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Neuroproteomics, an emerging field at the intersection of neuroscience and 
proteomics, has garnered significant attention in the context of neurotrauma 
research. Neuroproteomics involves the quantitative and qualitative analysis 
of nervous system components, essential for understanding the dynamic 
events involved in the vast areas of neuroscience, including, but not limited to, 
neuropsychiatric disorders, neurodegenerative disorders, mental illness, traumatic 
brain injury, chronic traumatic encephalopathy, and other neurodegenerative 
diseases. With advancements in mass spectrometry coupled with bioinformatics 
and systems biology, neuroproteomics has led to the development of innovative 
techniques such as microproteomics, single-cell proteomics, and imaging mass 
spectrometry, which have significantly impacted neuronal biomarker research. By 
analyzing the complex protein interactions and alterations that occur in the injured 
brain, neuroproteomics provides valuable insights into the pathophysiological 
mechanisms underlying neurotrauma. This review explores how such insights 
can be harnessed to advance personalized medicine (PM) approaches, tailoring 
treatments based on individual patient profiles. Additionally, we  highlight 
the potential future prospects of neuroproteomics, such as identifying novel 
biomarkers and developing targeted therapies by employing artificial intelligence 
(AI) and machine learning (ML). By shedding light on neurotrauma’s current 
state and future directions, this review aims to stimulate further research and 
collaboration in this promising and transformative field.
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Highlights

 - Neuroproteomics represents a new arrow to the precision 
medicine bow, allowing us to characterize neurological disorders 
more precisely and tailor medical treatments to specific 
individual patient needs.

 - Combination of neuroproteomics with novel powerful 
computational tools and artificial intelligence can address the 
highly complex networks that underlie pathobiological 
mechanisms of brain injury.

1 Introduction

1.1 General overview of neuroproteomics

Several platforms have been used for decades to carry out protein-
specific research. Proteomics has been introduced to study the 
proteome of a given biological system’s expression, interaction, 
functions, and modifications (1). Among the primary endeavors of 
proteomics include identifying and discovering new molecular protein 
hits that can indicate a specific homeostatic state. Over its 
development, proteomics has become an optimal approach for 
accurate diagnostic and prognostic technology, reflected in the 
logarithmic advancement in this field and its technological 
applications (2–5).

The vast history of neuroproteomics has developed over a long 
period, dating back to the initial development of genome and genetic 
studies. The human genome project paved the way for initiating thes 
human proteome project. This project explored the human proteome’s 
many biological and functional properties associated with 
approximately 20,300 protein-coding genes (6). As such, this allowed 
for studying the role of these gene-coded proteins in both healthy and 
pathological conditions using proteomics, systems biology, and 
bioinformatics tools (7). These previous projects highlighted the 
proteome’s complexity, where a single gene can translate into several 
protein isoforms (2, 8). Several factors contributing to this diversity in 
protein isoforms include alternative splicing and post-translational 
modifications (PTMs).

The modern field of proteomics is complementary to the genomics 
field. Proteomics represents a downstream transition of the genome 
map and has been used to evaluate the biological system’s genotype 
signature (8). By validating the translation of its proposed altered 
genomic map and assessing the phenotypic output, we can link the 
genome with the proteome. Nevertheless, this association may 
be  affected by several confounding factors, such as different 
physiological compartments, conditions, PTMs, and other external 
factors, thereby leading to different protein structures and chemical 
isoforms (2).

Proteomics studies are conducted in-vivo and in-vitro through 
various approaches and can create models for multiple conditions 
related to protein concentration levels and structure modifications. 
PTMs are crucial for the characterization and analysis of numerous 
diseases, including neurodegenerative disorders (9).

Ultimately, proteomics’ development spans a vast history and has 
developed a new and more efficient technique for protein 
identification. Today, proteomics research and technological 

advancements can be paired together to advance precision medicine 
and clinical applications. With the introduction of Artificial 
Intelligence (AI) and Machine Learning (ML), technology can 
organize a more accurate form of personalized medicine, providing 
the most accurate implications for individualized and unique 
treatment options for every patient (10). This review will discuss 
several aspects of proteomics and link its potential role in technology-
based personalized medicine.

Neuroproteomics is a field that studies the nervous system to 
understand disorders like neuropsychiatric, degenerative disorders, 
and neurotrauma-related injuries (11–13), i.e., traumatic brain 
injuries (TBI) (14), spinal cord injury (SCI) (15), and stroke (16). It 
is classified into four categories: Expression Neuroproteomics, 
Functional Neuroproteomics, Clinical Neuroproteomics, and 
Neuroproteomics Informatics (2). The first category focuses on 
profiling the proteome, the second one investigates the functional 
properties of individual sets of proteins (9), the third aims at 
discovering drugs and novel biomarkers for pathological conditions 
(17, 18), and the fourth is dedicated to computational tools and 
specific databases enabling the analysis of proteomics data sets (19–
22). With information from all four categories, a neuroscientist can 
propose new algorithms and faster outputs to conduct clinical 
prognosis and diagnosis.

In the neuroproteomics fields’ development and advancements, 
some significant challenges arise from the CNS (23). Analyzing the 
CNS is difficult due to the presence of over 20,000 proteins in the brain 
that are differentially expressed within different regions. Overall, it 
becomes incredibly challenging to comprehensively study the brain 
proteome and its dynamic function without using high-resolution 
protein identification and separation techniques. Neuroproteomics 
composition analysis challenges have arisen with the neural 
complexity created by the network structure of axons, dendrites, and 
synapses. Challenges in neuroproteomics composition include 
difficulty analyzing different brain regions due to limitations in the 
number of samples to be  obtained for analysis (24). Therefore, 
identifying proteins that are expressed in small quantities is 
exceptionally challenging. Technological advancements, clinical trials, 
and precision tools have been developed to combat these challenges 
in the neuroproteomics (25).

In continuation, due to the nonlinear relation between the 
genome and the proteome, it is challenging to draw a direct 
correlation and association between mRNA expression and protein 
translation (2, 3, 26–30). This is attributable to different factors, 
including alternative splicing, which is highly frequent in brain 
tissue, generating thousands of copies of positively related splices 
from a single gene. For example, the protein Cadherin has 18 
different isoforms linked to morphogenic and functional roles in 
developing the nervous system (27, 30–32). An average of 10 protein 
isoforms can be  generated within a single gene, owing to the 
proteome’s complexity compared to the genome (33, 34). This 
complexity is amplified by the numerous dynamic PTMs, which can 
reach around 400 possible modifications (27, 35).

Mass spectrometry (MS)-based proteomics has proven to be an 
indispensable tool for molecular and cellular biology, as well as for 
the emerging field of system biology (36). It has been successful in a 
variety of applications, including studying protein–protein 
interactions, mapping organelles, and generating quantitative 
protein profiles from diverse species (36). With its ability to identify 
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and quantify thousands of proteins from complex samples, MS is 
expected to have a significant impact on the fields of biology and 
medicine (36). Classic approaches in proteomics use MS coupled 
with advanced separation techniques to analyze protein interactions 
and structures (37–39). MS-based techniques involve bottom-up or 
top-down analysis (40). In the former analysis, proteins undergo 
enzymatic digestion first, followed by fragment identification via 
shotgun-proteomics methods that involve nanoflow liquid 
chromatography (nanoLC) (41). However, the latter goes without 
enzymatic digestion, where the entire intact protein undergoes 
analysis. Interestingly, other tagging techniques have been coupled 
to MS, such as isobaric tags for relative and absolute quantitation 
(iTRAQ) (42) and stable isotope labeling with amino acids in cell 
culture (SILAC) (43). These allow for proteomics changes and PTM 
assessment analyzes as with phosphorylation-dependent 
activation. T.

Another field approach relies on antibody-based techniques 
without MS and involves targeted biomarker proteins through an 
antibody panel or array platforms (24, 44). Although this offers high 
specificity and sensitivity in identifying the proteins, it cannot identify 
novel protein biomarkers. These technologies include high-throughput 
immunoblotting (HTPI) (45, 46) and antibody panel/microarray (47). 
The former utilizes unstable channels where samples can be identified 
via immunoblotting systems that use PAGE followed by an antibody 
probing. The latter technology is based on DNA microarrays or ELISA 
arrays, where pre-labeled proteins in samples with differential 
fluorescent dyes are probed against an antibody platform. A mixture 
of qualitative characterization (PTM, disease characterization, injury 
severity scores) and quantitative techniques (MS, iTRAQ, SILAC, 

ELISA, immunoglobulin assays). Figure  1 illustrates the general 
proteomics quantification methodologies. Neuroproteomics utilizes 
many molecular techniques to quantify and characterize protein 
concentration and quantity. SDS-Page Gel Separation (Western Blot), 
ELISA, Mass Spectrometry, Bioinformatic data, and neuroimaging 
correlations utilize quantitative data collection methods 
within proteomics.

Neuroproteomics is a process that analyzes the concentration and 
structure of different biomarkers using specific protocols and 
methodologies. The process involves extracting biosamples through 
invasive and non-invasive procedures, collecting biofluids for analysis, 
and identifying and quantifying proteins. Scientists use various 
methods, such as SDS-PAGE, Western blots, and mass spectrometry, 
to identify and quantify the proteins. They also use bioinformatics and 
machine databases to confirm and classify the quantified proteomics 
datasets (2, 11). By analyzing potential biomarkers and evaluating 
their concentration under independent conditions, scientists can 
pinpoint what is causing neurodegeneration. Neuroproteomics helps 
neuroscientists diagnose conditions efficiently and identify novel 
therapeutic targets to develop personalized medicine (48). Figure 2 
presents the general neuroproteomics workflow for discovering 
disease biomarkers.

Importantly, the advancement and adaptation of these 
technologies can permit the characterize PTM, such as glycosylation. 
This largely unexplored field has great potential for the identification 
of novel biomarkers while uncovering their biological and 
pathobiological role. In the next section, we focus on this specific 
aspect illustrating proteomics methods and approaches to accurately 
and reliably identify and profile the brain glycoproteome.

FIGURE 1

Neuroproteomics quantification methodologies. Neuroproteomics utilizes many molecular techniques to quantify and characterize protein 
concentration and quantity. SDS-Page Gel Separation (Western Blot), ELISA, Mass Spectrometry, Bioinformatic data, and neuroimaging correlations 
utilize quantitative data collection methods within proteomics.
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1.2 Protein glycosylation

Glycosylation is one of the most predominant post-translational 
modifications of proteins. As protein sequencing data suggest, the 
glycosylation rate of mammalian cell proteins is estimated to 
be  greater than 50% (49–51). In the glycosylation process, 
carbohydrates are added to lipids, proteins, and other organic 
molecules within or outside the cells (49–51). Glycosylation is a tightly 
regulated process, as it is a site-specific enzymatic modification (52). 
A variety of protein properties, such as solubility, are affected by 
glycans of secreted glycoproteins, whereas cell surface glycosylated 
proteins have been implicated in various cellular processes, such as 
cell-to-cell communication (53). The major glycans of glycoproteins 
are classified into two groups based on their glycan–peptide bonds, 
namely the N-glycan and O-glycan. The amino sugar 
N-acetylglucosamine (GlcNAc) is linked to the asparagine amide 
group to form N-glycans, whereas O-glycans are linked to the 
hydroxyl groups of the serine and threonine amino acids of 
polypeptides by N-acetylgalactosamine (49–51, 54).

Aberrant protein glycosylation has been linked to many diseases 
such as Alzheimer’s Disease (AD) (55, 56), TBI (57), Parkinson’s Disease 
(PD) (58), congenital/metabolic disorders (59, 60), diabetes (61, 62), 
inflammation (63), bacterial/viral infectious diseases (64–66), and 
various cancers (67–71). Aside from this, due to structural heterogeneity, 
the presence of isomeric glycans complicates the structural analysis of 
glycans and glycoproteins (72). It is also known that structural 
heterogeneity affects the biological roles of these glycans/glycoproteins 
in various diseases (73). Hence, studying the isomeric forms of glycans 
and glycopeptides is crucial. The importance of proteins and 
glycoproteins in biological processes, as well as the correlation between 
their altered expression and a wide range of diseases, makes proteomics 
and glycoproteomics promising frontiers in the development of 
biomarkers (74). These biomarkers offer unparalleled opportunities for 
refinement in clinical characterization and improve disease phenotyping. 
Such improved characterization and stratification will enable more 
targeted treatments.

As the first step for the characterization of glycosylated proteins, 
they need to be isolated from complex biological samples that include 

both glycosylated and nonglycosylated proteins. Upon isolation, 
glycoproteins/glycopeptides are enriched, digested by proteolysis, and 
detected/identified via mass spectrometry-based techniques using 
glycoproteomics platforms, a subset of the proteomics (75). For the 
purification and separation of glycoproteins, various types of HPLC 
are available, including ion exchange methods, hydrophobic 
interactions, size exclusions, and affinity chromatography. It is 
necessary to develop fast and robust analytical techniques to study the 
altered glycosylation profiles induced by a specific disease (76). A 
number of techniques have previously been used to characterize 
glycoproteins, including lectin affinity, hydrazide chemistry, and 
peptide or protein enrichment, which involves deglycosylation and 
other chemical modifications (77, 78).

It is pertinent to note that mass spectrometry provides valuable 
information regarding proteins with PTMs, and the importance of this 
is especially evident when comparing two or more samples 
quantitatively. Detecting changes in disease-associated glycosylation 
patterns requires sensitive, quick, reliable, and robust analytical 
techniques. Even though many methods are available for identifying 
glycoproteins, glycoproteomics remains a challenging field that holds 
much promise. With the advent of MS techniques, glycoprotein 
profiling has been significantly enhanced, especially when dealing 
with complex samples such as plasma, serum, and body fluids (77, 79). 
Recent advancements in MS technology have also made it possible to 
use more accurate approaches to characterize glycoproteins. A 
glycopeptide-based analysis provides site-specific information 
regarding the location of the glycan attachment on the protein, which 
is then used to determine its putative functional role and properties. 
Figure 3 illustrates the general workflow for analyzing glycoproteins 
in neurotrauma samples using separation techniques coupled with 
mass spectrometry.

1.3 Peptidomics

Peptidomics is a branch of proteomics that focuses on 
endogenous peptide fragments and is responsible for studying all 
peptides in a biological sample (80, 81). Peptidomics is considered 

FIGURE 2

General neuroproteomics workflow for discovery of disease biomarkers.
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a separate domain with its applications and analytic approaches 
(82). The term peptidomics was first used in February 2000 at the 
Association of Biomolecular Resource Facilities (ABRF) 
conference (83–85). The peptides’ life cycle is controlled by 
different processes and events, primarily determined by proteases 
and opposed-regulated protease inhibitors (85). Although 
peptidomics does not need enzymatic digestion in the preparation 
step, it is much more complicated than proteomics. A peptide in 
a peptidome analysis does not contain a uniform basic C-terminal 

(Lys/Arg) because of the absence of tryptic digestion used in 
proteomics approaches (86).

The ultimate aim is generally to classify all peptides, even though 
they originated from the same precursor (87, 88). Both fields, 
proteomics and peptidomics share the same limitation in dealing with 
the changeable features of the proteins and peptides. In a biological 
sample, peptidomics examination is usually hindered by protein 
degradation (enzymatically or non-enzymatically), interfering with 
the original peptides in that sample. Peptides are generally found at 

FIGURE 3

The general workflow of the MS-based glycoproteomics in neurotrauma samples.
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low levels, making any minor degradation of proteins interfere with 
the endogenous peptides’ signals in the MS analysis (89). To overcome 
this limitation, an affinity column for peptide enrichment can be used 
(90, 91). Moreover, heating tissues during extraction via an ordinary 
microwave oven result in the rapid inactivation of the proteases 
responsible for the protein degradation (92, 93). Tissues high in 
peptides and low in digestive enzymes, e.g., the pituitary, act as perfect 
targets (92, 93).

Neuropeptides affect several physiological functions, including 
body weight, sleep, anxiety, learning, and reward systems (94). 
Previously, neuropeptides were identified and quantified using several 
methods; one of these techniques was the radioimmunoassay (RIA) 
(95). It is an antibody-based sensitive technique that is not unique to 
a particular isoform of peptide. RIAs cannot distinguish between 
modifications if a specific antibody for the different isoforms is used 
(phosphorylation, sulfation, acetylation, and glycosylation) (96). The 
N-terminal sequences of proteins or peptides are determined using 
the Edman sequencing (97). The automated Edman degradation 
method was utilized in several different samples to sequence the 
neuropeptides (97). Although it was precise and its analysis was clear, 
it can only study pure peptides and remove peptides with N-terminal 
modifications (as a result of acetylation, formylation, or 
pyroglutamination, for example). Consequently, RIA has been entirely 
replaced by MS, which has higher throughput and sensitivity even 
with protein mixtures (98). MS usually use one of two standard 
techniques; the first one is electrospray ionization (ESI), which can 
produce multiple charge state for the separated ions, and the second 
one is MALDI, which lessen the complexity of identification because 
of single charged ion. Usually, peptides less than 10en kilodaltons 
(kDa) cannot be detected in a two-dimensional product (58, 60). 
polyacrylamide gel electrophoresis (2D-PAGE) that is used in the 
proteomics approach (99). High-performance liquid chromatography 
(HPLC) is a more reliable, precise, and easily automated technique 
that is considered adequate for separating peptides from mixtures 
(100). Micro or nanoscale LC avoids peptide co-elution in complicated 
mixtures and improves the low abundance LMW peptides 
identification (101).

Peptidomics reported significant progress, especially in 
neuropeptide studies, enabling the isolation and the classification of 
thousands of neuropeptides in one controlled experiment using LC–
MS/MS. (102) Neuropeptidomics is a broad term for a method of 
characterizing neuropeptides on a global scale, often under particular 
physiological conditions. The first comprehensive analysis was 
achieved by Anna Secher et  al. (103). Numerous (full-length) 
neuropeptides were analyzed by single LC–MS/MS analysis for 32 rats 
by perfusion protease inhibitors, which resulted in the identifications 
of 14,416 unique peptide sequences (104). The list of peptides was 
classified by their involvement in protein groups according to an 
established mammalian orthologous community structure to 
differentiate between neuropeptides and peptides produced from 
tissue damage (105). This allowed an overall grouping of high data 
levels from publicly accessible databases of proteins across different 
species (Uniprot.org, SwePep, and Neuropeptides.nl) (104). The initial 
peptide identification approach is based on data-dependent shotgun 
sequencing that compares the generated tandem mass spectra to an 
entire proteome database (103).

There are two types of peptidomics studies that can conclude the 
discovered peptides’ function. The first one is adhering to a singular 

cell or a specific cell type with a known function (such as pancreatic 
beta cells). The second one indicates the peptidomics quantifications 
(89). Neuropeptides levels, which can be affected by food intake, are 
directly correlated with physiological conditions. In fact, peptides can 
be considered as modulators for energy balance (89). MS can give the 
relative amount or intensity of each peptide either by isotope labeling 
and/or label-free quantification approaches (89), which will 
be discussed in the following sections.

Peptidome analysis was used to study and classify differentially 
expressed peptides in neonates with hypoxic–ischemic brain injury 
(HIBD) or controls in cerebrospinal fluid (CSF) in order to provide a 
basis for identifying new promising neonatal HIBD treatments (106). 
A total of 35 differentially expressed peptides were detected using 
(ITRAQ LC–MS/MS). A fragment of heat shock protein 90-alpha 
(HSP90α/HSP90AA1) has been shown to be a decreased peptide in 
neonatal HIBD (HSQFIGYPITLFVEKER) (106). This peptide, called 
Hypoxic–ischemic brain damage-associated peptide (HIBDAP), is a 
highly stable hydrophilic peptide in mammalian reticulocytes and has 
a 3.5-h half-life. This identification may significantly affect and 
contribute to the development of novel therapeutic targets for neonatal 
HIBD. Control CSF samples were taken from comparable infants with 
no identified neurological condition (106).

1.4 Proteomics and peptidomics 
technologies in personalized medicine

The primary aim of personalized medicine is to define diseases 
more accurately to support precise diagnosis and individualized 
medical treatments tailored to the patient characteristics and needs, 
ultimately maximizing efficiency and benefits (48). Proteomics-based 
personalized medicine is more complicated than genetic medicine and 
other omics fields because of the proteome’s complex nature and its 
dynamic components, PTM, tissue, cellular, and organelle-specific 
expression. Besides, the proteome profile differs in a healthy state 
compared to a disease state, especially in neurodegenerative diseases 
(107, 108).

Biomarkers are crucial to the advancement of personalized 
medicine. Since they may be  used as a starting point for drug 
development and diagnosis, protein and peptide biomarkers may 
be used for early diagnosis and prevention strategies (109). They can 
also be used to monitor a patient’s reaction to therapy. Proteomics and 
peptidomics technology advancements may have aided the 
improvement of personalized medicine by recognizing protein and 
peptide biomarkers and improving biochemical diagnostics. The 
connection between diagnosis and treatment is critical for 
personalized medicine; proteomics and peptidomics are expected to 
show high efficiency in linking diagnostics and therapeutics (110). 
Further research is needed in this field.

1.5 Single-cell proteomics

Single-cell proteomics (SCP) is a technique used to understand 
the phenotype of a specific cell, which is a result of genetic interactions 
within this cell. Such a technique enabled the identification of a vast 
amount of proteins being expressed in a single cell at a certain point 
in time (111). Protein analysis of a single cell may show the presence 
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or the progression of a disease through the detection of protein 
concentration in the blood or the detection of PTMs of a specific 
protein. Also, the change in the structure or the kinetics of a protein 
could lead to the knowledge of the disease progression, change in the 
immune response, and cell differentiation (112–114). Cellular 
heterogeneity denotes the protein expression in a disease or healthy 
state in which these proteins can be encountered as parameters in 
identifying the pathology of the disease (115). There are many 
methods used to detect proteins within a cell “proteome,” such as 
chromatography (e.g., liquid chromatography), gel electrophoresis 
(e.g., SDS-PAGE), and MS-based methods. Although these methods 
are potent, they are incompatible with single-cell detections, so it is 
unhelpful in the cell heterogeneity (1, 116).

SCP is a technology that identifies the complete protein profile 
within a single cell, the target cell, at a specific condition or time (111, 
117). The benefits of single-cell proteomics rely on expanding our 
knowledge for understanding cellular functions and regulation with 
the characterization of protein phenotypes within the cell. A single-
cell analysis requires sensitive methods and an optimized workflow 
starting with efficient sample isolation, liquid-phase separation 
followed by ionization, gas-phase separation, and MS. (118)

To perform SCP, the single cell must be  first isolated from a 
population of cells. The properties of the isolated cell must 
be established, such as cell size, cell density, and antigen status (111, 
117). Techniques used in cell isolation for SCP are 

fluorescence-activated cell sorter, microfluidics, limiting dilution, 
manual cell picking, high-density microarray, laser capture 
microdissection, aptamer binding, and central magnetic-activated cell 
sorting (MACS) (113, 119) (Figure 4). Many reagents are used in the 
sample preparation for SCP, such as dithiothreitol (DTT), 
iodoacetamide (IAA), trypsin, and urea.

The separation of proteins is a necessary step in SCP, and it can 
be performed either using gel chromatography or electrophoresis. 
These conventional methods are impractical for the detection of 
low-abundant proteins. Other methods, such as capillary 
electrophoresis (CE) or microfluidic chips, are more precise in 
separating the whole proteome in a single cell (120).

The SCP’s analytical tools can be divided into either qualitative or 
semi-qualitative. An example of the qualitative method is the ELISpot 
technique, an antibody-based method where the antibody–antigen 
interaction detects the secreted proteins (121). The other semi-
qualitative tool includes the flow cytometry methods (imaging and 
mass-based techniques) that detect many proteins expressed in a 
single cell (122–124). Techniques in the label-free analysis of SCP 
include matrix-assisted laser desorption/ionization (MALDI-MS), 
electrospray ionization MS (ESI-MS), secondary ion MS (SIMS), and 
laser/desorption/ionization (LDI-MS) (125, 126).

There are two alternative methods in sample preparation for the 
LC–MS label-free quantification of a single cell. These preparative 
methods, called integrated proteome analysis devices (iPad), inject the 

FIGURE 4

Different techniques used in sample preparation and cell isolation for further analysis of single-cell proteomics (SCP) by using (A) Micromanipulator, 
(B) Fluorescence-activated cell sorting (FACS), (C) Limiting dilution, (D) Microfluidic chip, (E) Magnetic activated cell sorting, (F) Laser capture 
microdissection (LCM).
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cell into the capillary (lysed and digested) that is coupled to nano LC–
MS/MS. (127) It is very accurate in determining cell heterogeneity 
(128). The other method for the SCP sample preparation is using a 
pre-treated chip called the nanoliter-scale oil-air droplet (OAD). The 
OAD is based on microfluidics combined with proteomics shotgun 
analysis (129).

SCP in neurology was performed to assess microglial activation 
within TBI-induced animal models. Single-cell quantitative 
measurements assessed the activated and inactivated microglia. The 
morphology was changed in neurons following TBI insult, and the 
unaffected neurons had normal microglial density and 
morphology (130).

1.6 Quantitative proteomics

Quantification methods in proteomics include label-based 
quantification, such as the stable isotope labeling by amino acids in 
the cell culture (SILAC), tandem mass tag (TMT), iTRAQ, and the 
isotope-coded affinity tag (ICAT). Label-free mass spectrometric 
methods are also considered a quantification method (131, 132).

Stable isotopic labeling is one method in proteomics quantitation. 
It is based on applying a label to the peptides. The difference between 
labeled and unlabeled is mass, so the labeling can either be introduced 
in the culture (SILAC) or into fragmented peptides, called chemical 
labeling (133). The first labeling was introduced into Drosophila and 
Caenorhabditis elegans in the proteomics field by feeding (134). The 
SILAC quantitation method is combined with mass spectrometry and 
bioinformatics. It is well suited to be applied as a biochemistry-based 
approach (135). The principle of the SILAC is that there are two 
populations of cells. The first population contains light amino acids 
(light isotopes), and the other culture contains heavy amino acids 
(heavy isotopes of nitrogen, oxygen, and carbon). The heavy amino 
acids of the same peptides have the same properties except for the 
mass, so the two sets’ proteomes can be distinguishable by the mass 
shift (135). Many studies were performed to quantify proteins within 
the brain, such as a study that used SILAC labeling of Neuro2A cells 
(136). Another study quantified the phosphotyrosine associated with 
the neurotrophic factor (BDNF) by the concept of SILAC (137). 
SILAC labeling was also applied in TBI quantification, such as in a 
study by Wu et al. which aimed to detect and quantify the overall 
proteome within TBI-induced rat models. 18O-water labeling and 
mass spectrometry, the study could identify 1,002 common proteins 
(in control and TBI samples). These proteins are essential in cellular 
assembly and morphology. The study pointed out that 200 proteins 
were dysregulated in TBI samples, of which 124 were increased 
(up-regulated) and 76 were decreased (down-regulated). Up-regulated 
proteins were involved in the actin-related cytoskeleton and neurons’ 
structure, development, and transport. Down-regulated proteins were 
identified as enzymes associated with the glycolytic pathway, Kreb 
cycle, and oxidation phosphorylation (138).

Chemical labeling, such as iTRAQ, ICAT, and TMT, is another 
type of quantitation proteomics, called isobaric mass tagging, in which 
these added mass tags are labeled and detected in case of fragmentation 
by trypsin (139, 140). The advantage of labeling a peptide (by iTRAQ, 
ICAT, or TMT) is that this labeled peptide is detected in the mass 
spectrometry as a single peak, even when one or more samples are 
mixed (133, 141). iTRAQ proteomics was applied in many areas, 

including phospho-proteomics of plant cells (142, 143). The most 
significant advantage of iTRAQ labeling is that it can cover many 
peptides within the sample, affecting the sample and peptide 
identification and quantification of up to eight samples simultaneously. 
This labeling type also improved accuracy in detecting b and y ions in 
the MS/MS spectrum (132, 144, 145). Alternatively, the ICAT method, 
which is based on using isotope-coded affinity tags, has the same 
concept of labeling peptides, but what is unique is that it is specific for 
the enrichment of cysteine-containing peptides by comparing two 
samples with either heavy tag or light tag, these tags are labeled (146). 
The labeling of peptides using the ICAT method is performed at the 
sample preparation step before the digestion step, and it can 
be performed enzymatically (trypsin) or chemically. The labeled and 
digested proteins are then detected by mass spectrometry using peak 
intensity or peak area (146–148). Additionally, TMTs are also 
becoming more and more popular for large-scale proteomics studies. 
Such experiments, which focus on proteoform analysis in drug time 
courses or perturbation studies or in large patient cohorts, can greatly 
benefit from the reproducible quantification of single peptides across 
samples (149).

In TBI, assessing the protein changes in mild TBI patients was an 
essential step in qualifying and quantifying the proteins compared to 
a control. A study used chemical labeling (iTRAQ) to screen the global 
proteome within a rat’s brain. The animal model containing mild TBI 
(mTBI) showed that 237 proteins were changed significantly. Some of 
these proteins were associated with cAMP signaling (adenylyl cyclase 
pathway–a G protein-coupled receptor triggered signaling cascade 
used in cell communication), and some were associated with cell 
adhesion, autophagy, myelination, microtubule depolymerization, and 
brain development (150). In another study, TMT-based proteomics 
was utilized to screen the potential biomarkers of acute-phase TBI in 
rats (151). Based on proteomics findings, the acute phase of TBI 
showed significant influences on oxygen transport, acute-phase 
response, and negative regulation of endopeptidase activity. 
Additionally, pathways related to the scavenging of heme from plasma, 
binding, and uptake of ligands by scavenger receptors were highly 
enriched in all time points of TBI samples.

The label-free approach is another protein quantifying approach 
without labeling the peptides, which applies to all biological samples 
(152). This method needs long computational methods for 
independent mass spectrometry runs, which is required for data 
collection and interpretation (153). When label-free quantification 
methods quantify a mixture of peptides, the detection method can 
be performed by determining the area under the curve (AUC) or 
spectral counting (154). The AUC method is based on measuring the 
peak of an eluted peptide or protein from the chromatography (based 
on the retention time) (155, 156) (Figure  5). This method’s 
disadvantage is seen when there are multiple peptide signals. Also, this 
quantification method seems unhelpful with inaccuracy in the 
retention time within a specific peptide or the MS spectrum intensity. 
Also, some non-specific background noise affects the accuracy of the 
label-free methods (154). The second type, spectral counting, is based 
on selecting the most abundant peptides available within the sample 
for further fragmentation and generating spectra. The abundance of 
the peptide reflects the number of spectra it generates (157). The 
protein abundance index (PAI) factor calculation estimates the protein 
abundance, representing the number of peptides divided by the tryptic 
peptides of such a protein (158). A study developed the proteome 
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platform for post-TBI neurons. The study aimed to report a 
quantitative assessment platform for the identified peptides using the 
label-free data-independent acquisition (DIA) method. The 
quantitation of 18,651 peptides revealed that 3,587 were statistically 
dysregulated upon TBI induction, and 634 (approximately 18%) were 
modified by PTM, such as phosphorylation and acetylation 
methylation (159).

Untargeted DIA mass spectrometry was also utilized to study 
whether examining the trajectory of TBI-responsive peptides secreted 
into urine could produce a predictive model of functional recovery 
during TBI rehabilitation (160). The produced models demonstrated 
high sensitivity and specificity, reflecting neuroplasticity and 
diminished cell death and neuroinflammation. The models can inform 
on rehabilitation progress after TBI and warrant further investigation. 
Besides, the acquired DIA mass spectrometry data used in a study on 
rats with mTBI showed that repeated injuries caused immediate 
cognitive problems, long-term movement issues, elevated levels of 
neurofilament light, changes to proteins in the hippocampus leading 

to brain inflammation, and widespread changes to white matter (WM) 
(161). Additionally, the other study aimed to investigate the differential 
effects of TBI if only the gray matter (GM) is damaged or if the injury 
also involves the WM. The researchers performed stab wound injuries 
affecting GM and WM (GM+) and one restricted to the GM (GM-) 
in the adult murine cerebral cortex and examined glial reactivity in 
the regions affected. Unbiased proteomics analyzes further corroborate 
their findings in support of a profound difference in GM reactivity 
when WM is also injured and revealed MIF as a key regulator of NG2 
glia proliferation (162). Another study investigated the changes in 
axons during brain development in young rats and post-TBI in adult 
rats (163). The study found multiple similarities in the changes in 
axonal microtubule (MT) through tubulin post-translational 
modifications and MT-associated proteins (MAPs), such as tau and 
MAP6, during both development and TBI. Quantitative proteomics 
in this study uncovered similar signaling pathways of axon 
degeneration and growth/repair, including protein clusters and 
networks (163). This comparison approach shows how a focused 

FIGURE 5

Label-free quantitation proteomics is performed by determining the area under the curve (AUC) of peptides eluted from the liquid chromatography 
and conjugated to MS/MS. (A) The label-free method can be applied to a single sample containing a mixture of peptides. (B) The method can also 
be applied to different samples (such as healthy and disease-representing cells) to quantify a specific peptide in the two cell populations. Abbreviations: 
Tandem mass spectrometry (MS/MS).
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examination of developmental processes can provide insight into the 
pathways initiated by TBI.

It is worth mentioning that neuroproteomics offers a global 
molecular approach to deducing the complex post-translational 
processes that underlie secondary events after TBI. By employing the 
DIA approach, there is a study that assessed the use of artificial neural 
networks and functional enrichment analyzes to discretize the 
temporal response across some 2047 significantly impacted proteins 
and supports the therapeutic promise of KCC2-targeted intervention 
for positive functional recovery after brain injury (164). Synthetic 
peptides are also used in quantitation, representing the same amino 
acid sequence of the desired peptide to be quantified. Stable isotopes 
can label these synthetic peptides upon proteolytic cleavage, and the 
labeled isotopic synthetic peptide will represent the amount of peptide 
within the sample. The advantage of this method is that it has a short 
analytical time with high throughput results (165, 166).

Many quantitative approaches are employed in proteomics to 
examine biological materials for relative quantitative proteomics, 
including label-free data-dependent acquisition (DDA) and isobaric 
multiplex labeling procedures (using iTRAQ or TMT reagents) (159, 
167). Laser microdissection (LMD) or mechanical dissection can 
be used in neuroproteomics to extract brain areas for data collection 
from AD brains or control groups (168). DDA or isobaric multiplexed 
labeling techniques were used for sample preparation for relative 
quantitative proteomics and precise peptide measurements by LC–
MS/MS, along with further data processing (165, 166). MaxQuant 
(169), Morpheus (170), and Perseus (171) are just a few of the database 
search engines available. DIA has taken the place of the DDA 
proteomics approach. For example, missing values can be solved using 
sequential window acquisition of all theoretical mass spectra 
(SWATH-MS). Implementing SWATH-MS quantification across the 
entire MS1 spectrum allows the classification of all measurable 
peptides within a given mass range. To eliminate missing values, the 
SWATH-MS approach enables an inclusive and reliable measurement 
of detected proteins in the sample (172–174). Therefore, MS2 spectra 
in DIA are more challenging to analyze than DDA spectra and need 
an advanced and specialized computation (174) to adopt this approach 
for quantification of complex brain proteomes in progress. This 
technique analyzes thousands of proteins in 1–2 h (175, 176). A recent 
study conducted a proteomics analysis on ventricular cerebrospinal 
fluid (vCSF) proteins following acute brain injury (ABI) and their 
association with pathophysiological pathways and potential 
biomarkers that can predict unfavorable outcomes (177). In this study, 
DIA and SWATH-MS was employed to compare differences in protein 
expression in patients with ABI and patients without ABI and in 
patients with traumatic and nontraumatic ABI. The results revealed 
that an unregulated expression of vCSF proteins after ABI could 
be  linked to an increased risk of severe intracranial hypertension 
(ICH) and death. The study also identified specific vCSF proteins that 
were associated with increased inflammation, apoptosis, oxidative 
stress, and cellular response to hypoxia and injury.

1.7 Neuroproteomics in central nervous 
system injury

Different biomarkers correlate to different pathophysiological 
conditions. During neurological injuries, genetic modifications and 

ruptures of the blood–brain barrier (BBB) create post-translational 
covalent/ non-covalent protein modification in a variety of protein 
structures, such as glial fibrillary acidic protein (GFAP), myelin-
oligodendrocyte glycoprotein (MOG), myelin-associated 
glycoprotein (MAG), ubiquitin carboxyl-terminal hydrolase isozyme 
L1 (UCH-L1), microtubule-associated proteins (MAP-2), neuron-
specific enolase (NSE), α-II spectrin, and tau proteins. Different 
proteolytic fragments create endogenous high molecular weight 
(HMW) and low molecular weight (LMW) protein fragment 
mixtures within a variety of different biofluids (178). Endogenous 
proteolytic fragments can be  detected in the nervous system 
cerebrospinal fluid (CSF), blood serum, saliva, urine, tears, and 
various other biofluids, all acting as potential samples for proteomics 
and diagnostic analysis (179).

1.8 Traumatic brain injury

Traumatic brain injury (TBI) is a major cause of health 
complications and death in young people and has a significant 
socioeconomic impact. When a severe TBI happens, there is a 
significant association with 30% mortality and disability among 
survivors (180). The severity of the TBI is categorized as mild, 
moderate, or severe, depending on many factors, such as hypoxic and 
ischemic damage, raised intracranial pressure, cerebral edema, 
infection, and hydrocephalus (181, 182). TBI’s signs and symptoms 
may include loss of consciousness, amnesia, nausea, dizziness, 
headaches, cognitive decline, structural brain damage, and other 
neurological symptoms (181). A brain injury, such as TBI, starts with 
applying mechanical force to the head, which can occur with or 
without loss of consciousness. This mechanical force then triggers a 
series of cerebral events that depend on the nature and location of the 
injury (183). The TBI mechanism starts with the impact on the brain 
tissue caused by mechanical force, which leads to the loss of cerebral 
vascular autoregulation that leads to abnormality in cerebral blood 
flow and metabolism. It also affects the mitochondrial function, which 
causes the accumulation of lactate and disturbs the balance of Ca2+, 
which affects the cell’s ability to maintain ATP (184, 185).

Neuroproteomics has also been efficient in investigating processes 
involved in CNS injury. TBI injury events occur in two phases 
mediated by different sets of proteins activating several pathways that 
shift the balance from pro-survival to pro-apoptotic/necrotic 
inflammatory states (186–188). These events are mediated by activated 
cysteine proteases that act on brain-specific proteins leading to an 
overall neural injury (189, 190). The neural cell death events involve 
primary and secondary injury phases involving different neural brain 
cells’ components accompanied by dysregulation of different neural 
proteins. The use of neuroproteomics applications on brain injury 
helps to understand altered protein dynamics, especially in biomarker 
research. TBI is a complex disorder that is hard to assess by current 
clinical techniques, including the computer tomography (CT) scan 
and magnetic resonance imaging (MRI), which are expensive 
instrumentations and are not universally available (191). Therefore, 
searching for brain injury biomarkers is crucial for diagnostic and 
prognostic purposes.

Many efforts were performed to clarify the complexity and 
progression of TBI. Sensitive and specific biomarkers are extensively 
used for the prognosis of neurotrauma. This can be achieved using 

https://doi.org/10.3389/fneur.2023.1288740
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kobeissy et al. 10.3389/fneur.2023.1288740

Frontiers in Neurology 11 frontiersin.org

immunoassays, including enzyme-linked immunoassay (ELISA) and 
western blotting (WB) (192).

Neuroproteomics, combined with bioinformatics, has shown to 
be  a powerful tool in identifying pathways associated with TBI 
pathogenesis. Besides, it allowed scientists to figure out the biomarkers 
and drug target genes (2, 4, 5, 20, 193, 194). The identification and the 
analysis of blood biomarkers after TBI are maintained by sequential 
steps, starting with the release of proteins into the extracellular fluid 
or the blood from the damaged cells, where the detection of high-
concentration biomarker proteins is measurable (21). Once the 
biomarkers reach the bloodstream, the exact concentration is 
determined by knowing the clearance rate or estimating the half-life 
of any protein.

In order to identify peptides within a cell, a separation technique 
must be applied, such as 2D-PAGE (194–198). An alternative method 
is the use of an ion-exchange chromatography (199). Mass 
spectrometry and chromatography showed more robust methods than 
conventional protein separation methods (200, 201). It was shown that 
mass spectrometry methods were more effective at tracing 
TBI-associated proteins to the disease progression, which would also 
make it easier to manage and target therapy for the disease (4). This 
powerful method separates the peptides according to the m/z ratio. 
These peptides are then identified by aligning them into a database. 
The antibody-based methods are an alternative to the mass 
spectrometry methods, divided into antibody microarray and 
immune-blotting.

A study reported identifying the global proteome in the 
hippocampal tissue by using SDS-PAGE-Capillary LC–MS/MS. (21) 
The global proteome strategy to identify and sequence neural 
biomarkers employed the cation-anion exchange chromatography, 
followed by 1D gel electrophoresis before the LC–MS/MS of the 
tryptic digested peptides (bottom-up) (11, 202). Proteome 
identification using the bottom-up method showed 59 proteins, which 
were differentially expressed. The study reported that 21 proteins were 
downregulated and 38 were upregulated. The global proteome strategy 
to identify and sequence neural biomarkers employed the cation-
anion exchange chromatography, followed by 1D gel electrophoresis 
before the LC–MS/MS of the tryptic digested peptides (bottom-up) 
(20). For example, a proteome study identified 59 expressed proteins 
using the bottom-up method, which were differentially expressed and 
suggested that 21 proteins were decreased and 38 were increased (20). 
The MS/MS method showed high importance in identifying the 
change in protein expression and TBI progression (21).

Furthermore, quantitative proteomics was applied in a study to 
quantify the protein levels associated with TBI-induced cells, followed 
by targeted temperature management (TTM, mild hypothermia, 
32°C). The study showed that by the label-based quantitation by 
iTRAQ, the proteins significantly associated with TTM were 
plasminogen, antithrombin III, and fibrinogen gamma chain 
transthyretin (203).

A study performed by Xu et al. was able to identify 4,031 proteins 
in TBI patients that are important in glial cell differentiation (e.g., 
myelin proteolipid protein and myelin basic protein), complement 
activation (e.g., complement decay-accelerating factor and 
complement C4-B), and apolipoprotein catalysis (APO) in the statin 
pathway (204).

Proteomics can also be  used to identify therapeutic agents in 
TBI. One of the therapeutic agents is a Chinese medication called the 

XFZYD. LC–MS/MS, WB, and TMT-quantitation have been used to 
explore the mechanism of how the XFZYD is used to treat TBI and 
which proteins are targeted by XFZYD medication. The same study 
demonstrated by using bioinformatics before proteomics that 
“XFZYD” target proteins mainly involved in biological processes, 
cellular components, and molecular function (205).

In one study using 2D-PAGE coupled with matrix-assisted laser 
desorption ionization time-of-flight (MALDI-TOF) MS analysis, 
Siman et al. performed neuroproteomics analysis of CSF from the rat 
model with mild/moderate TBI (206). The results showed different 
proteins leaked into the CSF, including tau protein fragment of 17 kDa 
and αII-spectrin breakdown products (BDP150 and SBDP120). 
Another study by Burgess et al. located 229 proteins, 172 of which 
were novel hits, in healthy human postmortem immunoaffinity-
depleted CSF (207). Results were validated by immunoblotting and 
sandwich enzyme-linked immunosorbent assay (ELISA) methods. 
Similarly, Kobeissy et  al. designed an offline multidimensional 
separation platform termed cation-anion exchange chromatography 
followed by a 1D-PAGE separation (CAX-PAGE) (20). CAX-PAGE 
allowed for sample analysis without mixing to increase the mass range. 
This technique was tested on rat cortical samples and yielded results 
of 59 protein alterations and other novel protein breakdown products.

To investigate molecular pathological pathways underlying the 
progression of brain injury mechanisms, Yu et al. used a bioinformatics 
systems biology strategy based on assessing four distinct high-
throughput gene expression studies of experimental TBI (208). 
Canonical pathways and the protein-interaction network were 
assessed as a scaffold to predict protein markers and identify novel 
molecular mechanisms involved in TBI. Results indicated that a 
subnetwork of 58 proteins related to synaptic capacity was identified, 
including postsynaptic density protein 95 (PSD 95), nitric oxide 
synthase 1 (NOS 1), and disrupted in schizophrenia 1 (DISC 1). These 
were validated using a penetrating ballistic-like brain injury rat model 
reaffirming the predictive bioinformatics model of protein interaction 
(208). In one study by Xu et al., where proteomics and bioinformatics 
techniques were combined, variations in protein expression levels 
were assessed in a Chinese TBI cohort (204). Tandem mass tags 
(TMT) labeling followed by LC–MS/MS was used to identify 4,031 
proteins, including 160 that were overexpressed and 5 that were down-
expressed. Upregulated proteins included myelin basic protein (MBP) 
and myelin proteolipid protein (MYPR), which play a role in glial cell 
differentiation pathways. Along with matrix metallopeptidase 9 
(MMP9) and s100 calcium-binding protein A8 (S100A8) associated 
with inflammatory mechanisms.

Moreover, Thelin et  al. evaluated the protein profile using an 
antibody bead suspension array in a rat model of severe TBI (209). 
During the initial day post-injury, complement factor 9 (C9) and 
complement factor B (CFB), which are involved in the innate 
complement system, were identified. Also, aldolase c (ALDOC) was 
found to be increased early on after the injury, while hypoxia-inducing 
factor (HIF)1α, amyloid precursor protein (APP), and Williams-
Beuren syndrome chromosome region 17 (WBSCR17) protein were 
shown to be elevated weeks following the insult (209).

PTMs in TBI have also been assessed through proteomics, like in 
the case of one research by Lazarus et  al., which focused on 
determining the brain regions susceptible to carbonylation (210). A 
study used the brains of female and male rats subject to injury through 
controlled cortical impact (CCI) and was immune-stained for 
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protein-related structural changes. Directly in the injury site’s area, 
astrocytes and ependymal cells lining the third dorsal ventricle and 
the third ventricle floor above the median eminence displayed the 
highest protein carbonylation levels. The study presented male rats’ 
significant protein carbonylation at sites distant from the lesion, 
showing that hormonal protection is probable in oxidative stress. 
Ultimately, GFAP, dihydropyrimidinase-related protein 2, fructose-
bisphosphate aldolase C (ALDOC), and fructose bisphosphate 
aldolase A (ALDOA) were identified in the study to be  the most 
affected proteins by carbonylation in TBI. However, oligodendrocytes, 
microglia, and macrophages lacked this PTM (210). More recently, 
Mondello et al. have performed a comprehensive, in-depth profile and 
characterization of the N-glycome in serial blood samples of patients 
with moderate to severe TBI. This discovery study demonstrated a 
TBI-specific glycofingerprint reflecting molecular events and 
pathobiological mechanisms underpinning brain injury and recovery 
and contributing to patient endophenotyping. Moreover, N-glycans 
with important prognostic values that may represent novel targets for 
intervention were identified (57). This work paves the way for 
mapping the brain glycoproteome with the goal of enhancing our 
understanding of pathobiological mechanisms underpinning TBI and 
contributing to patient endophenotyping with significant implications 
for precision medicine.

1.9 Mass spectrometry imaging techniques

Neurotrauma, encompassing TBI and SCI, presents significant 
challenges in both diagnosis and treatment. Understanding the 
molecular changes occurring in the injured nervous system is crucial 
for developing effective therapeutic strategies. Mass spectrometry 
imaging (MSI) techniques, particularly MALDI, Desorption 
Electrospray Ionization (DESI), and SIMS have emerged as 
indispensable tools in neuroproteomics research, offering detailed 
insights into the molecular alterations following neurotrauma (211, 
212). Moreover, the application of these techniques in precision 
medicine has paved the way for personalized interventions, optimizing 
treatment outcomes for individual patients (212, 213).

MALDI-MSI enables the comprehensive mapping of proteins, 
lipids, and metabolites in neurotrauma-affected tissues (214). In the 
context of TBI, MALDI-MSI has been instrumental in studying the 
spatiotemporal distribution of proteins associated with inflammation, 
neuronal damage, and repair processes (214). By analyzing specific 
protein expression patterns in different regions of the injured brain, 
researchers can identify potential therapeutic targets (215). 
Furthermore, MALDI-MSI facilitates the discovery of biomarkers 
indicative of injury severity and prognosis, aiding clinicians in making 
informed decisions about patient care and treatment strategies (212).

DESI-MSI offers distinct advantages in studying lipids, which 
play pivotal roles in neuronal membrane integrity, signaling, and 
inflammation (216). Following neurotrauma, lipidomic changes 
occur, influencing the progression of secondary injury processes 
(217). DESI-MSI allows for the direct analysis of lipid species in 
traumatized neural tissues, providing valuable information about 
lipid composition alterations (218). Understanding these changes 
is critical for developing interventions that promote neuronal 
survival and repair, making DESI-MSI a valuable tool in 
neurotrauma research.

SIMS imaging has also emerged as a powerful analytical technique 
in the field of neurotrauma research. By bombarding a sample surface 
with a focused primary ion beam, SIMS generates secondary ions 
representative of the sample’s elemental and molecular composition 
(219). In the context of neurotrauma, SIMS imaging offers 
unprecedented insights into the biochemical alterations occurring in 
injured neural tissues (216). Researchers utilize SIMS to map the 
distribution of specific biomolecules, such as neurotransmitters, lipids, 
and proteins, at subcellular resolutions (216). This detailed molecular 
profiling aids in understanding the complex mechanisms underlying 
neurotrauma, shedding light on cellular responses, metabolic changes, 
and signaling pathways associated with brain injuries.

In the realm of precision medicine, MSI techniques have 
far-reaching implications (220). By characterizing the molecular 
signatures of individual patients’ neurotrauma lesions, clinicians can 
tailor treatment approaches based on unique biochemical profiles. 
This personalized strategy enables targeted drug delivery, optimized 
rehabilitation protocols, and individualized neuroprotective 
interventions (221). Moreover, MSI can aid in monitoring treatment 
responses over time, allowing for adaptive modifications to therapeutic 
regimens and ensuring the best possible outcomes for patients 
suffering from neurotrauma (212). Therefore, these techniques have 
revolutionized neuroproteomics research in the context of 
neurotrauma. Their ability to unravel the complex molecular 
landscape of injured neural tissues not only enhances our 
understanding of injury mechanisms but also facilitates the 
development of personalized treatment strategies in precision 
medicine. By integrating these innovative techniques into clinical 
practice, healthcare providers can offer tailored interventions, 
ultimately improving the quality of life for patients affected 
by neurotrauma.

2 Technological advances in the field 
of neuroproteomics

In addition to the standard methodologies of biochemical and 
proteomics analyzes, technology and bioinformatics are rapidly being 
tied to medical research. There is a need for higher data analysis levels 
and evaluation, as the limitation of simple human-based trials and 
research is not sufficient for a comprehensive knowledge of the 
dynamic human brain. ML programs and AI present the opportunity 
to fill the gaps presented by traditional statistical analyzes, allowing for 
increased sophistication when dealing with complicated data sets. The 
field of computational analysis has only recently begun to gain traction 
within the biomarker research scope but shows clear promise in terms 
of application and utility.

ML is a term used to describe many computational models and 
AI programs that take user-defined information to generate 
predictions and other similar data (222). These models rely on a series 
of base algorithms that can quickly extrapolate results from datasets 
rich in complexity and volume. This makes them highly effective when 
dealing with topics that require a multivariate approach, such as 
clinical outcomes or novel data simulations. Additionally, many 
different ML analysis types allow a significant degree of freedom when 
addressing research direction. Many studies use several different ML 
algorithms, the main selections being: Random Forest, Decision Trees, 
Naïve Bayesian models, Logistic Regression (LR), Support Vector 
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Machines (SVM), and Artificial Neural Networks (ANN). ANNs, LR, 
and SVMs are the programs that have been mainly used so far to 
explore outcomes within clinical research, each providing unique 
approaches to interpreting interrelated datasets (223). Most results 
show that the most effective analyzes are SVM and ANN, so these will 
be the main focus when discussing predictive ML models. LR will 
be discussed as it is the most common model that studies use as a 
comparison model because of its simplicity as a traditional ML 
program. LR is a widely used supervised learning tool that makes 
predictions based on input data’s logistic functions. However, ML 
techniques have recently outperformed traditional regression models 
when dealing with multiple datasets.

Chong et al. (224) ran a predictive analysis of 39 pediatric severe 
TBI cases. They aimed to develop a predictive model using a series of 
binary predictor variables, such as loss of consciousness and skull 
fracture. However, they ran two separate analyzes: one using 
traditional LR and another using a novel ML algorithm (225) designed 
initially to predict acute cardiac complications. They developed both 
models using parameters defined in their study and ran a ROC curve 
analysis comparing them. The effectiveness of an ML model can 
be measured by the relationship between its sensitivity (true positive 
occurrence) and specificity (true negative occurrence), as well as the 
AUC statistic generated by a ROC analysis of the generated results.

It was found that the ML model outperformed the LR model, 
most noticeable in terms of sensitivity (94.9% vs. 82.1%) and positive 
predictive value (90.2% vs. 72.7%). However, the ML model 
considered three extra variables that the LR model did not: clinical 
indication of seizures, confusion, and skull fracturing. When using an 
ML model, a risk to keep in mind is that the original predictions that 
ML algorithms learn from are derived from user-defined positive 
predictions. If the original predictions are flawed, the ML predictions 
may seem accurate but be just as flawed. These results are a testament 
to most ML models’ ability to handle large amounts of predictive data, 
more than most traditional statistical analyzes. Raj et  al. (226) 
developed a pair of simple ML algorithms by expanding upon LR’s 
statistical concept. Instead of binary variables, clinical ICU 
measurements were used, namely intracranial pressure, mean arterial 
pressure, cerebral perfusion pressure, and Glasgow Coma Scale (GCS). 
One algorithm used the first three predictors, and the other included 
the GCS in its predictions. Designed as a prognostic tool for TBI 
patient mortality, these algorithms exhibited accuracies of 81% when 
identifying survivors and 84% when identifying deaths. Although this 
algorithm is simple compared to other ML models, it suggests that a 
move toward more dynamic and advanced analyzes could provide 
more effective tools to clinicians and researchers. Feng et al. (227) 
performed a more comprehensive comparative study in which 22 
different ML models were compared to a LR model. The ML models 
included decision trees, discriminant analysis, SVM, and k-nearest 
neighbor algorithms. The goal was to predict the outcome of severe 
TBI patients using a combination of 40 different predictors defined as 
risk factors. When they performed their evaluations, the lowest 
accuracy rating for the ML models was 86.3% (quadratic 
discriminant), while the most accurate programs boasted an accuracy 
of 94% (linear, cubic, and quadratic SVM). LR showed an accuracy of 
88%, falling short of 20 out of the 22 ML algorithms. ROC analyzes 
were performed, and LR showed an AUC of 0.83, while the average 
AUC of the ML programs was 0.82. However, when outlying 
algorithms that showed poor performance were removed (AUC 0.3, 

0.47, 0.57), the average ML AUC was 0.88. The AUC values for the ML 
programs with the highest accuracies were 0.93, 0.94, and 0.93, 
respectively. This analysis supports ML algorithms’ use over LR 
models as prognostic tools in TBI. It also shows the enhanced 
performance of SVMs over the other ML models explored in the 
study. However, Gravesteijn et  al. (228) found that there are no 
significant differences between flexible MLs and LR performance 
when dealing with a low number of predictors. They found that 
random forest models generate worse performances when compared 
to LR models under these conditions. They used IMPACT-II and 
CENTER TBI databases to perform their calculations, both of which 
have variables with thousands of data entries to use. Despite the large 
datasets, the low number of predictor values did not allow for 
increased performance, regardless of ML complexity. It is noted that 
in high-dimensional analyzes (using a high number of predictors), 
complex ML programs have been known to outperform LR. LR has 
still proven to be valuable for recent protein biomarker studies.

Thelin et al. (229) used a series of univariate LRs to compare the 
predictive usefulness of six protein biomarkers: S100B, NSE, GFAP, 
UCH-L1, tau, and neurofilament-light (NF-L). The programs’ 
predictions were dichotomized based on the Glasgow Outcome Scale 
(GOS) scoring (1–3 vs. 4–5, 1 vs. 2–5). UCH-L1 showed marginally 
better performance than the other biomarkers, with higher AUC 
values in all categories. The analyzes’ results were also used to assess 
trajectory curves and association strengths between each biomarker 
toward the outcome GOS scoring prediction. The biomarkers that 
were determined to have the highest predictive strength also showed 
the highest levels among patients with unfavorable outcomes, 
supporting the LR results. These biomarkers were also compared 
against traditional TBI predictors (GCS, CTC Scan, Glucose levels, 
etc.). Specifically, within the first 5 days, almost all biomarkers 
performed better as outcome predictors than the traditional criteria. 
Despite its simplicity and limitations, LR is still a handy prognostic 
tool. ML programs can create powerful new avenues for biomarker 
applications when coupled with temporal analyzes and the 
proper assessments.

Regarding dataset complexity, an element that is somewhat 
lacking among many TBI ML studies is continuous variables (Table 1). 
Much of the clinical data collected falls under binary or discrete 
variables, and the present continuous variables do not seem 
particularly specific to TBI prognostics. This disparity in data is partly 
because most traditional models cannot efficiently absorb large 
amounts of continuous data and compare it in a nonlinear or 
multivariate fashion. ML programs like SVM can become useful to 
remove this confusion in data organization. SVMs design a hyperplane 
based on the number of features or predictors used, and they then 
attempt to find a plane at the maximum distance between those points 
to develop a margin of error for future data points.

SVMs are ML techniques that have begun to gain momentum 
recently. These programs excel at reading nonlinear relationships 
between input values if they are calibrated correctly. Kayhanian et al. 
(232) used SVM to design a 6-month prognostic tool for severe TBI 
in pediatric patients. They gathered patient blood test data and used 
14 serum parameters as predictor values, all of which were 
non-discrete. The GOS was dichotomized (4–5 being good, 1–3 
being poor) and used as the outcome variable. The maximal 
information coefficient and the absolute correlation coefficient for 
all parameters were found and plotted to narrow the algorithms’ 
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TABLE 1 Distribution of continuous and discrete variable use among ML studies.

Predictor variables Outcome 
variables

Total Continuous* Discrete Reference

Age, Motor GCS score, w, CT class, Traumatic subarachnoid hemorrhage, 

Epidural hematoma, Hypoxia, Hypotension, Glucose, Sodium, 

Hemoglobin

Death vs. Unfavorable 

Outcome (GCS < 4)
11 5 6 (228)

Age, Female, Primary mechanism of injury (Fall, Road traffic accident, 

Struck by projectile, Non-accidental injury), Loss of consciousness, 

LOC > 1 min, Difficult arousal, Vomiting, Seizure activity, Confusion/

Disorientation, (Preverbal) irritability, (Verbal) Headache, (Verbal) 

Amnesia, Signs of altered mental status, Presence of unequal pupils, 

Clinical signs of skull fracture, Signs of base skull fracture, Presence of 

scalp hematoma, Frontal injury, Presence of scalp laceration, (Preverbal) 

with open fontanelle, Tense fontanelle

Predicted Risk Scores 

(0–100)
21 1 20 (224)

Mean arterial pressure, Cerebral perfusion pressure, Intercranial pressure, 

Glasgow coma scale
Death vs. Survival 4 4 0 (226)

Age, GCS (hospitalization), Injury severity score, Temperature, Systolic 

pressure, Diastolic pressure, Open brain injury or not, Concussion 

presence, Brain contusion presence, Brain-stem injury presence, 

Contrecoup presence, Epidural hematoma presence, Subdural hematoma 

presence, Hematoma volume, Intracerebral hematoma presence, Brain 

hernia presence, Oxygen saturation, Infection complication presence, 

Presence of other complications, Number of surgeries, Length of stay, 

Length of ICU stay, Multiple trauma presence, Tracheotomy presence, 

Period of mechanical ventilation, Aspiration presence, GCS (discharge), 

Previous TBI occurrence, Hypothermia presence, Acidosis presence, 

Presence of hospital-acquired pneumonia, White blood cell count, Dose 

of glucose, Glucocorticoid use, Nasogastric tube use, Coagulation change, 

Parenteral nutrition use, Lipid emulsion use, Enteral nutrition time, 

Sequelae or not

Death vs. Survival 40 10 30 (227)

Age, Sex, Helmet-wearing status, Coronary artery disease (CAD), 

Congestive heart failure (CHF), Cerebral vascular accident (CVA), 

Diabetes mellitus (DM), End-stage renal disease (ESRD), Hypertension 

(HTN) GCS score, Temperature, Systolic blood pressure (SBP), Heart rate 

(HR), Respiratory rate (RR)

Death vs. Survival 13 5 8 (230)

Age, Gender, Race, Mechanism of injury, Blood pressure, Heart rate, GCS 

on arrival to the emergency department (ED), CT scan findings, Injury 

severity score (ISS), The AIS per body region, Intubation status and 

location, Date/time of injury, Time of admission to the ED, Patients’ 

known comorbidities, Performed procedures, Blood transfusion, In-

hospital complications, Outcome and date of disposition

Risk of Prolonged 

Medical Ventilation 

(PMV)

PMV > 7 days 

vs. < 7 days

PMV > 10 days 

vs. < 10 days

PMV > 14 days 

vs. < 14 days

18 4 14 (223)

Subcortical, Auditory, Sensorimotor, Cerebellum, Visual, Salience, 

Executive control, Default mode network, Precuneus, language resting 

state networks

mTBI vs. No mTBI 10 0 10 (231)

Glucose, Hemoglobin, Albumin, C-reactive protein, Sodium, Urea, 

Magnesium, Lactate, Venous pH, White cell count (total), Neutrophil 

count, Hematocrit, Prothrombin time, Activated partial thromboplastin 

time

Favorable GOS (4–5) 

vs. Unfavorable GOS 

(1–3)

14 14 0 (232)

GCS, Systolic blood pressure (SBP), Abnormal pupillary response, Major 

extracranial injury, Cerebral contusion, Acute subdural hematoma 

(ASDH), Traumatic subarachnoid hemorrhage (TSAH), Epidural 

hematoma, and Skull fracture, Glucose, C-reactive protein, Fibrin/

fibrinogen degradation products (FDP), Marshall CT classification

Poor Outcome vs. 

Good Outcome
13 4 9 (233)

(Continued)
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focus. Three variables contributed noticeably more to the outcome 
predictions than the rest: glucose, lactate, and H+. Two SVM models 
were developed, one using all 14 parameters and the other using only 
the three highest contributors. The all-encompassing model 
exhibited a sensitivity of 63% and a specificity of 100%, while the 
triple-parameter model had values of 80 and 99%, respectively, 
making it the most accurate model. This study’s emphasis on 
measurable, continuous predictors in serum composition levels 
hints at the prospect of using SVM to predict outcomes and one for 
clinicians to use in mediation. Targeted interventions using these 
levels may help improve TBI outcomes rather than simply estimating 
them. Matsuo et  al. (233) performed a similar analysis using a 
combination of discrete and continuous predictor variables. 
Fourteen different classifications were chosen, 3 of which fell under 
the category of regularly collected laboratory samples as in the 
Kayhanian et al. (232) study. These predictors were input into nine 
different ML algorithms, including SVM. The objective was to 
determine which ML program provided the best prediction for poor 
outcomes and in-hospital death and which predictors had the 
highest contributions to the models. This study’s results were varied 
compared to many of the other studies involving ML and TBI 
predictions. For the morbidity (poor outcome) model, random 
forest models showed the highest sensitivity (97.2%), and the highest 
specificity was achieved by the Gaussian Naïve Bayesian model 
(82.8%). The highest accuracy value was achieved by the Gradient 
Boosting Model (0.87). According to ROC analysis, SVM exhibited 
the third-highest sensitivity (0.97), the fourth-highest specificity 
(0.59), the second-highest accuracy (0.86), and the highest AUC 
(0.89). In the mortality models, SVM showed the second-highest 

sensitivity (0.78), the third-highest specificity (0.97), the highest 
accuracy (0.89), and the fourth-highest AUC (0.94).

No model proved superior when discerning the best ML 
algorithm, but the best predictors based on the models were age, GCS, 
fibrin/fibrinogen degradation product (FDP) levels, and glucose levels. 
Age and GCS are typically input as discrete variables, whereas the lab 
levels are continuous. This study shows that despite the diverse nature 
of the variables (discrete and continuous), the ML algorithms still 
showed good performances. The potential of SVM also reaches toward 
nontraditional means of prediction. An imaging biomarker study was 
conducted by Vergara et al. (231) compare resting-state functional 
network connectivity (rsFNC) to diffusion magnetic resonance 
imaging (dMRI). Brain scans of patients with mild TBI (mTBI) were 
used to test whether an SVM algorithm could be used to sort through 
image data and detect evidence of mTBI. Individual scans were 
defined to be separated into functional classifications (sensorimotor, 
visual, etc.) within the algorithm matrices. An SVM was then designed 
to separate the image data into two classifications: mTBI or healthy 
controls. The model that used rsFNC showed the most robust results, 
with an accuracy of 84.1%, a sensitivity of 89.4%, and a specificity of 
78.8%. The models that used dMRI exhibited markedly lower 
performance. These results represent the potential for SVM beyond 
its functionality as a prediction tool. They show the ability to diagnose 
mTBI in a highly accurate manner via brain scanning and ML 
combinations, highlighting the importance of creative applications 
when using these programs.

While SVMs have proved to be powerful tools in many studies, 
other ML programs have proven superior under certain conditions. 
Rau et al. (230) performed a comparative study in 2018 to develop ML 

TABLE 1 (Continued)

Predictor variables Outcome 
variables

Total Continuous* Discrete Reference

GCS score, Systolic blood pressure, Heart rate, Respiratory rate, 

Temperature, Hematocrit, Age, Sex, Intubation status, ICD-9-CM injury 

E-code, and Injury severity score

Death vs. Survival 11 6 5 (234)

GCS score, Motor score, Eye-opening, Verbal response, Pupillary light 

reaction, Glucose level, Hemoglobin, Mass lesions, Cisterns, Midline shift 

>5 mm

Favorable (Alive with 

GOS > 3 at 6 months) 

vs. Unfavorable 

(Death or GOS < 3 at 

6 months)

11 2 9 (235)

Neutrophil gelatinase-associated lipocalin (NGAL), N-terminal proB-

type natriuretic peptide (NT-proBNP), Urine output (UOP), Plasma 

creatinine

Acute Kidney Injury 

vs. No Acute Kidney 

Injury

4 4 0 (236)

(After reduction) FA 2-OH C16:0, FA C18:0, TUDCA, PE ae C36:4, 

LysoPC a C20:4
mTBI vs. No mTBI 5 5 0 (237)

Age (< 65, 65) Gender, Histology (Adenocarcinoma, Squamous cell 

carcinoma, Large cell carcinoma, Undifferentiated carcinoma), T status, 

(T1, T2, T3), Regional lymph node status, (N0, N1, N2), Stage (I, II, III, 

IV), Grade (Low, Medium/high), Border of bronchus (Positive, Negative), 

FEV1 < 70%, Positive vessel infiltration, Positive lymphatic infiltration, 

Positive pleural infiltration, Chemotherapy adjuvant, Radiotherapy 

adjuvant, High expression of P53, High expression of caspase 3, High 

expression of-H2AX, High expression of Ki67

Death vs. Survival 32 0 32 (238)

*It should be noted that, unless otherwise specified, “Age” was treated as a continuous variable. However, it is hard to describe subjects’ age as being purely continuous because age is rarely 
reported as a continuous variable in most clinical settings. GCS, Glasgow Coma Score; CT, Computed Tomography; ICU, Intensive Care Unit; TBI, Traumatic Brain Injury.

https://doi.org/10.3389/fneur.2023.1288740
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Kobeissy et al. 10.3389/fneur.2023.1288740

Frontiers in Neurology 16 frontiersin.org

models that could predict mortality in isolated moderate to severe TBI 
(sTBI) patients. The study tested several different algorithms, 
including LR and SVM. However, this study also included ANN in its 
analysis. ANNs mimic the function of human neural networks to 
analyze large datasets. They are unidirectional and include inputs, at 
least one hidden layer, and output nodes.

Their complexity characterizes the major differences between 
ANNs and more in-depth deep learning; deep learning approaches 
have more hidden layers that are not immediately visible to researchers 
(labeled versus unlabeled datasets and algorithms). All the models 
tested in the study showed an accuracy above 90%, though the ANN 
showed a high value of 92%. The focus was shifted onto sensitivity, 
specificity, and AUC values because of the high accuracy ratings. The 
ANN’s sensitivity (84.38%) was about 20% higher than the second 
most sensitive algorithm. It also exhibited a high specificity at 92.8%, 
and its AUC was significantly higher than all other ML models at 0.97. 
For comparison, corresponding SVM values were 92.5, 65.6, 95.2%, 
and 0.93, respectively. Because of its high performance in both the 
training and the test sets across all measures, the ANN has been 
deemed the most effective prediction model. An ANN is more 
effective than typical injury scoring models such as TRISS when 
predicting survival for trauma patients (234) or GCS and GOS when 
giving 6-month TBI outcome predictions in children (235). The 
consistent strength of ANN when making outcome predictions in 
injury patients suggests its usefulness as a prognostic tool for 
clinicians, potentially more effective for clinicians and researchers to 
use over traditional injury scoring methods currently used. However, 
there are caveats. Raju et al. (239) stress the need for neurosurgeons 
to have competencies in neurosurgery expertise, statistical knowledge, 
and computation skills to utilize the potential of ML. Bertolaccini et al. 
(240) found that using ANNs in the medical literature has often been 
performed inaccurately, resulting in misleading results. ANNs do not 
require prior knowledge or statistical distribution assumptions to 
accurately establish input–output relationships (238), which acts as a 
great advantage with large datasets, especially nonlinear distributions. 
Compared to LR models, ANNs can have difficulty overfitting the 
model during the learning time and can be  limited by computing 
power and available time when analyzing large datasets. Biomarker 
injury studies that use ANNs, especially within TBIs, are 
currently sparse.

However, Rashidi et al. (236) explored the possibility of using ML 
techniques as an early recognition system for acute kidney injury 
within burning and trauma patients. They combined it with exploring 
a novel polypeptide biomarker NGAL, along with other traditional 
blood AKI biomarkers (NT-proBNP, creatinine, and UOP). When 
testing the NGAL biomarker by itself, their ML methods proved to 
be extremely capable. Four of the five algorithms achieved an accuracy 
of at least 92%, with sensitivity values of at least 73% and specificities 
of 97%. The AUC for these models was at least 85%. They found that 
DNN (Deep Neural Network, an advanced type of artificial neural 
network) and LR models performed the best. Once a combination 
analysis of NGAL with other biomarkers was performed, performance 
statistics (particularly AUC) increased dramatically. DNN showed an 
incredible performance through its AUC values, with 7 out of 11 of 
the combined analyzes being at least 90%. The second cohort of 
patients was used to test for overfitting and other modeling errors. 
DNN performed noticeably worse with this cohort, with AUC values 
never reaching above 88% and having an all-time low of 49%. 

However, it was noted that this second cohort also contained 
non-burn trauma patients, which the DNN was originally not trained 
against. The introduction of novel characteristics would naturally 
hinder the trained DNN’s ability to make accurate predictions. The 
study speaks volumes about using ML programs, particularly neural 
networks when using blood and protein biomarkers. The 
generalizability of these programs to other sources of injury, such as 
TBI, marks the field’s potential (Table 2). Using several biomarkers at 
once in a highly efficient and automated analysis to output an equally 
accurate series of predictions paves the way for new avenues 
of prognosis.

A key feature of ML programs is their flexibility of use. ML 
programs have proven to be very effective when making predictions 
using clinical datasets, but they also work well when combined with 
other advanced techniques, such as mass spectrometry. Mass 
spectrometry is a vital proteomics technique involving the fractioning 
of protein complexes via electrophoresis or chromatography. It allows 
for accumulating massive amounts of proteome data, making it 
particularly relevant to proteomics and genomics biomarker research 
(241). When coupled with powerful tools like ML, a wide variety of 
new explorative uses are made available. Fiandaca et  al. (237) 
performed a study in which student-athletes were monitored for 
concussive events. Once an event occurred and a concussion was 
confirmed, blood plasma samples were taken less than 6 h after the 
event, 2 days after injury, 3 days, and 7 days. The samples’ metabolites 
were then isolated and identified using metabolic mass spectrometry. 
The metabolite readings were then analyzed using SVM, partial least-
squares discriminant analysis (PLS-DA), and random forest analysis. 
The study aimed to develop ML programs that could isolate specific 
metabolites used as biomarkers for mTBI. The MS program originally 
came up with 2,811 possible metabolite biomarkers, which were 
reduced to 294 using MS reduction programs. This number was 
further reduced to the ten best-fitting metabolites using six different 
ML programs, including SVM and LR. These metabolites were 
analyzed among different athlete cohorts by the ML algorithms, and 
six main biomarkers were isolated as the best predictors of mTBI 
between all the study cohorts. These results represent a massive step 
toward rapid TBI diagnosis using a less invasive method (phlebotomy). 
This method also overrides the current diagnosis methods, such as 
GCS or GOS scoring, in terms of mechanistic application and 
quantifiable analysis. MS also has exhibited a remarkable ability for 
brain reconstruction. Nampei et  al. (242) trained a series of ML 
programs to take in principle component analysis (PCA) data 
generated through MS and automatically reconstruct images of rat 
brains’ white and gray matter tracts. Mallah et al. (243) reconstructed 
and analyzed injured rat brains via MS to measure lipid differences 
within different post-TBI brain regions. A combination of these two 
studies’ techniques suggests the eve of a surge in biomarker research 
using MS and possibly ML to identify and spatially isolate potential 
biomarkers effectively. ML would also prove an effective tool in 
determining the biomarkers’ predictive and diagnostic value once data 
has been collected. It is essential to note in one area that current 
predictive clinical ML is found to be lacking in prediction “exactness. 
Many of the algorithms sort data into two categories: good or poor 
outcomes. It would be advantageous to design a classification system 
(possibly using GCS or GOS criteria) that ML could sort data into so 
that a particular value or prediction can be used to indicate certain 
symptomologies’ more detailed prognoses.
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TABLE 2 Summary of applied machine learning programs and corresponding receiver operating characteristic analyzes.

Machine Learning 
Tool

Number of 
patients

Application Sensitivity Specificity AUC G Reference

LR based ML 472
Consecutive TBI in 

adults

0.810
(226)

0.840

LR
117 Severe TBI in adults

0.830
(227)

ML average (outliers removed) 0.880

14 input SVM

94 Pediatric severe TBI

63% 100% NA 37%

(232)

3 input SVM 80% 99% NA 21%

14 input LR 75% 99% 0.900 26%

3 input LR 71% 99% 0.830 30%

RF

232
Non-penetrating TBI 

with abnormal CT scan

97.20% 49.20% 0.860 53.60%

Gaussian Naive Bayesian 68.70% 82.80% 0.842 48.50%

(233)
Gradient Boosting Model 93.70% 62.80% 0.857 43.50%

SVM morbidity 94.50% 58.60% 0.894 46.90%

SVM mortality 77.60% 97.00% 0.942 25.40%

LR

325
Isolated moderate and 

severe TBI in adults

59.38% 93.54% 0.942 47.08%

(230)

SVM 65.63% 95.22% 0.935 39.15%

DT 44% 98% 0.872 58%

NB 59% 86.15% 0.908 54%

ANN 84.38% 92.83% 0.968 22.79%

RF

51

Acute kidney injury in 

burned and unburned 

adults

82% 68% 0.750 50%

(236)k-NN 91% 82% 0.870 27%

DNN & LR 91% 93% 0.920 16%

LR
195

Moderate to severe 

pediatric TBI

82.10% 92.30% 0.930 25.60%
(224)

ANN 94.90% 97.40% 0.980 7.70%

ESS

564 Chest pain patients

78.90% 76.50% 0.837 44.60%

(225)
DIST 63.20% 82.90% 0.720 53.90%

MEWS 42.10% 78.50% 0.672 79.40%

TIMI 78.90% 36.70% 0.621 84.40%

LR

674

Prolonged mechanical 

ventilation following 

TBI

80% 68% 0.830 52%

PMV > 7 days

(223)

SVM 83% 67% 0.800 50%

RF 76% 70% 0.770 54%

ANN 77% 60% 0.780 63%

C.5 DT 70% 61% 0.650 69%

LR 69% 79% 0.820 52%

SVM

643

Prolonged mechanical 

ventilation following 

TBI

76% 82% 0.840 42%

Set B PMV > 10 days

(223)

RF 81% 71% 0.800 48%

ANN 76% 77% 0.770 47%

C.5 DT 65% 75% 0.770 60%

LR 29% 90% 0.750 81%

SVM

622

Prolonged mechanical 

ventilation following 

TBI

29% 91% 0.740 80%

Set C PMV > 14 days

(223)

RF 46% 80% 0.710 74%

ANN 27.00% 94% 0.720 79.00%

C.5 DT 25% 88% 0.650 87%

(Continued)
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In addition, in the realm of neuroproteomics, AI has emerged as 
a groundbreaking tool, revolutionizing the way researchers analyze 
and interpret complex biological data (244). By harnessing the power 
of ML algorithms, AI enables scientists to process vast datasets with 
unparalleled efficiency and accuracy, leading to profound 
advancements in our understanding of the brain’s proteomics 
landscape (245, 246). One of the key applications of AI in 
neuroproteomics involves the identification and characterization of 
proteins associated with neurological disorders such as Alzheimer’s 
disease, Parkinson’s disease, and epilepsy (247, 248). Traditional 
methods for analyzing mass spectrometry data are often time-
consuming and prone to errors. AI algorithms, however, excel at 
recognizing intricate patterns within these datasets, swiftly identifying 
potential biomarkers indicative of specific neurological conditions (10, 
249). This capability not only accelerates the pace of biomarker 
discovery but also holds immense promise for early disease diagnosis 
and the development of targeted therapies, ultimately enhancing 
patient outcomes in the field of neurology (250).

Furthermore, AI-driven approaches in neuroproteomics extend 
beyond mere data analysis; they facilitate the prediction of protein–
protein interactions (251), protein functions (252), and intricate 
signaling pathways within the brain (253). These predictions are 
invaluable for elucidating the underlying molecular mechanisms of 
neurological diseases. AI algorithms can integrate diverse omics data, 
including genomics, transcriptomics, and proteomics, enabling a 
comprehensive understanding of the complex interplay between 
genes, proteins, and pathways in neurological disorders (254, 255). 
Such holistic insights are pivotal for identifying novel therapeutic 
targets and designing personalized treatment strategies tailored to 
individual patient’s unique molecular profiles. As AI technologies 

continue to advance, their integration with neuroproteomics not only 
enhances our fundamental understanding of the brain’s intricate 
biology but also holds the potential to revolutionize clinical practice, 
ushering in a new era of precision medicine in neurology (256).

3 Neuroproteomics in personalized 
and precise medicine

With the development of benchwork proteomics studies and 
advancements in AI and ML, neurologists and biotechnologists are 
combining neuroproteomics and bioinformatics to develop the 
personalized medicine (226, 227). Personalized medicine expands 
precision medicine, creating unique prognostic, diagnostic, and 
therapeutic medical decisions customized uniquely for each patient 
(226, 227). With millions of patients every year, and individual 
responses from each patient, understanding how to respond to specific 
scenarios is complicated. Combining the use of biomarker quantitative 
statistical analysis, bioinformatics ML, and AI, the field of 
neuroproteomics can develop groundbreaking tools for diagnostic and 
theragnostic outputs for each unique individual (257, 258).

Today, physicians’ ability to diagnose specific diseases is limited, 
especially with complicated disorders such as TBI (mild vs. severe) 
(259). The genome variations, pathophysiological responses, and 
classifications for different people are currently unclear and 
undiagnosable. Most physicians utilize psycho-diagnostic scoring 
systems (such as the GCS and Marshall Scales) and compare their 
findings to those presented by neuroimaging (CT, MRI, and fMRI 
scans) (260). Limit ranges of knowledge and gray areas on the true 
difference between mild, moderate, and severe degeneration on a 

TABLE 2 (Continued)

Machine Learning 
Tool

Number of 
patients

Application Sensitivity Specificity AUC G Reference

rsFNC

100 Mild TBI imaging

89.40% 78.80% 0.841 31.80% (231)

FA 76.60% 74.50% 0.755 48.90%

FA + rsFNC 76.60% 72.30% 0.745 51.10%

FA 70.20% 61.70% 0.660 68.10%

61.70% 66% 0.648 72.30%

Marshall CT 565 Pediatric TBI CT scans 0.663 6-months unfavorable 

outcome 

(GOS < or = 3)

(235)

Rotterdam CT 0.748

Helsinki CT 0.717

GCS Score 0.855

Marshall CT 565 Pediatric TBI CT scans 0.781 6-month mortality

(235)Rotterdam CT 0.838

Helsinki CT 0.814

GCS score 0.920

Linear SVM 632 Blood plasma predictors 

in mild TBI college 

athlete patients

81.70% 71.50% 0.830 46.80% (237)

LASSO 77.80% 68.60% 0.811 53.60%

MS/MS 69.50% 64.40% 0.738 66.10%

ML, Machine Learning; LR, Logistic Regression, SVM, Support Vector Machine; ANN, Artificial Neural Network; DNN, Deep Neural Network; RF, Random Forest; (G)NB, (Gaussian) Naive 
Bayesian; GBM, Gradient Boosting Model; DT, Decision Tree; KNN, k-Nearest Neighbor; ESS, Ensemble-Based Scoring System; DIST, Euclidean Distance-Based Scoring System; MEWS, 
Modified Early Warning System; TIMI, Thrombolysis in Myocardial Infarction; GPLS, Generalized Partial Least Squares; RR, Ridge Regression; LASSO, Least Absolute Shrinkage and 
Selection Operator; MS/MS, Tandem Mass Spectrometry.
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protein/psychological quantitative level are limited, leading to many 
false positive and false negative diagnoses (260). Utilizing hundreds 
of different variables and high-order machine organizations 
incorporates specific patients’ conditions, specialized gene variants, 
and various conditions on a personalized level. This organization and 
correlation schematic will help physicians understand how to proceed 
in certain neurological conditions (239).

Neuroproteomics incorporated personalized medicine can use AI 
and ML to analyze the interaction of hundreds of potential variables 
to provide the unique output for diagnosis and therapy. The AI and 
ML techniques described in the previous section can correlate specific 
protein concentrations, characteristic post-translational modifications, 
severity score index (SSI) ranges, injury types, time-dependence, 
protein-medicine interactions, and identify potential characteristics 
of diseases (259). Molecular diagnostic, nanoproteomics, 
pharmacoproteomics, genomics, metabolomics, and system biology 
data are all being collected in mass efforts for large databases (21). 
Taken together, the collection of mass neuroproteomics data and the 
development of higher-order systems will help classify precise 
neurological conditions for a more accurate form of personalized 
medicine (2, 20). Connecting the data collected from each field and 
associating patient characteristics through neuroproteomics 
technology will create more effective diagnostic claims for each unique 
patient, thereby advancing the field of personalized medicine (110, 
257, 258) (Figure 6).

As precision medicine has been well adapted to genomics, 
proteomics precision medicine displays further complexity due to the 
proteome’s previously discussed dynamic nature. The steady control 
state’s proteome differs from the post-disease state that involved PTMs 

and protein–protein interactions. These intricate interactions are 
especially apparent in neuro-related disorders like AD and TBI. For 
example, AD displays a latent phase where no signs and symptoms are 
observed. However, pathophysiological processes still occur, leading 
to a prodromal phase with MCI and dementia (261). Identifying this 
latent phase marks a fundamental approach to dealing with the disease 
and requires tracking biomarkers to present critical steps in 
individualized medicine.

The application of neuroproteomics in clinical studies eliminates 
treatment response variability and provides a more targeted therapy 
approach. As the main goal of personalized medicine is to match the 
patient response with the best treatment to make sure the optimal 
outcomes are obtained, it is crucial to understand the challenges faced 
by proteomics compared to genomics, i.e., high cost and instrument 
robustness, to obtain the optimal outcomes (262). This is along with 
the fact that many biofluid proteomics studies rely on sample pooling, 
where result validation is performed by randomly selecting individual 
samples. As an example, the recent breakthrough in personalized 
medicine for AD as one of the significant public health issues involves 
the application of genomics and proteomics profiling to identify the 
specific biomarkers associated with the disease (263). Scientists have 
made significant progress in decoding the genetic variations and 
protein signatures unique to individuals with Alzheimer’s, enabling a 
more precise understanding of the disease’s heterogeneity (263). This 
personalized approach allows for early detection of Alzheimer’s risk, 
often before clinical symptoms appear, enabling timely interventions 
and lifestyle modifications. Moreover, targeted therapies tailored to 
the individual’s genetic and proteomics profile are being developed, 
aiming to slow down disease progression and improve cognitive 

FIGURE 6

Artificial intelligence incorporated proteomics in personalized medicine. Once molecular diagnostic, nanoproteomics, pharmacoproteomic, and 
genomic data is collected correlations, AUC comparison, and significant tests are utilized to identify potential relationships between data. Data storage 
through AI and ML technology analyze large data sets to create faster and more accurate predictions with prognostic, diagnostic, and theragnostic 
value, all essential for effective personalized medicine.
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functions. By customizing treatment strategies based on the patient’s 
molecular makeup, these advancements represent a paradigm shift in 
Alzheimer’s research and care, offering hope for more effective, 
personalized, and patient-specific interventions in the battle against 
this devastating neurodegenerative disorder (263).

In the realm of TBI research, precision medicine techniques have 
garnered substantial interest, although their translation into clinical 
practice remains a challenge (180). To date, only limited clinical 
studies have explored the potential of precision medicine approaches 
for TBI, and none have transitioned into the routine clinical 
application (264). Despite this, the scientific community is actively 
engaged in numerous preclinical studies, focusing on identifying and 
targeting the common genetic risk factors associated with TBI (264, 
265). This formidable field offers several advantages translating into 
clinical research, a crucial step toward scientific applications (Table 3). 
Unlike the retrospective study of individual proteins/genes in post-
mortem patient specimens, neuroproteomics allows for discovering 
novel proteins in a compassionate and unbiased manner. Remarkably, 
its ability to investigate these novel proteins does not require the 
formulation of specific hypotheses before experimentation. It also 
allows for building and analyzing extensive databases that allow data 
exploration from several centers. Hopefully, these ongoing 
investigations hold promise for the future, indicating a shift toward 
personalized therapeutic strategies tailored to individual genetic 
profiles, ultimately enhancing the prognosis and treatment outcomes 
for TBI patients.

4 Neuroproteomics human clinical 
trials

Finally, in addition to neuroproteomics analysis abilities in labs 
and animal models, neuroproteomics has recently become a 
significant field in clinical practice. Many studies have used 
neuroproteomics for clinical diagnostic tools and theragnostic 
approaches. The use of human clinical research is key to seeing how 
biomarker detection within biofluids can be used for testing effective 
diagnosis, prospective therapies, and potential human cures. Clinical 
trials take the techniques and treatments developed in scientific bench 
work and apply them to animal and real-life human scenarios. Clinical 
trials require subject to consent, approval, and adequate resources. 
Once these are acquired, clinical trials are mandatory to develop 
potential cures and treatments, the next steps in the neuroproteomics 
research (2, 272, 273).

Neuroproteomics clinical trials have progressed over the last 
couple of years, with many testing novels and more efficient methods 
for diagnosing TBI and other neurodegenerative diseases. With 
hundreds of clinical trials introducing neuroproteomics approaches, 
the field is continuing to expand rapidly. Today, neuroscientists utilize 
neuroproteomics and protein correlation analysis to record protein 
levels and immunological responses to several disorders and 
symptoms within TBI and its relative proteinopathies (amyloidosis, 
prion diseases, tauopathies, Alzheimer’s disease, Parkinson’s disease). 
Multiple clinical trials have already evaluated variables such as 
demographic factors (pediatric TBI, geriatric TBI, age-related TBI, 
race, gender), injury types (concussion, mTBI, moderate TBI, sTBI), 
military TBI, blast wave TBI, injury severity diagnostic matrix scores 

including the GCS, Marshall CT scales, Pediatric Glasgow Scales, and 
Standardized Assessment of Concussion (SAC), vitals (temperature, 
weight, height, biomarkers concentrations, injury phenotypes), and a 
variety of different factors. AI and ML categorization of multiple 
variables and effective personalized medicine has led to effective 
prognosis, analysis, and diagnosis of different neurodegenerative 
diseases (2, 274–282).

Neuroproteomics and clinical research continue to utilize new 
biofluids, different biomarkers, and various tests to identify new 
correlations and algorithms for significant diagnostic measures in the 
development span. In recent human clinical trials, neuroscientists 
have taken amounts of blood, cerebrospinal fluid (CSF) samples, and 
other biofluids from patients in hopes of collecting and analyzing 
different biomarker levels (21, 283) (Table 4).

It has been demonstrated in clinical trials that biofluids and 
protein biomarkers provide valuable information for 
pathophysiological prognostic, and diagnostic (Table 4). Compared to 
all the different types of biofluids extracted from clinical trial subjects, 
CSF serum seems to be  the most useful in finding correlations 
between neuropathy and TBI, as it provides the most direct data from 
the CNS (283). Most trials utilize the cadaver CSF samples; however, 
recent studies have also utilized patients’ consent to take samples from 
external ventricular drains (EVD) (283). With EVD, patient CSF is 
drained from catheters as a routine procedure to reduce intracranial 
pressure (ICP). EVD and ICP reduction is systematic and causes no 
harm to the patient while also helping obtain potential samples for the 
clinical neuroproteomics research (276, 284, 285). Although less 
invasive, blood samples, urine, saliva, and many other biofluids are 
also collected to test respective proteins (276, 285). Each biofluid 
provides valuable concentrations of different biomarker proteins, 
necessary for proteomics analysis. Different biofluids and biomarkers 
have been collected and analyzed, leading to groundbreaking 
algorithms for physicians’ prognosis and diagnosis (272, 286) 
(Table 4).

Today, various peptidomics approaches have been investigated 
successfully, as discussed earlier. Scientists continue to find 
correlations between high levels of specific proteins and their links to 
potential diseases (286). Levels of specific biomarkers such as tau, 
p-tau, GFAP, UCH-L1, and many others have been critical for clinical 
predictions (25, 279, 287, 288). Many studies have already associated 
different biomarker trends with specific age groups (adult TBI, 
pediatric TBI, geriatric TBI), injury types (blast injury, military injury, 
physical injury, gunshot, sports), and times of recovery (1 h, 2 h, 8 h, 
12 h, 24 h, 48 h) (274–280, 282). The use of proteomics, as seen in 
many correlational studies, is vital for the future prognostication and 
diagnosis of a variety of different types of currently undiagnosable 
TBI: mTBI, moderate TBI, sTBI, pediatric TBI, geriatric TBI, and a 
variety of other neurotrauma (274, 277, 280, 289).

With various clinical studies, different quantification techniques, 
and diverse neurodegenerative outcomes, scientists have outperformed 
standard diagnosis matrices essential for the precision medicine (277, 
282). Targeting treatments, molecular biology, and neuroproteomics 
approaches have led to novel diagnostic and treatment protocols. 
Researching various approaches, combining the data through ML/AI, 
and performing various proteomics studies will all be essential to 
developing these future advancements in clinical proteomics and 
precision medicine (273, 277, 286) (Figure 7).
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TABLE 3 Pre-clinical utilization of neuroproteomics approaches in traumatic brain injury studies.

Animal 
subject

Injury type Media 
tested

Techniques Results Validation Reference

Sprague–Dawley 

rats

Fluid-percussion 

brain injury
CSF

2D-PAGE, HPLC, and 

MALDI-TOF/MS

60 proteins and their proteolytic 

fragments were identified to 

be released from cortical neurons 

associated with neurodegeneration. 

14–3-3ξ, 14–3-3β, and 17-kDa 

fragments of tau were described as 

possible markers for acute brain 

injury.

Western blot analysis of 

conditioned media 

confirmed that 14–3-3ξ, 

14–3-3β, CRMP-2, CRMP-4, 

and GAP43 were released in 

response to necrotic 

neurodegeneration.

(206)

Sprague–Dawley 

rats (n = 7)

Controlled 

cortical impact 

(CCI)

Brain tissue

Combined cation/anion 

exchange 

chromatography-PAGE, 

and reversed-phase LC–

MS/MS

59 differential protein components 

were identified, 21 decreased, and 38 

increased significantly in TBI. The 

former included collapsing response 

mediator protein 2 (CRMP-2), 

glyceraldehyde-3-phosphate 

dehydrogenase, microtubule-

associated proteins MAP2A/2B, and 

hexokinase. Conversely, the latter 

included C-reactive protein, 

transferrin, and breakdown products 

of CRMP-2, synaptotagmin, and 

αII-spectrin.

Western blot analysis 

validated changes in protein 

levels and breakdown 

products.

(20)

Sprague–Dawley 

rats
CCI

Brain 

Tissue

Gel electrophoresis and 

MALDI-TOF/MS

Several mitochondrial proteins have 

undergone oxidative modification in 

the cortex and the hippocampus. In 

the cortex, the proteins are pyruvate 

dehydrogenase, voltage-dependent 

anion channel-2 (VDAC-2), fumarate 

hydratase 1, ATP synthase H+ 

transporting F1 alpha subunit. As for 

the hippocampus, the proteins are 

cytochrome C oxidase Va, isovaleryl 

coenzyme A dehydrogenase, 

enolase-1, and glyceraldehyde-3-

phosphate dehydrogenase.

Western blotting validation 

was conducted for VDAC-2.
(266)

Sprague–Dawley 

rats (control/CCI 

male rats n = 7 

and 9, 

respectively; 

control/CCI 

female rats n = 9 

and 7, 

respectively)

CCI Brain tissue

Fluid-phase isoelectric 

focusing, MALDI-TOF/

MS, and 

immunohistochemistry

After injury, the injury lesion site, 

ventral portion of the dorsal third 

ventricle, and ventricular lining above 

the median eminence showed 

dramatic increases in protein 

carbonylation. The most susceptible 

for postinjury carbonylation were 

astrocytes and limited regions of 

ependymal cells adjacent to the dorsal 

third ventricle and the median 

eminence. Upon proteomics analysis, 

glial fibrillary acidic protein, 

dihydropyrimidinase-related protein 

2, fructose-bisphosphate aldolase C, 

and fructose-bisphosphate aldolase A 

were the most affected by 

carbonylation in response to TBI.

N/A (210)

(Continued)
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TABLE 3 (Continued)

Animal 
subject

Injury type Media 
tested

Techniques Results Validation Reference

Sprague Dawley 

rats (n = 73)

CCI

After injury, the 

rats inhaled 

normoxic (22% 

O2) or Hypoxic 

(11% O2) air.

Serum
Targeted antibody 

suspension bead array

During the first days of injury, 

complement factor 9 (C9), 

complement factor B (CFB), and 

aldolase c (ALDOC) were detected at 

higher levels (value of p <0.01). In 

weeks period, hypoxia-inducing 

factor (HIF)1α, amyloid precursor 

protein (APP), and WBSCR17 were 

increased (value of p <0.05).

N/A (209)

Sprague Dawley 

rats

Free-falling 

hammer (450 g) 

onto a stainless-

steel disk attached 

to the rat’s head 

was used to 

induce injury

Cerebral 

brain tissue
iTRAQ and LC–MS/MS

1858 proteins were identified and 

quantified, where the comparative 

analysis identified 10 candidate 

proteins worth exploring. Out of 

these, citrate synthase, which binds to 

the inner membrane surface of the 

mitochondria and plays a critical role 

in the central metabolic pathway of 

aerobic organisms, was significantly 

downregulated 1 h post-injury. 

Similarly, synaptosomal-associated 

protein 25(Snap25) was 

downregulated 3d after the injury. 

Snap25 not only plays an important 

role in the regulation of synaptic 

vesicle exocytosis but it is also 

involved in axonal elongation.

Citrate synthase (CS), 

synaptosomal-associated 

protein 25 (Snap25), 

microtubule-associated 

protein 1B (MAP1B), and 

Rho-associated protein 

kinase 2 (Rock2), were 

validated by Western blot 

and immunohistochemistry 

analyzes.

(267)

Adult male 

Yucatan 

miniature and 

Yorkshire swines 

(n = 4 per group)

Blast tube was 

used to simulate 

free-field blast at 

a single moderate 

overpressure 

exposure of 40–

52 psi

Frontal 

cortex 

brain tissue

LP-IEF, SDS-PAGE, and 

LC–MS/MS

Blast exposure was shown to affect 

deamination patterns in the brain 

proteome. 6 different proteins were 

shown to have undergone 

deamination, including GABA 

transaminase, aconitate hydratase, 

GFAP, Glutathione S-transferase, 

Histone H4, and vimentin. 

Additionally, the results showed a 

significant elevation of IgGs in the 

cerebral cortex.

Protein panels and IgG 

levels were validated by 

Western Blotting.

(268)

Male C57BL/6 J 

mice

Open-field low-

intensity blast 

injury at a 

magnitude of 

82 kPa

Brain tissue TMT-tagging, LC–MS/MS

Mouse subjected to the blast displayed 

increased levels of tau protein 

phosphorylation 3 h to 24 h after 

injury. Analysis of phosphoproteins 

after the blast showed downregulation 

of 29 proteins and upregulation of 

only one protein at 3 h. However, four 

were downregulated, and 17 were 

upregulated at 24 h. The 

phosphoproteins with the largest 

increase include Add1, Camk2b, Syt1, 

and Stmn1. Ap3b2, Sgip1, Basp1, and 

Rph3a were among those significantly 

downregulated phosphoproteins.

N/A (269)

(Continued)
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TABLE 3 (Continued)

Animal 
subject

Injury type Media 
tested

Techniques Results Validation Reference

Male Sprague 

Dawley rats

custom-designed 

device of metallic 

pendulum-striker 

was used to 

induce mTBI

Prefrontal 

cortex 

tissue

iTRAQ, HRPH, and LC–

MS/MS

Analysis showed that 237 proteins 

were significantly changed in mTBI 

groups compared to the sham injury 

group. Significantly, two proteins, 

Pde10a and Gnal, which are involved 

in cAMP signal pathway, were 

suggested to play a role in mTBI 

pathogenesis. Both proteins were 

acutely upregulated after the injury 

and did not return to baseline levels 

until 6 months after the injury.

Western analysis of Pde10a 

and GnaI was done for 

validation.

(150)

Long-Evans rats

Repeated mild 

lateral fluid 

percussion

Plasma
Reverse Phase Protein 

Microarray

Plasma biomarkers indicated axonal 

damage, astroglia damage, oxidative 

stress, and metabolic dysfunction. 

There was a significant increase in 

GFAP (p = 0.029), 4-HNE (p = 0.003), 

NF-H (p = 0.004), and ceruloplasmin 

(p = 0.006) after injury. However, 

VEGF levels were found to 

be decreased (p = 0.002).

N/A (270)

Male C57BL/6 J 

mice

Open-field low-

intensity blast 

injury at a 

magnitude of 

46.6 kPa

Brain tissue TMT, LC–MS/MS

Results showed changes in 2216 and 

459 phosphorylated proteins at 

various time points after the blast. 

Important pathways involved 

included evidence of mitochondrial 

dysfunction, oxidative stress, axonal/

cytoskeletal/synaptic dysregulation, 

and neurodegeneration. 

Bioinformatic analysis identified 

blast-induced events related to 

cellular growth/development/

movement/assembly and cell-to-cell 

signaling interactions. Notably, 

mitochondrial dysfunctions included 

impaired fission-fusion dynamics, 

diminished mitophagy, decreased 

oxidative phosphorylation, and 

compensated respiration-relevant 

enzyme activities.

Changes in mitochondrial 

markers associated with 

oxidative stress and fission-

fusion dynamics at different 

time points post-injury were 

validated through western 

blotting.

(271)

Male Sprague–

Dawley rats

Mild lateral fluid 

percussion injury 

(FPI), traumatic 

axonal injury 

(TAI)

Brain tissue DIA LC–MS/MS

Results showed that developmental 

changes and TBI can cause 

modifications in axonal microtubules 

(MTs) through post-translational 

changes in tubulin and MT-associated 

proteins (MAPs) such as tau and 

MAP6. Degenerating axons show 

instability and depolymerization, 

while nearby axons without 

degenerating morphologies show 

enhanced MT stabilization. Further 

study is needed in this area.

Changes in tau and MAP6 

expressions during 

development and after TBI, 

and also axon degeneration 

changes and tubulin PTMs 

were validated by western 

blotting, and IHC staining.

(163)

(Continued)
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5 Future directions and limitations

In the field of personalized medicine for neurotrauma, the 
implementation of neuroproteomics has emerged as a revolutionary 

approach. Neuroproteomics involves the large-scale study of proteins in 
the nervous system, allowing researchers to understand the intricate 
molecular mechanisms underlying neurotrauma at an individual level 
(290, 291). By analyzing the unique protein profiles in patients, clinicians 

TABLE 3 (Continued)

Animal 
subject

Injury type Media 
tested

Techniques Results Validation Reference

Male Long-Evans 

rats

Awake closed 

head injury 

(ACHI), repeated 

mild TBI

Tissue and 

Serum

DIA mass spectrometry, 

MRI

Repeated mTBI rats had acute 

cognitive deficits and prolonged 

sensorimotor impairments. Serum 

NfL was elevated at 7 days post-injury, 

correlating with sensorimotor deficits. 

Several hippocampal proteins were 

altered by repeated mTBI, including 

those associated with energy 

metabolism, neuroinflammation, and 

impaired neurogenic capacity. 

Diffusion MRI analysis at 3.5 months 

found widespread reductions in white 

matter integrity.

N/A (161)

Adult male 

Sprague–Dawley 

rats

Mild–moderate 

controlled 

cortical impact 

(CCI)

Brain tissue

Ion mobility DIA mass 

spectrometry, 

Immunoblot analysis, 

Immunofluorescence 

microscopy

This study used artificial neural 

network and functional enrichment 

analyzes to identify ion transporters 

that could help address abnormal 

GABAergic transmission and delayed 

decline following brain injury. They 

focused on KCC2 or SLC12A5, and 

tested a KCC2-selective modulator 

CLP290. The modulator was effective 

at restoring lost KCC2 localization 

and improving somato-sensory 

behavioral tasks, but timing of 

administration was crucial. Results 

suggest the importance of post-

translational characterization in 

developing TBI treatments, and the 

promise of KCC2-targeted CLP290 

intervention for positive functional 

recovery after brain injury.

Validation of the escalated 

loss of KCC2 through the 

first week was confirmed 

through immunoblotting. 

However, the decrease in 

total protein was observed 

to be delayed until the 

second day, which was 

affirmed across two 

independent antibodies.

(164)

Adult C57BL/6 

mice

Stab wound 

injury affecting 

gray matter (GM) 

and white matter 

(WM)

Brain tissue 

cerebral 

cortex

Confocal laser scanning, 

Isolation and 

fluorescence-activated cell 

sorting, DIA mass 

spectrometry

The study examined glial reactivity in 

regions affected by WM and GM 

injuries and compared the impact of 

WM injury on reactive gliosis in the 

GM. Results showed that microglia 

proliferation increased in the WM 

compared to GM in the GM+ injury, 

while proliferating astrocytes were 

more abundant in the GM. WM 

lesion strongly influenced the 

proliferation of GM glial cells, 

particularly at early stages post-lesion. 

The study also found that NG2 glia 

proliferation was decreased in the 

GM+ compared to the GM-lesion 

condition and that MIF regulates 

NG2 glia proliferation.

N/A (162)
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TABLE 4 Human clinical trial neuroproteomics.

# Of Subjects/
patient 
demographics

Biofluid 
tested, 
proteins and 
clinical 
factors

Tests Results/level of evidence Data 
category

Institute References

504 NCAA college 

athletes with concussions 

and control athletes 

(contact/non-contact 

sport athletes)

Blood GFAP, 

UCH-L1, and Tau 

levels recorded 

between 24 to 48 h 

after injury, and 

7 days after return 

to play

Quanterix 

SIMOA 

multiplex 

assays, SCAT-

3, SAC

Athletes with concussions had 

significant elevation in GFAP (p < 0.001), 

UCH-L1 (p < 0.001) and tau levels 

(p = 0.004). Supports the analysis of 

GFAP, UCH-L1, and Tau biomarkers as 

potential signals for concussion/ mTBI 

in contact sports.

Prognostic/

Diagnostic Data 

(Concussion/

mTBI)

NCAA and CARE (278)

218 adult sTBI patients; 

(CSF from 138 subjects/

Serum from 80 subjects)

CSF (EVD)/Serum 

temporal S100b 

profiles, recorded 

over 6 days post-

injury. Evaluates 

correlations in, 

protein levels, age, 

gender, weight, & 

ISS.

GOS, DRS, 

ELISA

CSF and serum S100b levels were 

elevated over healthy controls across the 

first 6 days post-TBI (p ≤ 0.005 and 

p ≤ 0.031), all correlated with higher 

mortality and lower GCS scores. S100B 

levels provide significant predictions in 

sTBI cases.

Predictive and 

Prognostic Data

(sTBI)

University of 

Pittsburgh 

Department of 

Physical Medicine 

and Rehabilitation

(276)

54 Geriatric Subjects 

(μ-age = 69–70); 23 with 

AACD, 16 with AD, and 

15 healthy controls

CSF, Cerebral Gray 

Mater t-tau and 

p-tau181 

concentrations 

correlated with 

AACD/ AD 

diagnosis, and MRI 

scans

ELISA, MRI,

Voxel-based 

morphometry

AACD/AD subjects presented elevated 

t-tau and p-tau181 concentrations in 

respective areas of the brain. Study 

supports the elevated distribution of tau 

and p-tau in respective area of the brain 

for AACD and Alzheimer disease 

patients (p < 0.001).

Diagnostic Data 

(AD)

University of 

Heidelberg Geriatric 

Psychiatry and 

University of 

Frankfurt 

Department of 

Psychiatry

(280)

27 sTBI Pediatric subjects 

(ages 2–17 yrs.) with 

Glasgow Coma Scale 

score of ≤8

Serum/CSF GFAP 

levels correlated 

with Hypothermia 

treatments

GCS, GFAP 

quantification

CSF GFAP (15.5 +/− 6.1 ng/mL) and 

serum concentrations (0.6 +/− 0.2 ng/

mL) were successfully utilized for 

predicting Pediatric Performance 

Category Score over CT images 

(p = 0.008). Elevated GFAP 

concentration patterns indicated 

prognostic data for sTBI. Control 

comparison of GFAP also indicated 

nonsignificant decreases in 

concentration using hypothermic 

interventions.

Prognostic 

&Treatment 

Intervention 

Data (sTBI/ 

pTBI)

University of 

Western Ontario 

Division of Critical 

Care Medicine, 

Department of 

Pediatrics

(275)

217 TBI patients (161 

men/ 35 women); 196 of 

the patients were 

admitted with Level 3 

acute TBI (< 24 h post-

injury) while 21 patients 

were admitted to 

inpatient rehabilitation 

units (μ = 176.4 days 

post-injury).

Plasma p-tau/t-tau 

biomarker levels 

compared to CT 

scans and GCS 

scores

GSC and AUC

Total (T-tau) and P-tau levels 

differentiated mTBI from other forms of 

TBI. Illustrated that p-tau levels and the 

ratio of phosphorylation outperformed 

diagnosis from CT scans (AUC = 0.921 

and 0.646, respectively). Proteomics 

supported p-tau as a stronger biomarker 

for acute TBI in comparison to t-tau or 

CT diagnosis.

Prognostic/

Diagnostic Data 

(mTBI/ acute 

TBI)

State University of 

New York 

Laboratory of 

Neurodegenerative 

Diseases and CNS 

Biomarker 

Discovery (TRACK-

TBI Pilot Study)

(279)

(Continued)
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TABLE 4 (Continued)

# Of Subjects/
patient 
demographics

Biofluid 
tested, 
proteins and 
clinical 
factors

Tests Results/level of evidence Data 
category

Institute References

145 sTBI patients 

evaluated (< 6 h post 

injury). Serum samples 

from 86 patients and CSF 

samples from 59 patients

Serum/CSF 

UCH-L1 levels 

taken every 6 h.

ELISA

Supports a statistically significant 

increase of UCH-L1 levels overtime and 

respective biokinetics in CSF and serum 

samples for severe TBI patients in 

comparison to controls (p < 0.001), 

indicating a highly potential indicator of 

time dependent classification of sTBI.

Predictive data 

(sTBI)

University of Florida 

Center of Innovative 

Research, Banyan 

Biomarkers Inc., and 

Department of 

Psychiatry

(274)

28 pediatric patients

Serum S100b, NSE, 

IL-6, IL-8, IL-10, 

SICAM, L-selectin, 

and endothelin 

levels 1 Day post-

injury

ELISA, GOS, 

ROC, Multi-

ROC, and 

AUC,

(1) Combining biomarker levels for 

S100b (“screening marker”) and 

L-selectin/IL-6 (“varying markers”) 

achieved an AUC =0.98 when predicting 

outcome predictions. (2) Specificity and 

sensitivity for unfavorable outcome 

prediction were 96 and 100%, 

respectively. (3) Supports the use of 

multiple biomarkers (like S100b and 

IL-6) as potential prognostic tools for 

post-traumatic outcome projections.

Prognostic & 

predictive data 

(predicting 

unfavorable 

outcomes of 

pTBI)

University of 

Edinburgh

Child Life and 

Health

(277)

217 TBI Patients 161 men; 

35 women; 196 patients 

with acute TBI and 21 

subjects with chronic TBI

Plasma AutoAb 

[GFAP] response 

levels in post-

acute/chronic TBI.

Mini-Protean 

II Multiscreen 

and 

Immunoblot 

Screening

AutoAb [GFAP] levels for subjects with 

chronic TBI (176 days post-TBI) were 

significantly higher (15.08 ± 2.82; n = 21) 

than healthy controls and slightly higher 

than acute TBI patients (p < 0.001). 

Illustrates the significantly increased 

levels of autoimmune response and 

AutoAb [GFAP] levels in chronic TBI 

due to GFAP protein fragmentation.

Diagnostic Data 

(Acute and 

Chronic TBI)

University of Florida 

Departments of 

Psychiatry and 

Neuroscience 

(TRACK-TBI)

(282)

50 ABI patients (23 SAH, 

15 TBI, 6 intracranial 

hemorrhage, 3 ischemic 

stroke, and 3 others) and 

12 patients without ABI

Ventricular 

cerebrospinal fluid 

(vCSF), prospective 

study on the 

protein expression

DIA-SWATH 

mass 

spectrometry

The study found significant protein 

expression differences between patients 

with and without ABI. Patients with 

severe intracranial hypertension or 

death had higher GFAP expression than 

those without. Differences in protein 

expression were also found between 

patients with traumatic and 

nontraumatic ABI, with some proteins 

related to structural damage, 

complement activation, and cholesterol 

metabolism. However, no significant 

differences were found in protein 

expression between patients with SAH 

versus TBI or between those with good 

versus poor 3-month Glasgow Outcome 

Scale score.

Biomarker 

Discovery

Universite Libre de 

Bruxelles, 

Department of 

Intensive Care, 

Erasme Hospital

(177)

(Continued)
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can tailor treatments more precisely, optimizing therapeutic strategies for 
better outcomes. This personalized approach ensures that interventions 
are specifically designed to match the molecular intricacies of each 
patient’s conditions, leading to more effective and targeted treatments. 
Neuroproteomics, therefore, plays a pivotal role in advancing 
personalized medicine for neurotrauma by providing valuable insights 
into the diverse protein signatures associated with brain injuries, guiding 
clinicians toward a more informed decision-making (287, 292).

Moreover, the integration of AI and ML techniques significantly 
enhances the potential of neuroproteomics in personalized medicine 
(293). AI algorithms can process vast datasets, identify intricate patterns 
within protein profiles, and predict patient responses to different 
treatments (294). ML algorithms, on the other hand, can learn and 
adapt from these patterns, enabling real-time analysis and personalized 
treatment recommendations (295). This synergy between 
neuroproteomics and AI/ML technologies accelerates the pace of 
research, leading to more accurate diagnostic tools, targeted therapies, 
and predictive models (296). Looking ahead, the future of personalized 
medicine in neurotrauma lies in the continued advancement of these 
AI and ML applications, enabling rapid and precise decision-making 
based on a comprehensive molecular data (297). However, it is essential 
to acknowledge the limitations, including the need for large diverse 
datasets, ethical considerations, and the interpretability of AI-driven 
results (298). Addressing these challenges will be crucial for the seamless 
integration of neuroproteomics and AI/ML in personalized medicine, 
ensuring its transformative potential is fully realized.

It is also worth mentioning that although developing an effective 
tool in neuroscientific research, neuroproteomics and coupled 
technological advancements still have their limitations, human 
neuroproteomics research constraints lie in sample collection, subject 
availability, filtration, and identification (283).

First, finding potential human subjects and analyzing the impact of 
neurodegeneration on living humans is difficult due to the ethical 
standards of sample collection. Studying samples from live humans is 
extremely difficult due to the intravenous procedures necessary to 
conduct studies (284). Obtaining samples for proteomics research 
through intervention can be a complicated process. Most scientific data 
today rely on cadaver samples, EVD serum samples, animal models, and 
the unicellular proteomics (283, 284). While new methods of collecting 
samples are evaluated with studies like TRACK-TBI and CENTER-TBI, 
obtaining consent and sufficient samples for evaluation is still complicated 
due to the ethics behind obtaining informed consent, maintaining 
privacy, and attaining access to the rights of individual data. It is essential 
to tackle global data issues and create a global consensus on regulating 
privacy and consent among different political and healthcare 
systems (283).

Second, the collection of global human data is vast, and AI and ML 
would need to be updated to their most robust versions. With a problem 
holding extensive data, updated computer systems and robust tools will 
be essential for depositing and accessing necessary data. Innovators of 
such systems must be  wary of automated backup and ensure the 
uniformity of data. All medical practices should also follow standard 
operating procedures of data collection, input, and analysis to maintain 
controlled and accurate diagnosis and the best medical 
practices worldwide.

In continuation, elaborating on the processes of sample purification, 
the filtration of proteins is challenging because many samples contain a 
mixture of different proteins and various impurities. Purification of 
protein is complex because contamination of nucleotides, peptides, lipids, 
and biofluids disrupts the isolation of specific protein structures. ELISA, 
western blot, mass spectrometry, protein sequencing, bioinformatics, and 
all the proteomic tests require pure protein filtration. Experimenting and 

TABLE 4 (Continued)

# Of Subjects/
patient 
demographics

Biofluid 
tested, 
proteins and 
clinical 
factors

Tests Results/level of evidence Data 
category

Institute References

12 patients with moderate 

to severe TBI (initial 

Glasgow Coma Scale 

≤12)

Urine, multivariate 

urinary peptidome

DIA mass 

spectrometry

Highly sensitive and specific models 

were created using top 20 discriminant 

peptides for DRS-and FIM-based 

models with area under the receiver 

operator curve of 0.99 and 0.95, 

respectively. Predictive ability was 

assessed using robust leave-one-out 

cross-validation with Q2 statistics of 

0.64 (p = 0.00012) and 0.62 (p = 0.011) 

for DRS-and FIM-based models, 

respectively, both with a high predictive 

accuracy of 0.875. These models can 

help track rehabilitation progress after 

TBI and should be studied further for 

efficacy in assessing therapeutic 

interventions.

Biomarker 

Discovery,

Predictive model 

of functional 

recovery during 

TBI 

rehabilitation

Virginia 

Commonwealth 

University, School of 

Medicine

(160)

AUC, Area Under the Curve; AACD, Aging-associated Cognitive Decline; AD, Alzheimer’s Disease; NCAA, American National Collegiate Athletic Association; CSF, Cerebrospinal Fluid; CT, 
Computed Tomography; DRS, Disability Rating Scale; ELISA, Enzyme-linked Immunosorbent Assay; EVD, External Ventricular Drain; GFAP, Glial Fibrillary Acidic Protein; GOS, Glasgow 
Outcome Score; GCS, Glasgow Coma Scale; ISS, Injury Severity Score; IL-6, Interleukin-6; IL-8, Interleukin-8; IL-10, Interleukin-10; MRI, Magnetic Resonance Imaging; mTBI, Mild TBI; 
NSE, Neuron-Specific Enolase; pTBI, Pediatric TBI; p-tau, Phosphorylated Tau; ROC, Receiver Operating Characteristic; S100b, S100 Calcium-binding Protein B; sTBI, Severe TBI; SICAM, 
Soluble Intracellular Adhesion Molecule; SCAT-3, Sports Concussion Assessment Test-3; SAC, Standardized Assessment of Concussion; t-tau, Total Tau; UCH-L1, Ubiquitin C-terminal 
Hydrolase-L1; CARE, US Department of Defense Concussion Assessment, Research, and Education Consortium.
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identifying methods to purify specific proteins are being studied and 
continue to be a major advancement within proteomics. Basic protocols 
for purification methods, enzyme degradation, filtration, and treatment 
are continually evaluated in many studies (283, 299).

After sample purification, the last evaluation stage also has a few 
limitations. Bioinformatics, proteomics, and their respective databases 
are not all fully curated. Evaluation of bioinformatics databases and the 
use of technological prediction must always be carefully monitored. 
Support from multiple databases and experimentation is critical for 
supportive evidence. It is critical to utilize multiple tests, evaluation 
protocols, and various techniques in bioinformatics to create the most 
precise predictions and conclusions (283, 299).

Finally, although there are many limitations, the benefits of 
neuroproteomics-based personalized medicine outweigh the 

overall effects. Innovation and technological advancement in 
science will always require funding, and scientists must predict 
such endeavors’ costs. Conflicts may arise among multidisciplinary, 
multi-institutional, and multinational groups pursuing grants to 
support personalized medicine. Regardless of the conflicts and 
limitations, innovating such technologies and collaborating on a 
global scale will benefit the future of precision-based and 
personalized medicine.

6 Conclusion

Despite the drawbacks discussed, the field of proteomics is developing 
rapidly. In future endeavors, neuroscientists hope to find a fast, efficient, 

FIGURE 7

Proteomics, machine learning, and artificial intelligence in personalized medicine. In human clinical trials, neuroscientist study the proteomics of primary 
injury brain samples. After a primary injury, homeostatic conditions within the brain lead to kinase enzyme activation, PTM addition, and NFT formation, 
leading to plaque and malformation. Evidence of the damage was once primarily collected through neuroimaging, however faster and more effective 
technique have been developed through proteomics data analysis, computer data processing, AI and ML. Today, the collection of different data from a 
variety of tests provides significant data for special cases of TBI and can even provide better prognostic and diagnostic outputs for personalized medicine.
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and significant in-vitro, non-intravenous protocol for neuroproteomics 
clinical diagnosis. Techniques like unicellular neuroproteomics have been 
coupled with AI and ML to identify the significant correlations and 
patterns within neuroproteomics data to accomplish these goals. Today, 
scientists are continuing their studies on what to improve in the subfield 
of neuroproteomics and how it can be  utilized for neurodiagnostic, 
prognostic, and theragnostic protocols (258, 283).

Today different fields of unicellular proteomics are being utilized to 
conduct neuroproteomics studies. As described in many previous 
examples, unicellular proteomics focuses on specific cell types and 
analyzes the proteins that come from them (283). In many TBI-based 
studies, scientists evaluate the concentrations of cytokines, macrophages, 
antibodies, and other immuno-based proteins as potential indicators of 
neurodegenerative diseases (276, 284, 287, 288). Analyzing innate 
immune responses to foreign conglomerated proteins and experimenting 
with specific unicellular protein structures are all potential futures (274). 
Other factors are analyzed, like the effect of time, secondary injuries, and 
the concentrations of immunological biomarkers, all essential data for 
effective clinical prediction models (258, 283, 300).

In continuation, AI and ML systems’ contribution has already been 
discussed but are also essential, as they will gather large sets of data and 
analyze them through the system biology (21). AI and ML will tie 
together proteomics data and carry out significant correlations with the 
knowledge built on by hundreds of studies. Understanding how to 
correlate proteomics trends and qualitative diagnostic scores through 
technological means will revolutionize medicine, especially in the 
neurology and neurotrauma (222, 227, 239, 258, 283).

In summary, novel processes and protocols continue progressing in 
neuroproteomics and biotechnology. New techniques and procedures 
will help spread new therapies, prognostic tools, diagnostic 
biotechnologies, and future insights for efficient, accurate, and more 
precise personalized medicine (258, 283, 299).

7 Expert opinion

The value of neuroproteomics as a powerful tool to identify proteins 
reflecting and involved with specific neuropathobiological processes in 
TBI has been demonstrated in recent years. Neuroproteomics 
characterization of biomarkers (i.e., UCH-L1 and GFAP) (185, 301–303) 
that are now, for the first time, approved by regulatory authorities to aid 
in the diagnosis of TBI and play a key role in clinical studies are notable 
examples (304–306). Nonetheless, the molecular complexity of the post-
translational modifications (e.g., phosphorylation and glycosylation) and 
related impact on protein function, pathophysiological processes, and 
brain interaction networks remain largely unexplored (57, 74). This 
knowledge holds critical potential for understanding the underlying 
pathobiology of TBI, paving the way to discover new biomarkers that are 
also therapeutic targets. To this end, bioinformatic handling of the large 
volumes of data generated by high-throughput technologies coupled 
with AI and ML statistical approaches will be essential to meaningful 
interpret information with respect to the functional and mechanistic 
value as well as to disentangle data’s heterogeneity and reveal pathways, 
expression patterns, and phenotypes toward precision medicine.

Tremendous progress has been made in the technologies 
employed in proteomics studies (high-resolution LC/MS, protein 
arrays, chip-based technologies, and single-cell proteomics, among 
others). These tools have become available not only to laboratory 

researchers but also to clinical settings; however, the ultimate 
output is to deliver clinically useful point-of-care tests capable of 
sensitive, accurate, rapid, inexpensive, and reproducible assessment 
across large patient cohorts.

Importantly, the main problem associated with neuroproteomics in 
TBI is the inconsistencies and lack of reproducibility of research findings 
due to the variable quality of the studies and differences in methodology. 
Therefore, there is an urgent need to standardize methodologies and 
define rigorous protocols for the bioinformatic and advanced 
computational analyzes to magnify the impact of the neuroproteomics 
data. Finally, international multidisciplinary collaborations combining 
different and complementary expertise and involving physicians, 
scientists, and programmers may have an instrumental role in analyzing 
the data proteomics in TBI and developing an effective framework for 
successful clinical implementation.
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