1,357 research outputs found

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    An Adaptive Fuzzy based FEC Algorithm for Robust Video Transmission over Wireless Networks

    Get PDF
    Forward Error Correction (FEC) is a commonly adopted mechanism to mitigate packet loss/bit error during real-time communication. An adaptive, Fuzzy based FEC algorithm to provide a robust video quality metric for multimedia transmission over wireless networks has been proposed to optimize the redundancy of the generated code words from a Reed-Solomon encoder and to save the bandwidth of the network channel. The scheme is based on probability estimations derived from the data loss rates related to the recovery mechanism at the client end. By applying the adaptive FEC, the server uses the reports to predict the next network loss rate using a curve-fitting technique to generate the optimized number of redundant packets to meet specific residual error rates at the client end. Simulation results in the cellular system show that the video quality is massively adapted to the optimized FEC codes based on the probability of packet loss and packet correlation in a wireless environment

    Dynamic and Channel Adaptive Error Control Scheme in Wireless Sensor Networks

    Get PDF
    The application of wireless technology is increasingly influencing the deployment of sensor networks at low cost and maintainance in all walks of life. Poor channel conditions, severe power constraints, fading, interference and the low power communication requirements magnify the need for energy efficient and preferably cross layer error control schemes in Wireless Sensor Networks (WSNs). The main goal of error control mechanisms in WSNs is to reduce the energy expenditure while taking care of reliable and fast delivery of the sensed data. In this paper, we propose a FFFD;Dynamic and Channel Adaptive Error Control Scheme in Wireless Sensor NetworksFFFD; (DCAECS) that estimates the channel errors and controls errors dynamically based on channel characteristics and noise power observed at the receiver. This motivates the error control strategy to vary as the channel conditions change in terms of noise level. In this paper, we have come up with the models for both the error and channel estimation. Analysis and simulation results for various message sizes and error conditions show that there is an improvement in terms of throughput, BER and the probability of retransmission as compared to FFFD;ARQ Scheme With Adaptive Error ControlFFFD; (ASAEC)

    An Improved FEC Scheme for Mobile Wireless Communication at Vehicular Speeds

    Get PDF
    WiMAX has emerged as a promising wireless communication technology with potential to deliver high throughput and guaranteed quality of service to the end applications. Recent studies suggest that while WiMAX (802.16e) is capable of delivering a data rate of up to 75 Mbps for fixed wireless communications, data rate decreases drastically for mobile wireless communications, often providing a data rate less than 1 Mb/s when the mobile nodes travel at vehicular speeds. High bit error rate caused at high vehicular speeds is the key reason for low throughput. In noisy mobile communication environments, standard error control mechanisms like the transmission control protocol (TCP) has limited and often detrimental impacts on the overall throughput because of the excessive retransmission overheads. To address this issue, WiMAX standard incorporates forward error correction (FEC) mechanism that eliminates the need for retransmissions. In FEC, extra parity bits are added to the original message to recover the corrupted information. Adaptive FEC that adjusts the size of extra parity bits in response to packet retransmission requests is an enhancement over standard FEC that uses fixed block of party bits. Existing adaptive FEC schemes, however, have limited efficiency when the end terminal moves at vehicular speeds. In this paper, we propose a new FEC scheme that estimates and adjusts the size of extra parity bits to suit the channel conditions. We apply the concept of interval based data sampling to address the dynamic nature of communication environments at high vehicular speeds

    Protecting informative messages over burst error channels in chain-based wireless sensor networks

    Get PDF
    Regardless of the application, the way that data and information are disseminated is an important aspect in Wireless Sensor Networks (WSNs). The wireless data dissemination protocol should often guarantee a minimum reliability requirement. In this regard and to well-balance the energy and reliability, the more important packets should be protected by more powerful error control codes than the less important ones. This information-aware capability allows a system to deliver critical information with high reliability but potentially at a higher resource cost. In this paper, we first find and evaluate the factors that may influence the importance level of a packet and then design an error control approach by adaptively selecting codes for each individual links which experience long-term-fading and for each individual packet at run-time instead of applying network-wide settings prior to deployment. Moreover, we target the poor-explored chain-based topology that is of interest for many applications (e.g. monitoring bridge, tunnel, etc.). Simulation results validate the superiority of our approach compared with a number of Reed-Solomon-based error control approaches
    • …
    corecore