3,763 research outputs found

    Game Theory-Based Cooperation for Underwater Acoustic Sensor Networks: Taxonomy, Review, Research Challenges and Directions.

    Get PDF
    Exploring and monitoring the underwater world using underwater sensors is drawing a lot of attention these days. In this field cooperation between acoustic sensor nodes has been a critical problem due to the challenging features such as acoustic channel failure (sound signal), long propagation delay of acoustic signal, limited bandwidth and loss of connectivity. There are several proposed methods to improve cooperation between the nodes by incorporating information/game theory in the node's cooperation. However, there is a need to classify the existing works and demonstrate their performance in addressing the cooperation issue. In this paper, we have conducted a review to investigate various factors affecting cooperation in underwater acoustic sensor networks. We study various cooperation techniques used for underwater acoustic sensor networks from different perspectives, with a concentration on communication reliability, energy consumption, and security and present a taxonomy for underwater cooperation. Moreover, we further review how the game theory can be applied to make the nodes cooperate with each other. We further analyze different cooperative game methods, where their performance on different metrics is compared. Finally, open issues and future research direction in underwater acoustic sensor networks are highlighted

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio

    Information-Theoretic Secure Outsourced Computation in Distributed Systems

    Get PDF
    Secure multi-party computation (secure MPC) has been established as the de facto paradigm for protecting privacy in distributed computation. One of the earliest secure MPC primitives is the Shamir\u27s secret sharing (SSS) scheme. SSS has many advantages over other popular secure MPC primitives like garbled circuits (GC) -- it provides information-theoretic security guarantee, requires no complex long-integer operations, and often leads to more efficient protocols. Nonetheless, SSS receives less attention in the signal processing community because SSS requires a larger number of honest participants, making it prone to collusion attacks. In this dissertation, I propose an agent-based computing framework using SSS to protect privacy in distributed signal processing. There are three main contributions to this dissertation. First, the proposed computing framework is shown to be significantly more efficient than GC. Second, a novel game-theoretical framework is proposed to analyze different types of collusion attacks. Third, using the proposed game-theoretical framework, specific mechanism designs are developed to deter collusion attacks in a fully distributed manner. Specifically, for a collusion attack with known detectors, I analyze it as games between secret owners and show that the attack can be effectively deterred by an explicit retaliation mechanism. For a general attack without detectors, I expand the scope of the game to include the computing agents and provide deterrence through deceptive collusion requests. The correctness and privacy of the protocols are proved under a covert adversarial model. Our experimental results demonstrate the efficiency of SSS-based protocols and the validity of our mechanism design

    A Survey on Trust Computation in the Internet of Things

    Get PDF
    Internet of Things defines a large number of diverse entities and services which interconnect with each other and individually or cooperatively operate depending on context, conditions and environments, produce a huge personal and sensitive data. In this scenario, the satisfaction of privacy, security and trust plays a critical role in the success of the Internet of Things. Trust here can be considered as a key property to establish trustworthy and seamless connectivity among entities and to guarantee secure services and applications. The aim of this study is to provide a survey on various trust computation strategies and identify future trends in the field. We discuss trust computation methods under several aspects and provide comparison of the approaches based on trust features, performance, advantages, weaknesses and limitations of each strategy. Finally the research discuss on the gap of the trust literature and raise some research directions in trust computation in the Internet of Things

    Evaluated reputation-based trust for WSN security

    Get PDF
    During the last years, Wireless Sensor Networks (WSNs) and its applications have obtained considerable momentum. However, security and power limits of WSNs are still important matters. Many existing approaches at most concentrate on cryptography to improve data authentication and integrity but this addresses only a part of the security problem without consideration for high energy consumption. Monitoring behavior of node neighbors using reputation and trust models improves the security of WSNs and maximizes the lifetime for it. However, a few of previous studies take into consideration security threats and energy consumption at the same time. Under these issues Modified Reputation-Based Trust model proposed and optimized for security strength. During evaluation of the model with well-known models two security threats (oscillating and collusion) were applied in order to measure the accuracy, scalability, trustworthiness and energy consumption. As a result, the effects of collusion and oscillating on proposed model are minimized and energy consumption for dynamic networks reduced. Also, simulation results show that MRT has better average accuracy and less average path length than other mechanisms, due to the security and energy aware. Keywords: Wireless Sensor Networks (WSNs), Collusion, Oscillating, Power Consumption, Trust and Reputation Model

    Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective

    Full text link
    Machine Learning models are being deployed as parts of real-world systems with the upsurge of interest in artificial intelligence. The design, implementation, and maintenance of such systems are challenged by real-world environments that produce larger amounts of heterogeneous data and users requiring increasingly faster responses with efficient resource consumption. These requirements push prevalent software architectures to the limit when deploying ML-based systems. Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models. DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems. Even though papers on deployed ML-based systems do not mention DOA, their authors made design decisions that implicitly follow DOA. The reasons why, how, and the extent to which DOA is adopted in these systems are unclear. Implicit design decisions limit the practitioners' knowledge of DOA to design ML-based systems in the real world. This paper answers these questions by surveying real-world deployments of ML-based systems. The survey shows the design decisions of the systems and the requirements these satisfy. Based on the survey findings, we also formulate practical advice to facilitate the deployment of ML-based systems. Finally, we outline open challenges to deploying DOA-based systems that integrate ML models.Comment: Under revie

    Autonomy and Intelligence in the Computing Continuum: Challenges, Enablers, and Future Directions for Orchestration

    Full text link
    Future AI applications require performance, reliability and privacy that the existing, cloud-dependant system architectures cannot provide. In this article, we study orchestration in the device-edge-cloud continuum, and focus on AI for edge, that is, the AI methods used in resource orchestration. We claim that to support the constantly growing requirements of intelligent applications in the device-edge-cloud computing continuum, resource orchestration needs to embrace edge AI and emphasize local autonomy and intelligence. To justify the claim, we provide a general definition for continuum orchestration, and look at how current and emerging orchestration paradigms are suitable for the computing continuum. We describe certain major emerging research themes that may affect future orchestration, and provide an early vision of an orchestration paradigm that embraces those research themes. Finally, we survey current key edge AI methods and look at how they may contribute into fulfilling the vision of future continuum orchestration.Comment: 50 pages, 8 figures (Revised content in all sections, added figures and new section
    corecore