
HPS: High Precision Stemmer

Tomáš Brychćına,b,∗, Miloslav Konoṕıka,b

aDepartment of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Univerzitńı
8, 306 14 Plzeň, Czech Republic

bNTIS – New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia,
Univerzitńı 8, 306 14 Plzeň, Czech Republic

Abstract

Research into unsupervised ways of stemming has resulted, in the past few years, in the development of
methods that are reliable and perform well. Our approach further shifts the boundaries of the state of the
art by providing more accurate stemming results. The idea of the approach consists in building a stemmer
in two stages. In the first stage, a stemming algorithm based upon clustering, which exploits the lexical and
semantic information of words, is used to prepare large-scale training data for the second-stage algorithm.
The second-stage algorithm uses a maximum entropy classifier. The stemming-specific features help the
classifier decide when and how to stem a particular word.

In our research, we have pursued the goal of creating a multi-purpose stemming tool. Its design opens up
possibilities of solving non-traditional tasks such as approximating lemmas or improving language modeling.
However, we still aim at very good results in the traditional task of information retrieval. The conducted
tests reveal exceptional performance in all the above mentioned tasks. Our stemming method is compared
with three state-of-the-art statistical algorithms and one rule-based algorithm. We used corpora in the
Czech, Slovak, Polish, Hungarian, Spanish and English languages. In the tests, our algorithm excels in
stemming previously unseen words (the words that are not present in the training set). Moreover, it was
discovered that our approach demands very little text data for training when compared with competing
unsupervised algorithms.

Keywords: stemming, morphology, inflection, maximum entropy, maximum mutual information, language
modeling, information retrieval

1. Introduction

Word stemming tasks are among the basic preprocessing techniques in NLP (Natural Language Process-
ing). IR (Information Retrieval) tasks, MT (Machine Translation) systems, LM (Language Modeling), and
many other applications in NLP benefit from reducing the number of word forms by applying a stemming
method. Current word stemming methods [Goldsmith, 2001; Majumder et al., 2007; Paik et al., 2011a] are
usually more task oriented and do not necessarily respect linguistic notations. They try to find different
stems for words with different semantics and the same stems for words with the same semantics but a
different function in the sentence. The distinction between the same and different semantics is given by the
particular task to which the stemmer is being applied. For example, the words friend and friendly may
be considered semantically equal for information retrieval but not for machine translation. The stemming
results are often arbitrary parts of the input words (e.g., dur from durable) rather than linguistically correct
morphological units – e.g., morphemes (such as friend from friendship). Creating correct morphological
units would involve extra effort and might introduce errors, but having them is not always necessary. For

∗Corresponding author
Email addresses: brychcin@kiv.zcu.cz (Tomáš Brychćın), konopik@kiv.zcu.cz (Miloslav Konoṕık)

Preprint submitted to Information Processing and Management October 27, 2014

the above mentioned tasks, it is sufficient to have a stem represented by a sequence of characters extracted
from an input word that distinguishes meanings.

A large class of languages (in the linguistic typology, these languages are called synthetic languages)
tends to modify the basic word form by adding prefixes and suffixes according to the function of the word
in a sentence. These word forms usually share the same basic meaning. Many stemming methods strip
off these affixes. However, such a task is rather complicated in many cases, as illustrated by the following
examples. The pairs of English words A) shin and shining, B) spar and sparing and C) speak and speaking
are lexically similar and differ in having / not having the suffix ing. The first and second pairs (A, B)
consist of semantically different words, whereas words from the third pair (C) differ only in their verb tense.
Stripping off the suffixes in A and B would be a stemming mistake, whereas in C it is a correct action. The
same example can be made of the word pairs blue and blues or word and words. Again, the suffix s can
mean two completely different words or just a different grammatical number. These examples illustrate that
stemming algorithms cannot just strip off a known affix. It is instead necessary to decide in which case the
affix can or cannot be stripped off.

In this article we describe a novel approach to stemming. The distinguishing property of the approach is
the ability to provide very accurate stems (high precision) at the cost of a small decrease in the recall rate.
This property constitutes the basis for the name of our stemmer: the High Precision Stemmer (HPS), where
the word precision comes from preferring precision over recall. Our method works in a fully unsupervised
manner (it does not require labeled data or any knowledge about the language itself) and is multilingual. In
order to prove the multilingual property, we experiment with four different language families: Slavic, Uralic,
Romance and Germanic. The Slavic languages are represented by Czech, Slovak, and Polish; the Uralic
languages by Hungarian, the Romance languages by Spanish, and the Germanic languages are represented
by English.

The rest of this article is organized as follows. In Section 2, we clarify some terms that are used throughout
the article. Section 3 introduces state-of-the-art methods for stemming. Then we describe our algorithm in
Section 4. We explain our motivation and the principles of the algorithm. In Section 5, we show the results
of detailed performance tests of our method by comparing it with the morphologically annotated data and
testing it on the IR and in language modeling tasks. The last sections, Section 6 and Section 7, are devoted
to discussing, introducing open issues, describing avenues for further work, and drawing conclusions.

2. Definitions

Lexeme, lemma, stem: Throughout the article, we employ the terms lexeme, lemma and stem. To
clarify these terms, we provide short definitions. Lexeme is a virtual dictionary entry of a given word. All
inflectional variants of each word share the same lexeme. Lemma is one selected inflectional variant that is
used to designate the lexeme. Lemmas have standardized morphological properties: it usually means that
lemmas are words in the singular (nouns), masculine (nouns, adjectives), nominative (nouns), or infinitive
(verbs). For example, the words speak, speaks, speaking share the same lexeme, which is designated by the
lemma to speak.

The term stem has different meanings in linguistic sources. In some of them, a stem is defined as a
part of a word with meaning that can create new words through different linguistic processes. According
to [Huddleston, 1988], stems can be combined together by a process called compounding (e.g., black -bird or
day-dream) or affixes can be attached by a process called affixation (e.g., dur -able). The stems black or
bird are called free stems because they are words by them self. The stem dur is called a bound stem since
it needs an affix to form a word. In other sources ([Kroeger, 2005]), a stem is the common part of the word
that stays the same for all the inflectional variants (e.g., daydream-s, daydream-ing).

In this article, we use a third definition that was outlined in the introduction. We are interested in a
common part of a word that carries the same meaning for all its lexical variants1. Our definition of meaning

1Lexical variants of words or lexically related words are the words that lexically resemble or lexically overlap one another:
e.g., dur -able, dur -ation.

2

is task dependent (e.g., for information retrieval it is the part of the word that defines what a user looks
for).

Stemming errors: We distinguish two basic types of stemming errors: understemming and overstem-
ming. Understemming means that the word is not shortened enough and the resulting stem does not cover
all variants of the word. Overstemming has the opposite meaning: the word is shortened too much and the
resulting stem covers more lexemes.

Light and aggressive stemmers: Stemmers can be divided into light and aggressive stemmers. The
light stemmers prefer precision over recall and are likely to understem the words. In disputable examples,
the word is rather left intact instead of creating too short a stem (for example, reducing the words durable
and duration to dura). The aggressive stemmers work the other way round. In disputable examples, their
stemming is performed even at the risk of creating too short a stem (overstemming).

Inflectional morphology vs. derivation (linguistic process): As we noted in the Introduction,
stemming tools usually work with affixes. We distinguish two main types of affixes, given their effect on
words: inflectional and derivational affixes. An example for English is the following: -s, -ed, -ing forming the
words work-s, work-ed, work-ing are inflectional affixes and -able, -less, -ful, -ly, -ness forming blame-able,
blame-less, blame-ful blame-less-ly, blame-less-ness are derivational affixes. The example clearly illustrates
the different roles of each affix. Inflectional affixes form morphological variants of a given word with the
lemma staying the same. Derivational affixes create new words with more or less related meaning. We
can also clearly see that removing derivational affixes can be sometimes risky. The words blame-less and
blame-ful share the meaning, however, they are antonyms. The question of whether stemmers should or
should not remove derivational affixes is difficult and we will address it in our experiments (see Section 5.4)
and in the discussion (Section 6).

Stemming vs. lemmatization: Stemming and lemmatization are two related fields. In NLP, both the
methods are often used for similar purposes: to reduce the number of word forms in a text. The fundamental
difference is the different kind of results. The product of lemmatization is a lemma which is a valid linguistic
unit. In contrast, the stem, as defined in the Introduction, is mostly task-oriented in NLP. Moreover, some
stemmers also remove derivational affixes, whereas lemmatizers are restricted to inflections only. However,
both stems and lemmas are intended for reducing the size of the dictionary. Stemming and lemmatization
thus can replace one another in some cases. Stemming cannot be used if the output is requested to be a
valid word form of a language, just as lemmatization can be too weak for some tasks (e.g., vague and vaguely
have different lemmas – in this case, the lemmas are the same as the words: vague, vaguely – which may
be a problem for IR). Another difference is that there are currently no means for training a lemmatizer
in an unsupervised way: a labeled training corpus or set of manually created rules is needed. Moreover,
stemmers are usually more semantically oriented: aggressive stemmers tend to join together semantically
related lexemes. For example, runner and running may have one stem, run, but these would have two
lemmas and two lexemes. A different example is familiar and unfamiliar. These would have one lemma
(one lexeme) but usually two stems since the words have contradictory meaning.

3. State of the art

The current state-of-the-art stemming algorithms usually belong to one of two basic categories: the
rule-based stemmers and the statistical ones. Rule-based stemmers attempt to transform the word form
to its base form by using a set of language-specific rules created manually by linguists. The statistical
stemmers usually use unsupervised training to estimate the parameters of a stemming model. The basic
qualitative difference is that the rule-based stemmers tend to be better at applying rather complex linguistic
rules. They are not limited to stripping off affixes, but they can also change the entire word when necessary.
Creating such rules is, however, very time demanding2 and preferably requires a linguistic expert or at least
a speaker of that particular language. On the other hand, statistical stemmers benefit from a large database

2There are some languages (artificial or very regular) where a short list of simple rules is sufficient. This is, however, not
the case for all tested languages.

3

of automatically learned rules or parameters. Due to their principle of processing large quantities of texts,
they can capture less frequent and less obvious cases. Introducing a new language or a new dialect of a
language is straightforward provided that the new language meets the assumptions3 that were made for the
given statistical stemmer. However, they fail when the particular linguistic process is outside the scope of
the statistical model (e.g., statistical stemmers would fail for words such as sing and sang, foot and feet,
etc., although they are quite frequent in English).

3.1. Rule-based approaches

The first published stemming algorithm ever is Lovin’s stemmer [Lovins, 1968], which was designed
for stemming English. It needs only two steps for stemming a word according to predefined endings and
transformation rules. This makes the algorithm very simple and very fast.

Another popular algorithm called Porter’s stemmer [Porter, 1980] evolved into a whole stemming frame-
work called Snowball. Snowball is a string-handling programming language developed by M. F. Porter.
Stemming algorithms can be easily defined in this language. In addition, ANSI C or Java programs can be
automatically generated. The framework is briefly described at http://snowball.tartarus.org, together
with stemmers for several languages.

In [Dolamic and Savoy, 2009], two rule-based stemmers (light and aggressive) for the Czech language are
introduced4. The aggressive stemmer exhibits slightly better results in IR than the light one. The authors
present a MAP (mean average precision) improvement of about 46% by using the aggressive stemmer, and
42% by using the light stemmer in IR systems, compared with no stemming.

In [Savoy, 2008], the investigation of information retrieval in Hungarian is presented. The Hungarian
language is characterized by a complex morphology, thus two rule-based stemmers (light and aggressive)
are used to improve IR. When compared to an IR scheme without stemming, the light stemmer was able to
improve MAP by about 53% on average, and the aggressive stemmer, by about 67% on average.

3.2. Statistical approaches

Many studies of the unsupervised learning of the morphology of a language have been published. An
outstanding and exhaustive survey can be found in [Hammarström and Borin, 2011], which provides a
description and comparison of the different approaches that deal with morphology at different levels of
detail. In terms of that article, our approach belongs to the same-stem decisions level, which is defined as
follows: Given two words, decide if they are affixations of the same lexeme.

The authors in [Xu and Croft, 1998] present a method that uses the word form co-occurrences in a
corpus to upgrade or create a stemmer. Their work is based on the assumption that word variants (inflected
forms of the same word) should occur close to each other (perhaps within a 100 word text window). To
model this fact, a variant of expected mutual information is used. The initial distribution of equivalence
classes given by some aggressive stemmer (such as Porter’s) is refined using the co-occurrence statistics.
According to experiments, the authors show that this additional information enhances the quality of a
stemming algorithm.

An interesting method for unsupervised stemming was described in [Goldsmith, 2001]. This method is
based on the principle of MDL (Minimum Description Length). The algorithm tries to find the optimal
breakpoint for each word. Each instance of a given word in a corpus uses the same breakpoint, which splits
this word into stem and suffix. The model for the optimal distribution of breakpoints minimizes the number
of bits to encode the whole collection of words (this is mathematically equal to minimizing the entropy of
this collection). The MDL criterion causes breakpoints to segment the words into relatively common stems
as well as common suffixes. This method is implemented as a framework called Linguistica5 [Goldsmith,
2006].

3In every statistical stemmer some assumptions about the language are made. For example, the assumption that new word
forms are derived from a basic form by adding affixes. Some languages may not conform to such an assumption, and then a
different stemming approach must be used.

4Available at http://members.unine.ch/jacques.savoy/clef/index.html.
5Available at http://linguistica.uchicago.edu.

4

http://snowball.tartarus.org
http://members.unine.ch/jacques.savoy/clef/index.html
http://linguistica.uchicago.edu

Automatic suffix discovery is investigated in [Oard et al., 2001]. At first, the frequencies of each n-
gram character suffix (for n = 1, 2, 3, 4) are counted from each word in the collection. The frequency
of each n-gram suffix is subtracted from the frequency of the adequate suffix n-gram of the lower order
n − 1 (for example, the frequency of ing is subtracted from the frequency of ng). The altered frequencies
are consequently sorted and a threshold for the optimal number of suffixes for each length is chosen. It is
computed by plotting the frequency rank ratios and finding the local extreme. The suffixes with a frequency
higher than the threshold are then stored so as to be stripped off during the stemming process. The suffixes
are processed starting from the longest ones.

In [Bacchin et al., 2005] a new probabilistic model for word stemming is presented. The mutual relation
between stems and suffixes is investigated. Two sets of substrings (prefixes and suffixes) are generated from
the word lexicon by splitting the words at all possible positions. From these sets, the probabilities of prefixes
and suffixes are estimated using the MLE (Maximum Likelihood Estimation) method. Three models for
combinations of prefix and suffix probability estimations are defined. The stemmer selects the most probable
split between stem and suffix given a chosen model. The authors experiment with several languages and
measure retrieval performance in an IR system. The proposed algorithm produces results just as good as
those produced by Porter’s stemmer for these languages.

In [Majumder et al., 2007], YASS6 stemmer was introduced. It is a simple approach based on word
clustering. All the information needed is again taken entirely from the word lexicon. The set of string
distance measures between word pairs is defined. These measures should approximate the morphological
similarity between words. The lexicon is then clustered to discover morphologically related words (the
equivalence classes). The authors present comparable results with rule-based stemmers (Porter’s or Lovin’s
stemmers for English) in terms of retrieval effectiveness. Also for the French and Bengali languages, this
approach improves results when compared with no stemming.

Another unsupervised approach to stemming was introduced in [Paik et al., 2011b]. The method uses
simple co-occurrence statistics reflecting how often word variants (sharing a common prefix of a given length)
occur in the same document. A graph-based algorithm for merging morphologically similar words is then
presented. The authors evaluate their stemmer on several languages, including European languages (Czech,
Bulgarian, Hungarian, English) and Asian languages (Marathi, Bengali) in the context of IR. Stemmer
outperforms YASS, XU stemmer [Xu and Croft, 1998], and rule-based stemmers.

The novel graph-based stemmer GRAS (GRAph-based Stemmer) was introduced in [Paik et al., 2011a].
Similarly to the approach of YASS, GRAS is focused only on lexical information about words. The stemmer
also works only with the collection of distinct words (given by the text collection). The morphological
relation is represented by a graph, where the words are treated as nodes and potentially related word pairs
are connected by edges. Then the pivot nodes are identified. The idea is that pivots having many neighbors
are likely to be potential roots. The authors perform retrieval experiments on seven languages. According to
the presented results, GRAS outperforms YASS, Linguistica, and stemmer by [Oard et al., 2001] as well as
the rule-based stemmer in all seven languages in the information retrieval task. For some languages, GRAS
provides a more than 50% performance improvement in the IR task when compared with no stemming.

3.3. Stemmer evaluation

Stemmers are usually evaluated indirectly via a target application, e.g., measuring the improvement in
IR with and without stemming. However, there have been some attempts how to measure a stemmer’s
quality directly (without a target application).

One approach to direct measurement is described in [Paice, 1994]. In the article, stemming is compared
with manually created groups of morphologically and semantically related word forms. They measure
overstemming and understemming errors, using indices denoted by OI and UI. The indices are defined as
the ratios between the number of incorrectly merged words and the total merges, and incorrectly not-merged
words and the total merges. The test is designed not to take into account the frequencies of words. An

6YASS (Yet Another Suffix Stripper) available at http://www.isical.ac.in/~clia/resources.html.

5

http://www.isical.ac.in/~clia/resources.html

error in a word with frequency 1 has the same impact on the indices as that involving a word with, e.g.,
frequency 100. They also consider only distinct words and stems, discarding context information.

Some of these attributes of the test may be perceived as problematic. Firstly, errors in highly frequent
words have surely a higher impact on the performance of a target application than some infrequently
occurring words. Secondly, decisions about the stems of words may be context dependent (i.e., the group of
morphologically and semantically related word forms may differ for different contexts). Finally, the results
of Paice’s test are hard to interpret as it is difficult to compare the stemmers with one another (the OI and
UI indices are not in the same order).

Due the above described reasons, we designed a novel approach to direct stemming evaluation, introduced
in Section 5.4.

4. The proposed stemming method

Our approach consists of two main stages. The first one is based upon the idea that stemming should
preserve the semantic information and remove the morphosyntactic information contained in words. The
semantics should be an important clue to successful stemming. To model the semantic information, we
use the findings from [Charles, 2000; Rubenstein and Goodenough, 1965], which claim that word meaning
can be determined from its context. It is expected that the more similar two words are in meaning, the
more similar contexts they usually share. This assumption was confirmed in these articles by empirical
tests carried out on human test groups. The implication of the studies is that it is possible to compute the
semantic similarity of words by a statistical comparison of their contexts.

In our work we use this finding by clustering together words occurring in similar contexts and sharing
enough long common prefix (they are semantically and lexically similar). The output of this method can be
directly used as the stemming result by reducing all the words in a given cluster to their longest common
prefix. However, this method alone does not yield the best results. Instead, we use it to automatically
generate the training data for the second stage.

The second stage of our stemmer is motivated by the assumption that stemming is subject to some rules.
Given a word, these rules can decide whether and how to stem the word, depending on some conditions.
These conditions can model certain properties of the given word, for example, an occurrence of particular
characters in the word, the presence of a certain suffix, etc. This motivation led us to treat the second
stage as a classification problem, which naturally encodes the above-mentioned rules into features. We
used the maximum entropy classifier that outputs stemming decisions for given words. As a training data,
we employed the stemming examples generated from all clusters at the first stage. We also relied on two
expectations. First, although the clusters from the first stage (the training data) may contain incorrect
stems, we assume that from the statistical point of view, these errors are not significant. Second, we expect
the learned rules to be general and thus our approach should work on previously unseen data. The results
in Section 5 verify both expectations. Our approach is very successful for both known (seen) and unknown
(unseen) words.

The architecture of our system is depicted in Figure 1. The first stage (clustering) is used only for
generating the training data for the second stage. It is thus no longer required when the trained stemmer is
used for a particular task. In the architecture of our system it is possible to replace the first-phase clustering
algorithm with a different way of preparing the training data. A small set of manually prepared training
data, another stemming algorithm, or a lemmatizer are viable ways of preparing the training data for the
maximum entropy classifier. However, we believe that clustering based on semantic assumptions is the best
approach, especially when no manually prepared training data are available.

6

HPS (1. stage)

PlainWtext

stol-e,Wstol-em,Wstol-y,Wstol-u,W...

strom,Wstrom-ě,Wstrom-em,W...

myš,Wmyš-i,Wmyš-í,Wmyš-e,W...

piv-o,Wpiv-a,Wpiv-em,Wpiv-u,W...

čern-ý,Wčern-ou,Wčern-ými,W...

stol

strom

myš

piv

čern

Training data

Clusters Stems

Feature functions

ModifiedWMMIW
clustering

SuffixWprobability

N-gramWprobability

WordWlength

GlobalWstatistics

HPS (2. stage)

MaximumWEntropy
classifier

Word

Stem

Figure 1: HPS architecture.

4.1. Stage 1: Clustering

Our approach to clustering is motivated by the MMI (Maximum Mutual Information) clustering algo-
rithm described in [Brown et al., 1992]. The algorithm was originally developed to improve the language
modeling task. In that task the clusters were created using the minimal mutual information loss scenario.
After we manually observed the resulting clusters, it became apparent that they are semantically related.
We believe that the semantic information comes from the principle of the algorithm to minimize the mutual
information loss. As will be shown later, there is a direct connection between the similarity of neighboring
words and the mutual information loss. The more similar are the neighboring words, the less mutual in-
formation is lost. A clustering method based on the similarity of neighboring words satisfies the conditions
presented in [Rubenstein and Goodenough, 1965; Charles, 2000]. In these studies, the words occurring in
similar contexts (having similar neighbors) are observed to be semantically similar.

In our approach we take advantage of the MMI algorithm’s ability to find semantically related classes.
At the same time we successfully reduce the computational costs by processing only words with a minimal
(higher than a preset threshold) lexical similarity score. It is defined in the following subsection.

4.1.1. Lexical similarity

We define the lexical similarity between two words as the length of their longest common prefix normalized
by the maximum of their lengths:

S (wa, wb) =
|LCP(wa, wb)|

max (|wa| , |wb|)
, (1)

where LCP(wa, wb) is the longest common prefix of words wa and wb.
It is expected that a word stem is related to the initial part of the word. Therefore, if two words are

supposed to share a stem, it is expected that they share a significantly long initial part. After normalization,
S (wa, wb) as a similarity metric for words wa and wb is supposed to measure a certainty that LCP(wa, wb)
is the stem of the words (from a lexical point of view).

In later stages of the clustering algorithm, the words are already members of some clusters. To compare
two different clusters, we use the complete linkage algorithm:

S (ca, cb) = min
wi∈ca,wj∈cb

S (wi, wj), (2)

where the resulting similarity is calculated as the minimum similarity between any member of first cluster
and any member of the second.

7

4.1.2. Description of the MMI algorithm and its proposed modifications

Let W denote the set of possible words (word vocabulary) and C denote the set of word clusters (class
vocabulary). Note that in the following we make no distinction between class and cluster. Let m be a
mapping function m : W → C, which maps words w ∈ W to a class c ∈ C (c = m(w)). The goal of our
modified MMI clustering is to find the optimal mapping m for the stemming problem.

The original MMI clustering [Brown et al., 1992] is based on maximizing the average mutual information
of adjacent classes I(CL;CR)

m∗ = argmax
m

I
(
CL;CR

)
, (3)

where mutual information is defined as

I
(
CL;CR

)
=
∑
cLcR

P
(
cLcR

)
log

P
(
cLcR

)
P (cL)P (cR)

, cL ∈ CL, cR ∈ CR. (4)

The symbol cLcR denotes any two consecutive classes (class bigram) in the training data. The prob-
abilities P (cLcR), P (cL) and P (cR) are determined using MLE (Maximum Likelihood Estimation). The
superscripts L and R always denote the left side and right side word classes in a bigram, respectively.

However, there is no way to find such a partitioning m∗ that maximizes the average mutual information

over so many possibilities (|W ||W |). In the original paper, the problem is approximated by a greedy algorithm

which is further tuned in order to decrease the complexity to the order of |W |3. Such a complexity is however
still very problematic. The iterative greedy algorithm merges two clusters into one cluster while maintaining
a minimal mutual information loss. This means that in each step, it must find two clusters (clusters consist
of already merged words or a single word) whose connection has a minimal impact on the mutual information
of the whole training data. This can be formally described as follows: in each iteration i, let mi : W → Ci
denote the mapping function we are trying to optimize, where the set of word clusters Ci in the ith step
is derived from merging the two particular clusters ca and cb from the preceding step (the other clusters
remaining unchanged) into a new cluster cab:

Ci = ((Ci−1 \ {ca}) \ {cb}) ∪ {cab}, a 6= b, ca, cb ∈ Ci−1, cab = ca ∪ cb. (5)

Note that the operator \ denotes the set difference. The mapping mi that minimizes the mutual information
loss compared to the preceding step can be expressed by the following formula:

mi = argmin
ca,cb

[
I
(
CLi−1;CRi−1

)
− I

(
CLi ;CRi

)]
, ca 6= cb, ca, cb ∈ Ci−1, (6)

where the clusters Ci are given by formula 5. This step is repeated until the desired final number of clusters
is achieved.

In our modification of the original MMI algorithm, not all possible pairs are allowed to be merged. The
merge candidates are instead limited to those which fulfill a minimal lexical similarity score.

Factoring the mutual information loss and the lexical similarity into formula 6 gives

mi = argmax
ca,cb

S (ca, cb)

I
(
CLi−1;CRi−1

)
− I

(
CLi ;CRi

) , ca 6= cb, ca, cb ∈ Ci−1, (7)

where S (ca, cb) is the lexical similarity between clusters ca and cb (see Section 4.1.1).
Using formula 7, the distribution of clusters heads toward maximizing the lexical similarity and mini-

mizing the mutual information loss.
The last issue of the algorithm is the selection of the termination criterion. The optimal number of clusters

depends on the morphology of the analyzed language and it is not known in advance. Our solution is to
repeat the process of merging clusters while there are still two clusters with lexical similarity S(ca, cb) ≥ δ.
The threshold δ is chosen empirically (see Section 5). The complete clustering process is shown by the
following simplified algorithm transcript 1.

8

Algorithm 1 Find a word mapping m into morphologically related clusters

1: δ ⇐ minimal lexical similarity between clusters
2: C0 ⇐W
3: m0 ⇐W → C0

4: i⇐ 0
5: while ∃ca, cb : ca 6= cb, S (ca, cb) ≥ δ do . Repeat while there are still lexically similar clusters.
6: i⇐ i+ 1
7: mi ⇐ argmax

ca,cb

S(ca,cb)

I(CL
i−1;C

R
i−1)−I(CL

i ;CR
i)
, ca 6= cb, ca, cb ∈ Ci−1 . Find the mapping.

8: cab ⇐ ca ∪ cb
9: Ci ⇐ ((Ci−1 \ {ca}) \ {cb}) ∪ {cab} . Merge the clusters ca and cb into one cluster.

10: end while
11: return mi . The resulting mapping maps lexically and semantically similar words into clusters.

By introducing the lexical similarity constraint, we managed to reduce the complexity of the algorithm
from O(|W |3), to O(|W |2g) where g << |W | is the average size of a group of lexically similar words. In
greedy clustering, it is no longer required to compare all clusters (words) to each other, but only to compare
those pairs that satisfy the minimal lexical similarity constraint. It is apparent that g is very likely to be
much smaller than |W |, by several magnitudes.

4.2. Stage 2: Maximum entropy classifier

This section describes the second stage of our approach: the maximum entropy classifier. The stages are
linked together by the clusters created in the first stage. In the second stage, they are taken as the training
data for the classifier. In this way, we can use a supervised classifier while still the whole system remains
unsupervised.

The principle of the classifier consists in estimating the conditional probability p(y|x) of the random
variable y, which is the observation on the output of a process given by the knowledge x about y. y is a
member of a finite set of all possible outputs Y and x is a member of a finite set of all possible pieces of
knowledge X.

The training data are used to set constraints for the conditional distribution. Each constraint expresses
a characteristic (knowledge) about the training data that is requested to be present in the final probability
distribution. The facts (the knowledge) about the training data are captured by n real-valued feature
functions fi(x, y) ∈ 〈0, 1〉.

The final model distribution is restricted in such a way that it has the same expected values for all
features as seen in the training data. This can be formalized as

E (fi (x, y)) = Ẽ (fi (x, y)) , 1 ≤ i ≤ n, (8)

where Ẽ (fi (x, y)) is the expected value of a feature fi (x, y) estimated from the training data and E (fi (x, y))
is the expected value of this feature given by the final model.

It was shown in [Berger et al., 1996] that the requested conditional probabilities p(y|x) given the model
from formula 8 have exponential form and can be estimated as follows:

p(y|x) =
1

Z(x)

n∏
i=1

eλifi(x,y), (9)

where Z(x) =
∑
y∈Y

n∏
i=1

eλifi(x,y) is a normalization function. The parameters λi of the maximum entropy

model can be estimated by some algorithm for finding the global maximum of a function, such as IIS7 or by

7IIS (Improved Iterative Scaling) is a hill-climbing algorithm for finding optimal parameters in log-likelihood space. The
algorithm is described for example in [Berger et al., 1996].

9

some more sophisticated method, for example by OWL-GN8.
In order to apply the maximum entropy classifier to the word stemming task (suffix stripping), we need

to solve a few issues. Firstly, we define y as the length of a suffix of a given word (it is the suffix that is
being stripped off) and Y = {0, 1, . . . ,M}, where M is the maximum of all possible lengths of all suffixes.
The x is the word itself. Secondly, we need to define a set of features which add constraints to the final
model. We use four types of features, which are described in detail in the following sections. Finally, we use
the clusters given in the previous Section 4.1 as the training data for the maximum entropy classifier.

4.2.1. Variables for features

Before we describe the various features for the maximum entropy approach, we need to define a few
variables. Firstly, let

w = l1l2 · · · lL = lL1 , L = |w|, (10)

denote a character string of the word w, where L is the length of the word. Then lba denotes the substring
of the word from position a to position b.

Let the stem be the longest common prefix of a word group c (note that the groups are provided by
stage 1 of our algorithm and may contain errors):

stem (w) = l
min |LCP(w,wi)|
1 , w, wi ∈ c, (11)

where w is a given word for which we need to find a stem and wi are other words belonging to the same
cluster c.

Then the suffix of a given word is the remaining part following the stem:

suff (w) = lLmin |LCP(w,wi)|+1, L = |w|, w, wi ∈ c. (12)

Now, we define an arbitrary ending of a word. It is simply a K character long ending of a word w:

end (w,K) = lLL−K+1, L = |w|. (13)

4.2.2. Suffix length statistics

This feature represents the global distribution of suffixes according to the word length. The probability
that an L character long word contains a suffix of length m is estimated using MLE:

Pstats (L,m) =
{w ∈W : |w| = L, |suff (w) | = m}

{w ∈W : |w| = L}
, 0 ≤ m ≤M. (14)

This is simply the number of times that the L character long word contains an m character long suffix,
normalized by the total number of words with length L. The function # denotes the number of elements in
a set. M is the maximum length of suffix to be stripped off.

The feature function is

fstats (w,m) = Pstats (|w| ,m) , 0 ≤ m ≤M, (15)

where m is the position in the word w where the word should be split between stem and suffix.
The motivation for this feature is the assumption that the length of the suffixes depends on the length

of the stems. It adds M + 1 features to the maximum entropy classifier (one for every possible length of a
suffix).

8OWL-GN (Orthant-Wise Limited-memory Quasi-Newton) described in [Andrew and Gao, 2007] is an algorithm for the
efficient optimization of larger numbers of parameters in log-linear models. It is based upon the L-BFGS (Limited-memory
variation of the Broyden–Fletcher–Goldfarb–Shanno) algorithm. However, the authors show that it is much faster than other
algorithms.

10

4.2.3. The probability of being a suffix

The most important feature (our experiments show that removing this feature from the feature set
causes the highest performance drop) for the classifier is the probability of being a suffix. It is defined as
the probability that the word ending is the correct suffix. This probability is based on assessing the training
data created in stage 1. For example, if the word ending ing is observed, it need not be the correct suffix
(king, ring, sparing), but it can be (drinking, swimming, sleeping). This probability represents the amount
of certainty that the observed word ending is a suffix causing the inflective form of the word (it is not a part
of the stem) and therefore it needs to be stripped off. We can estimate the probability as follows:

Psuff (suff (w)) =
{wi ∈W : suff (wi) = suff (w)}

{wi ∈W : end (wi, |suff (w)|) = suff (w)}
, (16)

which is essentially the number of times where suff(w) follows the stem of word wi (for each word in each
cluster), divided by the number of all times where the word wi ends with suff(w).

The corresponding feature for the classifier has the following form:

fsuff (w,m) = Psuff (end (w,m)) , 0 ≤ m ≤M. (17)

The function adds M + 1 features to the final classifier.

4.2.4. The probability of an n-gram’s standing before a suffix

As shown earlier, the word ending that resembles a correct suffix (e.g., ing) does not always means that
stripping it off is a correct action: e.g., drinking vs. king. In order to disambiguate such cases we introduce
a feature that captures the context of the characters that precede the suffix.

Let
ngram (w,N,K) = lL−KL−N−K+1 (18)

denote an N -character substring (N -gram) of the word w, which ends K characters before the end of the
word. This means that this substring starts at the position L−N −K + 1 and ends at the position L−K,
where L = |W |. Then we define the probability

Pngram (ngram (w,N,K)) =
{wi ∈W : end (stem (wi) , N) = ngram (w,N,K)}
M∑
m=0

{wi ∈W : ngram (wi, N,m) = ngram (w,N,K)}
, (19)

as the probability of stripping off a suffix after the observation of the N -gram ngram(w,N,K) in the word
w. This probability is calculated using MLE as the number of times where the N -gram is observed at the
end of the stem, divided by the total number of times where the N -gram is observed in a word.

The feature function is then defined as

fngram (w,m) = Pngram (ngram (w,N,m)) , 0 ≤ m ≤M. (20)

We have experimentally discovered that the best results are achieved by using N -grams of lengths 1, 2
and 3 (N is set to 1, 2, and 3). This means that this feature produces 3(M + 1) features for the maximum
entropy classifier.

4.2.5. Word length

We also assume that decisions about stemming depend on the length of the words. Therefore, we
introduce the last type of feature function:

flength (w,m) =

{
1 if (|w| = L)
0 otherwise

, 0 ≤ m ≤M, (21)

where L ranges from 1 to Lmax. Thus, Lmax(M + 1) features are added to the maximum entropy classifier.
The total number of all features for all possible splitting positions is then M + 1 +M + 1 + 3(M + 1) +

Lmax(M + 1) = (5 + Lmax)(M + 1), where M is the maximum length of suffix to be stripped off.

11

5. Experimental results

In this section we provide the results of experiments from three different perspectives. Firstly, we look
at the stemmer from the inflection removal point of view (Section 5.4). This experiment indicates how well
the stemmer removes the inflection of the word forms. The second perspective is the retrieval performance,
which is the most frequently used way of measuring the performance of a stemmer (Section 5.5). Finally,
stemmers are used to improve language modeling (Section 5.6). Although the first and third experiments are
not considered as traditional testing environments, they may uncover the degree of versatility of each tested
stemmer. A versatile stemmer should cope well in variety of tasks. Also, successes and failures in different
tasks reveal the properties of particular stemmer methods. For example, if a stemmer performs well in IR
but fails in inflection removal tasks, it indicates that it produces stems that do not resemble lemmas. Such
information may be useful when a similar task (that is know to work well with lemmas) is to be solved.

We also measure the performance of other competitive stemmers (namely, GRAS, YASS, Linguistica as
well as rule-based stemmers) on the same data and with the same constraints and conditions. Experiments
are conducted for several languages, namely Czech, Slovak, Polish, Hungarian, Spanish, and English. The
settings of each stemmer are described in the following Section 5.1.

5.1. Stemmer settings

This section gives an overview of the settings of all tested stemmers that were used in our experiments.
Information about stop words was not taken into account in our experiments, in order to make our approach
completely unsupervised. The settings of stemmers are as follows:

• HPS: The max length of suffix M was set to 3 for all languages, which means we classify into 4 classes
(4 possible lengths of suffix, i.e., from 0 to 3 characters). The minimum similarity between two clusters
(the stopping condition for clustering) was set to δ = 0.7 for Czech, Slovak, English, and Spanish. For
Polish and Hungarian, δ = 0.6. Stemming is performed in two iterations for all languages (see Section
5.2).

We implemented HPS on the JavaTM platform and we used Brainy [Konkol, 2014] implementation of
maximum entropy classifier.

• GRAS: The suffix frequency cut-off coefficient (which is used to prune invalid suffix pairs) was set to
4. The cohesion threshold used to measure whether two nodes are morphologically related or not was
set to 0.8. Both parameters are recommended by the authors of GRAS.

• YASS: The clustering threshold value was set to 1.5 for all languages. This setting is recommended
by the authors of this stemmer.

• Linguistica: This does not require any special settings. However, the number of tokens used for
training is limited in the only available implementation of this stemmer. The maximal amount of
tokens is set to 5,000,000.

• Rule-based stemmers: We used Porter’s stemmers for languages available via the Snowball frame-
work. For Czech, we chose to use the light stemmer presented in [Dolamic and Savoy, 2009]. Despite
the fact that, according to the authors, the aggressive stemmer performs slightly better in IR (our ex-
periments agree with this), the results of the light stemmer on inflection removal are much better than
the results of the aggressive one. For Polish and Slovak, we have not found any rule-based stemmers.

Note that the δ parameter for HPS is set empirically. By changing δ it is possible to tune the aggressivity
of the stemmer. The lower δ is, the more aggressive a stemmer is created, because more words are grouped
by a clustering. The parameter δ can be perceived as the minimal ratio between the length of the stem
and the length of the word. We recommend setting lower values of δ for languages that tend to have long
suffixes (e.g., Polish and Hungarian) and higher values of δ for other languages. We recommend 0.6 as the
lower value and 0.7 as the higher value. However, it is possible to tune the stemmer using δ for a specific

12

task and a language. We did not do so, in order to have results that were not tuned for the test data or the
task (our aim is to design a multi-purpose stemmer). In fact, δ is the only information about the language
that needs to be determined for training HPS.

We also created three new stemmers by extending GRAS, YASS, and Linguistica by our second stage
of HPS (maximum entropy classifier). These stemmers are denoted by GRAS+HPS, YASS+HPS, and
Linguistica+HPS, respectively. The original stemmers are used only for generating the training data for
the classifier (in the same way as our modified MMI clustering). All other settings remain unchanged.

5.2. Iterative stemming

In our initial experiments, it turned out that some words with more complicated morphology remain
understemmed. Repeated or iterative stemming proved to be beneficial for such words. The stage 2 algorithm
is repeated more than once. During such a process, the understemmed words are shortened. However, there
is a risk of overstemming (creating too short a stem). This process is efficient especially for languages with
more complex morphology and it leads to increasing the recall rate in particular.

Consider the following example, which deals with the complex inflectional morphology of Czech. The
words mlad-š́ı (younger – 1st case) and mlad-š́ı-mi (younger – 7th case) share the same stem mlad with
suffixes š́ı and mi. In the second word, the suffix mi follows the suffix š́ı. In such a case, the second suffix mi
may be removed during the first iteration and the first suffix š́ı in the second one. The result of the second
iteration is the correct stem mlad. Another example concerns derivation in English: fear-less-ly. The first
iteration produces fear-less (the correct stem) and the second one fear (overstemmig).

The above mentioned examples show the advantages and drawbacks of iterative stemming. When ap-
plying this method, we should be particularly careful with derivational suffixes since the method may easily
produce overstemming errors (see the example above). On the other hand, if we deal with inflectional suf-
fixes, iterative stemming can only be beneficial. No inflectional suffix can change the lemma and thus it can
not change the meaning.

In our tests we experimented with the setting of the number of iterations. We found that the optimal
value is two iterations for all languages and all tests. Higher values have little impact on the quality of the
results. We discovered that when we use iterations, the stemmer shortens the understemmed words but the
well-stemmed words are left intact.

5.3. Training corpora

We experimented with six languages, namely Czech (CZ), Slovak (SK), Polish (PL), Hungarian (HU),
Spanish (ES), and English (EN). The stemmers were trained on the unlabeled corpora mentioned below.
Since the implementation of the Linguistica stemmer limits the training size to 5,000,000 tokens, we used
this limit for all stemmers. The exceptions are the tests with variable training data sizes. We used up to
15,000,000 tokens there.

Statistics for the corpora are presented in Table 1. We distinguish between (word) tokens and words.
Token refers to a single occurrence of a word in the text. By word, we mean one particular word that can
occur many times in a text. In the table, we count the total number of words and the number of words that
occur in texts at least five times.

The training corpora are:

• CZ: This corpus contains news in Czech on various topics, such as political, business, sports, inter-
national, and other news gathered from one year. The data in this corpus are provided by the Czech
News Agency.

• SK: A huge number of texts from the Slovak National Corpus9 oriented towards the arts, journalism,
and the professions.

9The prim-5.0-public-all subcorpus of the Slovak National Corpus available at http://korpus.juls.savba.sk.

13

http://korpus.juls.savba.sk

• PL and HU: The corpora for Polish and Hungarian which we use in this work are part of a multilingual
parallel corpus available through the Joint Research Center (JRC)10.

• ES: The Spanish texts are taken from the Reuters Multilingual Corpus (RCV2). The data are gathered
from 1996 and 1997. The corpus is available through the NIST (National Institute of Standards and
Technology) Standard Reference Data Products11.

• EN12: The data represent a sampling of approximately 40% of the articles published by the Los
Angeles Times in the two-year period from Jan 1, 1989 to December 31, 1990.

Table 1: Parameters of the corpora used for training the stemmers. The number of distinct words in a corpus is denoted by
words min. 1. The number of distinct words occurring at least 5 times in a corpus is denoted by words min. 5. The full size
of a corpus in terms of the number of tokens is denoted by tokens.

CZ SK PL HU ES EN
tokens 35,538,656 85,817,979 35,703,800 33,640,074 23,561,417 74,993,849

words min. 1 577,200 1,031,215 395,140 584,400 254,463 435,123
words min. 5 189,976 333,511 117,653 149,657 78,977 139,328

5.4. Inflection removal experiments

We start our evaluation with a direct test. Our motivation is the same as in [Paice, 1994]. We desire a
deeper insight into a stemmer’s quality without the effect of a target application. However, we decided to
design our test differently. The reason is the presence of the two problematic attributes of the test mentioned
in the state-of-the-art section, and mainly due to the lack of manually annotated data for languages other
than English. Instead of groups of words that should have same stem, we use readily available groups of
words sharing the same lemma. And instead of overstemming and understemming indices, we use precision,
recall, and F -measure. The precision directly relates to overstemming errors (the higher the precision, the
lower the frequency of errors) and recall to understemming errors. Our values respect the frequencies of
words and are computed directly from the texts (not from dictionaries), so they reflect the contexts.

Our test is based upon measuring the ability of a stemmer to remove an inflection from an inflected
word form, by comparing groups of words with the same stem with groups of words with the same lemma.
Ideally, these should be equivalent. Naturally, such a test is focused solely on inflective morphology and
omits the derivation linguistic process. In fact, the test measures the ability of the stemmer to approximate
lemmas. The score from the test thus should indicate the ability of the stemmer to replace a lemmatizer
in applications where lemmatizers are working well, e.g., language models [Brychćın and Konoṕık, 2011],
machine translation [Koehn and Hoang, 2007], etc. Naturally, the score will be less related to applications
which require aggressive stemming and working with derivational linguistic processes, e.g., information
retrieval. Therefore, the test does not cover all aspect of stemming. However, we believe that a universal
test of stemmers can not be constructed, simply because stemming is always to some extent task dependent.

In our test, we go through the test corpus and for each position in the text we analyze two word groups.
The first one consists of all words sharing the same stem with the word at its actual position (the result of the
tested stemmer). The second group contains all words sharing the same lemma with the actual word (given
by the lemmatized data). We calculate precision (P), recall (R) and their harmonic mean, the F -measure
(Fm):

P =
tp

tp+ fp
, R =

tp

tp+ fn
, Fm =

2PR

P +R
. (22)

10Available at http://langtech.jrc.it/.
11Available at http://trec.nist.gov/data/reuters/reuters.html.
12Available from NIST Standard Reference Data Products at http://www.nist.gov/srd/nistsd23.cfm.

14

http://langtech.jrc.it/
http://trec.nist.gov/data/reuters/reuters.html
http://www.nist.gov/srd/nistsd23.cfm

Here, tp denotes the number of times the word in the stemmer group matched a word in the lemma group
and fp denotes the number of times the stemmer group contained the wrong word. Finally, fn denotes the
number of times the stemmer group missed the correct word. The higher the precision rate, the fewer times
the stemmer produces an overstemming error. On the other hand, the higher the recall rate, the fewer the
understemming results. The F -measure takes both these errors into account and thus can be used as a final
evaluation of the stemming quality.

5.4.1. Test corpora

The test corpora contain manual morphological annotations with lemmas. The list of the corpora follows:

• CZ: The data are part of the Prague Dependency Treebank 2.013. The texts in the corpus consist of
manually annotated articles from several newspapers and journals in Czech.

• SK: The manually annotated part of the Slovak National Corpus14 mainly consists of artistic, jour-
nalistic, and professional texts.

• PL: The manually annotated part of the National Corpus of Polish15.

• HU: The manually annotated Hungarian texts of the Szeged Corpus 2.016.

• ES: The Spanish texts are taken from the Ancora 2.017 [Taulé et al., 2008] corpus, which is mainly
oriented to journalism.

• EN: These texts are part of the Open American National Corpus (OANC)18.

Some statistics of the corpora are shown in Table 2.

Table 2: Parameters of the annotated corpora used for testing the stemmers. The number of distinct words in a corpus is
denoted by words min. 1. The number of distinct words occurring at least 5 times in a corpus is denoted by words min. 5.
The full size of a corpus in terms of the number of tokens is denoted by tokens.

CZ SK PL HU ES EN
tokens 1,748,519 1,033,345 1,215,415 1,214,490 455,702 3,490,816

words min. 1 168,442 137,236 143,820 154,240 44,353 107,087
words min. 5 35,350 24,512 23,545 25,689 8,809 29,902

5.4.2. Results

This section presents the inflection removal results. Each stemmer was trained on the first 5,000,000
tokens from the appropriate corpus (Section 5.3) and then evaluated on the corresponding annotated corpus
(Section 5.4.1). The results for our novel test are shown in Table 3.

13More information at http://ufal.mff.cuni.cz/pdt2.0/.
14The r-mak-3.0 subcorpus of Slovak National Corpus available at http://korpus.juls.savba.sk.
15Available at http://nkjp.pl/.
16Available at http://www.inf.u-szeged.hu/projectdirs/hlt/index_en.html.
17Available at http://clic.ub.edu/corpus/en/ancora.
18Available at http://www.anc.org/data/oanc.

15

http://ufal.mff.cuni.cz/pdt2.0/
http://korpus.juls.savba.sk
http://nkjp.pl/
http://www.inf.u-szeged.hu/projectdirs/hlt/index_en.html
http://clic.ub.edu/corpus/en/ancora
http://www.anc.org/data/oanc

Table 3: Inflection removal results. P [%], R[%] and Fm[%] denote the stemming precision, recall and F -measure, respectively.
The results are expressed in percentages.

(a) Czech (CZ)

CZ P [%] R[%] Fm[%]
Rule 69.3 40.4 51.1

HPS (1. phase) 79.0 35.9 49.3
HPS (both phases) 72.5 42.2 53.4

GRAS 47.7 46.4 47.0
GRAS+HPS 47.1 47.9 47.5

YASS 52.5 43.0 47.3
YASS+HPS 51.1 45.1 47.9

Linguistica 52.2 36.7 43.1
Linguistica+HPS 54.0 43.0 47.9

No stemming 100 14.0 24.5

(b) Slovak (SK)

SK P [%] R[%] Fm[%]
Rule / / /

HPS (1. phase) 83.9 37.4 51.7
HPS (both phases) 75.3 46.5 57.5

GRAS 48.5 51.3 49.9
GRAS+HPS 52.8 52.4 52.6

YASS 60.5 44.4 51.2
YASS+HPS 56.1 48.3 51.9

Linguistica 61.1 38.7 47.4
Linguistica+HPS 61.6 47.5 53.6

No stemming 100 15.4 26.6

(c) Polish (PL)

PL P [%] R[%] Fm[%]
Rule / / /

HPS (1. phase) 75.2 28.9 41.7
HPS (both phases) 67.9 34.8 46.1

GRAS 62.5 30.3 40.8
GRAS+HPS 56.4 35.1 43.2

YASS 60.3 24.9 35.3
YASS+HPS 55.8 36.5 44.1

Linguistica 70.4 25.0 36.9
Linguistica+HPS 64.8 34.6 45.1

No stemming 100 10.8 19.6

(d) Hungarian (HU)

HU P [%] R[%] Fm[%]
Rule 73.1 61.7 66.9

HPS (1. phase) 75.5 35.3 48.1
HPS (both phases) 56.1 49.3 52.5

GRAS 63.5 44.3 52.2
GRAS+HPS 58.0 46.2 51.4

YASS 67.3 22.4 33.7
YASS+HPS 53.5 50.7 52.1

Linguistica 51.4 24.4 33.1
Linguistica+HPS 48.8 46.3 47.5

No stemming 100 7.9 14.6

(e) Spanish (ES)

ES P [%] R[%] Fm[%]
Rule 58.8 50.6 54.4

HPS (1. phase) 86.6 32.2 46.9
HPS (both phases) 72.8 37.3 49.7

GRAS 52.0 49.7 50.8
GRAS+HPS 66.0 41.7 51.1

YASS 60.1 39.0 47.3
YASS+HPS 60.4 40.3 48.3

Linguistica 64.7 32.0 42.8
Linguistica+HPS 70.5 37.9 49.3

No stemming 100 22.1 36.1

(f) English (EN)

EN P [%] R[%] Fm[%]
Rule 69.4 77.2 73.1

HPS (1. phase) 76.2 58.5 66.2
HPS (both phases) 80.4 63.2 70.8

GRAS 55.8 70.8 62.4
GRAS+HPS 60.7 68.7 64.4

YASS 41.4 71.0 52.3
YASS+HPS 46.1 68.1 55.0

Linguistica 54.1 65.6 59.3
Linguistica+HPS 55.1 68.1 60.9

No stemming 100 50.9 67.4

Before analyzing the results for the tested stemmers, we should note the following. As we explained
in the Introduction, the goal of a stemming algorithm depends on the particular task at hand. Some
aggressive stemmers usually remove derivational suffixes as well as inflectional suffixes. In this testing
scenario, removing derivational suffixes is penalized since such an action incorrectly creates the same stem for
different lemmas. Thus, we can interpret the results of this test only in relation to the inflection removal task.
Nevertheless, we also pointed out that removing derivational suffixes is risky whereas removing inflectional

16

suffixes is safe. Thus, we can expect that a stemmer successful in this test should produce a low number of
overstemming results.

If we use the F -measure (Fm) as a quality measure for the inflection removal experiments, we can
conclude the following. On all languages except Hungarian and Spanish, HPS yields the best results of all
unsupervised stemmers. For Hungarian and Spanish, the results of HPS are similar to those of GRAS.

On Czech and Slovak, the results of GRAS and YASS are similar. On other languages, GRAS performs
much better than YASS. Linguistica performs the worst in this testing scenario. Furthermore, we can see
that HPS always achieves one of the best precision rates. In contrast, GRAS always has one of the best
recall rates.

In the tables we also show the results for the stand-alone first phase of HPS to see how large an im-
provement the second phase of HPS (maximum entropy classifier) produces. The first phase of HPS does
not lead to the best results, but has the best precision (except on English).

Our maximum entropy extension also improves the other stemmers (GRAS+HPS, YASS+HPS and
Linguistica+HPS). However, the combination of maximum entropy and the first phase of HPS is generally the
best one. We assume this to be due to the high precision of the first phase of HPS (with little overstemming
errors) which leads to creating better training data for the maximum entropy classifier.

5.4.3. The impact of the size of the training dataset

In this section, we study how the quality of the stemming changes depending on the amount of training
data available. The stemmers are evaluated on the same data as in the previous section, but different
numbers of tokens being used for training. We start with a very small amount of training data (50,000
tokens) for each language, and continue up to 15,000,000 tokens, which we believe is a sufficient amount for
all methods. The results are shown in Figure 2.

35

40

45

50

55

50k 100k 500k 1M 2M 5M 10M 15M

F
m

 [%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(a) Czech (CZ)

40

45

50

55

50k 100k 500k 1M 2M 5M 10M 15M

F
m

 [%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

(b) Slovak (SK)

17

25

30

35

40

45

50k 100k 500k 1M 2M 5M 10M 15M

F
m

 [%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

(c) Polish (PL)

10

20

30

40

50

60

70

50k 100k 500k 1M 2M 5M 10M 15M
F

m
 [%

]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(d) Hungarian (HU)

35

40

45

50

55

50k 100k 500k 1M 2M 5M 10M 15M

F
m

 [%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(e) Spanish (ES)

40

45

50

55

60

65

70

75

50k 100k 500k 1M 2M 5M 10M 15M

F
m

 [%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(f) English (EN)

Figure 2: Inflection removal experiments with different amounts of training data available.

From the figures presented above, we can conclude that our stemmer excels in experiments for all sizes
of training data and all tested languages. The F -measure results are better for Slavic languages (Czech,
Slovak, Polish) in particular.

A very interesting and also important fact is that our stemmer gives very promising results even for
an amount of training data as small as 50,000 tokens for each language. In addition, it is possible to say
that after 1,000,000 tokens for training, the results of our stemmer do not improve significantly. Thus, we

18

can state that 1,000,000 tokens are optimal for satisfactory results. This property is caused by the second
stage of HPS, as we observe large improvements even for the other stemmers when they use this extension
(GRAS+HPS, YASS+HPS and Linguistica+HPS).

As we expected, the quality of other stemmers (without the second stage of HPS) rises significantly with
an increasing amount of training data. After a certain point (5M or 10M tokens) the results are not improved
any more. The exception is the English (our less inflected language), where the performance of the stemmers
decreases or stagnates. We believe this is due to focusing on the purely lexical level of the words, where with
a rising amount of training data, the larger number of word forms can yield an increase in the recall rate
but a very significant drop in precision (some stemmers start to overstem the words). The outcome is that
the F -measure drops. Note that this problem is specific to the inflection removal experiments. However, in
the information retrieval experiments (Section 5.5), this does not mean a definite retrieval drop.

5.5. IR experiments

In this section, we experiment with using different stemmers for the information retrieval task. We
compare the results of our stemmer with those of other competitive stemmers in four languages. We use the
open source search engine Terrier19, which implements state-of-the-art indexing and retrieval functionalities.
Terrier is written in the JavaTM platform and was developed by the School of Computing Science at the
University of Glasgow.

In our experiments, we used the I(F)B2 model for term weighting. I(F)B2 denotes the model I(F) (tf-itf
model: term frequency – inverse collection term frequency), with the normalization factor B (Bernoulli
after-effect given by the ratio of two Bernoulli processes) and with the assumption of the hypothesis H2
(the term frequency density is inversely related to the length of document). The derivation and definition
of this function can be found in [Amati and Van Rijsbergen, 2002]. The authors of the article also show a
comparison of several models for IR. The I(F)B2 is suggested to be one of the best performing models.

5.5.1. Corpora

The evaluation presented in this section is based upon the collection built during the CLEF20 evaluation
campaign (CLEF Evaluation Package AdHoc News 2004-2008).

The collection comprises queries which follow the guidelines of the TREC ad-hoc task. Each query is
structured into three sections: title (reflects the queries that users send to search engines), description (one
sentence description of the requested data), and narrative part (a few sentences describing the criteria for the
requested data). A set of relevant documents (correct answers) is provided for every query in the collection.
In our experiments, we used the title and description parts only.

Table 4: Parameters of corpora used for IR experiments.

CZ HU ES EN
documents 81,735 49,530 454,045 113,005
words 461,999 542,075 556,482 226,529
tokens 19,544,124 8,379,455 82,392,138 37,743,118
evaluation queries 50 150 60 100
relevant documents 762 3,158 2,368 2,096

5.5.2. Results

In this section we use the stemmers listed in Section 5.1 to improve retrieval performance for four
languages. As described in [Majumder et al., 2007; Paik et al., 2011a], the unsupervised stemmers YASS
and GRAS should give as good results in the retrieval context as rule-based stemmers. Our experiments
confirm this. However, we also present the retrieval experiments from a slightly different point of view.

19Available at http://terrier.org.
20Available at http://www.clef-campaign.org/.

19

http://terrier.org
http://www.clef-campaign.org/

In the real world, the indexing performed by an IR system is an iterative process. New data arise
continually, and they need to be indexed. However, this fact is usually not taken into account when testing
stemmers (YASS and GRAS). During the tests, it is expected that a stemmer is trained on all the data
that are indexed. However, in reality, the new data are unseen by the stemmers. Retraining the stemmer
is computationally expensive, although possible. However, this process has one big problem. The retrained
stemmers are likely to stem some already seen words differently because in many stemmers the stemming
decisions are learned from all the data. The direct implication is that the complete data set needs to be
reindexed. Reindexing is a process that takes a lot of computer time, especially for large data sets. It
also introduces scalability problems when distributing the index21. We, however, believe that the retraining
and reindexing steps can be done much less frequently or even completely avoided. In such a scenario, the
stemmer that is being used needs to be able to handle unseen data (data not seen during training). Taking
these facts into account, we have decided to perform the retrieval experiments using stemmers trained on
both types of data:

• Seen: The stemmers are trained on the same data as they are used for indexing, which causes all
words that are indexed to be known by the stemmers. This experiment allows comparisons to be made
with the results in the original papers about competitive stemmers. Unfortunately, this test does not
include results for Linguistica, since its implementation limits the training data size to 5,000,000 tokens
only.

• Unseen: The stemmers are trained on the data used for the inflection removal experiments described
in Section 5.4.1, which means that the indexed data are previously unseen by the stemmers. This way
of testing corresponds to the scenario we introduced above. We used a completely different corpus for
training the stemmers because we want to emphasize the ability of a stemmer to work with unseen
data. However, we must note that in the scenario where the newly indexed data (the unseen data) are
from the same domain, the difference between seen and unseen data probably will not be so big.

To calculate all performance scores, we used the TREC-EVAL program, which is the standard tool for
the evaluation of TREC results using the standard NIST evaluation procedures.

Retrieval performance was measured using several measures. In the tables below, MAP denotes the
Mean Average Precision. R-prec is an R-precision measure that represents the precision at the Rth position
in retrieved documents for a query that has R relevant documents. The symbols P@5 and P@10 denote the
precisions at fixed low levels of retrieved results (5 and 10 documents). The number of retrieved relevant
documents is denoted by Rel-ret. The results are shown in Table 5.

21An input query should be preprocessed with the same stemmer as the index. When the index is distributed, the stemmers
need to be synchronized for all parts of the index.

20

Table 5: Information retrieval results. The numbers in brackets are the relative improvements compared with no stemming.

(a) Czech (CZ)

CZ MAP R-Prec P@5 P@10 Rel-ret
No stemming .227 .248 .324 .260 556
Rule .326 (43.6%) .328 (32.3%) .428 (32.1%) .334 (28.5%) 663
CZ-unseen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .296 (30.4%) .295 (19.0%) .396 (22.2%) .314 (20.8%) 660
HPS (both phases) .324 (42.7%) .327 (31.9%) .404 (24.7%) .338 (30.0%) 672
GRAS .305 (34.4%) .284 (14.5%) .372 (14.8%) .312 (20.0%) 671
GRAS+HPS .317 (39.6%) .312 (25.7%) .392 (21.0%) .328 (26.2%) 660
YASS .299 (31.7%) .282 (13.7%) .380 (17.3%) .306 (17.7%) 660
YASS+HPS .316 (39.1%) .302 (21.8%) .392 (21.0%) .332 (27.7%) 660
Linguistica .283 (24.7%) .291 (17.3%) .396 (22.2%) .294 (13.1%) 654
Linguistica+HPS .325 (43.2%) .305 (22.9%) .428 (32.1%) .340 (30.8%) 659
CZ-seen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .325 (43.2%) .314 (26.6%) .425 (31.2%) .336 (29.2%) 672
HPS (both phases) .327 (44.1%) .316 (27.4%) .420 (29.6%) .334 (28.5%) 667
GRAS .332 (46.3%) .317 (27.8%) .380 (17.3%) .316 (21.5%) 679
GRAS+HPS .322 (41.6%) .314 (26.6%) .384 (18.5%) .316 (21.5%) 667
YASS .317 (39.6%) .316 (27.4%) .404 (24.7%) .330 (26.9%) 667
YASS+HPS .319 (40.4%) .312 (25.7%) .404 (24.7%) .330 (26.9%) 669

(b) Hungarian (HU)

HU MAP R-Prec P@5 P@10 Rel-ret
No stemming .216 .231 .317 .273 1,963
Rule .315 (45.8%) .333 (44.2%) .427 (34.7%) .365 (33.7%) 2,518
HU-unseen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .255 (18.1%) .282 (22.1%) .365 (15.1%) .315 (15.4%) 2,305
HPS (both phases) .309 (43.1%) .318 (37.7%) .427 (34.7%) .355 (30.0%) 2,589
GRAS .253 (17.1%) .277 (19.9%) .356 (12.3%) .307 (12.5%) 2,281
GRAS+HPS .315 (46.0%) .328 (42.2%) .441 (39.2%) .364 (33.3%) 2,573
YASS .247 (14.4%) .265 (14.7%) .347 (9.5%) .303 (11.0%) 2,264
YASS+HPS .311 (44.1%) .324 (40.2%) .437 (37.8%) .355 (29.9%) 2,589
Linguistica .241 (11.6%) .252 (9.1%) .340 (7.3%) .294 (7.7%) 2,191
Linguistica+HPS .305 (41.3%) .314 (35.8%) .419 (32.1%) .351 (28.7%) 2,587
HU-seen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .315 (45.8%) .330 (42.9%) .425 (34.1%) .364 (33.3%) 2,598
HPS (both phases) .319 (47.7%) .333 (44.2%) .428 (35.0%) .367 (34.4%) 2,637
GRAS .324 (50.0%) .340 (47.2%) .425 (34.1%) .369 (35.2%) 2,689
GRAS+HPS .315 (45.9%) .328 (41.8%) .423 (33.3%) .360 (31.9%) 2,575
YASS .315 (45.8%) .327 (41.6%) .429 (35.3%) .372 (36.3%) 2,587
YASS+HPS .320 (48.3%) .332 (43.6%) .445 (40.5%) .368 (34.8%) 2,641

21

(c) Spanish (ES)

ES MAP R-Prec P@5 P@10 Rel-ret
No stemming .379 .361 .513 .430 2,086
Rule .437 (15.3%) .428 (18.6%) .530 (3.3%) .480 (11.6%) 2,198
ES-unseen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .405 (6.9%) .395 (9.4%) .533 (3.9%) .470 (9.3%) 2,155
HPS (both phases) .411 (8.4%) .399 (10.5%) .543 (5.8%) .478 (11.2%) 2,179
GRAS .418 (10.3%) .412 (14.1%) .530 (3.3%) .477 (10.9%) 2,183
GRAS+HPS .421 (11.1%) .414 (14.8%) .527 (2.7%) .470 (9.3%) 2,137
YASS .400 (5.5%) .392 (8.6%) .540 (5.3%) .463 (7.7%) 2,181
YASS+HPS .413 (8.9%) .409 (13.4%) .520 (1.4%) .455 (5.8%) 2,141
Linguistica .386 (1.8%) .384 (6.4%) .493 (-3.9%) .437 (1.6%) 2,135
Linguistica+HPS .425 (12.2%) .420 (16.3%) .523 (2.0%) .467 (8.5%) 2,141
ES-seen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .416 (9.8%) .402 (11.4%) .525 (2.3%) .468 (8.8%) 2,180
HPS (both phases) .424 (11.9%) .413 (14.4%) .547 (6.6%) .482 (12.1%) 2,191
GRAS .415 (9.5%) .405 (12.2%) .527 (2.7%) .497 (15.6%) 2,193
GRAS+HPS .413 (9.0%) .402 (11.4%) .535 (4.3%) .460 (7.0%) 2,190
YASS .409 (7.9%) .398 (10.2%) .507 (-1.2%) .465 (8.1%) 2,172
YASS+HPS .405 (6.9%) .397 (10.1%) .497 (-3.2%) .465 (8.1%) 2,168

(d) English (EN)

EN MAP R-Prec P@5 P@10 Rel-ret
No stemming .320 .316 .378 .316 1,771
Rule .368 (15.0%) .348 (10.1%) .410 (8.5%) .348 (10.1%) 1,880
EN-unseen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .348 (8.7%) .338 (7.0%) .415 (9.8%) .340 (7.6%) 1,859
HPS (both phases) .360 (12.5%) .344 (8.9%) .412 (9.0%) .343 (8.5%) 1,873
GRAS .369 (15.3%) .349 (10.4%) .438 (15.9%) .356 (12.7%) 1,863
GRAS+HPS .365 (14.1%) .358 (13.2%) .444 (17.5%) .353 (11.7%) 1,877
YASS .352 (10.0%) .340 (7.6%) .412 (9.0%) .339 (7.3%) 1,846
YASS+HPS .350 (9.4%) .339 (7.2%) .406 (7.4%) .339 (7.3%) 1,884
Linguistica .338 (5.6%) .336 (6.3%) .406 (7.4%) .325 (2.8%) 1,804
Linguistica+HPS .339 (6.0%) .335 (6.0%) .414 (9.5%) .336 (6.3%) 1,874
EN-seen MAP R-Prec P@5 P@10 Rel-ret
HPS (1. phase) .362 (13.1%) .347 (9.8%) .422 (11.6%) .345 (9.2%) 1,871
HPS (both phases) .364 (13.8%) .352 (11.4%) .414 (9.5%) .332 (5.1%) 1,873
GRAS .369 (15.3%) .348 (10.1%) .404 (6.9%) .347 (9.8%) 1,871
GRAS+HPS .364 (13.7%) .347 (9.8%) .422 (11.6%) .335 (6.0%) 1,885
YASS .361 (12.8%) .335 (6.0%) .418 (10.6%) .344 (8.9%) 1,864
YASS+HPS .364 (13.8%) .341 (7.9%) .418 (10.6%) .347 (9.8%) 1,871

5.5.3. Significance test

In the preceding section, the stemmers were tested in the information retrieval task. There was, however,
only a limited number of queries provided for each language. It is therefore crucial to evaluate the differences
in results using a statistical significance test. For the evaluation, the paired t-test at a confidence level of
0.95 is used (see [Hull, 1993]). The hypotheses are defined as follows. The preliminary assumption (the null

22

hypothesis H0) is that there is no difference between these two stemmers in terms of their stemming quality.
The alternative hypothesis H1 means that one stemmer is significantly better than the other one.

The results of the significance testing are presented in Table 6 by the following symbols:

• Symbol ”<” if the row’s stemmer is worse than the column’s stemmer. The hypothesis H0 is rejected.

• Symbol ”>” if the row’s stemmer is better than the column’s stemmer. The hypothesis H0 is rejected.

• Symbol ”=” if the row’s stemmer is equal to the column’s stemmer. The hypothesis H0 is not rejected.

The p-value is calculated for two measures of performance: for average precision MAP (the first symbols
in the table) and for R-precision (the second symbols in the table).

23

Table 6: Significance tests for comparing the stemmers. The Linguistica results are not presented for seen data, as it is not
possible to train the available version on a corpus of more than 5,000,000 tokens.

unseen seen

H
P

S
(1

.
p
h
a
se

)

H
P

S
(b

o
th

p
h
as

es
)

G
R

A
S

G
R

A
S
+

H
P

S

Y
A

S
S

Y
A

S
S
+

H
P

S

L
in

gu
is

ti
ca

L
in

gu
is

ti
ca

+
H

P
S

R
u
le

N
o

st
em

m
in

g

H
P

S
(1

.
p
h
as

e)

H
P

S
(b

o
th

p
h
a
se

s)

G
R

A
S

G
R

A
S
+

H
P

S

Y
A

S
S

Y
A

S
S
+

H
P

S

R
u
le

N
o

st
em

m
in

g

CZ

HPS (1. phase) == =< == =< == == == == =< >= == == == == == == == >>
HPS (both phases) => == => == >> == >> => == >> == == == == == == == >>

GRAS == =< == =< == == == == =< >= == == == == == == == >>
GRAS+HPS => == => == => == >= == == >> == == == == == == == >>

YASS == << == =< == == == == << >= == == == == == == == >>
YASS+HPS == == == == == == >= == == >= == == == == == == == >>

Linguistica == << == <= == <= == <= << >=
Linguistica+HPS == =< == == == == >= == == >>

Rule => == => == >> == >> == == >> == == == == == == == >>
No stemming <= << <= << <= <= <= << << == << << << << << << << ==

HU

HPS (1. phase) == << == << == << >> << << >> == == == == == == == >>
HPS (both phases) >> == >> == >> == >> == == >> == == == == == == == >>

GRAS == << == << == << >> << << >> == == == == == == == >>
GRAS+HPS >> == >> == >> == >> == == >> == == == == == == == >>

YASS == << == << == << == << << >> == == == == == == == >>
YASS+HPS >> == >> == >> == >> >> == >> == == == == == == == >>

Linguistica << << << << == << == << << >>
Linguistica+HPS >> == >> == >> << >> == == >>

Rule >> == >> == >> == >> == == >> == == == == == == == >>
No stemming << << << << << << << << << == << << << << << << << ==

ES

HPS (1. phase) == == == == == == >= == << >> == == == == == == == >>
HPS (both phases) == == == == == == >= == << >> == == == == == == == >>

GRAS == == == == == == >> == == >> == == == == == == == >>
GRAS+HPS == == == == == == >> == == >> == == == == == == == >>

YASS == == == == == == == <= <= => == == == == == == == =>
YASS+HPS == == == == == == >> == == >> == == == == == == == =>

Linguistica <= <= << << == << == << << =>
Linguistica+HPS == == == == >= == >> == == >>

Rule >> >> == == >= == >> == == >> == == == == == == == >>
No stemming << << << << =< << =< << << == << << << << =< =< << ==

EN

HPS (1. phase) == == <= <= == == == == == >> == == == == == == == >>
HPS (both phases) == == == == == == == == == >> == == == == == == == >>

GRAS >= == == == >= >= >= >= == >> == == == == == == == >>
GRAS+HPS >= == == == >= >= >= >> == >> == == == == == == == >>

YASS == == <= <= == == == == == >= == == == == == == == >=
YASS+HPS == == <= <= == == == == == >= == == == == == == == >=

Linguistica == == <= <= == == == == <= ==
Linguistica+HPS == == <= << == == == == <= ==

Rule == == == == == == >= >= == >> == == == == == == == >>
No stemming << << << << <= <= == == << == << << << << <= <= << ==

From Table 6, we can deduce the behavior of all stemmers in the information retrieval context. In the
case of seen data, it was discovered that all tested stemmers perform equally well (there is no significant
difference between them).

In the case of unseen data, HPS (both phases), GRAS+HPS, YASS+HPS and rule-based stemmers
perform the best. For less inflected languages (ES and EN) the performance of GRAS and YASS is on
the same level, but for highly inflected languages (CZ and HU) their performance is significantly worse.

24

This is expected behavior, because many word forms are previously unseen, leading to a significant OOV
(out-of-vocabulary) rate. These facts prove that our second stage of HPS is able to work very well with
unknown word forms.

In both the cases of seen and unseen data, all evaluated stemmers significantly improve the results of
the IR system when compared with no stemming. If we summarize all these results, HPS (both phases),
GRAS+HPS, YASS+HPS, and rule-based stemmers consistently give the best results even though HPS was
not designed purely for the IR task, but rather to be a multi-purpose stemmer. GRAS and YASS perform
slightly worse and Linguistica is the least efficient stemmer for the IR task.

5.6. Language models

This section presents experiments with the application of stemmers to language modeling. The purpose
is to reveal the performance of stemmers in yet another scenario.

Language modeling is a crucial task in many areas of NLP. Speech recognition, optical character recogni-
tion, machine translation, information retrieval, and many other areas depend heavily on the quality of the
language model that is being used. Each improvement in language modeling can also improve the particular
job where the language model is used.

Morphological information has already been proved to be useful in language modeling. For example, in
[Brychćın and Konoṕık, 2011], we use lemmatization and part-of-speech (POS) tags to significantly improve
the perplexity of Czech and Slovak language models. In this section, we present a similar approach, but
instead of lemmas we used stems, and instead of POS tags we used suffixes.

5.6.1. Architecture

We choose class-based language models as the architecture for incorporating the morphological informa-
tion. We have derived two kinds of class-based models:

• Stem: word classes represent the words with the same stem.

• Inflection: words with the same inflection (suffix following the stem) are grouped into one class.

We use the modified Kneser–Ney interpolation [Chen and Goodman, 1998] for smoothing the baseline
n-gram language model as well as the stand-alone class-based models. The order (n) of all models is 3.

These two class-based models are combined with the baseline model by bucketed linear interpolation
[Bahl et al., 1983]:

PBLI
(
wi|wi−1i−n+1

)
=

K∑
k=1

λk
(
wi−1i−n+1

)
· Pk

(
wi|wi−1i−n+1

)
, (23)

where λk() is the weight of the kth language model, Pk(). We use the EM (Expectation Maximization)
algorithm described in [Dempster et al., 1977] to calculate the optimal weights λk by maximizing the
probability of the held-out data. In bucketed interpolation, the weights are functions of the frequency of
word history. The main idea behind the interpolation is that the weights λk should be different for words
with histories of different frequencies. In our experiments, 20 buckets were used.

5.6.2. Results

The performance of a language model is typically measured in terms of the perplexity of the model on
the unseen test corpus. The perplexity can be seen as the confusion of the model. Lower perplexity means a
better prediction ability of language model. It was shown by many authors that the reduction of perplexity
often leads to improving whole system where the language model is used (for example machine translation
in [Brychćın and Konoṕık, 2014] or speech recognition in [Watanabe et al., 2011]).

The stemmers were trained on the same data as during the inflection removal experiments (see Section
5.3), this means on 50k, 100k, 500k, 1M, 2M, 5M, 10M, and 15M tokens. Each language model was trained
on 15M tokens. An additional 2M tokens were used as held-out data. Then, an additional 5M tokens were
used to calculate the perplexity of the language model.

25

Figure 3 shows the improvement in perplexity when compared to the baseline language model.

4

5

6

7

8

9

10

11

12

50k 100k 500k 1M 2M 5M 10M 15M

Im
pr

ov
em

en
t [

%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(a) Czech (CZ): baseline perplexity 472.

4

5

6

7

8

9

10

11

50k 100k 500k 1M 2M 5M 10M 15M

Im
pr

ov
em

en
t [

%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

(b) Slovak (SK): baseline perplexity 527.

5

6

7

8

9

10

50k 100k 500k 1M 2M 5M 10M 15M

Im
pr

ov
em

en
t [

%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

(c) Polish (PL): baseline perplexity 153.

4

5

6

7

8

9

10

11

12

50k 100k 500k 1M 2M 5M 10M 15M

Im
pr

ov
em

en
t [

%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(d) Hungarian (HU): baseline perplexity 188.

26

3

3.5

4

4.5

5

5.5

50k 100k 500k 1M 2M 5M 10M 15M

Im
pr

ov
em

en
t [

%
]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(e) Spanish (ES): baseline perplexity 124.

1.4

1.6

1.8

2

2.2

2.4

2.6

50k 100k 500k 1M 2M 5M 10M 15M
Im

pr
ov

em
en

t [
%

]

size of training data

HPS (1. phase)
HPS (both phases)

GRAS
GRAS+HPS

YASS
YASS+HPS

Linguistica
Linguistica+HPS

Rule

(f) English (EN): baseline perplexity 238.

Figure 3: Perplexity improvements compared to the baseline language model.

The experiments with language modeling confirm the conclusions of the preceding experiments. Again,
HPS obtains on average the highest perplexity drops. GRAS and YASS swapped the order of their results. In
this test, YASS tends to perform better than GRAS. For smaller training data sizes, HPS has no competitor.
The second stage of HPS again produces large improvements especially when little training data is used.

5.7. Performance tuning
In this section, we investigate some possible tweaks which decrease the computational costs of the

stemming. These tweaks have virtually no impact on the stemming results.
Firstly, it must be remembered that our modification of maximum mutual information clustering (de-

scribed in Section 4.1) gives accurate results only for words which occur frequently enough in a corpus. The
infrequent words have a negligible impact on the average mutual information of the data, and their clustering
may be very inaccurate, and can even decrease the quality of the whole stemmer. We recommend clustering
only words with a frequency higher than some threshold (for example 10) by the MMI algorithm. The
remaining words should be clustered using only lexical information (presented in Section 4.1.1). Moreover,
the complexity of the clustering increases with the square of the number of words being clustered. Thus,
limiting the words being clustered has a positive impact on the processing time.

An additional acceleration of our algorithm is possible by incorporating just enough occurring word
bigrams in the calculation of the average mutual information of the data. We recommend incorporating
word bigrams that occur at least 2 or 3 times in the training corpus. This also leads to a significant speeding
up of the clustering, while the efficiency of the final stemmer stays almost the same.

We would like to point out that setting these parameters has no impact on the quality of the stemming
results. Setting these parameters is not mandatory.

For the sake of a better grasp of these efficiencies, we also present the running times needed to train HPS,
as well as that needed for the stemming itself. We implemented our HPS method on the JavaTM platform,
and tested it on a computer with a Core i7 3.4 GHz processor. Training the model on 5M tokens of Czech
data (the same model used for the experiments with the above recommended settings, i.e., word frequency
at least 10 and word pair frequency at least 2) takes about 36 min. The stemming of 10M tokens of text
with this model takes about 33 sec. These results clearly show that once we already have a trained model,
the stemming itself is very fast.

27

6. Discussion

In Section 5, we thoroughly tested our HPS from three different perspectives. To put the performance of
HPS into the context of the state of the art, we also provided a comparison with other competitive stemmers
(namely GRAS, YASS, Linguistica, and rule-based stemmers). In addition, we extended these competitive
stemmers with our second stage of HPS (maximum entropy classifier). During our experiments, we also
measured the amount of training data needed to give satisfactory results.

The first experiment (Section 5.4) was focused on evaluating how well the stemmers remove the inflection
of words by comparing classes with the same stem with classes with the same lemma obtained from manually
annotated data. HPS was at the top for all languages, only for Spanish and Hungarian did GRAS performed
equally well.

The second experiment (Section 5.5) investigated the use in an information retrieval task. Retrieval
effectiveness was tested on Czech, Hungarian, Spanish, and English, for both previously seen and unseen
data. Significance testing was done to make the results more appropriate. It was discovered that our
stemmer provides significantly better retrieval scores than competitive stemmers in the case of indexing
new (unseen) data. HPS tends to be more suitable for languages with rich morphology (Czech, Hungarian)
than other stemmers, because of the significant OOV (out-of-vocabulary) rate. For Spanish and English the
significance testing proved that there is no significant difference between stemmers for both seen and unseen
data. However, such results could have been easily predicted since the stemming of less inflected languages
does not play as important a role in the IR task as the stemming of highly inflected languages.

The last experiment (Section 5.6) examined the effect of using stemming in language modeling. Class-
based models were derived from stemming results and they were coupled with a baseline n-gram language
model. Again, for highly inflected languages, HPS performed best of all. For less inflected languages, HPS is
on the same level as YASS, but again, stemming does not play a key role here. It is interesting that GRAS,
which in previous experiments performed very well, gives one of the worst results in language modeling. We
suppose this is caused by the fact that GRAS is too focused on the recall rate and so it often overstems the
words.

We explain the superior performance of HPS by its building a stemmer in two stages. The first stage
uses the idea of involving latent semantic information in the stemming task. Other approaches deal with
the problem on a purely lexical level. By involving semantic information, our stemmer can better decide
about the appropriateness of removing different suffixes. The suffixes that can alter the semantics of the
words should be left intact in our approach. For example, compare the words spar and spar-ing. From the
lexical point of view, there is no reason to leave the suffix ing intact. However, from the semantic point
of view, spar and spar-ing are completely different words. Naturally, semantic information retrieved from
the statistical comparison of word contexts is not flawless. Nevertheless, the increased performance of HPS
indicates that latent semantics is beneficial in the stemming task. Although, the idea to build a stemmer in
two stages is not new (in [Xu and Croft, 1998], the co-occurrence statistics were used to refine equivalence
classes given by some aggressive stemmer, decreasing number of overstemming errors), our second stage
goes deeper. It is not limited to work with aggressive stemmers only. The second stage of HPS extracts
rules from the word clusters given by the first stage, and combines these rules using a maximum entropy
classifier. These rules were proved by our experiments to be very general and efficient, because HPS is able
to stem previously unseen word forms.

The preceding paragraph relates to the question of whether a stemmer should or should not remove
derivational suffixes. Firstly, it again depends on the task. As we already illustrated, reducing the word
friendly to the word friend may be useful for IR but not for machine translation. Secondly, the question
also relates to the semantics. We can generally say that we should remove a suffix only in cases where they
do not change the meaning of the stemmed word. We believe that employing some semantic information is
appropriate, given this perspective.

By taking all the results into account, HPS seems to be the most effective and most universal approach
for stemming aimed at languages with rich morphology. GRAS is very efficient in IR tasks and even
performs well in inflection removal experiments. YASS provides consistently good results and so it is also
very universal. Linguistica was not as efficient as the other stemmers in our tests.

28

A very positive fact proved by our experiments is that HPS requires only a small amount of training
data to give very satisfactory results. This property is caused by our second stage of HPS, the maximum
entropy classifier. It was shown that this second stage also improves other stemmers: they are denoted
by GRAS+HPS, YASS+HPS, and Linguistica+HPS, when supplemented by this second stage. In this
regard, HPS has no competitor. Other stemmers perform poorly if they have little data for training. Our
experiments show that a corpus of only 50,000 tokens is sufficient for efficiently training HPS. The corpora
of 1,000,000 tokens seem to be more than enough for training, because when increasing the amount of the
training data, the results do not improve significantly. The explanation is as follows. In our experiments,
we classify only to 4 classes (4 possible lengths of suffix, i.e., from 0 to 3 characters) and we use only a
few feature functions, which is something that leads to needing only a small number of parameters to be
estimated from the training data. The rules formulating the various endings of word forms are supposed
to be common and often repeated in a corpus, and this is the reason why HPS performs well even with as
small a training dataset as 50,000 tokens. These facts also explain why the performance of HPS does not
improve as much as in the case of other stemmers with increasing amounts of training data.

It may seem that in an era of vast linguistic resources, such a property would be insignificant. However,
we would like to point to the idea presented in [Hammarström and Borin, 2011]. There are a huge number of
languages that have a very limited number of speakers. For such languages, rich linguistic resources are not
obtainable. Our stemmer should be successful particularly in this area. We plan to target these languages
in the future.

As stated at the beginning of our paper, precision is preferred over recall in our approach. Thus, it is
possible to call our stemmer light. It was proven (for example in [Dolamic and Savoy, 2009; Savoy, 2008])
that aggressive stemmers usually perform better in the retrieval context than light stemmers. By more
aggressive stemming, the recall rate is increased and the size of the storing index is decreased at the same
time. However, it was not our aim to create an unsupervised stemmer focused solely on information retrieval,
but to design a multi-purpose stemmer performing well in multiple scenarios without any modification.

7. Summary

7.1. Contributions

The contributions of the paper are the following:

• We present a new approach to stemming that has a very universal scope. It outperforms the state of
the art in unsupervised ways of stemming in the inflection removal test, the information retrieval test
with unseen data, and the language modeling task. In the information retrieval test with seen data,
it provides comparable results with the state of the art.

• Our proposed method is by far the most effective one when little training data are available.

• We provide tests on four language families (six different languages).

• In the article, we deal with several aspects of the stemming problem, such as the difference between
removing inflectional and derivational suffixes, and the relation of stemming to lemmatization.

• We also introduce a novel evaluation method for comparing stemmers, which improves on the method
presented in [Paice, 1994] in several ways.

7.2. Future work

In future work we would like to focus on the analysis of words where the inflected forms are formed by
changing significant parts of the words, not just suffixes. This is essentially the weakness of all stemmers.
A representative example are the irregular verbs in English. In most languages, the verbs in different tenses
often differ in large parts of the words.

We suppose that the rules causing these inflections often repeat in natural language texts and so there
has to be a way to discover them. We plan to design more elaborate rules for finding candidates for words

29

with the same stem. In this way, many of the current stemming mistakes can be resolved, thus enhancing
the performance of our stemmer.

Another possibility for future work is to investigate different ways of modeling semantic relations. Se-
mantic spaces, which are quite a new branch of corpus statistics, could be used during clustering (Section
4.1) instead of the mutual information loss algorithm. Note that we already experimented with semantic
spaces for improving language modeling (see [Brychćın and Konoṕık, 2014]).

Also, we plan to target languages with a limited number of speakers and limited linguistic resources in
order to prove that our stemmer is suitable for them.

Finally, we would also want to test our stemmer in other scenarios. We have already provided the
stemmer to our colleagues. In [Habernal et al., 2013; Habernal and Brychćın, 2013; Habernal et al., 2014;
Steinberger et al., 2014], they discovered that our stemmer significantly improves sentiment analysis. Our
preliminary results indicate that HPS is also very useful (and significantly better than competing stemmers)
in named entity recognition and machine translation tasks.

7.3. Conclusion

In this article we presented a very effective stemming method that further shifts the boundaries of the
current state of the art in unsupervised stemming. We successfully accomplished the goal of creating a
multi-purpose stemming tool. Its design opens up possibilities for solving non-traditional tasks, such as
approximating lemmas, improving language modeling or sentiment analysis. However, it still provides very
good results in the traditional task, information retrieval.

Our approach learns morphological rules from an unannotated corpus without any knowledge about
the language or any additional information. A clustering method that discovers semantically related words
creates the basis for learning the stemming rules. These rules successfully approximate the morphology of
a language and can be used even for unknown (previously unseen) word forms. Our experiments show that
the stemming of unknown words is as effective as the stemming of known words, which is essentially one of
the greatest advantages of our stemmer compared with other competitive stemmers.

The second very positive property of our approach is that it does not require a huge amount of training
data. Our experiments confirm that for successful training, a corpus of only one million tokens is suffi-
cient. Very satisfactory results can be, however, achieved with only 50,000 tokens for training, where other
stemmers fail. This property could be very important, mainly for poor-resource languages.

Even in the cases where other stemmers have enough data for training, HPS does not lose. The com-
parison with other stemmers (namely GRAS, YASS, Linguistica as well as with rule-based stemmers) was
done on several languages, including highly inflected languages as well as less inflected languages. In the
stemming of less inflected languages, there is no significant difference between the stemmers that have been
tested. The stemming however play a key role for highly inflected languages, where our stemmer is signif-
icantly better than competing unsupervised stemmers and approximately on the same level as rule-based
stemmers. Our HPS implementation is available at https://liks.fav.zcu.cz/HPS.

Acknowledgements

This work was supported by grant no. SGS-2013-029 Advanced computing and information systems, by
the European Regional Development Fund (ERDF) and by project “NTIS - New Technologies for Information
Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090. Access to the MetaCentrum computing
facilities provided under the program “Projects of Large Infrastructure for Research, Development, and
Innovations” LM2010005, funded by the Ministry of Education, Youth, and Sports of the Czech Republic,
is highly appreciated. The access to the CERIT-SC computing and storage facilities provided under the
programme Center CERIT Scientific Cloud, part of the Operational Program Research and Development
for Innovations, reg. no. CZ. 1.05/3.2.00/08.0144 is acknowledged. We also thank the Czech News Agency
for providing a huge number of texts in Czech.

30

https://liks.fav.zcu.cz/HPS

References

Amati, G., Van Rijsbergen, C. J., Oct. 2002. Probabilistic models of information retrieval based on measuring the divergence
from randomness. ACM Transactions on Information Systems 20 (4), 357–389.

Andrew, G., Gao, J., 2007. Scalable training of L1-regularized log-linear models. In: Proceedings of the 24th International
Conference on Machine Learning. ACM, New York, pp. 33–40.

Bacchin, M., Ferro, N., Melucci, M., January 2005. A probabilistic model for stemmer generation. Information Processing and
Management 41, 121–137.

Bahl, L. R., Jelinek, F., Mercer, R. L., 1983. A maximum likelihood approach to continuous speech recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence PAMI-5 (2), 179–190.

Berger, A. L., Pietra, V. J. D., Pietra, S. A. D., Mar. 1996. A maximum entropy approach to natural language processing.
Computational Linguistics 22, 39–71.

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., Lai, J. C., 1992. Class-based n-gram models of natural language.
Computational Linguistics 18, 467–479.

Brychćın, T., Konoṕık, M., 2011. Morphological based language models for inflectional languages. In: Proceedings of IEEE
International Conference on Intelligent Data Acquisition and Advanced Computing Systems.

Brychćın, T., Konoṕık, M., 2014. Semantic spaces for improving language modeling. Computer Speech & Language 28 (1), 192
– 209.

Charles, W. G., 2000. Contextual correlates of meaning. Applied Psycholinguistics 21 (04), 505–524.
Chen, S. F., Goodman, J. T., 1998. An empirical study of smoothing techniques for language modeling. Tech. rep., Computer

Science Group, Harvard University.
Dempster, A. P., Laird, N. M., Rubin, D. B., 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal

of the Royal Statistical Society. Series B 39 (1), 1–38.
Dolamic, L., Savoy, J., November 2009. Indexing and stemming approaches for the Czech language. Information Processing

and Management 45, 714–720.
Goldsmith, J., Jun. 2001. Unsupervised learning of the morphology of a natural language. Computational Linguistics 27,

153–198.
Goldsmith, J., December 2006. An algorithm for the unsupervised learning of morphology. Natural Language Engineering 12,

353–371.
Habernal, I., Brychćın, T., 2013. Semantic spaces for sentiment analysis. In: Habernal, I., Matoušek, V. (Eds.), Text, Speech,

and Dialogue. Vol. 8082 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 484–491.
Habernal, I., Ptáček, T., Steinberger, J., June 2013. Sentiment analysis in Czech social media using supervised machine learning.

In: Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.
Association for Computational Linguistics, Atlanta, Georgia, pp. 65–74.

Habernal, I., Ptáček, T., Steinberger, J., 2014. Supervised sentiment analysis in czech social media. Information Processing &
Management 50 (5), 693 – 707.

Hammarström, H., Borin, L., 2011. Unsupervised learning of morphology. Computational Linguistics 37, 309–350.
Huddleston, R., 1988. English Grammar: An Outline. Cambridge University Press.
Hull, D., 1993. Using statistical testing in the evaluation of retrieval experiments. In: Proceedings of the 16th Annual Interna-

tional ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, pp. 329–338.
Koehn, P., Hoang, H., 2007. Factored translation models. In: EMNLP-CoNLL. pp. 868–876.
Konkol, M., 2014. Brainy: A machine learning library. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R.,

Zadeh, L. A., Zurada, J. M. (Eds.), Artificial Intelligence and Soft Computing. Vol. 8468 of Lecture Notes in Computer
Science. Springer International Publishing, pp. 490–499.

Kroeger, P., 2005. Analyzing Grammar. Cambridge University Press.
Lovins, J. B., 1968. Development of a stemming algorithm. Mechanical Translation and Computational Linguistics 11, 22–31.
Majumder, P., Mitra, M., Parui, S. K., Kole, G., Mitra, P., Datta, K., October 2007. YASS: Yet another suffix stripper. ACM

Transactions on Information Systems 25.
Oard, D. W., Levow, G., Cabezas, C. I., 2001. CLEF experiments at Maryland: Statistical stemming and backoff translation.

In: Revised Papers from the Workshop of Cross-Language Evaluation Forum on Cross-Language Information Retrieval and
Evaluation. Springer-Verlag, London, pp. 176–187.

Paice, C. D., 1994. An evaluation method for stemming algorithms. In: Proceedings of the 17th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval. Springer-Verlag, New York, pp. 42–50.

Paik, J. H., Mitra, M., Parui, S. K., Järvelin, K., Dec. 2011a. GRAS: An effective and efficient stemming algorithm for
information retrieval. ACM Transactions on Information Systems 29, 19:1–19:24.

Paik, J. H., Pal, D., Parui, S. K., 2011b. A novel corpus-based stemming algorithm using co-occurrence statistics. In: Proceed-
ings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New
York, pp. 863–872.

Porter, M. F., 1980. An Algorithm for Suffix Stripping. Program 14 (3), 130–137.
Rubenstein, H., Goodenough, J. B., Oct. 1965. Contextual correlates of synonymy. Communications of the ACM 8 (10),

627–633.
Savoy, J., 2008. Searching strategies for the Hungarian language. Information Processing & Management 44 (1), 310–324.
Steinberger, J., Brychćın, T., Konkol, M., June 2014. Aspect-level sentiment analysis in czech. In: Proceedings of the 5th Work-

shop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. Association for Computational
Linguistics, Baltimore, Maryland, pp. 24–30.

31

Taulé, M., Mart́ı, M. A., Recasens, M., 2008. AnCora: Multilevel annotated corpora for Catalan and Spanish. In: Proceedings
of the 6th International Conference on Language Resources and Evaluation. European Language Resources Association,
Marrakech, Morocco.

Watanabe, S., Iwata, T., Hori, T., Sako, A., Ariki, Y., April 2011. Topic tracking language model for speech recognition.
Computer Speech & Language 25, 440–461.

Xu, J., Croft, W. B., January 1998. Corpus-based stemming using cooccurrence of word variants. ACM Transactions on
Information Systems 16, 61–81.

32

	Introduction
	Definitions
	State of the art
	Rule-based approaches
	Statistical approaches
	Stemmer evaluation

	The proposed stemming method
	Stage 1: Clustering
	Lexical similarity
	Description of the MMI algorithm and its proposed modifications

	Stage 2: Maximum entropy classifier
	Variables for features
	Suffix length statistics
	The probability of being a suffix
	The probability of an n-gram's standing before a suffix
	Word length

	Experimental results
	Stemmer settings
	Iterative stemming
	Training corpora
	Inflection removal experiments
	Test corpora
	Results
	The impact of the size of the training dataset

	IR experiments
	Corpora
	Results
	Significance test

	Language models
	Architecture
	Results

	Performance tuning

	Discussion
	Summary
	Contributions
	Future work
	Conclusion

