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Abstract. Across many careers, individuals face alternating periods of high and low attention 
and cognitive workload can impair cognitive function and undermine job performance. We 
have designed and are developing an unobtrusive system to Monitor, Extract, and Decode Indi-
cators of Cognitive Workload (MEDIC) in naturalistic, high-motion environments. MEDIC is 
designed to warn individuals, teammates, or supervisors when steps should be taken to augment 
cognitive readiness. We first designed and manufactured a forehead sensor device that includes 
a custom fNIRS sensor and a three-axis accelerometer designed to be mounted on the inside of 
a baseball cap or headband, or standard issue gear such as a helmet or surgeon’s cap. Because 
the conditions under which MEDIC is designed to operate are more strenuous than typical 
research efforts assessing cognitive workload, motion artifacts in our data were a persistent 
issue. Results show wavelet-based filtering improved data quality to salvage data from even the 
highest-motion conditions. MARA spline motion correction did not further improve data quali-
ty. Our testing shows that each of the methods is extremely effective in reducing the effects of 
motion transients present in the data.  In combination, they are able to almost completely re-
move the transients in the signal while preserving cardiac and low frequency information in the 
signal which was previously unrecoverable. This has substantially improved the stability of the 
physiological measures produced by the sensors in high noise conditions.  

1 Introduction 

Across many careers, individuals face alternating periods of high and low atten-
tion and cognitive workload, which can result in impaired cognitive functioning and 
can be detrimental to job performance. For example, some professions (e.g., first-
responders, doctors and nurses working in an emergency room, pilots) require long 
periods of low workload (boredom), followed by sudden, high-tempo operations dur-
ing which they may be required to respond to an emergency and perform at peak cog-
nitive levels. Conversely, other professions (e.g., air traffic controllers, market inves-
tors in financial industries, analysts) require long periods of high workload and multi-
tasking during which added tasks may result in cognitive overload which can lead to 
mistakes. It is relatively simple to assess cognitive workload using neurophysiological 
sensors (e.g., functional near-infrared spectroscopy; fNIRS) when individuals are 
seated. When cognitive workload increases, there is a corresponding increase in pre-
frontal blood flow that correlates with increased task engagement. Once the task be-
comes too difficult, there is a decrease in blood flow that correlates with disengage-
ment from the task and decreased performance [1-4]. However, methods to assess 



cognitive workload during normal activities are only recently emerging [5; 6]. Even in 
these studies, “motion” includes nothing more strenuous than walking [7]. To address 
this gap, we have designed and are building an unobtrusive system to Monitor, Ex-
tract, and Decode Indicators of Cognitive Workload (MEDIC) in realistic, sometimes 
high-motion environments. Such a system could warn individuals, teammates, or 
supervisors when steps should be taken to augment cognitive readiness. 

2 Method 

We first designed a forehead sensor device that includes a custom fNIRS sensor 
and a three-axis accelerometer designed to be integrated into a baseball cap or head-
band, or standard issue gear such as a helmet or surgeon’s cap. This sensor is more 
portable and less obtrusive than most commercially-available sensors. Fig. 1 shows 
our fNIRS sensor device sensor alone (top left), mounted inside a helmet (top right), 
being worn during a jump roping task (bottom left), and being worn during a medical 
training simulation (bottom right). 

 

 

 
Fig. 1. Custom fNIRS sensor alone (top left), mounted inside a helmet (top right), worn during 

jump roping (bottom left), and worn during a medical training simulation (bottom right)  

The first full evaluation of this sensor suite included nineteen teams of three un-
dergraduates completing physical and cognitive challenges including: (1) baseline 
(sitting quietly); (2) word list memorization; (3) balance board; (4) 20 questions; (5) 
puzzle; (6) hot potato; (7) logic problems; (8) moving boxes; (9) word list recall; and 
(10) team jump rope. We chose these tasks because the effect on physical and cogni-



tive workload is well validated in the literature, giving us the ability to predict the 
cognitive and physical workload that should result. A subset of tasks increase only 
cognitive workload (e.g., word list memorization, 20 questions), a subset of tasks 
increase only physical workload (e.g., moving boxes), and a subset of tasks increase 
both cognitive and physical workload (e.g., balance board). In this way, we can eval-
uate the ability of MEDIC to accurately model changes in cognitive workload during 
physical activity.  

 
Word list memorization requires the team to remember as many words as possi-

ble, either as individuals or as a group. The limits of individual short-term memory 
are widely documented starting with Braine [8]. At the team level, the concept of 
transactive memory refers to remembering what is distributed across team members 
[9]. Balance board requires the team members coordinate rolling a ball edge to edge 
on a large, flat, weighted board without dropping it for a specified amount of time. 
For twenty questions, each team member is assigned an object and they need to ask 
yes-or-no questions (up to 20) of the experimenter to identify the object. This task has 
been used at the individual level to examine problem solving across the life span [10]. 
A variant of twenty questions has been used by Shockley at the team level by having 
a pair compare cartoon pictures [11]. For the puzzle task, we used standard cardboard 
or plastic puzzles of varying difficulty, giving teams up to two minutes to cooperate 
on constructing the puzzle. Various tasks have been used to measure individual spatial 
cognition such as the mental rotation task [12]. A similar task has been used with 
school-aged children to test interactions in single-sex and mixed-sex dyads during 
interactions involving Science Technology Engineering and Mathematics (STEM) 
learning [13]. For hot potato, team members must each maintain balance on a BOSU 
ball while passing weighted (medicine) balls from one team member to the next. Suc-
cessful teams will coordinate their timing to maintain stability during the throw and 
catch while completing the circuit as quickly as possible. Increased postural sway of 
individual team members being correlated with better team performance has been 
well-documented across a range of conditions in the motor-coordination literature 
[11; 14; 15]. For logic problems, individuals were given logic problems (e.g., 
http://www.brainbashers.com/logic.asp). Clues were given in pieces, and teams were 
allowed to use a large poster board and markers to cooperate to solve the problems. 
Individual reasoning has been studied by Braine and colleagues [16], and at the team 
level, research has tied team-based learning to improved critical thinking [17]. For 
moving boxes, teams must split into dyads to lift and move boxes of variable weights 
and sizes to construct a wall. Dyads must coordinate with each other to take turns. 
The size weight illusion—the perception that larger objects are perceived to be lighter 
than smaller objects of the same mass—is persistent across both individual and team 
lifting situations. Boxes that are especially large or wide might be incorrectly per-
ceived as light enough to carry safely [18-20]. For team jump rope, team members 
must jump synchronously to complete a specified number of consecutive jumps. They 
must coordinate both positioning and jump speed to correctly complete the task. Simi-
lar tasks have been used previously to study team coordination [21]. 



3 Result 

Because these conditions are more strenuous than most research assessing cogni-
tive workload, motion artifacts in our data were larger than normal. All wearable 
NIRS sensors are susceptible to artifacts arising from subject motion; as the subject 
moves, the sensor can lose contact with the skin or shift position, leading to large 
transients in the optical transmission, or even baseline shifts.  In a typical setting, this 
is a non-issue because participants or clinical patients are relatively motionless. This 
is especially problematic when subjects are free to move naturally.  These transient or 
step discontinuities cannot be effectively removed with conventional linear filters – 
the broad frequency content of the transients mean the signal is not significantly at-
tenuated regardless of the selected frequency range.  Moreover, linear filters tend to 
“ring” in response to transients, leading to contamination of the signal over a wide 
time period.  We therefore have turned to nonlinear methods to remove motion related 
artifacts.  Two of the most effective methods for motion artifact removal in NIRS 
signals are wavelet transient removal filters applied to the raw optical time course 
[22] and [23] movement artifact removal algorithm (MARA), which is based on mov-
ing standard deviation and spline interpolation applied to the calculated hemodynamic 
time courses.   
 
 

There has been significant work comparing techniques for rejecting motion arti-
facts [4; 24; 25], however, within the large transients, the band-pass filtered raw data 
was of reasonable quality (i.e., the shape of the raw data was preserved). We needed a 
technique that would allow us to salvage the data during the high motion event rather 
than excluding it. We evaluated several standard techniques including MARA spline 
motion correction [23], wavelet-based filtering [22] and combined MARA and wave-
let filtering. Wavelet-based filtering improved data quality to allow salvaging data 
from even the highest-motion conditions. MARA spline motion correction alone did 
not further improve data quality. Fig. 2 shows the entire time series of data (left) and a 
zoomed in window of 20 seconds of data (right). The black dashed line in the figures 
on the left indicate the data included in the 20 second zoom. The left column shows 
how motion artifacts are removed on the entire series, while the right column shows 
how artifacts are removed in detail.   



 
Fig. 2. An entire time series of raw infrared (IR) reflectance data (left) and a zoomed in win-
dow of 20 seconds of data (right). The black dashed line in the figures on the left indicate the 

data included in the 20 second zoom. 

4 Conclusion 

Our testing shows that each of the methods is extremely effective in reducing the 
effects of motion transients present in the data.  In combination, they are able to al-
most completely remove the transients in the signal while preserving cardiac and low 
frequency information in the signal which was previously unrecoverable.  This has 
substantially improved the stability of the physiological measures produced by the 
sensors in high noise conditions. We are currently analyzing our time-series data to 
determine whether information on oxygenated blood volume alone is enough to assess 
cognitive workload as it is with computer-based tasks [1; 3], or whether the effect of 
physical activity requires the use of additional variables to assess cognitive workload. 
As we are building up our data processing and modeling pipeline, we are also collect-
ing data for our next evaluation of MEDIC at Vanderbilt Medical School (Nashville, 
TN, USA) where we will assess medical students, residents, and faculty members 
during high-fidelity training simulations. 
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