3,263 research outputs found

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Distributed Database Management Techniques for Wireless Sensor Networks

    Full text link
    Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published versions of their papers.In sensor networks, the large amount of data generated by sensors greatly influences the lifetime of the network. In order to manage this amount of sensed data in an energy-efficient way, new methods of storage and data query are needed. In this way, the distributed database approach for sensor networks is proved as one of the most energy-efficient data storage and query techniques. This paper surveys the state of the art of the techniques used to manage data and queries in wireless sensor networks based on the distributed paradigm. A classification of these techniques is also proposed. The goal of this work is not only to present how data and query management techniques have advanced nowadays, but also show their benefits and drawbacks, and to identify open issues providing guidelines for further contributions in this type of distributed architectures.This work was partially supported by the Instituto de Telcomunicacoes, Next Generation Networks and Applications Group (NetGNA), Portugal, by the Ministerio de Ciencia e Innovacion, through the Plan Nacional de I+D+i 2008-2011 in the Subprograma de Proyectos de Investigacion Fundamental, project TEC2011-27516, by the Polytechnic University of Valencia, though the PAID-05-12 multidisciplinary projects, by Government of Russian Federation, Grant 074-U01, and by National Funding from the FCT-Fundacao para a Ciencia e a Tecnologia through the Pest-OE/EEI/LA0008/2013 Project.Diallo, O.; Rodrigues, JJPC.; Sene, M.; Lloret, J. (2013). Distributed Database Management Techniques for Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems. PP(99):1-17. https://doi.org/10.1109/TPDS.2013.207S117PP9

    Energy-efficient query management scheme for a wireless sensor database system

    Get PDF
    Minimizing the communication overhead to reduce the energy consumption is an essential consideration in sensor network applications, and existing research has mostly concentrated on data aggregation and in-network processing. However, effective query management to optimize the query aggregation plan at the gateway side is also a significant approach to energy saving in practice. In this paper, we present a multiquery management framework to support historical and continuous queries, where the key idea is to reduce common tasks in a collection of queries through merging and aggregation, according to query region, attribute, time duration, and frequency, by executing the common subqueries only once. In this framework, we propose a query management scheme to support query partitioning, region aggregation and approximate processing, time partitioning and aggregation rules, multirate queries, and historical database. In order to validate the performance of our algorithm, a heuristic routing protocol is also described. The performance simulation results show that the overall energy consumption for forwarding and answering a collection of queries can be significantly reduced by applying our query management scheme. The advantages and disadvantages of the proposed scheme are discussed, together with open research issues

    Exploring sensor data management

    Get PDF
    The increasing availability of cheap, small, low-power sensor hardware and the ubiquity of wired and wireless networks has led to the prediction that `smart evironments' will emerge in the near future. The sensors in these environments collect detailed information about the situation people are in, which is used to enhance information-processing applications that are present on their mobile and `ambient' devices.\ud \ud Bridging the gap between sensor data and application information poses new requirements to data management. This report discusses what these requirements are and documents ongoing research that explores ways of thinking about data management suited to these new requirements: a more sophisticated control flow model, data models that incorporate time, and ways to deal with the uncertainty in sensor data
    corecore