8 research outputs found

    An adaptive sliding mode differentiator for actuator oscillatory failure case reconstruction

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Automatica. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Automatica Vol. 49 (2013), DOI: 10.1016/j.automatica.2012.11.042This paper proposes an adaptive sliding mode super-twisting differentiator which allows the gains to adapt based on the ‘quality’ of the sliding motion. A Lyapunov based analysis for the adaptive super-twisting scheme is presented to demonstrate its properties. As an example, the adaptive differentiator proposed in this paper has been used as part of a nonlinear FDI scheme for an Oscillatory Failure Case (OFC) in an actuator. The FDI scheme requires an estimate of the rod speed which is provided by the adaptive super-twisting differentiator. Due to the conditions in which the actuator operates, normally the differentiator gains are initialised at low values to ensure good rod speed estimation in fault free conditions. However for large amplitude/frequency OFCs, the gains must adapt in order to maintain sliding and provide a good estimation. Simulations on a high fidelity nonlinear aircraft benchmark model have been carried out for both liquid and solid OFCs

    Enhanced Continuous Higher Order Sliding Mode Control with Adaptation

    Get PDF
    This is the author accepted manuscript. The final version is availabel from Elsevier via the DOI in this recordThis paper proposes a new Continuous Adaptive HOSM control algorithm. The key advantage of the adaption scheme is that it does not require knowledge of the bounds on the matched uncertainty, and the gains themselves are not conservatively overestimated by the adaption scheme – which helps mitigate the problem of chattering. Compared with earlier work, two variable parameters are allowed to adapt and this facilitates much better self-tuning capabilities and improved closed-loop performance

    Adaptive continuous higher order sliding mode control

    Get PDF
    Author's Preprint, submitted to AutomaticaAn early version of this paper was presented at ACC’14.This paper is concerned with the development of an adaptation structure which can be applied to conventional, super-twisting and higher-order sliding mode schemes. The objective is to alter the modulation gains associated with these schemes in such a way that they are as small as possible to mitigate chattering effects, but large enough to ensure that sliding can be maintained in the presence of bounded and derivative bounded uncertainties. In all the proposed schemes, the equivalent control is used to drive the adaptive mechanism. The approach is based on a novel dual layer nested adaptive methodology which is quite different to the existing schemes proposed in the sliding mode literature. The new adaptive schemes do not require knowledge of the minimum and maximum allowed values of the ad

    Sensor redundancy based FDI using an LPV sliding mode observer

    Get PDF
    This is the author accepted manuscript. The final version is available from IET via the DOI in this record.In this paper, a linear parameter varying (LPV) sliding mode sensor fault detection and isolation (FDI) scheme is proposed wherein knowledge of the measurement redundancy is utilised to achieve FDI in multiple channels simultaneously. Such a situation is common in some state-of-the-art aircraft fault diagnosis systems where information is generally/mainly measured based on triplex redundancy. The scheme proposed in this paper is based on an LPV sliding mode observer and exploits the so-called equivalent output error injection signal to create estimates of the measurement faults. In the case of sensor measurement redundancy, and where there exists a fault free (but unknown) sensor amongst the set of measurements, the fault reconstruction performance of the observer can be improved by isolating and using the output error injection signal associated with the fault free redundant sensor. Simulation results using the RECONFIGURE benchmark model demonstrate the effectiveness of the schemeThis work is supported by the EU Grant (FP7-AAT-2012-314544): RECONFIGUR

    Integrated fault estimation and fault-tolerant control for stochastic systems with Brownian motions

    Get PDF
    This paper presents an integrated robust fault estimation and fault‐tolerant control technique for stochastic systems subjected to Brownian parameter perturbations. The augmented system approach, unknown input observer method, and optimization technique are integrated to achieve robust simultaneous estimates of the system states and the means of faults concerned. Meanwhile, a robust fault‐tolerant control strategy is developed by using actuator and sensor signal compensation techniques. Stochastic linear time‐invariant systems, stochastic systems with Lipschitz nonlinear constraint, and stochastic systems with quadratic inner‐bounded nonlinear constraint are respectively investigated, and the corresponding fault‐tolerant control algorithms are addressed. Finally, the effectiveness of the proposed fault‐tolerant control techniques is demonstrated via the drivetrain system of a 4.8 MW benchmark wind turbine, a 3‐tank system, and a numerical nonlinear model

    Second order sliding mode observers for the ADDSAFE actuator benchmark problem

    Get PDF
    Copyright © 2014 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Control Engineering Practice. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Control Engineering Practice Vol. 31 (2014), DOI: 10.1016/j.conengprac.2013.09.014This paper presents the evaluation process and results associated with two different fault detection and diagnosis (FDD) schemes applied to two different aircraft actuator fault benchmark problems. Although the schemes are different and bespoke for the problem being addressed, both are based on the concept of a second order sliding mode. Furthermore both designs are considered as ‘local’ in the sense that a localized actuator model is used together with local sensor measurements. The schemes do not involve the global aircraft equations of motion, and therefore have low order. The first FDD scheme is associated with the detection of oscillatory failure cases (OFC), while the second scheme is aimed at the detection of actuator jams/runaways. For the OFC benchmark problem, the idea is to estimate the OFC using a mathematical model of the actuator in which the rod speed is estimated using an adaptive second order exact differentiator. For the jam/runaway actuator benchmark problem, a more classical sliding mode observer based FDD scheme is considered in which the fault reconstruction is obtained from the equivalent output error injection signals associated with a second order sliding mode structure. The results presented in this paper summarize the design process from tuning, testing and finally industrial evaluation as part of the ADDSAFE project.EU (FP7-233815

    Control of MacPherson active suspension system using sliding mode control with composite nonlinear feedback technique

    Get PDF
    The MacPherson active suspension system is able to support the weight of vehicle and vibration isolation from road profile, and is also able to maintain the traction between tyre and road surface. It also provides both additional stability and maneuverability by performing active roll and pitch control during cornering and braking, and the most significant are ride comfort and road handling performance. However, a drawback of MacPherson model is the self-steer phenomenon in the active suspension system. The problem might be solved by controlling the actuator force and control arm of the system. The MacPherson model has a similar layout to a real vehicle active suspension system. The mathematical model of the system produces a nonlinear mathematical model with uncertainties. Therefore, the proposed control strategy must be able to cater the uncertainties in mathematical model and simultaneously provide a fast response to the system. The control strategy combines Composite Nonlinear Feedback (CNF) algorithm and Proportional Integral Sliding Mode Control (PISMC) algorithm to achieve quick response and to reduce uncertainties. Optimisation of parameters in the CNF was performed using Evolutionary Strategy (ES) algorithm for fast transient performance. Thus, the controller is called Proportional Integral Sliding Mode Control – Evolutionary Strategy – Composite Nonlinear Feedback (PISMC-ES-CNF). To validate the proposed controller, the conventional Sliding Mode Control (SMC) and CNF were utilised to control the system under various road profiles. The ISO 2631-1, 1997 was used as a reference of ride comfort level for the acceleration of sprung mass. Results show that the proposed controller, PISMC-ES-CNF achieved the best control performance under various road profiles. The results obtained also prove that the PISMC-ES-CNF managed to improve ride comfort quality and road handling quality and has also delivered better control performance in terms of transient response of acceleration of sprung mass, reducing overshoot and chattering problem compared to conventional SMC and CNF
    corecore