
Enabling Resource-Awareness for

In-network Data Processing in Wireless Sensor Networks

Uwe Röhm Mohamed Medhat Gaber∗ Quincy Tse

University of Sydney CSIRO ICT Centre University of Sydney
School of Information Technologies Hobart, TAS, Australia School of Information Technologies

Sydney, NSW 2006, Australia Sydney, NSW 2006, Australia
roehm@it.usyd.edu.au Mohamed.Gaber@csiro.au qtse4594@it.usyd.edu.au

Abstract

The next-generation of wireless sensor platforms al-
lows for more advanced in-network data processing.
The central challenge remains energy and commu-
nication efficiency. This paper presents a resource-
awareness framework for wireless sensor networks
that allows in-network data processing to adapt to
changing resource levels such as battery power or
available memory. We have implemented the pro-
posed framework as part of a query processing sys-
tem for the Sun SPOT sensor network platform. As
a case study, we have applied the framework to the
query processor’s on-line data clustering algorithm,
making it resource-aware. In an experimental study,
we demonstrate how communication costs can be sig-
nificantly reduced by de-coupling clustering and data
communication. The results also show the effective-
ness of the resource-aware clustering algorithm: It can
keep a constant memory footprint for only a marginal
acceptable error in result accuracy.

1 Introduction

With the advent of smart sensor devices, wireless sen-
sor networks (WSNs) are an emerging application
field (Zhao & Guibas 2004, Culler & Hong 2004).
Many applications need continuous monitoring of
phenomena in the physical world, for example in en-
vironmental and habitat monitoring (Szewczyk, Os-
terweil, Polastre, Hamilton, Mainwaring & Estrin
2004), traffic control (Chen, Chen & Tu 2005), and
health monitoring (Chen, Agrawal, Cochinwala &
Rosenbluth 2004). While previous generations of sen-
sor devices were very limited in their processing capa-
bilities (Hill, Horton, Kling & Krishnamurthy 2004),
the latest hardware developments provide consider-
able CPU, memory, and multi-tasking capabilities
(Sun Microsystems n.d., Crossbow Technology n.d.).
This development makes more demanding in-network
data processing feasible. But at the same time, be-
cause of the battery-powered nature of the sensor de-
vices energy efficiency remains the central optimisa-
tion goal.

∗This work was done while the author was working in the School

of IT at the University of Sydney.
Copyright c©2008, Australian Computer Society, Inc. This pa-

per appeared at Nineteenth Australasian Database Conference

(ADC2008), Wollongong, Australia, January 2008. Confer-

ences in Research and Practice in Information Technology (CR-

PIT), Vol. 75. Alan Fekete and Xuemin Li, Ed. Reproduction

for academic, not-for profit purposes permitted provided this

text is included.

In this paper, we propose a two-stage approach:
Firstly, we strive to minimise data communication
by moving data processing algorithms into the sen-
sor networks, and by de-coupling data processing and
data communication. For example, instead of sending
individual sensor readings back to the base station, we
envision data reduction techniques such as a cluster-
ing algorithm running on the sensor nodes. Secondly,
we adapt those algorithms adaptive to changing com-
putational resource levels such as available memory or
the battery level. For this purpose, we have designed
a resource-awareness framework for in-network data
processing in wireless sensor networks. Our goal is
to develop an infrastructure for adaptive in-network
data processing in wireless sensor networks and to ex-
plore the trade-off between processing accuracy and
energy efficiency.

Complex in-network data processing is made pos-
sible by recent hardware developments in WSNs.
For example, the new SunTM Small Programmable
Object Technology (SPOT) sensor network plat-
form, developed at Sun Microsystems Laborato-
ries (Simon, Cifuentes, Cleal, Daniels & White 2006,
Sun Microsystems n.d.), has a 32bit ARM Risc pro-
cessor, an 11 channel 2.4GHz radio, and approxi-
mately 100 times more memory than a state-of-the-
art platform such as Berkeley Motes (Hill et al. 2004).
The platform is programmed in JavaTM and has a
sensor board for I/O and an 802.15.4 radio for wire-
less communication. The Sun SPOT system runs
“Squawk VM” that is a small Java Micro Edition
(ME) virtual machine (VM). The VM executes wire-
less sensor network applications “on the bare metal”,
i.e., directly on the CPU without any underlying OS,
saving overhead and improving performance. With
more memory and a faster CPU, alternative design
decision can be made to minimise energy-costly com-
munication by pushing data processing such as clus-
tering into the network.

We have designed and implemented a distributed
query engine for wireless sensor networks, called SS-
DQP, which runs on the new Sun SPOT platform. In
this paper, we discuss the integration of our resource-
awareness framework into SSDQP, and its applica-
tion to a resource-aware clustering algorithm, ERA-
cluster (Phung, Gaber & Röhm 2007). Our main con-
tributions are as follows:

• We describe the implementation of resource-
aware, in-network data clustering in a WSN
query processor.

• We introduce asynchronous data clustering by

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578645?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

employing the multi-query support of our SS-
DQP system for de-coupling clustering and com-
munication. We show how this can signifi-
cantly reduce communication costs as compared
to plain data collection queries (in our case by
factor 7).

• We conducted an experimental evaluation of our
techniques in a small Sun SPOT WSN network.
Our results show the effectiveness of the resource-
aware clustering algorithm: It can keep a con-
stant memory footprint for only a moderate lost
in result accuracy.

The paper is organised as follows: In Section 2, we
give an overview of WSN query processing and our
SSDQP system. We present our resource-awareness
framework in Section 3. In Section 4, we present the
application of our generic framework into SSDQP and
making its CLUSTER operator resource-aware. Sec-
tion 5 concludes this paper.

2 Background and Related Work

2.1 WSN Query Processing

Distributed query processing in wireless sensor net-
works has been an active research area over the last
few years. TinyDB (Madden, Franklin, Hellerstein &
Hong 2005) and Cougar (Yao & Gehrke 2002) rep-
resent the first generation of query processing sys-
tems in wireless sensor networks. The objective is to
abstract from low-level tasks such as sensing, multi-
hop data transmission in an ad-hoc network, and data
merging and aggregation. The main challenges is to
prolong the network lifetime by minimising commu-
nication as senor nodes are only battery-powered.

State-of-the-art WSN query processing systems
provide SQL-like query languages that are able to
collect, filter, and display data from sensor net-
works (Madden et al. 2005, Intanagonwiwat, Govin-
dan, Estrin, Heidemann & Silva 2003, Yao & Gehrke
2002). Sensor data is viewed as a single virtual table.
Results from every sensor find their way to the user
through a routing protocol. WSN query processing
consists of three phases: (1) the query preparation
phase parses and optimises a query at the user’s PC,
(2) the broadcasting phase injects the sensing and col-
lecting task into the sensor network, and (3) the data
collecting phase makes results flowing up and out of
the network to the PC where the results are displayed
and eventually further processed.

WSN query processing systems have introduced
the concept of query lifetime specifications. The user
can specify how long the query should be processed.
Pushing computation is used in two forms: partial ag-
gregation and packet merging. In partial aggregation,
distributive query operators are used in-network. In-
termediate results are then passed to the root to inte-
grate the results. On the other hand, packet merging
is used to reduce the communication overhead pro-
duced from sending multiple packet headers. Query
optimisation is done locally at the central site. Once
the query is optimised, its execution plan is dissemi-
nated into the network by flooding through the rout-
ing tree.

Latest research prototypes such as SwissQM
(Müller, Alonso & Kossmann 2007) or SSDQP

Q1 Q2 Qn

Scheduler

...

Tsync QControl

Sensor Node

Q1 Q2 Qn

Scheduler

...

Tsync QControl

Sensor Node

Q1 Q2 Qn

Scheduler

...

Tsync QControl

Sensor Node

......

......

Figure 1: SSDQP Semantic Routing Tree Fragment.

(Scholz, Gaber, Dawborn, Khoury & Tse 2007) fur-
ther abstract from the underlying sensor hardware
by basing the WSN query processors on virtual ma-
chines (VM) that run on the sensor nodes. SwissQM
proposes an own VM with sensor-query-processing
specific extensions, into which queries are compiled.
In contrast, SSDQP is running on the Squawk Java
VM of Sun SPOT nodes following a more traditional
approach of execution-plan compilation of queries
and focusing on multi-query execution and resource-
awareness.

2.2 Sun SPOT Distributed Query Processor

The Sun SPOT Distributed Query Processor (SS-
DQP) consists of two components (Scholz et al. 2007):
(1) the query engine that is executed on the Sun
SPOTs and (2) the control system on the user’s PC
that is connected to the base station.

The query engine is time triggered. The whole
functionality of the query engine is implemented as a
set of tasks that have a start time for execution. The
task scheduler of the query engine executes a task if
the start time of the task has been reached. The task
scheduler maintains the active tasks in a time queue.
Furthermore, tasks can be periodically executed with
a fixed time period and the number of repetitions is
parameterisable. Tasks can be added and removed
from the time queue of the task scheduler. The start
time of a task is “global” in the network such that
sensing and communication can be done in a synchro-
nised fashion. The query engine has a specific time
synchronisation task that keeps the clocks of the Sun
SPOTs in the network in sync, similar to the TPSN
algorithm (Ganeriwal, Kumar & Srivastava 2003). In
Fig. 1 a fragment of a semantic routing tree is shown.
A node in the semantic routing tree is a Sun SPOT
device that runs the query engine. The query engine
has the task scheduler that executes query tasks Q1 to
Qn. The query engines also has a query control that
creates new queries and deletes old queries. The time
synchronisation module is responsible of establishing
a global time in the ad-hoc network. It is important to
note that a SQL query is translated into distributed
queries for nodes in the semantic routing tree and ex-
ecuted in a distributed fashion on the nodes.

Figure 2: Screenshot of SSDQP.

Query tasks execute a physical query plan; they
are composed of relational query operators that op-
erate on relational tables. Since all sensor readings of
the SUN SPOTs are integer values, the system does
only support integer attributes in the relational ta-
bles. The query engine supports all the fundamental
query operators including selection, projection, join
and aggregation. In addition to these basic function-
alities, there are

• the sense operator that reads the values of the
sensors and creates a result row with the sensor
readings,

• the forward operator that takes the input relation
and forwards it to the parent node in the routing
tree,

• the merge operator that receives the relations
from the children in the routing tree, merges the
relations, and returns the merged relation.

• the cluster operator that takes the current result
values as input and clusters them according to a
given distance threshold.

The query operations are represented as expression
trees in the query engine. A specific encoding of the
expression tree is used to construct expression trees
from a message that is sent from the control system to
a Sun SPOT node. To minimise the size of messages
(and therefore energy), a basic lossless compression
method is used.

The control system runs on the user’s PC that is
connected to the base station. It provides a graphical
user interface for query input and result visualisation
as shown in Figure 2. The control system

• receives and parses SQL queries, optimises the
queries, and translates them into physical query
plans, which are deployed in the network,

• collects the data from deployed queries,

• manages deployed queries, (i.e., status of de-
ployed queries, termination of queries, etc.),

• provides the global time to all nodes in the net-
work,

• displays and depicts results of queries.

The system is fully written in Java following a true
object-oriented software engineering practice. This
gives our system the advantage of the ease of system
maintenance and extension.

2.3 In-network Data Clustering

SSDQP provides an online in-network data clustering
algorithm (Röhm, Scholz & Gaber 2007) that clusters
the query’s projection attributes according to a given
distance threshold:

SELECT temp, light
INTO buffer CLUSTER 5
FROM sensors

EPOCH 10 secs RUNCOUNT 6*24

Figure 3: Example Clustering-Query.

The CLUSTER operator uses a distance thresh-
old to assign a new data record to an existing cluster.
When a new measurement is to be clustered, the al-
gorithm searches through the set of all clusters, cal-
culating the Manhattan distance between the mean
of each cluster and the new measurement. The use
of Manhattan distance allows the algorithm to ap-
ply in a multi-dimensional case, making the algorithm
much more generic. If the measured values are within
the specified threshold radius from a cluster, then the
measurement is added to that cluster; if more than
one cluster is found, the record is assigned to the
nearest cluster. The center is updated according to
the weighted average of the new record and the ex-
isting cluster. If no such cluster is found, then a new
cluster is created with its center assigned to the at-
tribute values of the new record and its weight is set
to one.

In (Phung et al. 2007), we have presented an
extended resource-aware data stream clustering al-
gorithm, called ERA-Cluster. It extends RA-
Cluster (Gaber & Yu 2006) to work on sensor nodes
with limited computational resources. Note that
ERA-cluster from (Phung et al. 2007) was not in-
tegrated into SSDQP or its resource framework so
far, while in (Röhm et al. 2007), we focused on the
design issues for integrating data stream clustering
into SSDQP. This current work builds on this by in-
troducing the generic resource-awareness framework
and describing its integration with SSDQP and its
clustering capabilities.

ERA-cluster uses an adaptive distance threshold
to assign a new data record to an existing cluster.
ERA-cluster can adapt to different resource availabil-
ity using suitable adaptation strategies. It can adapt
to available memory using a distance threshold value
that encourages or discourages the creation of new
clusters. The battery level is addressed by using sam-
pling of data streams in order to allow the sensor node
to stop sensing or receiving streaming data to con-
serve the available energy. It can also adapt to CPU
load using randomization of clusters to be examined
to allow a new data record to be added to an exist-
ing cluster. As we will see in Section 4, the integra-
tion into SSDQP will necessitate some modifications

of ERA-cluster’s adaptation strategies in particular
with regard to the sampling rate.

3 Resource-awareness Framework

3.1 Problem Definition

We consider a system of a hierarchical wireless sen-
sor network which comprises of hundreds of nodes.
Each node monitors the environments and does some
processing over these collected online data. The ob-
jective of this work is to design a resource-awareness
framework that enables SSDQP tasks

• to adapt to available resources (energy, memory,
CPU);

• to minimise resource consumption, in particular
power consumption;

• to keep high levels of accuracy.

The main goal is that given a user-specified running
time and a task such as data clustering, the aim is
that SSDQP is able to complete the preset runtime
and produce as accurate results as possible. In gen-
eral, the issues are divided into two aspects: predict-
ing dynamic thresholds and wireless sensor network-
ing issues.

3.2 Architecture

To make the framework generic, extensible and easy
to implement, we employ a couple of software design
patterns into the design. Design patterns are classi-
fied in the well-known ’Gang-of-Four’ book (Gamma,
Helm, Johnson & Vlissides 1993).

Firstly, we use the publish/subscribe pattern to de-
couple the resource monitor and the adaptive algo-
rithms that subscribe to receive resource availabil-
ity updates. By this way, we can support one or
many processing techniques that subscribe to en-
able resource-awareness. Besides, future extension
or modification can be made to the resource monitor
without any change to the rest of the system. As can
be seen from Figure 4, we have implemented our Re-
sourceMonitor extending the Publisher class, which
keeps a list of references to the subscribers. The al-
gorithms that wish to receive resources updates need
to implement the Subscriber interface. The Resource-
Monitor can then use the method notifySubscriber
(Object resourceEvent) to dispatch resource events.

Figure 4: Publish-Subscribe pattern of framework.

3.3 Resource Monitor

The responsibility of the resource monitor is to pe-
riodically check the remaining battery, memory, and
CPU utilization, and to publish the resource report,

which contains status of various resource availabili-
ties. We allow two ways of updating the resource re-
port, periodic and aperiodic updating schemes. The
periodic scheme is the traditional way of updating.
This means that the resource monitor notifies the sub-
scribed processing techniques over fixed time frames.
The drawback of this approach is that if there is sta-
bility in the resource level, CPU utilization will be
wasted as there is no need to adjust the algorithm
settings. Thus, we have implemented an alternative
method, which is the aperiodic scheme. The aperi-
odic scheme only notifies subscribed processing tech-
niques when the accumulative change in resource level
is greater than a significant threshold. This threshold
is submitted to the resource monitor during the algo-
rithm’s subscription. For example, an algorithm can
request to be notified only if there is more than 10%
or 5% changes in resource level. This approach can
greatly reduce processing and communication cost.
To further reduce the use of the limited memory size
of the node, there is only one resource event object
follows the singleton pattern.

4 Case Study: Data Clustering

In the following, we present the use of the proposed
resource-aware framework within our WSN query
processor to enable resource-aware clustering of sen-
sor data. We discuss, how we implemented the pro-
posed resource-awareness framework into our SSDQP
system, and how we made SSDQP’s cluster operator
resource-aware and asynchronous. In Section 4.3, we
present some first results with our prototype system
with regard to communication costs and result accu-
racy.

4.1 Integration into SSDQP

In order to integrate the resource-awareness frame-
work into SSDQP, we had to extend its data model
with additional resource attributes, add a new inter-
nal resource monitoring task, and then make other op-
erators and the scheduler subscribers of this resource
monitor.

Resource Attributes. We extended SSDQP
with new self-reflective attributes for the on-board
resources of a sensor node; they reflect the percent-
age of available resources. Those attributes are also
exposed on the schema level, so that they can be ac-
cessed by any normal SSDQP query. In more de-
tail, we added three new sensing operators to the
query engine which retrieve the resource levels —
CPUTask (CPU idle time), MemoryTask (free mem-
ory) and BatteryTask (remaining battery level). The
CPU load is based on the scheduling statistics of SS-
DQP’s own task scheduler, the available memory is
retrieved from the Java runtime environment, while
the battery level is retrieved through the on-board
power management API.

Resource Monitor Task. We implemented the
resource monitor as an SSDQP administration task
that gets periodically activated by SSDQP’s task
scheduler. The resource monitor provides a publish-
subscriber interface that allows any other part of SS-
DQP to become resource-aware by subscribing to spe-
cific events. Events are defined as threshold condi-

tions on single resources representing critical situa-
tions of resource availability.

Conceptually, the resource monitor is a periodic
query that senses the current resource levels and up-
dates an internal resource table. With each update,
it checks the conditions of all subscriptions; if a con-
dition has become true, the resource monitor notifies
the corresponding event subscribers via the provided
Java call-back methods.

Resource-aware Clustering Operator. We
extended SSDQP’s clustering-operator to subscribe
to the resource monitor for notifications about the
available memory and computational resources. Re-
source adaptation for the CLUSTER operator is im-
plemented by varying the ’processing granularity’ (ac-
curacy of the aggregation operation) and the ’output
granularity’ (size — hence the precision — of the clus-
ters) as described in (Phung et al. 2007).

Figure 5: Adaptation to resources for clustering.

In the event of high CPU utilisation, instead of
searching through the entire set of clusters, only a
random subset of clusters, which is a specified pro-
portion of the entire set, is searched. This reduces
the load on the CPU, but may cause extra clusters to
be formed unnecessarily.

In the event of low free memory level, the algo-
rithm attempts to reduce its memory footprint by
reducing the size of the set of clusters: First, the al-
gorithm iterates through the entire set to locate and
remove outlier clusters – those are proportional small
clusters that have not been updated for some time. If
no such outliers are found, it merges the oldest inac-
tive cluster (the one that is older than a pre-defined
threshold and has not been updated for the longest
time) with its nearest neighbour cluster, respectively
just removes it if the next cluster is too far away.
Finally, the clustering threshold is also increased pro-
portional to the memory consumption up to an up-
per bound, thus decreasing precision of the algorithm.
When the resource levels return back to the normal
range (below the threshold level), these adaptation
are cancelled and the algorithm will return to oper-
ating normally.

However, in contrast to (Phung et al. 2007), the
’input granularity’ (sampling period) adaptation to
low battery level was not implemented in the cluster
operator. This is a deliberate decision due to the fact
that the cluster, conceptually being a data container,

should not be able to control the sampling period of
a query. Instead, the input granularity adaptation
should be implemented in the scheduler.

Resource-Aware Scheduler. The scheduler is
responsible for executing (query and administrative)
tasks at the given start times and re-scheduling them
according to the task’s epoch. If it subscribes to the
resource monitor to receive battery level events, it can
use them to adapt query epoch dynamically. How-
ever, we left the implementation of a ’lifetime’ spec-
ification similar to TinyDB (Madden et al. 2005) for
future work; so far SSDQP only supports fixed length
epochs.

4.2 Asynchronous Clustering

The SSDQP engine allows for several tasks being
scheduled and executed concurrently. We take advan-
tage of this for de-coupled data-processing by allow-
ing storage points to keep query results locally in the
node rather than sending it to the sink; similar to the
database concept of materialized views, other queries
can access those storage points as another local table.
Note that both queries do not have to share the same
activation frequency. Rather, we can use it to create
a specific clustering task that will periodically sense
and cluster the sensor readings. The second query
just retrieves the current clusters from the clustering
task whenever the query task awakes. The state is
encapsulated within the clustering task.

forward

merge

retrieve

cluster

sense

Query Task

Clustering Task

TempC:
{[t,w]}

 SELECT temp
 INTO TempC
 CLUSTER 5
 FROM sensors
 EPOCH 100ms

SELECT *
 FROM TempC
 EPOCH 10s

Figure 6: De-coupled Clustering Approach.

The advantage of this approach is that the data
processing and communication tasks are de-coupled
and can happen in different granularities. For exam-
ple, the clustering task could wake every 100ms, ac-
tivate one sensor and cluster the current sensor read-
ing; while the query task would awake only every 10
seconds, retrieve the current cluster values from the
clustering task and forward them to the sink.

4.3 Experiments

We conducted some experiments to demonstrate the
feasibility and effectiveness of our resource-aware
clustering operator in SSDQP. We focus on two pri-
mary issues: Firstly, how effective does the cluster-
ing algorithm reduce communication and adapt to
resource changes? Secondly, how does the resource
adaptation affect result accuracy? All experiments
are conducted with the resource-aware SSDQP sys-
tem and two Sun SPOT nodes. We captured the ac-
tual light and temperature readings over a period of
3000 seconds and used those values to feed the clus-
tering algorithm in different configurations with the
same values.

4.3.1 Reduction of Communication Effort

The goal of de-coupled, in-network clustering is to re-
duce network communication. We verify this hypoth-
esis by comparing the communication effort needed to
retrieve all temperature readings from all nodes ver-
sus the on-node clustering and periodically retrieval
of them (cf. Figure 7).

SELECT light,temp

FROM sensors

EPOCH 1s RUNCOUNT 3000;

(a) Full Value Retrieval

SELECT light,temp

INTO tclusters CLUSTER 3

FROM sensors

EPOCH 1s RUNCOUNT 3000;

SELECT *

FROM tclusters

EPOCH 120s RUNCOUNT 25;

(b) De-coupled Clustering

Figure 7: Query sets for Experiment 1.

In this scenario, we are interested in the typical
light and temperature values during the next 50 min-
utes. Without in-network data processing capabil-
ities, we would need to retrieve all sensor readings
from the sensor nodes and then process them out-
side the WSN. For example, we could issue a selec-
tion query as shown in Figure 7(a) with a sampling
frequency of 1 Hz and a runtime of 3000 seconds.
With SSDQP’s in-network data clustering, SSDQP
can cluster all sensor readings on the nodes into a
storage point (cf. first query in Figure 7(b)), from
which we then periodically retrieve the summary of
the light/temperature distribution. Only this second
asynchronous retrieval query causes network commu-
nication (e.g. in Figure 7(b), the clustering results
are retrieved periodically in 2 minute intervals).

Note that there is a trade-off between the accuracy
of the clustering in terms of cluster radius and cluster-
ing frequency, and the communication efficiency. In
this paper, we focus on some reasonable values only
and leave the complete evaluation of the parameter
space to a later paper.

When we run those two setups, we get 3000 mes-
sages from each node for each individual sensor read-
ing from the query in Figure 7(a) of average 16 bytes
payload (not counting message headers). In contrast,
the decoupled clustering will communicate less fre-
quently, but with larger messages because each mes-
sage contains all current clusters with all their cen-
troids and frequencies. As can be seen from Table 1,
this will yield a clear performance benefit for the in-
network clustering as long as the average numbers of
clusters is about less than half of the retrieval fre-
quency from the clustering output.

SELECT CLUSTER

messages per node 3000 25

payload per node 16 24 × #clusters

effort for 2 node WSN 96000 bytes 1200 × #clusters

Table 1: Comparison of communication efforts.

In practice, this ratio is typically even better be-
cause of the message compression used in SSDQP:
It can yield higher compression ratios on the clus-
ter result messages than on the single-value messages
from normal select queries, effectively reducing clus-
ter’s payload factors in Table 1 by up-to 60%. When

actually running the queries of Figure 7 in SSDQP,
we measured per-node communication costs of 81000
bytes for the select query and 11015 bytes for the case
with de-coupled clustering – a reduction by more than
85% or factor 7.

4.3.2 Effectiveness of Resource-Awareness

Next, we are interested in how effective the resource-
aware cluster operator adapts to changing resource
levels. For this purpose, we executed the same clus-
tering query (from Figure 7(b)) over the captured
light and temperature readings twice – once with and
once without resource-awareness enabled – and mea-
sured the actual memory consumption1, the number
of clusters, and the ERA-cluster threshold on the
node in each case. Figure 8 shows the results.Cluster Comparison - Memory Consumption

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

time [min]

fr
e
e
 m

e
m

o
ry

 (
in

 %
)

Non-RA RA-cluster

Figure 8: Memory usage vs. resource-awareness.

Without resource-awareness, the cluster operator
shows a (more-or-less) linear increasing memory con-
sumption over its runtime. However, if we let the
cluster operator adapt to the available memory with
a pre-defined memory threshold, its memory usage re-
mains constant. Whenever the memory usage drops
below the given threshold (in our experiment: 80%),
the cluster operator starts dropping outliers and in-
active clusters2 and increases its distance threshold,
effectively keeping its memory usage constant.

Figure 9 illustrates how the clustering operator in-
ternally adjusts to the memory threshold. We plotted
the number of clusters over time with and without
clustering (scale on the left), and also the clustering
radius over time in both cases (scale on the right).
Without resource awareness, the clustering operator
creates more and more clusters of the sensor readings.
We see a basically linear increase in number of clusters
with a constant clustering radius of 3. In contrast,
the resource-aware clustering operator starts drop-
ping outliers and merging inactive clusters when its
memory threshold is reached (around 15 minutes into
the experiment) so that less memory is occupied by
the clustering results. When this not enough, it (tem-
porarily) increases its clustering radius so that less
new clusters are created (up-to a maximum deviation
from the user-defined clustering radius which however
in our experiments was never reached). This can be
clearly seen around t = [25, 30] and t = 40, when some
stronger changes in sensor readings would normally

1The memory consumption is measured with regard to available

memory after startup of the SSDQP engine; it does not include

the captured sensor readings which were also stored on each node

during the experiments.
2In our experiment, we regarded a cluster as ’inactive’ when

there haven’t been added new values for at least 10 minutes. This

value was chosen based on preliminary experiments.

Cluster Comparison

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50

time [min]

n
u
m

b
e
r

o
f
c
lu

s
te

rs

0

1

2

3

4

5

6

c
lu

s
te

ri
n
g
 r

a
d
iu

s

Non-RA (#clusters)

RA-cluster (#clusters)

Non-RA (radius)

RA-cluster (radius)

Figure 9: Clustering activity with/without resource
awareness.

cause a larger increase in number of distinct clusters
(as can be seen by the steeper sections of the blue
dotted curve for non-resource-aware clustering). The
resource-aware clustering compensates by increasing
its clustering threshold (orange line) which discour-
ages the creation of new clusters. When the memory
situation improves, the clustering radius is gradually
restored back to the user-specified value. Effectively,
the resource-aware clustering becomes coarser in low-
memory situations, but increases its accuracy again
if more memory is available.

4.3.3 Accuracy of RA-Clustering

Finally, we are interested whether the accuracy of the
clustering algorithm is acceptable even with its pa-
rameters adjusted to resource levels. To do so, we ran
the clustering query over the captured sensor read-
ings once without resource adaptation, and once with
adaptation to memory usage (memory usage thresh-
old set to 80%) and compare both results.

without RA with RA
number of clusters 99 29
avg cluster weight 30.05 60.14
final cluster radius 3 4

Table 2: Comparison of clustering accuracy.

As can be seen in Table 2, with resource-
awareness, there are much less resulting clusters
(about one third) than with the cluster operator not
adapting to the available memory usage. This is the
result of dropping outliers and merging inactive clus-
ters during low-memory situations. On the positive
side, this reduced the total communication costs by
half to only 5130 bytes as compared to the 11015 bytes
without resource-awareness.

Table 2 also shows that, as the resource-aware clus-
tering algorithm adapts the number of clusters and
the cluster radius, the final result is coarser than with-
out resource-adaptation. Because we are merging old,
inactive clusters to their nearest neighbours, the av-
erage cluster weight is actually higher than without
resource-awareness. The effect is that clusters of old
sensor readings are collapsed together, while the more
recent readings are clustered with higher accuracy.
The final clustering threshold was only slightly higher
as specified by the user. As we have seen in Figure 9,
the effect of increasing clustering radius during low-
memory situations is typically only temporary.

5 Conclusions

The central challenge for WSNs is energy and com-
munication efficiency. In this paper, we proposed a
two-stage approach by pushing more data process-
ing capabilities into the network, and by enabling
algorithms to adapt to changing resource situations.
We presented a resource-awareness (RA) framework
for in-network data processing, and we discussed its
integration into SSDQP, our distributed query pro-
cessor prototype for the Sun SPOT WSN platform.
In particular, we took advantage of SSDQP’s multi-
tasking to de-couple in-network data processing and
communication. In our experimental study using
the in-network clustering capabilities of SSDQP in a
real, small WSN network, we demonstrated how de-
coupled clustering can significantly reduce communi-
cation costs when the retrieval frequency is chosen
appropriate – we achieved a reduction by more than
85%. The results also showed that the RA frame-
work allows to effectively adapt to changing memory
resources and is able to keep a constant memory con-
sumption. However, this comes with some moderate
effects to the clustering accuracy: Newer sensor read-
ings are clustered with higher accuracy while older
readings are merged together to coarser clusters.

The behaviour of resource-awareness data process-
ing is controlled by a combination of adaptation tech-
niques, which all can be adjusted by their own set of
parameters (as described in Section 4.1). To get the
highest accuracy out of the least resource consump-
tion, these parameters need to be balanced well. In
this paper, we focused on one particular set of set-
tings to demonstrate the general feasibility of our ap-
proach. As future work, we will study the interaction
of the different adaptation strategies and their pa-
rameter space in more details. We are also working
on multi-query optimisation and in-network caching.

5.1 Acknowledgements

This work is supported by the Australian Research
Council (ARC) under grant no. DP0664782, and by
Sun Microsystems Laboratories.

References

Chen, C.-M., Agrawal, H., Cochinwala, M. & Rosen-
bluth, D. (2004), Stream query processing for
healthcare bio-sensor applications., in ‘Proceed-
ings of ICDE2004’, pp. 791–794.

Chen, L., Chen, Z. & Tu, S. (2005), A realtime
dynamic traffic control system based on wire-
less sensor network, in ‘Proceedings of the 2005
International Conference on Parallel Processing
Workshops (ICPPW’05)’, pp. 258–264.

Crossbow Technology (n.d.), ‘iMote2 product page’.
Last visited: Feb 2007.
URL: http://www.xbow.com/Products/ product-
details.aspx?sid=253

Culler, D. E. & Hong, W. (2004), ‘Introduction to
special issue on wireless sensor networks’, CACM
47(6), 30–33.

Gaber, M. M. & Yu, P. S. (2006), A framework
for resource-aware knowledge discovery in data
streams: a holistic approach with its application
to clustering., in ‘Proceedings of the 2006 ACM
Symposium on Applied Computing (SAC), April
23-27, Dijon, France’, ACM Press, pp. 649–656.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J.
(1993), Design patterns - Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Ganeriwal, S., Kumar, R. & Srivastava, M. B. (2003),
Timing-sync protocol for sensor networks., in
‘Proc. of the 1st Int. Conf. on Embedded Net-
worked Sensor Systems (SenSys)’, pp. 138–149.

Hill, J., Horton, M., Kling, R. & Krishnamurthy,
L. (2004), ‘The platforms enabling wireless sen-
sor networks’, Communications of the ACM
47(6), 41–46.

Intanagonwiwat, C., Govindan, R., Estrin, D., Hei-
demann, J. & Silva, F. (2003), ‘Directed diffu-
sion for wireless sensor networking’, IEEE/ACM
Trans. Netw. 11(1), 2–16.

Madden, S. R., Franklin, M. J., Hellerstein, J. M.
& Hong, W. (2005), ‘TinyDB: an acquisitional
query processing system for sensor networks’,
ACM TODS 30(1), 122–173.

Müller, R., Alonso, G. & Kossmann, D. (2007), Swis-
sQM: Next generation data processing in sen-
sor networks., in ‘Proceedings of the First Bi-
ennial Conference on Innovative Data Systems
Research (CIDR2003), Asilomar, CA, USA, Jan-
uary 5-8’, pp. 1–9.

Phung, N. D., Gaber, M. M. & Röhm, U. (2007),
Resource-aware online data mining in wireless
sensor networks., in ‘Proceedings of the IEEE
Symposium on Computational Intelligence and
Data Mining (CIDM 2007), April 1-5’.

Röhm, U., Scholz, B. & Gaber, M. M. (2007), On
the integration of data stream clustering into a
query processor for wireless sensor networks, in
‘Proceedings of the First Int. Workshop on Data
Intensive Sensor Networks (DISN2007), in con-
junction with MDM’07, May 11’.

Scholz, B., Gaber, M. M., Dawborn, T., Khoury, R.
& Tse, E. (2007), Efficient time triggered query
processing in wireless sensor networks, in ‘Pro-
ceedings of the 2007 Int. Conference on Embed-
ded Software and Systems (ICESS)’, Springer.

Simon, D., Cifuentes, C., Cleal, D., Daniels, J. &
White, D. (2006), Java on the bare metal of wire-
less sensor devices: the Squawk java virtual ma-
chine, in ‘Proc. of the 2nd Int. Conf. on Virtual
Execution Environments (VEE)’.

Sun Microsystems (n.d.), ‘SunSpotWorld website’.
http://www.sunspotworld.com/.

Szewczyk, R., Osterweil, E., Polastre, J., Hamilton,
M., Mainwaring, A. & Estrin, D. (2004), ‘Habi-
tat monitoring with sensor networks’, CACM
47(6), 34–40.

Yao, Y. & Gehrke, J. (2002), ‘The cougar approach to
in-network query processing in sensor networks’,
SIGMOD Record 31(3), 9–18.

Zhao, F. & Guibas, L. (2004), Wireless Sensor Net-
works – An Information Processing Approach,
Morgan Kaufmann.

