577 research outputs found

    Sub-word indexing and blind relevance feedback for English, Bengali, Hindi, and Marathi IR

    Get PDF
    The Forum for Information Retrieval Evaluation (FIRE) provides document collections, topics, and relevance assessments for information retrieval (IR) experiments on Indian languages. Several research questions are explored in this paper: 1. how to create create a simple, languageindependent corpus-based stemmer, 2. how to identify sub-words and which types of sub-words are suitable as indexing units, and 3. how to apply blind relevance feedback on sub-words and how feedback term selection is affected by the type of the indexing unit. More than 140 IR experiments are conducted using the BM25 retrieval model on the topic titles and descriptions (TD) for the FIRE 2008 English, Bengali, Hindi, and Marathi document collections. The major findings are: The corpus-based stemming approach is effective as a knowledge-light term conation step and useful in case of few language-specific resources. For English, the corpusbased stemmer performs nearly as well as the Porter stemmer and significantly better than the baseline of indexing words when combined with query expansion. In combination with blind relevance feedback, it also performs significantly better than the baseline for Bengali and Marathi IR. Sub-words such as consonant-vowel sequences and word prefixes can yield similar or better performance in comparison to word indexing. There is no best performing method for all languages. For English, indexing using the Porter stemmer performs best, for Bengali and Marathi, overlapping 3-grams obtain the best result, and for Hindi, 4-prefixes yield the highest MAP. However, in combination with blind relevance feedback using 10 documents and 20 terms, 6-prefixes for English and 4-prefixes for Bengali, Hindi, and Marathi IR yield the highest MAP. Sub-word identification is a general case of decompounding. It results in one or more index terms for a single word form and increases the number of index terms but decreases their average length. The corresponding retrieval experiments show that relevance feedback on sub-words benefits from selecting a larger number of index terms in comparison with retrieval on word forms. Similarly, selecting the number of relevance feedback terms depending on the ratio of word vocabulary size to sub-word vocabulary size almost always slightly increases information retrieval effectiveness compared to using a fixed number of terms for different languages

    Beyond Stemming and Lemmatization: Ultra-stemming to Improve Automatic Text Summarization

    Full text link
    In Automatic Text Summarization, preprocessing is an important phase to reduce the space of textual representation. Classically, stemming and lemmatization have been widely used for normalizing words. However, even using normalization on large texts, the curse of dimensionality can disturb the performance of summarizers. This paper describes a new method for normalization of words to further reduce the space of representation. We propose to reduce each word to its initial letters, as a form of Ultra-stemming. The results show that Ultra-stemming not only preserve the content of summaries produced by this representation, but often the performances of the systems can be dramatically improved. Summaries on trilingual corpora were evaluated automatically with Fresa. Results confirm an increase in the performance, regardless of summarizer system used.Comment: 22 pages, 12 figures, 9 table

    A study on text-score disagreement in online reviews

    Get PDF
    In this paper, we focus on online reviews and employ artificial intelligence tools, taken from the cognitive computing field, to help understanding the relationships between the textual part of the review and the assigned numerical score. We move from the intuitions that 1) a set of textual reviews expressing different sentiments may feature the same score (and vice-versa); and 2) detecting and analyzing the mismatches between the review content and the actual score may benefit both service providers and consumers, by highlighting specific factors of satisfaction (and dissatisfaction) in texts. To prove the intuitions, we adopt sentiment analysis techniques and we concentrate on hotel reviews, to find polarity mismatches therein. In particular, we first train a text classifier with a set of annotated hotel reviews, taken from the Booking website. Then, we analyze a large dataset, with around 160k hotel reviews collected from Tripadvisor, with the aim of detecting a polarity mismatch, indicating if the textual content of the review is in line, or not, with the associated score. Using well established artificial intelligence techniques and analyzing in depth the reviews featuring a mismatch between the text polarity and the score, we find that -on a scale of five stars- those reviews ranked with middle scores include a mixture of positive and negative aspects. The approach proposed here, beside acting as a polarity detector, provides an effective selection of reviews -on an initial very large dataset- that may allow both consumers and providers to focus directly on the review subset featuring a text/score disagreement, which conveniently convey to the user a summary of positive and negative features of the review target.Comment: This is the accepted version of the paper. The final version will be published in the Journal of Cognitive Computation, available at Springer via http://dx.doi.org/10.1007/s12559-017-9496-

    COPOS: Corpus de Opiniones de Pacientes en Español. Aplicación de Técnicas de Análisis de Sentimientos

    Get PDF
    Every day more users are interested in the opinion that other patients have about a physician or about health topics in general. According to a study in 2015, 62% of Spanish people access the Internet in order to be informed about topics related to health. This paper is focused on Spanish Sentiment Analysis in the medical domain. Although Sentiment Analysis has been studied for different domains, health issues have hardly been examined in Opinion Mining and even less with Spanish comments or opinions. Thus we have generated a corpus by crawling the website Masquemedicos with Spanish opinions about medical entities written by patients. We present this new resource, called COPOS (Corpus Of Patient Opinions in Spanish). To the best of our knowledge, this is the first attempt to deal with Spanish opinions written by patients about medical attention. In order to demonstrate the validity of the corpus presented, we have also carried out different experiments with the main methodologies applied in polarity classification (Semantic Orientation and Machine Learning). The results obtained encourage us to continue analysing and researching Opinion Mining in the medical domain.Cada día son más los usuarios interesados en la opinión que otros pacientes tienen sobre un médico o sobre temas de salud en general. De acuerdo con un estudio de 2015, el 62% de la población española consulta información en Internet acerca de temas relacionados con la salud. Este trabajo está centrado en el Análisis de Sentimientos en español aplicado al dominio médico. Aunque el Análisis de Sentimientos ha sido estudiado en diferentes dominios, el dominio de la salud apenas ha sido investigado, especialmente en opiniones escritas en español. Por ello, hemos generado un corpus en español con opiniones de pacientes sobre médicos a partir de la extracción de las mismas del portal web Masquemedicos. Este corpus ha sido denominado COPOS (Corpus Of Patient Opinions in Spanish - Corpus de Opiniones de Pacientes en Español). Hasta donde sabemos, es la primera vez que se intenta trabajar con opiniones en español sobre atención médica escritas por pacientes. Para demostrar la validez de este recurso, hemos realizado diferentes experimentos con las principales metodologías aplicadas en la tarea de clasificación de polaridad (Orientación Semántica y Aprendizaje Automático). Los resultados obtenidos nos animan a seguir investigando en el Análisis de Sentimientos en este dominio.This work has been partially supported by a grant from the Fondo Europeo de Desarrollo Regional (FEDER), REDES project (TIN2015-65136-C2-1-R) from the Spanish Government and by a Grant from the Ministerio de Educación Cultura y Deporte (MECD - scholarship FPU014/00983)

    HPS: High precision stemmer

    Get PDF
    Abstract Research into unsupervised ways of stemming has resulted, in the past few years, in the development of methods that are reliable and perform well. Our approach further shifts the boundaries of the state of the art by providing more accurate stemming results. The idea of the approach consists in building a stemmer in two stages. In the first stage, a stemming algorithm based upon clustering, which exploits the lexical and semantic information of words, is used to prepare large-scale training data for the second-stage algorithm. The second-stage algorithm uses a maximum entropy classifier. The stemming-specific features help the classifier decide when and how to stem a particular word. In our research, we have pursued the goal of creating a multi-purpose stemming tool. Its design opens up possibilities of solving non-traditional tasks such as approximating lemmas or improving language modeling. However, we still aim at very good results in the traditional task of information retrieval. The conducted tests reveal exceptional performance in all the above mentioned tasks. Our stemming method is compared with three state-of-the-art statistical algorithms and one rule-based algorithm. We used corpora in the Czech, Slovak, Polish, Hungarian, Spanish and English languages. In the tests, our algorithm excels in stemming previously unseen words (the words that are not present in the training set). Moreover, it was discovered that our approach demands very little text data for training when compared with competing unsupervised algorithms

    Human-competitive automatic topic indexing

    Get PDF
    Topic indexing is the task of identifying the main topics covered by a document. These are useful for many purposes: as subject headings in libraries, as keywords in academic publications and as tags on the web. Knowing a document's topics helps people judge its relevance quickly. However, assigning topics manually is labor intensive. This thesis shows how to generate them automatically in a way that competes with human performance. Three kinds of indexing are investigated: term assignment, a task commonly performed by librarians, who select topics from a controlled vocabulary; tagging, a popular activity of web users, who choose topics freely; and a new method of keyphrase extraction, where topics are equated to Wikipedia article names. A general two-stage algorithm is introduced that first selects candidate topics and then ranks them by significance based on their properties. These properties draw on statistical, semantic, domain-specific and encyclopedic knowledge. They are combined using a machine learning algorithm that models human indexing behavior from examples. This approach is evaluated by comparing automatically generated topics to those assigned by professional indexers, and by amateurs. We claim that the algorithm is human-competitive because it chooses topics that are as consistent with those assigned by humans as their topics are with each other. The approach is generalizable, requires little training data and applies across different domains and languages
    corecore