

exactly in bothmass and elemental composition, requiring signature ions to discrim-
inate them. Byonic [263] includes a validation stepwhere it seeks out these signature
ions, but how this influences the score is unclear. I implement my own signature ion
score penalty described in Eq. 4.17. The notation Io refers to the intensity of the oxo-
nium ion for the monosaccharide o, which may be 0 if missing, and q[o] refers to the
number of occurrences of monosaccharide o in the glycan composition of q, which
may be 0.

UnexpSigIon(s, o) = 10 log10

(
1− Io

max(I)

)
(4.15)

MissSigIon(s, q, o) = 10 log10 (1−min(q[o] ∗ 0.5, 0.99)) (4.16)

SigIonScore(s, q) =
∑

o∈{NeuAc,NeuGc}



UnexpSigIon(s, o) q[o] = 0

MissSigIon(s, q, o) q[o] > 0 & Io
max I ≤ 0.01

0 otherwise
(4.17)

There are cases where multiple glycan compositions are within 10 PPM of each
other at higher precursor masses, such as |(Hex×3)−(HexNAc×2+SO3)| = 0.04291
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at 4291.0357 Da, or |(NeuAc + NH3)− (Hex + Fuc)| = 0.01123 at 1123.3 Da. It may not
be possible to diagnose the presence of this type of ambiguity from the product ions
directly. If we assume that precursor mass errors are normally distributed [145, 158],
then matches with smaller precursor mass errors are more likely. Its only function
is to discriminate between two cases with identical scores, so its scale may be kept
small.

MassAccScore(s, q) = −10 log10

(
1− exp−(eprecursor − µprecursor)2

2σ2
precursor

)
(4.18)

Complete Models

Several models can be described by composing one or more of the features de-
scribed above into new or useful structures. Several published models are direct
combinations as already described. The model used in [54] is shown in Eq. 4.19. It
scales the binomial fragment matching (Eq. 4.9) and intensity utilization (Eq. 4.12)
by the total coverage for higher energy HCD (Eq. 4.7), shifted by signature ion errors
(Eq. 4.17) and mass accuracy (Eq. 4.18)
CovBinom(s, q) =(−10 log10(FragBinom(s, q)) +−10 log10(BinomInt(s, q)))×

C(s, q, 3, 3, 0.5, 0.7) + SigIonScore(s, q) +MassAccScore(s, q)

(4.19)
This score works reasonably well for spectra dominated by peptide backbone frag-
mentation, favoring solutions which make the best use of of the spectrum’s intense
peaks while covering most of the sequence. It also does not have a natural decom-
position for evaluating just the peptide or just the glycan component of the match.

pGlyco2’s scoring function partitions peaks into peptide- and glycan-matching
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groups, and proceeds to combine them with a log-intensity (Eq. 4.10). There, Ii,p
or Ii,g are the intensity of the ith matched peak if they correspond to a peptide or
glycan fragment, 0 otherwise. This differs from a directly scaling log-intensity by full
coverage (Eq. 4.7) because it partitions the value of the intensity used for the peptide
matches and glycan matches, so that coverage of one component does not affect
the other component. They fit model parameters α = 0.56, β = 0.42, γ = 0.94 and
w = 0.35. They use a formulation of peptide coverage which reduces to Cp (Eq. 4.1),
but their definition of glycan coverage requires a glycan topology, not a composition.

PepScore(s, q, γ) =
n∑
i

log10 Ii,p

(
1− |ei|

etol

4)
× Cp(s, q)γ (4.20)

GlyScore(s, q, α, β) =
n∑
i

log10 Ii,g

(
1− |ei|

etol

4)
× ratioαion × ratioβcore (4.21)

TotalScore(s, q, α, β, γ, w) =w ×GlyScore(s, q, α, β) + (1− w)× (PepScore(s, q, γ))

(4.22)
A topology can be precisely enumerated using a tree or graph traversal method, with
the knowledge that every fragment theoretically producedmight appear if that topol-
ogy is the correct one. With a composition, fragments cannot be enumerated pre-
cisely. For N-glycans, the conserved chitobiose core can be enumerated, and if side
groups such as Fuc or Xyl are present in the composition theymay be on the core. A
procedure for generating these fragments from a composition is described in Alg. 5,
which first produces the conserved motif fragments which may be guaranteed, and
then produces extended fragments beyond the conserved motif. It also attempts to
add a Fuc to the fragments as soon as possible because it cannot knowwhether that
residue is located on the core or on an antenna.

For the structure Fuc(a1-6)[Neu5Ac(a2-6)Gal(b1-4)Glc2NAc(b1-2)Man(a1-
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6)[Neu5Ac(a2-3)Gal(b1-4)Glc2NAc(b1-2)Man(a1-3)]Man(b1-4)Glc2NAc(b1-4)

]Glc2NAc, with the composition {Fuc:1; Hex:5; HexNAc:4; Neu5Ac:2}, the com-
position fragments produce six fragments that are not possible from this structure,
such as {Hex:5; HexNAc:3} and {Hex:5; HexNAc:2}, because it cannot know that
those residues are not directly attached to the chitobiose core if the the structure is
fully complex-type. Additionally, the structure fragmentation process produces frag-
ments that may explicitly contain NeuAc, which the composition fragment genera-
tion method expressly ignore because HCD breaks those bonds first, making them
unlikely to be observed in any case. Furthermore, a full enumeration of glycan frag-
ments would also include peptide+Y fragments with glycan fragments containing in
excess of 10 monosaccharides, which are unlikely to appear, even in lower collision
energy data, which ensures the burden of proof weighs down the score for large gly-
cans where many of those extended fragments will not be observed. This is made
worse for heavily fucosylated structures where the total number of fragments to ob-
serve is multiplied by 1 + the number of Fuc residues, which may also fall off easily
under HCD [273]. It is arguable that this exacerbates the burden of proof on larger
structures beyond what is reasonable to expect from the data.

I propose an approximation of pGlyco2’s glycan coverage for glycan composi-
tions in Eq. 4.25. The number of theoretical fragments produced by Alg. 5 is larger
than the set of real fragments for the same number of bond cleavages, so a without
a known topology, an approximated normalization factor B(ng) is used in place of

144



the exact count of expected theoretical fragments.

Cg,e(s, q) = 1
B(ng)

ng∑
i

Yi (4.23)
Cg,c(s, q) = 1

ncore
ncore∑
i

Yi,core (4.24)
Cg(s, q) = Cg,c(s, q)×min (Cg,e(s, q), 1) (4.25)
B(ng) = ng log ng

2 (4.26)

There are many ways to define B, as shown in Fig. 4.7. Using data published in
[132], I counted the number of peptide+Y ions matched for each glycan size, along
with theoretical bounds calculated using the number of Y fragments produced from
asialo-N-glycan structures with and without core fucosylation with up to five glyco-
sidic cleavages. Using techniques to learn the number of fragments to expect by us-
ing the number of counts observed alone failed to produce adequate results because,
particularly for large glycans, the observed fragmentation was rarely complete, im-
pacting both the linear regression and the Poisson Generalized Linear Model (GLM)
fits.

N-glycans are branching structures, similar to binary trees. The height of a bal-
anced binary tree with n nodes is log2 n, which is the length of a single branch. Be-
cause peptide+Y ions include cleavage events inmultiple branches, it is not possible
to simply reduce this to an upper limit of number of branches × length of branch2.
This introduces a combinatorial component on the order of the branching of the gly-
can. For most unfucosylated canonical N-glycans, the degree of branching is small,
less than six, often much less. It follows then that the upper limit may be closer to
n log2 n. I compared n log2 n and n log n to the theoretical structural counts within the
branching intervals of interest, and observed the natural log under-estimated while
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log2 overestimated the fucosylated series and dividing by 2 similarly enclosed the un-
fucosylated series, with close tracking at small sizes. Given the desirability of amea-
sure that would be less severe than the exact count for large glycans while still being
accurate for small glycans, B(ng) = n logn

2 is an appropriate choice. Accounting for
multiple Fuc would be more difficult due to spontaneous gas phase re-arrangement
[273], and that fucosylationmight be either branch or core bound rather than assum-
ing the canonical core bound fucosylation as the default. It also is reasonable to trun-
cate the glycan composition to remove labile units like sialic acids (Neu, NeuAc, NeuGc)
and ignore excess Fuc. This lets us substituteCg(s, q) for ratioion in Eq 4.21, while us-
ing glycan compositions, which can substantially expand the range of possible struc-
tureswe can consider. This approximation is notwithout its weaknesses. The glycan
composition {Hex:11; HexNAc:2} and {Hex:5; HexNac:4; NeuAc:2} are within 16
Da of each other. Both compositions contain the subset {Hex:5; HexNAc:2}, but
while it is expected as part of any high mannose-type N-glycan’s fragment ladder,
that particular fragment is only possible if the glycan is a hybrid glycan with either
bisecting GlcNAc or LacDiNAc with multiple NeuAc on the complex arm. While this is
theoretically possible, it is highly unlikely, and that glycan composition usually rep-
resents the canonical bi-antennary complex type N-glycan, but the composition has
no way to express this. The mass difference could be explained by a deconvolution
error paired with an ammonium adduct.

This scoring model still lacks the ability to select glycosylation sites, given multi-
ple options with the same number of observed ions. Given the glycopeptides VTLIT{

O-Glycosylation}SE, VTLITS{O-Glycosylation}E, and VT{O-Glycosylation}LITS

E, and only y4+HexNAc is observed with high confidence, it can rule out VT{O-Glyco

sylation}LITSE, but it cannot make a value statement regarding the other localiza-
tions. Parsimony would dictate that the glycosylation site is located at the Threonine
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Figure 4.7: Approximating peptide+Y ion matches expected given glycan size
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at position 5, though it remains possible the glycosylation is located at position 6.
The addition of a glycosylated coverage-specific term to the total score would least
impact existing performance while introducing a slight bias towards more localized
solutions at the top level. This can be accomplished by defining a localization bonus
based on Eq. 4.5 with some small weight λ. When combined with Eq. 4.22 at λ = 10,
SigIonScore (Eq. 4.17), and MassAccScore (Eq. 4.18). I define a modified version of
the pGlyco2 scoring model, which I will refer to later as the “naive scoring model”,
shown in Eq. 4.27.

NaiveScore(s, q, α, β, γ, w, λ) = w ×GlyScore(s, q, α, β)+

(1− w)× (PepScore(s, q, γ))+

SigIonScore(s, q) + λCgp(s, q)+

MassAccScore(s, q)

(4.27)
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Algorithm 5: N-Glycan Composition Fragment Generation
Data: Glycan Composition Mapping Monosaccharide To CountG
Result: List of Glycan Fragments F Possible FromG
F ← ∅;
HexNAcInAggregate← G[HexNAc];
HexInAggregate← G[Hex];
FucInAggregate← G[Fuc];
BaseHexNAc← min(HexNAcInAggregate+ 1, 3);
BaseHex← min(HexInAggregate+ 1, 4);
forHexNAcCount ∈ [0, BaseHexNAc) do

ifHexNAcCount = 0 then
Append(F, {});

else ifHexNAcCount = 1 then
f ← {HexNAc : HexNAcCount};
Append(F, f);
// If there are any Fucose in the composition, copy the current
// fragment and add a Fucose to it and add that to the set of fragments
if FucInAggregate > 0 then

Append(F , FucosylateShift(Copy(f)));
end

// At this point, there are 2 HexNAc, and Hexose can begin to appear
// from the chitobiose core
else

f ← {HexNAc : HexNAcCount};
Append(F, f);
if FucInAggregate > 0 then

Append(F , FucosylateShift(Copy(f)));
end
forHexCount ∈ [1, BaseHex) do

f ← {HexNAc : HexNAcCount, Hex : HexCount};
Append(F, f);
if FucInAggregate > 0 then

Append(F , FucosylateShift(Copy(f)));
end
// Begin generation of extended fragments beyond the conserved core
ifHexCount = 3 &&HexNAcInAggregate > 2 then

for ExtraHexNAc ∈ [0, HexNAcInAggregate−HexNAcCount] do
f ← {HexNAc : HexNAcCount+ ExtraHexNAc, Hex : HexCount};
Append(F, f);
if FucInAggregate > 0 then

Append(F , FucosylateShift(Copy(f)));
end
ifHexInAggregate > 3 then

for ExtraHex ∈ [1, HexInAggregate−HexCount] do
f ← {HexNAc : HexNAcCount+ ExtraHexNAc, Hex :
HexCount+ ExtraHex};
Append(F, f);
if FucInAggregate > 0 then

Append(F , FucosylateShift(Copy(f)));
end

end
end

end
end

end
end

end
return F
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False Discovery Rate Estimation

Just as in bare peptides, glycopeptide FDR estimation is not approached using a sin-
gle model, or a strong distribution assumptions [54, 132, 153, 169, 173, 184]. Instead,
one of a variety of empirical models are used, which only provide an accurate esti-
mate asymptotically. The prevailing methods are based on Target-Decoy [170]. As in
proteomics, spectra are searched against decoy proteins alongside the target pro-
teins, andmatchesmust compete for ownership of spectra. Somemethods attempt
to exploit structural properties of their scoringmodel to accomplish better separation
[153, 184, 186] or employ hierarchical filtering [132, 133, 183, 185] to combine several
weak filters into a strong filter.

Care must be used when defining the criteria by which a glycopeptide is graded
and later filtered. If the score used is based on both peptide and glycan evidence, this
can produce identifications with “reasonable” scores while leaving either the peptide
or the glycan poorly characterized as shown in Figure 4.8. This is often the case
for HCD glycopeptide identification where only a single energy is used, which can-
not guarantee to fragment all glycopeptides equally well [187, 274–276]. Stepped
collision energies like those described in [132, 187, 277] more consistently produce
large, multiply charged peptide+Y , smaller peptide+Y , b and y fragments which can
be used to characterize both the glycan and the peptide component independently.
This is the reasoning behind Eqs. 4.22, 4.21, and 4.20, where the total score reflects
both components, but there remains a separate score for the peptide evidence and
the glycan evidence to be assessed on independently.

I implemented the finite mixture model FDR estimation procedure described in
[132, 186] to assess performance when benchmarking against stepped collision en-
ergy data. This method compares each spectrum to a forward-protein peptide with
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Figure 4.8: A comparison of intact glycopeptide scoring function filtering with jointpeptide and glycan scoring functions filtered together. A large population of gly-copeptides identified using just an intact aggregate score reports many glycopep-tides with either low quality peptide or glycan identification.
correct peptide+Y fragment masses (TT), a forward-protein peptide with randomly
shifted peptide+Y fragmentmasses (TD), a reverse-protein peptide with correct pep-

tide+Y masses (DT), and lastly a reverse-protein peptide with randomly shifted pep-

tide+Y masses. The GlyScore of TD is used to fit a Gamma mixture model Γ and
the GlyScore of TT are used to fit a Gaussian mixture model N which contains as
an additional component a weighted version of Γ with weight πd. The PEP of each
observation is given by πdΓ(mg)

N (mg) where mg is a vector of glycan scores, which when
averaged yields the glycan-level FDR at mg. The peptide-level FDR is calculated us-
ing traditional TDA [170] over TT and DT where the PepScore is used to rank GPSMs.
A glycopeptide FDR is also computed from the TotalScore of TT and DD using the
same finite mixture model method for the GlyScore component. The total FDR is
then given by max(fdrpeptide, fdrglycan, fdrpeptide + fdrglycan − fdrglycopeptide).

Earlier Work Previously published work used intact-glycopeptide score based TDA
using reverse-peptide decoys instead of reverse protein decoys. Reverse peptide de-
coys share the peptide+Y ion ladder, forcing all discrimination to be based on b and y
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ions but allowing the peptide+Y ions to contribute to the selection of the bestmatch-
ing candidate overall. Because a single energy is insufficient for all glycopeptides,
especially short peptides, it appeared useful to calculate the FDR of glycopeptides
whose amino acid sequence was less than 10 residues long separately from longer
sequences. Some of this perceived utility may have been caused by the abundance
of short, poorly fragmented glycopeptides in AGP, from which much of the intuition
behind those earlier scoring models were derived.

Naive Results

The naive scoringmodel should behave similarly to the pGlyco2 scoringmodel, save
that it can use a much wider range of glycan definitions. Using a combination of
the fixed glycan structure database published with the tool, and a biosynthetic sim-
ulation using mammalian glycosyltransferase rules, I identified glycopeptides in the
brain tissue samples from [132]. I compared the identification performance using
the same finite mixture model FDR estimation procedure, shown in Figure 4.9. The
naive model performs better at all FDR levels, though this is likely due to the ex-
panded search space covering more glycans as shown in Figure 4.10. The addition
of the localization was observed to reduce the number of PSMs at higher FDR, but
the difference is negligible.

4.2.4 Learning Fragmentation Processes

Peak Relationships

A fragment ionmatch in isolationmay happen due to randomchance. Several proba-
bilistic approaches have been proposed for modeling whether a peak match is likely
to be real or not. This concept is implicit in the binomial fragment matching model
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Figure 4.9: Comparison of originally published results for pGlyco2 [132] withmy naivemodel using the aggregated composition glycan database. The naive model per-forms better at all FDR levels, though this is likely due to the expanded search space.
(Eq. 4.9). This approach was first proposed in SHERENGA [204], which learned the
probability of b and y ion series for de novo peptide sequencing, and was later in-
cluded in several other methods from the same group [8, 136, 163], as well as in
other groups [205, 278] and implicitly this appears in several other scoring algorithms
which treat b and y ions differently [138, 160]. Among these is these tools, UniNovo
[8] is distinctive in that it codifies the process of learning arbitrary inter-peak rela-
tionships, rather than a fixed set of common ones, especially for a more complex
structure like a glycopeptide.

As previously mentioned, glycopeptides produce a wider array of product ion
charge states, and have more product ion types than bare peptides, and have more
dimensions over which to partition the model than bare peptides. By estimating pa-
rameters by peptide length, glycan size, and proton mobility index [279] it is possible
to measure how the glycan influences the efficiency of each fragmentation process.
I fit these models on two large cohorts with different collision energies. The first
was a stepped collision energy dataset using 20, 30, and 40 neV published with
[132] derived from five different mouse tissues, shown in Figure 4.11. The second
was a single, high collision energy dataset using 36 neV from TMT10plex tagged
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526 6221144

pGlyco2 Synthesis

Figure 4.10: Comparison of the N-glycan compositions found in the database bun-dled with [132], from Glycome-DB [268] and those produced by biosynthesis simula-tion fromcommonmammalian glycoenzymes. [132] included allN-glycan structuresfrom humans, mice, and some from yeast. It also includes some structures that areostensibly O-glycans. I used the union of these two databases to identify glycopep-tides.
glycopeptides derived from human Cerebrospinal Fluid (CSF), enriched for NeuAc,
acquired through a collaborator, shown in Figure 4.12. The MS2 spectra in these
training datasets were identified using CovBinom (4.19) during an initial survey.

The same general trends are visible for b and y ions for both datasets, though
not for peptide+Y ions. This suggests that a component of those common trends is
driven by the higher energy steps on the ramp. The differences in the peptide+Y ion
trends are likewise expected because the larger examples of that series are produced
by the low energy step, meaning only large glycans can reliably produce them under
higher energies. Because of the intact mass dependent nature of neV, if an energy
is selected to dissociate both the glycan and the peptide, and the glycan dissociates
more easily than the peptide, it follows that the glycan will be dissociated faster as
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more energy is applied. Thismay be exacerbated by the coincidence that the addition
of a single glycosidic bond adds more mass on average than the addition of a single
amide bond.

Because of the larger charge state ranges common to glycopeptides, I looked at
the relationship between partition and the posterior probability of the difference-of-
charge feature in Figures 4.13 and 4.14. These violin plots depict the distribution of
the posterior probability for different specializations of the charge-difference feature
function as defined by UniNovo [8]. Each specialization corresponds to an intensity
ratio and a charge state pair. The relationship between aggregate size and charge
state appears to be conserved between the two experimental conditions, in keep-
ing with the intuition that larger molecules tend to carry higher charge states and
produce more highly charged fragments.

In addition to producingmultiply charged peptide backbone fragments, glycopep-
tides can also produce peptide backbone fragments with small amounts of intact
glycosylation, usually only a single HexNAc, though occasionally multiple HexNAc may
be present. This also serves as a common mass shift in peptide+Y fragments.
Again, in both datasets, as peptide size increased, the propensity for these fragments
increased for b and y ions, and remained consistently high in reliability for peptide+Y

ions.
Beyond these two features, I also included Hex, Fuc, as well all common amino

acids as link functions as described in the original publication of UniNovo, as well
as Carbamidomethylation of Cysteine Oxidation of Methionine as well as the reduc-
ing end monosaccharide masses from N-glycopeptides, O-glycopeptides, and GAG
linker glycopeptides.

For each matched peak, the posterior probability of that peak match was com-
puted as described in [8], though no restrictions were made on the number of fea-
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tures that could contribute to a peak’s posterior beyond that a single peak pair can
only be counted once for each terminal. I omitted the feature selection step because,
unlike in the original publication, I did not look for amino acid neutral losses like NH3
or H2O, nor peaks from complementary termini, and I operate on spectra which do
not have isotopic peaks, having been removed during spectral preprocessing as de-
scribed in Chapter 2. Future work may eventually add sufficient features that this
filtering process is necessary. The posterior probability of each peak match is re-
ferred to as the reliability of that peak match in subsequent sections, denoted by ψ.
The reliability may be “padded” to start from 0.5, ψ0.5 = 0.5 + (1 − 0.5) × ψ to not
completely remove peaks which do not have many supporting features.
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(c) The relationship between peptide length,glycan size, and the base probability of pep-
tide+Y ions. There appears to be a weakinteraction between peptide length and gly-can size, but the effect is still dominated byglycan size

Figure 4.11: The estimated series probability for b, y , and peptide+Y ions in thestepped collision energy HCD dataset from [132]
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(c) The relationship between peptide length,glycan size, and the base probability of pep-
tide+Y ions. There appears to be a stronginteraction between peptide length and gly-can size as the single energy cannot workequally well on all combinations of peptideand glycan size

Figure 4.12: The estimated series probability for b, y , and peptide+Y ions in singleenergy HCD data aggregated from an enriched, TMT10plex tagged N-glycopeptidedataset acquired from human CSF with 36 neV.
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(c) The relationship between peptide length,glycan size, and the posterior probability ofdifference of charge of peptide+Y ions. Ap-pears to be important at all size ranges.
Figure 4.13: The posterior probability estimated for observing the same fragmentunder two different charge states for b, y , and peptide+Y ions in the stepped collisionenergy HCD dataset from [132]
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(a) The relationship between peptide length,glycan size, and the posterior probability ofdifference of charge of y ions. Generally in-creasing as aggregate size increases
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(b) The relationship between peptide length,glycan size, and the posterior probability ofdifference of charge of b ions. Generally in-creasing as aggregate size increases
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(c) The relationship between peptide length,glycan size, and the posterior probability ofdifference of charge of peptide+Y ions. Ap-pears to be important at all size ranges.
Figure 4.14: The posterior probability estimated for observing the same fragmentunder two different charge states for b, y , and peptide+Y ions in the single collisionenergy human CSF
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(a) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of y ions. Generally in-creasing as aggregate size increases
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(b) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of b ions. Generally in-creasing as aggregate size increases
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(c) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of peptide+Y ions. Ap-pears to be important at all size ranges.
Figure 4.15: The posterior probability estimated for observing the same fragmentwith and without a mass shift corresponding to a HexNAc for b, y , and peptide+Yions in the stepped collision energy HCD dataset from [132]
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(a) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of y ions. Generally in-creasing as aggregate size increases
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(b) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of b ions. Generally in-creasing as aggregate size increases
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(c) The relationship between peptide length,glycan size, and the posterior probability ofdifference of HexNAc of peptide+Y ions. Ap-pears to be important at all size ranges.
Figure 4.16: The posterior probability estimated for observing the same fragmentwith and without a mass shift corresponding to a HexNAc for b, y , and peptide+Yions in the single collision energy human CSF
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Intensity Prediction

In order to further understand the fragmentation process of glycopeptides, I attempted
to model the intensity of a product ion as a function of local sequence characteris-
tics. For example, the well known “Proline Rule”, that a Proline at the C-terminus
of an amide bond will make a bond much more likely to break and that if it is at
the N-terminus of the bond it will be unlikely to break, can be inferred from experi-
mental observation [215, 280]. There have been many efforts using a wide range of
different techniques [163, 164, 206, 242, 281, 282] to computationally model these
phenomena, and the underlying physiochemical processes are still not fully under-
stood [275, 283–285]. No solution is completely accurate, even those deep learning
cases which were trained on hundreds of thousands of examples. Additionally, most
if not all of these models are instrument and acquisition parameter dependent. The
method of dissociation and the energy used for dissociation are implicit parameters
of these models, making it difficult to apply the model on new instruments or under
different acquisition conditions. Recognizing that there is not sufficient data pub-
licly available for a single acquisition method to fit a high quality model, I intended
for this to only provide guidelines for estimating match quality and should not be a
dominating factor in the scoring process.

I used amultinomial GLM tomodel the fragmentation process. I considered a se-
quence of nestedmodels, startingwith a simplemodel of just ion series and adjacent
amide bonds, up to a more complex model considering several neighboring bonds,
charge state, fragment size, and peptide backbone composition. I used three-fold
cross-validation to select the optimal model specification, using Pearson’s Correla-
tion Coefficient (ρ) of prediction with experimental data as a measure of goodness
of fit for its comparability across spectra. The selected model was the fourth most
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complex design. A peak’s intensity is a function of 232 factors with 102 governing
b and y ion fragmentation and 130 governing peptide+Y ion fragmentation. Each
spectrummatch was decomposed into a factor matrix of size ki×nf where ki is the
number of peak matches + 1 and nf is the number of features, with a observation
level weight equal to the total signal of the spectrum, and a peak-level weight equal to
the peak’s reliability. In addition to the partitioning rules used from the peak relation-
ship modeling, I also partitioned over precursor charge state, which interacts with
proton mobility index. After cross-validation chose the optimal model, I refit each
partition, and for partitions which contained matches with a correlation below 0.5
with the fitted model, I fit a second “mismatch” model on these poorly characterized
spectra. Subsequently, I use a weighted mixture of the predictions of the full model
and the “mismatch” model, weighted by a function (Eq. 4.30) of the inverse of the
Pearson residual of the prediction (Eq. 4.28).

rp = w(I − Î)2

Î(1− Î)ψ0.5
(4.28)

w =


0.5 I ≥ Î

1 otherwise
(4.29)

πi =
1

(rp,i·I)4∑
j

1
(rp,j ·I)4

(4.30)

Here, I is the experimental peak intensity vector, normalized to sum to 1, Î is the
predicted peak intensity vector of the regression model, given the feature matrix of
matched peaks from query structure q against the spectrum s. The weight w is used
to impose the belief that predicting a peak to be less abundant than it is should not
be considered as bad as the reverse, reflecting that any model would be incomplete
and that this should just be used as a guide. In the expression for πi, rp,i corresponds
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to the Pearson residuals for the ith component of the mixture.
The resulting model fits chosen by cross-validation for the stepped collision en-

ergy mouse dataset are shown in Figure 4.17, and the fits chosen for the single en-
ergy human CSF data are shown in Figure 4.18. The naive amide bondmodel already
produces a mean ρ of around 0.5, which is better than 0. As additional features are
added to look beyond the immediate amide bond, capture portions of the peptide
composition and glycan fragment size, the model approaches a mean ρ of 0.8. This
is not close to the median ρ of 0.98 [164] reports for deep learning on bare peptides,
but I have a mere fraction of the training data they used. The second model defini-
tion adds some information about the peptide+Y ions depending upon the peptide
backbone composition and whether or not the fragment contains Fuc, while the fi-
nal model fits each charge state of peptide+Y separately. The gain in performance
from the second to the third model for the stepped collision energy data reflects the
abundance of those types of fragments, while the change in the single energy data
is minor as those fragments are much less common in that data.
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Figure 4.17: Peak intensity prediction correlation in the stepped collision energy HCDdataset
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Figure 4.18: Peak intensity prediction correlation in the single collision energy humanCSF
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Integrating Predictions with Scoring

In order to to use these learnedmodels to identify glycopeptides, I augmented the ex-
isting PepScore (Eq. 4.20) and GlyScore (Eq. 4.21) with model predictions. Because
the partitions form a tree-like structure, I refer to this as a “multinomial regression
mixture tree” (MRMT). The model to be used is selected by traversing the tree along
the branch leading to the matching peptide length range, glycan size range, precur-
sor charge range, and proton mobility index. If no matching model was found, the
nearest model would be selected. The new scoring model incorporates both the re-
liability ψ and a transformation of the Pearson residual through its log CDF shown in
Figure 4.19b given by Eq. 4.31.

di = −1
6 log10

[
CDF

(
wi(Ii − Îi)2

Îi(1− Îi)ψ0.5,i

)
+ 10−6

]
(4.31)

pcc(I, Î) = 21 + ρ(I, Î)
2 × log10 |I| (4.32)

PepScoreMRMT (s, q, γ, δ) =
[
n∑
i

(
log10 Ii,p

(
1− |ei|

etol

4)
(δ + ψi)di

)
+ pcc(Ip, Îp)

]

× Cp(s, q)γ

(4.33)
GlyScoreMRMT (s, q, α, β, δ) =

n∑
i

(
log10 Ii,g

(
1− |ei|

etol

4)
(δ + ψi)di

)

× Cg(s, q)α × ratioβcore + SigIonScore(s, q)
(4.34)
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TotalScoreMRMT (s, q, α, β, γ, δ, w, λ) = w ×GlyScoreMRMT (s, q, α, β, δ)+

(1− w)× PepScoreMRMT (s, q, γ, δ)+

SigIonScore(s, q) + λCgp(s, q)+

MassAccScore(s, q)

(4.35)
This differs from the original scores in that the log-scaled intensity is now weighted
by the relative mass accuracy, an up-shifted but unpadded ψ, and a measure of the
intensity goodness of fit throughmultinomialmodel’s Pearson residuals di (Eq. 4.31).
The pcc function works around the problem that ρ(y, ŷ) can easily be nearly 1 when
there are few peak matches, causing it to favor poor matches and decoy matches
over longer matches which are less consistent with the model, but not necessarily
wrong. If more weight is placed on pcc, the number of targets retained increases,
but this increases the bias towards longer peptides.
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(b) The log10 transformation of thePearson residual CDF shown in Fig-ure 4.19a, normalized between 0 and 1.
Figure 4.19: The Pearson residual rp and its empirical CDF transform d
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4.3 Results

I compared the performance of this MRMT model, trained on the non-brain tissues
from [132], with the naive model shown in Figure 4.20a. The parameters used were
α = 0.5, β = 0.4, γ = 1, δ = 0.75, w = 0.35, λ = 10 with a 20 PPM mass error toler-
ance on product ions. TheMRMTmodel performed better at stricter FDR thresholds,
though it performs slightly worse than the naive model at the more permissive 5%
threshold.
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4.4 Discussion

The MRMT model performing worse at higher thresholds is most likely due to the
predictionmodel being harsher on poorer glycanmatches, as shown in Figure 4.20b.
The prediction of peptide+Y peak intensities is a function of the entire peptide back-
bone composition, the ion’s charge, and the glycan fragment’s size with respect to
the total glycan structure. It does not explicitly specify the per-bond trends as done
for the peptide where each amide bond participant is considered. Even so, we ob-
tain a 3.3% improvement over the naive model at 1% FDR, and the ratio continues
to improve as the threshold approaches 0. One can argue that at this level of speci-
ficity the FDR is based on too few observations to be meaningful. If I remove the di
term fromGlyScoreMRMT , the performance improves at all levels, creating the series
shown in Figure 4.20a as MRMT (Partial). This partial GlyScoreMRMT is still more
stringent than the original, reflecting the gain of specificity from ψ.

This type of scoring model does have disadvantages. Since it takes into account
sequence-specific properties, two different glycopeptides with the same length and
glycan compositionmay get different scores while matching the same peaks, due to
differences in peptide backbone composition or in some extreme cases proton mo-
bility index. This can lead to a sub-optimalmatch being selected simply because that
match ismore consistent with themodel’s expectations, even if the experimental evi-
dence isweaker. Most suchweakermatcheswould be eliminated during FDR thresh-
olding, but it is still possible for these spectra to be correctly identified. This is partic-
ularly true spectra where there are multiple glycopeptides that can match the abun-
dant peptide+Y with differing expectations, but the discriminating peptide backbone
fragments are too low in abundance and inconsistent with model expectations to
overcome the model’s bias towards the other solution. Such trivial cases could be
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ruled out quickly by adding a post-match filtering step which discards matches with
peptide scores below some arbitrary threshold like 1.0, where on average the 5% FDR
threshold for the peptide score was around 4.

4.5 Conclusion

In this chapter, I described my work to model how to identify glycopeptides from
MS2 spectra and to increase the number of spectra identified per experiment. This
work demonstrated a model building pipeline that could be used to learn to predict
glycopeptide fragmentation from multiple types of glycopeptide fragmentation pro-
tocols. The fitted model was able to augment an existing glycopeptide identification
procedure and reject more decoy matches while retaining 6% more target matches
at the same 1% FDR threshold, consistent with manual inspection of the spectrum,
for a total of 19% over the original study [132]. These methods are not without their
limitations, as discussed, but they may be addressed by the addition of more exam-
ples or by augmenting the linear mixture approach used to compute the TotalScore.
Such work might depend upon placing a weaker, non-uniform assumption of prior
probability of low proton mobility [279], or by employing a non-linear mixing effect.

Deeper coverage of the sample is advantageous because it permits you to con-
sider more potential glycopeptides in your downstream analysis. This is another op-
portunity to observe a new pattern, or to reinforce an existing one. Quantitative anal-
ysis of site-specific glycosylation across a single glycoprotein requires many more
identification events per site than the standard Top3 peptide or iBAQ methods of
protein quantification [286–288]. With a better model, we can learn more from the
same data. This can in turn lead to a better model, as I will discuss in Chapter 5, but
more importantly, it leads to a better understanding of glycobiology.
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Despite the potential returns, little effort has been made to make glycopeptide
search engines more intelligent beyond reducing contextually unlikely comparisons
[133, 183] and tuning of glycan structural information utilization [132, 153, 181, 185].
None the less, the scoring model described here was only possible because of the
original work done by [132, 186], whose model served as the foundation for my own.
Part of this shortage of modeling of the finer details may be related to the innate
complexity of the domain, which inherits all of the issues of mass spectrometry of
large molecules along with less regular fragmentation than bare peptides, expanded
search spaces, and lack of standardization of methods. Another component is that
there is limited information available to study how glycans fragment, particularly in a
high throughput context where precise experimental controls on cation adducts can-
not be employed [91], exacerbated by the protonmobility interaction with the peptide
[275]. Finally, most glycopeptide search engines built “from scratch” must create
each piece of the engine [135] themselves, leading to substantial effort just to get to
ground level.

As data acquisition methods evolve, new models must be developed. Even with
the wealth of data published in [132], and other articles like [277], there is not yet
a large corpus of data acquired with consistent methods. Future work will depend
upon what kinds of activations grow to prominence, whether stepped HCD will be
adopted more widely, or if EThcD will become available to more researchers. It re-
mains to be seenwhether thesemethods can even be applied to shotgun proteomics
datasets where the glycopeptides represent a small fraction of the overall signal, and
still obtain useful, reproducible results.
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Chapter 5

Extending Glycopeptide Identification beyond the Spectrum Match

5.1 Introduction

In the previous chapter, I discussed methods for improving our ability to identify gly-
copeptide spectrum matches GPSMs. Spectrum-wise structural identification is a
fundamental part of computational mass spectrometry, and it serves as the basis
for many techniques [135] across all types of “-omics” studies done with MS. How-
ever, there is a great deal of information missing from the spectrum. Some infor-
mation is only available through associations between multiple spectrum matches
[133, 166, 217, 220]. Some information is only available by examining the larger pic-
ture of the experiment from the perspective of the LC or collective set of runs [289].
Some information is only expressed through the beliefs of the spectrum’s interpreter
[145, 175, 195]. In this chapter, I will discuss methods for recognizing and tracking
external consistency.

5.2 Glycoproteome-Wide Site-Specific Glycome Network Smoothing

In Chapter 3, I introduced my recently published work on network smoothing at the
glycome level, and in Chapter 4 I presented work done to identify glycopeptides in a
complex sample with the scope of the complete N-glycoproteome. Here, I will dis-
cuss how these two techniques can be combined to increase depth of coverage. This
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method uses the model’s bias towards previously identified glycans and its relatives
to adjust identification confidence, information external to the spectrum match.

5.2.1 Methods

For this work, I reused the test data from Chapter 4, five LC-MS runs of Mouse brain
tissue. I used the first pass identifications using CovBinom across all five samples to
identify glycopeptides, and mapped those passing a 5% FDR threshold onto LC-MS
features.

Model Specification

To begin, I extracted identified glycopeptides across several samples in a cohort as-
sumed to share the same glycoproteome. I scored themusing the sameMS1 feature
model described in Chapter 3, save that the charge state model was replaced with a
constant and no adducts were considered. Next, I aggregated glycopeptides around
glycosylation sites across samples, producing a list of glycopeptide features for each
site to fit φ and τ as discussed in Chapter 3.

Unlike in Chapter 3, I may have multiple observations for the same glycan, so I
need to summarize them before I can apply Eq. 3.8. To do this, I construct amatrix E

thatmaps each observation of the same glycan gi to the same entry in φ. I nextmulti-
ply both sides by left-inverse ofE, E− which removes the transformation from φo and
makes E−So, which in effect averages all observations for the glycan gi in So to form
a single summarized value, and applies a similar reduction on the variance matrix Σ

such that the variance for gi is 1
k
where k is the number of times gi was observed.

The altered model specification is shown in Eq. 5.2. When each glycan is observed
exactly once E = I. I also augment the glycan graph with “decoy” glycan composi-
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tions matching each original “target” glycan composition, which shared edges with
other decoys but not with targets, but otherwise occupied the same neighborhoods,
and thus controlled by the same Aτ .

So|φo, τ ∼ N (Eφo,Σ) (5.1)
E−So|φo, τ ∼ N (φo,E−ΣE−t) (5.2)

S̃ = E−So (5.3)

This adjustment to the model alters the optimization of φo, culminating in Eq. 5.5.

0 = ∂`

∂φo
(So −Eφo)t(So −Eφo) + λ

[
φo − τo, φm − τm

]
L

 φo − τo
φm − τm

 (5.4)

= ∂`

∂φo
(E−So − φo)tEtE(E−So − φo) + λ

[
φo − τo, φm − τm

]
L

 φo − τo
φm − τm


Let S̃o = E−So and Vo = EtE

= ∂`

∂φo
(S̃o − φo)tVo(S̃o − φo) + λ

[
φo − τo, φm − τm

]
L

 φo − τo
φm − τm


φ̂o =

[
I + λV−o (Loo − LomLmm

−1Lmo)
]−1

(S̃o − τo) + τo (5.5)

From the adjustedmodel specification, andE, I fit λ and τ as discussed in Chapter 3.
All subsequent fitting of φwas done using min(λ, 0.2), as in the partial regularization
condition.

Using the estimates of τ and φo, I also estimate φm, spreading information from
high confidence glycans with experimental evidence to unobserved variants. φm in-
cludes both unobserved target glycans and all decoy glycans.
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Integration of Network Smoothing with Glycopeptide Identification

I repeated the glycopeptide identification processwith amodifiedGlyScore as shown
in Eqs. 5.6 and 5.7 where φg is the estimated smoothed φ for glycan g in the query
structure q. This “prior” weight on the glycan identity is influenced by the glycan cov-
erage, but serves as extra evidence for that glycan, as if more signal were present
and explained by that glycan. This biases the scoring model towards glycopeptides
whose glycan is similar to those previously identified at that site. Because GlyScore
contributes a fraction w of its magnitude to the TotalScore, it impacts both the top
match as well as the glycan-level FDR

GlyScoreSmoothed(s, q, α, β) =
[
φq +

n∑
i

log10 Ii,g

(
1− |ei|

etol

4)]
× Cg(s, q)α × ratioβcore

(5.6)
GlyScoreMRMT,Smoothed(s, q, α, β, δ) =

[
φq +

n∑
i

(
log10 Ii,g

(
1− |ei|

etol

4)
× (δ + ψi)× di

)]

× Cg(s, q)α × ratioβcore + SigIonScore(s, q)

(5.7)
To integrate this method with the finite mixture model approach to estimating FDR,
the TT and DT class groups used the target φq for that glycan composition/glycosite
pair, while TD and DD received the decoy φq for that glycan composition/glycosite
pair. For decoy peptides, the protein sequence is reversed prior to in silico digestion,
however the glycosylation site is preserved and reflected, so the each glycosite of the
decoy protein shares the same model with the analogous site on the target protein.
When λ > 0, φmwill be shifted towardsAτ , but will usually be less than the equivalent
φo, while when λ → 0, φm will be close to 0 while φo will remain unchanged. This
means that a site which selected a large λwill contribute several high scoring decoys

178



along with several observed and unobserved targets, while a site which selected a
small λ will have only contribute a small number of high scoring observed targets.
This may weaken the efficacy of TDA because it explicitly treats targets and decoys
differently, but the dependence on Cg and the use of target glycans on DT decoy-
peptide decoys prevent the target glycan bias from invalidating its usefulness.

5.2.2 Results

The performance of the smoothing adjusted scoring functions are shown in Fig-
ure 5.1, comparing the performance of the models discussed in Chapter 4 without
network smoothing. As expected, the addition this external information increased
the number of identifications in all cases, but the gain in identifications was larger
for the MRMT-based scoring models than the naive model. As observed in Chap-
ter 4, this was likely because the MRMT models were better at discriminating target
peptides from decoy peptides, while being more stringent towards the glycan, but
with the external evidence to help discriminate the glycan, they were able to more
fully utilize their peptide backbones. A histogram of the contribution made by the
prior for each glycopeptide shown in the Smoothed MRMT (Partial) series is shown
in Figure 5.2, showing that it still functions when the prior is small to non-existent.

FDR pGlyco2 Naive MRMT MRMT (Partial) Smoothed Naive Smoothed MRMT Smoothed MRMT (Partial)
10.0% 24410 29775 31490 31362 31313 33650 315815.0% 21992 24855 24673 25611 25513 28238 267563.0% 20263 22799 22853 23650 23385 24561 247021.0% 17015 19254 19887 20276 19814 21171 212190.5% 15165 17531 18364 18758 17827 19392 195960.1% 9901 14531 15662 15930 14710 16441 16501

Table 5.1: Number of spectra retained at each FDR threshold, by model
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Figure 5.1: Comparison of originally published results for pGlyco2 [132], my naivemodel, the MRMT model including learned properties, and their network smoothedvariants. The MRMTmodel andMRMT (Partial) model both performed substantiallybetter than their un-smoothed counterparts as well as the smoothed version of thenaive model. A few checkpoint counts are shown in Table 5.1

5.2.3 Discussion

The increased depth of identifications produced by the smoothing procedure are
dominated by cases which are associated with a strong prior, though it does not
automatically drown out those cases which are not associated with a strong prior,
as shown in Figure 5.2. The argument can be made that because the feature score
used for learning φ doesn’t useMS2 information beyond the assigned identity, it does
not reflect the identification confidence. It would be possible to add another compo-
nent to the feature score based on a transformation of the FDR of the identification,
but this may make the surface the network smoothing parameter optimization pro-
cedure traverse less smooth. It would also make the method more sensitive to the
identification procedure’s bias. It is already driven by them implicitly, but it doesn’t
explicitly reinforce them. Additionally, the network neighborhoods used here were
identical to the neighborhoods used in Chapter 3, which do not include some of the
broadermammalian patterns, specifically Galα-Gal and LacDiNAc, which are known
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Figure 5.2: A histogram of the contribution made by the glycan prior for each gly-copeptide from the Smoothed MRMT (Partial) series in Figure 5.1. The majority ofidentifications have a large prior component, but many do not.
to occur in mouse tissue [9, 59, 199]. This suggests that were the neighborhood def-
initions adjusted, those glycans would be better represented.

As noted in Chapter 3, while I included an automated procedure for learning the
model parameters for each site, an expert can also explicitly encode their expecta-
tions in Aτ , or to apply models from different contexts to new samples. It might be
desirable to have a standardmodel for each tissue type which could then be used for
consistency between experiments on the same tissue. Such an approach would be
less specific than a spectral library spanning all experimental glycoforms, but would
also be able to cover structures not found in the library.

This method would be harder to apply to traditional TDA, because it would mean
selecting a different type of decoy mapping. With single energy-like fragmentation,
if DT decoys are the only decoy type, should DT decoys be treated the same way as
shown here? The answer is not clear, semantically. On the one hand, if reverse pro-
tein decoys are used, then using the decoy glycan value will be slightly more biased
towards targets, but the difference may not be large enough to matter. On the other
hand, if reverse peptide decoys are used, the model is already biased against the tar-
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gets, and using the target glycan for the decoy peptides would only strengthen that
bias. It would also depend upon whether the glycan masses for decoys were per-
muted at all, and whether the scoring function rewarded parsimony [133, 160, 266]
over an additive scoring component [132, 153, 182].

Given work discussed in Chapter 4 regarding peptide identification as a precur-
sor to building a theoretical glycopeptide database, it seems natural to attempt to
extend this notion of network smoothing to peptides aswell. This idea is not far from
multi-round search [137, 156] or common protein boosting techniques [166, 175]. It
is doable, though the graph structure would be more challenging to construct be-
cause the natural distance function between two peptides, edit distance, would not
necessarily reflect the desired relationship. For example, a single missed cleavage
represents one semantic difference, but introduces a minimum of one edit, with an
unboundedmaximum number of edits, though on average it might be between three
and ten depending upon the protease and the protein domain. Which measure of
difference more accurately expresses the degree of relatedness between those two
peptides would be a matter of opinion and sample preparation [111, 136, 172, 290].
Another challenge would be the ranking of small molecule PTMswhich cannot all be
treated in the same fashion. The classification and ranking of PTMs by confidence
is explored in [100, 137, 145, 174, 175, 195].

5.3 Retention Time Prediction

Separation characteristics such as retention time are an orthogonal metric to mass
measurement for identifying molecules. Models of the behavior of different chro-
matographic systems for separating peptides have been published [104, 106, 291–
293]. One of the challenges with these techniques is that they must be used with
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known experimental configurations, with specific chemical properties. These are
often well studied, standardized methods. The concept has application to glycans
[101, 203] and glycopeptides [294, 295], but there is a lack of reproducible computa-
tional method that covers the space of common glycan building blocks dealt with in
my body of work.

5.3.1 LinearModel for PredictingRetention TimeWithinGlycoform

Group For Internal Consistency

In [23], several LC-MS datasets were acquired on a C18 reverse-phase LC column
with a slightly polar characteristic. This induced a monosaccharide-specific reten-
tion time shift, aggregated over the entire glycan composition. In order to defend
the claim that I had identified sulfated glycans that were discriminable from their
ambiguous unsulfated approximate isobars discussed in Section 4.2.2, it was ad-
vantageous to complement fragment ions with retention time. I extracted the aggre-
gated ion chromatograms for each glycoform at a specific site and fit a linear model
weighted by abundance specified in Eq. 5.8.

Apex RT ∼ β0C(Peptide) + β1Hex + β2HexNAc + β3Fuc

+ β4NeuAc + β5SO3 + ε

(5.8)

Results

When fit over all observed high mannose, asialo-complex type, and sulfated asialo-
complex type glycoforms of NCTLIDALLGDPHCDGFQNEK, I obtained a single fit with
R2 = 0.981 with coefficients β = [42.816,−0.1,−0.097,−0.159, 0, 1.29] A plot com-
paring intact mass by retention time is shown in Figure 5.3. Using the same data
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points with {@sulfate:1, HexNAc:2} replaced with {Hex:3} and refit the model.
The produced a fit R2 = 0.409, which suggests that these mass shifts, despite their
similarity, are produced by different molecules.

Figure 5.3: A linear model fit for the high mannose, asialo-complex type, and sul-fated asialo-complex type glycoforms of NCTLIDALLGDPHCDGFQNEK with high accu-racy, R2 = 0.9814.

5.3.2 PredictingRelativeRetentionTimes ForDifferent PeptideGly-

coforms For Classification

Using the estimated parameters from NCTLIDALLGDPHCDGFQNEK to predict the reten-
tion time of glycoforms of another peptide would not immediately make sense, be-
cause β0 reflects something about NCTLIDALLGDPHCDGFQNEK, which is the only part
not shared with another set of similar glycopeptides sharing glycan compositions
but not peptide sequences. It would be possible to replace β0 with a vector of coeffi-
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cients to absorb each peptide-specific effect while averaging the contribution of the
common monosaccharides, but this does not give a sense of how well the known
trend for those common monosaccharides learned on NCTLIDALLGDPHCDGFQNEK ap-
proximate the trend for that new set of glycopeptides.

Assuming there are multiple observations in that new set, and the monosaccha-
ride trends are assumed to be fixed and should not be re-estimated for the new gly-
copeptides, themonosaccharide level trends can be used bymeasuring whether the
distance predicted by the fitted model from glycoforms from peptide p1 for two gly-
copeptides gp1 and gp2 from peptide p2. This can be measured by predicting the
retention time for gp1 and subtracting it from the predicted time for gp2 as a proxy
for the residual, in the least squares sense. With many glycopeptides from p2, av-
eraging over all other glycoform the relative difference residual would approach the
true error of fit, assuming no peptide-specific interaction with the monosaccharides.

This residual could be converted into a goodness-of-fit value between 0 and 0.5
by passing it through the t distribution survival function with mean 0, degrees of
freedom |gp ∈ p2| − |β| and some standard deviation σ. σ cannot be learned directly
from the raw apex retention times because there is by definition only one observation
for each glycoform. Instead, it might be assumed to be 1.0 to enforce a relatively lax
prediction interval, while it might be estimated from the average relative difference
in retention time prediction across all test cases to narrow the window. From the
survival function value, multiplying by 2 produces a value between 0 and 1, where 1
is a perfect alignment between experiment and prediction and 0 reflects the worst
possible alignment, with the magnitude of the difference depending upon σ. This
goodness of fit value is then compatible with a logit-transform for use in an MS1

feature score as in Chapter 3, or untransformed it can be used to threshold a set of
chromatograms for some downstream operation assuming shared identity.
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Figure 5.4: The fitted regression model from NCTLIDALLGDPHCDGFQNEK predicting re-tention times for TITNDQIEVTNATELVQSSSTGR, with sulfated and unsulfated glycans.Outliers are marked with Xs, and the R2 went from 0.76 to 0.97 from the removal ofoutliers.

Results

Using the fit on NCTLIDALLGDPHCDGFQNEK to predict outliers in
TITNDQIEVTNATELVQSSSTGR with σ = 1 and a threshold of 0.5 to eliminate out-
liers, dropped to extreme chromatograms produced the fit shown in Figure 5.4.

5.3.3 Predicting Unfragmented Precursor Identities

Using similarly acquired AGP data with abundant ammonium and metallic cation
adducts, I extracted all identified chromatograms for SVQEIQATFFYFTPNK and fit a
model using only those cases which were identified in their unadducted state, pro-
ducing a fit with R2 = 0.974 and β = [60.07, 3.39,−3.86,−0.25, 2.9, 0]. Here, the
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coefficients for each monosaccharide are considerably larger, reflecting that the so-
lution for the intercept is anchored at a different point than the IAV examples. These
glycopeptides are also sialylated but not sulfated. It is unlikely that the monosac-
charide coefficients here are accurate on an absolute scale, but they can still be
used relatively. Next, I extracted all unassigned chromatograms from the sample,
and matched intact masses for other SVQEIQATFFYFTPNK glycoforms. These new
cases have no MS2 spectra to identify them. Using the relative retention time pre-
dicted for these matches can be used to rule them in or out. Using the original fit
on unadducted glycoforms, I next predicted outliers on the set containing the unad-
ducted, adducted only, and unfragmented chromatograms, and marked those with
a score <= 0.1 as outliers. The inlier fit produced an R2 = 0.961, shown in Figure 5.5.
In addition to recognizing unfragmented precursors and mis-assigned adducts, the
model fit was able to flag deconvolution artefacts where the A+1 peak was chosen
for the monoisotopic peak and the structure matched converted NeuAc into Fuc 2.
These are often flagged separately by the chromatographic peak shape feature, but
this may help to improve detection.

5.3.4 Discussion

Usingmodels like thesewould be useful for larger scale studieswherewe cannot reli-
ably fragment every precursor of interest, but would still like to quantify them. This is
related to themissing value problem in general, which is endemic tomass spectrom-
etry, especially proteomics [296–299]. Previous solutions to this problem have been
to use “AccurateMass and TimeTagging” or “Mass Tags” [300], alongwith the similar
“MatchBetweenRuns” [266, 301] idea, use previously time-aligned/normalized identi-
fications with high precursor mass accuracy to propagate identities between LC-MS
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Figure 5.5: Predicting outliers and inliers from regression on SVQEIQATFFYFTPNK, in-cluding adducted, removal ofmis-assigned glycan composition chromatograms andthe inclusion unfragmented chromatograms corresponding to new glycoforms ofthe same peptide sequence.
runs to assign chromatograms which may not be identified in a particular run, but
which are identifiable independently from other sources, but these techniques all rely
on having previously identified the structure by MS2. Other methods like [201, 302]
use retention time as one dimension of the identification process, either on equal
footing with, or as a replacement for fragmentation evidence.

Limitations

While the method I proposed here works well when there are enough cases covering
all monosaccharides for a single peptide backbone, this is not always the case, es-
pecially for most sparsely covered glycosites common to large, complex samples.
Without at least one high confidence point of reference, it is not able to make useful
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predictions, making it difficult to use as a general purpose predictor of retention time.
Further, it assumes constant chromatographic conditions throughout the run, which
is not consistent with reality. Therefore, its best utility is as an internal consistency
check to complement other methods, like the examples shown in Figures 5.3 and
5.5. This might complement the fitting of network smoothing models to down-rank
glycan compositions which are not consistent with other glycoforms of the same
peptide.

5.4 Conclusion

Using information shared among different glycan compositions at the same site, I
demonstrated how the concept of network smoothing, originally presented for gly-
comics experiment in [94], shown inChapter 3, could be extended to glycoproteomics.
This technique, when used in concert with a more sensitive scoring model produced
5.25% increase in identifications at 1% FDR over the model alone, which already im-
proved on the baseline naive model by 6%, with a total of 24% improvement on the
original analysis [132].

I also discussed a method for using a local estimate of glycan component spe-
cific retention time effects. Thismethod is in agreement with the literature [294, 295]
and work under way by [104]. While the method discussed is not nearly as effica-
cious as network smoothing it does provide additional, orthogonal informationwhich
could be used to augment an existing approach or for validating the internal consis-
tency of a glycoform group, or to disambiguate similar monosaccharide aggregates.
This could be useful for assessing the FDR from another angle [172], or as a higher
order pattern to look for when aligning LC-MS runs of glycopeptides [103].

These methods incorporate information into the identification process from out-
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side the spectrummatch, which canbeused independent of the fragmentationmethod
used. They depend upon additional chemical and biological features which can be
adapted to other types of glycans than N-glycans. While the techniques discussed
here operate on abstracted and simplified concepts, they do utilize semantic relation-
ships which underlies the glycan structure [9, 85] and how they express themselves
through the measurements we use to study them [259].
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Chapter 6

Conclusion

6.1 Summary of Work

In this work, I described the development of a layered set of tools for the interpreta-
tion of glycopeptide tandem mass spectra, with the intent to show how integrating
information from each layer of the problem domain enabled deeper understanding
of the data. I introduced how the problem must be solved with appropriate signal
processing from the very beginning in Chapter 2. I demonstrated how that signal
processing helped to develop a platform for glycan composition profiling, which al-
lowedme to create a test-bed for applying network smoothing over glycan composi-
tions in Chapter 3. This network smoothing procedure allowsme to impose external
information on the glycan composition identification problem, learning the impor-
tance of that pattern from the data. Separately, the signal processing step enabled
deeper analysis of glycopeptides from complex samples, exposing more informa-
tion to study in Chapter 4. By exploiting that informationwith a set of complementary
modeling techniques, I was able to create a scoring model that achieved a 6% im-
provement over the naive model at 1% FDR. Finally, I showed that the same network
smoothing model applied to glycan compositions could be applied to glycopeptides
on a per-glycosite basis, gaining another 5.25% improvement at the same 1%FDR, for
a total of 24% improvement compared to the original interpretation of these samples
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[132].

6.2 Why Is This Important?

The creation of amodel building pipeline for glycopeptide fragmentation for learning
recurring features is useful because glycopeptide identification isn’t solved yet. The
scoring models described here will always benefit from more data [8], and they are
only for one type of dissociation [88]. There are othermethods thatmightwork better.
That thismethod is completely transparent could be useful for another implementer.

Similarly, the signal processing tools developed during this work would be valu-
able for people attempting to solve similar problems. The deconvolution procedure is
a necessary evil in order to handle larger molecules [132, 219, 226], but it only serves
the main goal of identifying glycopeptides indirectly. Additionally, ms_deisotope is a
general-purpose deconvolution toolkit, with application to other biomolecule classes,
including peptides and chemically derivatized glycans [54, 94]. Components of it
have already been reused by others [236, 238]. Because it can read and write mzML
[244], it can operate between other tools which were previously reserved spaces for
compiled languages and extensions [115, 120].

More significantly however, identifying glycosylation site-specific patterns is dif-
ficult because it can take several spectra to identify just one glycopeptide, with the
knowledge that there may be between two and forty glycopeptides for each gly-
cosite, just based upon the identification trends observed in toy examples like AGP
[23, 92, 303]. Adding the ability to extract more information from the same sample
means that you can quantify more from the same signal is important. It means that
more glycoproteins can be characterized from the same sample, which means that
there is a greater potential to observe meaningful biological patterns. Alternatively,
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it acts as a lever by which an expert can exert their beliefs on the analysis.

6.3 Implications

Should the network smoothing model be deemed acceptable by other members of
the field, it would be advantageous for practitioners interested in using it to acquire
and share glycosite and glycoprotein models. This would be consistent with the
efforts underwaywith the active glycoinformatics databases [213, 214, 269]. There is
already ample data to draw on for several tissues available through PRIDE [277, 304].
Because the network smoothing method only depends upon the presence of MS1

features that have been identified as glycopeptides, this component can be used
with or without the MS2 identification methods I discussed in Chapter 4.

If the stepped HCD method [132, 187, 276] is considered an acceptable trade-off
in terms of analysis time and depth, then depending upon the energies that become
standardized, the fragmentation models published here may see more general use
for large cohort studies. Additional work might be necessary to adapt to different
energy ranges or calibrate for different instrument biases.

Should anyone believe that ammonium adducts on glycopeptides are real, are
a problem, and should be solved, they may choose to further investigate mass ac-
curacy and retention time tracking methods like those discussed in Chapters 4 and
5.

6.4 Next Steps

My intent in creating these algorithms was to make it easier for people to iden-
tify glycans and glycopeptides. I have provided a variety of tools for that purpose,
and the model building techniques shown here will be added to them. GlycReSoft
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(http://www.bumc.bu.edu/msr/glycresoft/) is an open sourcePython applicationwhich
encapsulates each of the steps described in this work, providing both a command
line and graphical user interface. Themore recent work discussed here will be added
to the user interface.

One direction to go from themodels discussed here is to extend network smooth-
ing to the peptide component of the glycopeptide as well, discussed briefly in Chap-
ter 5. This would provide an interesting challenge, as shown in Chapter 4, that the
peptide backbone wasmuchmore structured and difficult to assign, as compared to
the glycan. It would also be more readily applicable to general protein identification,
where the notion of a prior probability of a peptidoform or proteoform has existed
for some time [145, 175, 195], but has not been explored thoroughly. Alternatively, the
existing methods could also be applied to types of O-glycopeptides, which might be
benefit more from a combination of these approaches.

Another direction is to refine the alignment, validation, and quantification of gly-
copeptides. Because of their complicated nature, glycopeptides are not covered by
existing quantification software very well. With the signal extraction tools discussed
in Chapter 2, it might be possible to continue to integrate domain information into
this problem, building on methods like those proposed by [305] and [95].

While the models discussed here were all HCD-related, there would be value in
adapting parts to work with ExD or EThcD, specifically for multiply glycosylated pep-
tides common in middle-down [88]. This would also be an interesting extension to
network smoothing where multiple sites are combined to support one glycoform.
Similarly, being able to incorporate ion mobility into the glycopeptide identification
process would introduce additional information into the problem and could be used
to address some of the ambiguities discussed in Chapters 4 and 5.
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