9,129 research outputs found

    A study of information & knowledge generated during engineering design meetings

    Get PDF
    During the design process, there is a wealth of information generated, and although it may not be obvious at the time, this information can be extremely useful at a later instance when it may be no longer available. Many information capture solutions utilise tools such as video and media capture, incorporating the idea that if you capture all information then you will not miss anything. However, this creates another problem. Not all the information captured will be useful, therefore how can you distinguish the information that is useful from information that is not? The challenge many organisations face is how to capture and store valuable informal information in a way that is both simple and efficient, whilst remaining unobtrusive to the designers involved and without inhibiting the design activities. Through the undertaking of a series of case studies and test scenarios, it is possible to observe, identify and evaluate the various degrees of information and knowledge being generated and passed amongst design engineering teams whilst performing design activities in meeting situations. Using multi-media recording equipment and observation techniques, insight can be gained into the decision making process design engineering teams encounter during the course of a design project, and thus it is possible to evaluate where improved techniques can be applied to enhance the recording of information for re-use

    Living Innovation Laboratory Model Design and Implementation

    Full text link
    Living Innovation Laboratory (LIL) is an open and recyclable way for multidisciplinary researchers to remote control resources and co-develop user centered projects. In the past few years, there were several papers about LIL published and trying to discuss and define the model and architecture of LIL. People all acknowledge about the three characteristics of LIL: user centered, co-creation, and context aware, which make it distinguished from test platform and other innovation approaches. Its existing model consists of five phases: initialization, preparation, formation, development, and evaluation. Goal Net is a goal-oriented methodology to formularize a progress. In this thesis, Goal Net is adopted to subtract a detailed and systemic methodology for LIL. LIL Goal Net Model breaks the five phases of LIL into more detailed steps. Big data, crowd sourcing, crowd funding and crowd testing take place in suitable steps to realize UUI, MCC and PCA throughout the innovation process in LIL 2.0. It would become a guideline for any company or organization to develop a project in the form of an LIL 2.0 project. To prove the feasibility of LIL Goal Net Model, it was applied to two real cases. One project is a Kinect game and the other one is an Internet product. They were both transformed to LIL 2.0 successfully, based on LIL goal net based methodology. The two projects were evaluated by phenomenography, which was a qualitative research method to study human experiences and their relations in hope of finding the better way to improve human experiences. Through phenomenographic study, the positive evaluation results showed that the new generation of LIL had more advantages in terms of effectiveness and efficiency.Comment: This is a book draf

    ANGELAH: A Framework for Assisting Elders At Home

    Get PDF
    The ever growing percentage of elderly people within modern societies poses welfare systems under relevant stress. In fact, partial and progressive loss of motor, sensorial, and/or cognitive skills renders elders unable to live autonomously, eventually leading to their hospitalization. This results in both relevant emotional and economic costs. Ubiquitous computing technologies can offer interesting opportunities for in-house safety and autonomy. However, existing systems partially address in-house safety requirements and typically focus on only elder monitoring and emergency detection. The paper presents ANGELAH, a middleware-level solution integrating both ”elder monitoring and emergency detection” solutions and networking solutions. ANGELAH has two main features: i) it enables efficient integration between a variety of sensors and actuators deployed at home for emergency detection and ii) provides a solid framework for creating and managing rescue teams composed of individuals willing to promptly assist elders in case of emergency situations. A prototype of ANGELAH, designed for a case study for helping elders with vision impairments, is developed and interesting results are obtained from both computer simulations and a real-network testbed

    Computational Design of Wiring Layout on Tight Suits with Minimal Motion Resistance

    Full text link
    An increasing number of electronics are directly embedded on the clothing to monitor human status (e.g., skeletal motion) or provide haptic feedback. A specific challenge to prototype and fabricate such a clothing is to design the wiring layout, while minimizing the intervention to human motion. We address this challenge by formulating the topological optimization problem on the clothing surface as a deformation-weighted Steiner tree problem on a 3D clothing mesh. Our method proposed an energy function for minimizing strain energy in the wiring area under different motions, regularized by its total length. We built the physical prototype to verify the effectiveness of our method and conducted user study with participants of both design experts and smart cloth users. On three types of commercial products of smart clothing, the optimized layout design reduced wire strain energy by an average of 77% among 248 actions compared to baseline design, and 18% over the expert design.Comment: This work is accepted at SIGGRAPH ASIA 2023(Conference Track

    Log file analysis for disengagement detection in e-Learning environments

    Get PDF

    R2U2: Tool Overview

    Get PDF
    R2U2 (Realizable, Responsive, Unobtrusive Unit) is an extensible framework for runtime System HealthManagement (SHM) of cyber-physical systems. R2U2 can be run in hardware (e.g., FPGAs), or software; can monitorhardware, software, or a combination of the two; and can analyze a range of different types of system requirementsduring runtime. An R2U2 requirement is specified utilizing a hierarchical combination of building blocks: temporal formula runtime observers (in LTL or MTL), Bayesian networks, sensor filters, and Boolean testers. Importantly, the framework is extensible; it is designed to enable definitions of new building blocks in combination with the core structure. Originally deployed on Unmanned Aerial Systems (UAS), R2U2 is designed to run on a wide range of embedded platforms, from autonomous systems like rovers, satellites, and robots, to human-assistive ground systems and cockpits. R2U2 is named after the requirements it satisfies; while the exact requirements vary by platform and mission, the ability to formally reason about realizability, responsiveness, and unobtrusiveness is necessary for flight certifiability, safety-critical system assurance, and achievement of technology readiness levels for target systems. Realizability ensures that R2U2 is suficiently expressive to encapsulate meaningful runtime requirements while maintaining adaptability to run on different platforms, transition between different mission stages, and update quickly between missions. Responsiveness entails continuously monitoring the system under test, real-time reasoning, reporting intermediate status, and as-early-as-possible requirements evaluations. Unobtrusiveness ensures compliance with the crucial properties of the target architecture: functionality, certifiability, timing, tolerances, cost, or other constraints

    A System to Monitor Cognitive Workload in Naturalistic High-Motion Environments

    Get PDF
    Across many careers, individuals face alternating periods of high and low attention and cognitive workload can impair cognitive function and undermine job performance. We have designed and are developing an unobtrusive system to Monitor, Extract, and Decode Indicators of Cognitive Workload (MEDIC) in naturalistic, high-motion environments. MEDIC is designed to warn individuals, teammates, or supervisors when steps should be taken to augment cognitive readiness. We first designed and manufactured a forehead sensor device that includes a custom fNIRS sensor and a three-axis accelerometer designed to be mounted on the inside of a baseball cap or headband, or standard issue gear such as a helmet or surgeon’s cap. Because the conditions under which MEDIC is designed to operate are more strenuous than typical research efforts assessing cognitive workload, motion artifacts in our data were a persistent issue. Results show wavelet-based filtering improved data quality to salvage data from even the highest-motion conditions. MARA spline motion correction did not further improve data quality. Our testing shows that each of the methods is extremely effective in reducing the effects of motion transients present in the data. In combination, they are able to almost completely remove the transients in the signal while preserving cardiac and low frequency information in the signal which was previously unrecoverable. This has substantially improved the stability of the physiological measures produced by the sensors in high noise conditions
    • 

    corecore