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Abstract Most e-Learning systems store data about the learner’s actions in log files, which 

give us detailed information about learner behaviour. Data mining and machine learning 

techniques can give meaning to these data and provide valuable information for learning 

improvement. One area that is of particular importance in the design of e-Learning systems is 

learner motivation as it is a key factor in the quality of learning and in the prevention of 

attrition. One aspect of motivation is engagement, a necessary condition for effective 

learning. Using data mining techniques for log file analysis, our research investigates the 

possibility of predicting users’ level of engagement, with a focus on disengaged learners. As 

demonstrated previously across two different e-Learning systems, HTML-Tutor and iHelp, 

disengagement can be predicted by monitoring the learners’ actions (e.g., reading pages and 

taking test/quizzes).  

In this paper we present the findings of three studies that refine this prediction approach. 

Results from the first study show that two additional reading speed attributes can increase the 

accuracy of prediction. The second study suggests that distinguishing between two different 

patterns of disengagement (spending a long time on a page/test and browsing quickly through 

pages/tests) may improve prediction in some cases. The third study demonstrates the 

influence of exploratory behaviour on prediction, as most users at the first login familiarize 

themselves with the system before starting to learn. 
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1. Introduction 

 

Motivation is recognized as an important prerequisite of learning. While in a classroom 

setting motivation can be addressed by teachers, in e-Learning environments new ways of 

motivating or re-motivating learners are required. Several approaches addressing 

motivational issues have been proposed, including the design of attractive e-Learning systems 

(Ishii et al., 2004), using game features to motivate learners (Chen et al., 1998; Connolly & 

Stansfield, 2006), using whiteboards (Becta, 2002) and clickers (Martyn, 2007), as well as 

animated agents (Machado et al., 1999; Gussak & Baylor, 2003). Nevertheless, learners are 

not getting the full benefit of these features if they do not engage in the first place. These 

approaches focus on making the interaction attractive rather that addressing motivation in a 

personalised manner. Motivational issues often go beyond the facilities of a system and its 

engaging character to personal characteristics like the learners’ attitudes to the subject matter, 

their attitudes toward the tutor (Beal et al., 2006) and their current mood (Beal & Lee, 2005). 

Therefore, knowledge about the engagement status and the motivational characteristics of 

learners could enhance the educational systems with detection capabilities and, ultimately, 

with personalised intervention strategies targeting the motivational status and characteristics 

of the learners. 

Although there is no specific definition for engagement as a psychological concept, there 

are two theories that refer to it. One is Flow Theory (Csikszentmihalyi, 1997) and the other is 

the Theory of Engagement (Shneiderman et al., 1995). Flow Theory describes the state of 

flow which appears when several characteristics are met. Among these characteristics are: 1) 

clear goals; 2) concentrating and focusing; 3) balance between ability level and challenge; 4) 

a sense of personal control, etc. The second point, about concentration and focus, refers to 

engagement in the same meaning as used in our research.  

The Theory of Engagement emerged in the mid-nineties in the context of teaching in 

electronic and distance education environments. The theory stresses the importance of being 

engaged in learning activities and the authors mention two ways of increasing engagement: 

collaboration and interaction with other learners, and meaningful tasks. The meaning of the 

term engagement is the same as the one previously mentioned, but the theory is focused on 

how to enhance it in the context of computer-supported learning environments.  

To better understand the place of engagement in relation to motivation and other concepts 

associated with motivation (Pintrich & Schunk, 2002), we briefly describe the relation 

between engagement and some of these concepts: 1) engagement can be influenced by 

interest, as people tend to be more engaged in activities they are interested in; therefore, 

interest is a determinant of engagement; 2) effort is closely related to interest in the same 

way: more effort is invested if the person has interest in the activity; the relation between 

engagement and effort can be summarized in the following way: engagement can be present 

with or without effort; if the activity is pleasant (and/or easy), engagement is possible without 

effort; in the case of more unpleasant (and/or difficult) activities, effort may be required to 

stay engaged; 3) the difference between engagement and focus of attention, as it is used in 

research, is that focus of attention refers to attention through a specific sensorial channel (e.g. 

visual focus), while engagement refers to the entire mental activity (involving at the same 

time perception, attention, reasoning, volition and emotions); 4) in relation to motivation, 

engagement is just one aspect indicating that, for one reason or another, the person is 

motivated to do the activity he/she is engaged in, or, conversely, if the person is disengaged, 

he/she may not be motivated to do the activity; in other words, engagement is an indicator of 

motivation. 

We proposed a way of detecting disengagement in an unobtrusive way and we validated 

this approach across two e-Learning systems: HTML-Tutor and iHelp. During the 
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development of the approach we observed several aspects that could potentially improve it: 

1) usage of reading speed attributes; 2) detection on two disengagement patterns: spending a 

long time on a page or test, and browsing fast through pages; and 3) eliminating exploratory 

sequences. 

Our approach (Cocea & Weibelzahl, 2007a) was developed using data from HTML-Tutor. 

In the validation study (Cocea & Weibelzahl, 2007b) conducted on iHelp data, we introduced 

two attributes related to reading speed that considerably improved the prediction. These two 

reading speed attributes are related to a minimum and a maximum time required for reading a 

page. The effect of introducing these attributes on HTML-Tutor data is investigated in the 

first study presented in this paper; we expect an improvement of prediction performance. 

The second study is very much related to the first, as the reading speed attributes somehow 

correspond to the two observed patterns of disengagement: long time spent on a page/test and 

fast browsing. The observation of these two patterns inspired the introduction of the reading 

speed attributes and thus, it is reasonable to assume that the usage of these attributes would 

improve the detection of the two patterns. Therefore, the purpose of the second study is 

twofold: i) to investigate the possibility of predicting the patterns of disengagement and ii) to 

identify the role of the corresponding attributes in the prediction, and, more specifically, to 

see if they improve prediction. 

The third study aims to eliminate a possible bias of which we became aware by observing 

the log data. When learners first login to the system, they exhibit a somewhat “chaotic” and 

“illogical” behaviour as they are probably exploring the system before starting to use it. This 

exploratory behaviour is quite different from system usage behaviour and may have added a 

negative bias to our predictions. Hence, the third study investigates the influence on 

prediction of eliminating the exploratory sequences; we hypothesize an improvement of it. 

The rest of the paper is organized as follows. Section 2 presents related research. Section 3 

describes our approach to disengagement detection, including how we developed and 

validated it. Section 4 contains the three refinement studies briefly described above. The 

results are summarised and discussed in Section 5, and Section 6 concludes the paper.  

 

 

2. Related Research 

 

Several approaches for motivation detection from learner’s interactions with e-Learning 

systems have been suggested, ranging from rule-based approaches and Item Response Theory 

models to Bayesian Networks. An overview of these approaches is presented in Table 1. 

A rule-based approach based on ARCS Model (Keller, 1987) has been proposed to infer 

motivational states from the learners’ behaviour using a ten-question quiz (de Vicente & Pain, 

2002). 85 inference rules were produced by the participants who had access to replays of the 

learners’ interactions with the system, as well as to the learner’s motivational traits.  

Another approach (Qu et al., 2005) based on the ARCS Model infers three aspects of 

motivation – confidence, confusion and effort – from the learner’s focus of attention and 

inputs related to learners’ actions: time to perform the task, time to read the paragraph related 

to the task, the time for the learner to decide how to perform the task, the time when the 

learner starts/finishes the task, the number of tasks the learner has finished with respect to the 

current plan (progress), the number of unexpected tasks performed by the learner which are 

not included in the current plan (the learner’s actions are compared to a learning plan) and 

number of questions asking for help. 

A factorial analysis approach (Zhang et al., 2003) was used to group user’s actions in two 

categories: actions that contribute to prediction of attention and actions that contribute to 
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prediction of confidence. The aspects targeted for prediction are two of the main concepts of 

the ARCS model. 

Engagement tracing (Beck, 2005) is an approach based on Item Response Theory that 

proposes the estimation of the probability of a correct response given a specific response time 

for modelling disengagement; two methods of generating responses are assumed: blind 

guessing when the student is disengaged and an answer with a certain probability of being 

correct when the student is engaged. The model also takes into account individual differences 

in reading speed and level of knowledge. 

A dynamic mixture model combining a hidden Markov model with Item Response Theory 

was proposed in (Johns & Woolf, 2006). The dynamic mixture model takes into account: 

student proficiency, motivation, evidence of motivation, and a student’s response to a 

problem. The motivation variable can have three values: a) motivated, b) unmotivated and 

exhausting all the hints in order to reach the final one that gives the correct answer (called 

unmotivated-hint) and c) unmotivated and quickly guessing answers to find the correct 

answer (called unmotivated-guess).  

Using a Bayesian Network, trained with log-data, variables related to learning and 

attitudes toward the tutor and the system can be inferred (Arroyo & Woolf, 2005). The log-

data registered variables such as problem-solving time, mistakes and help requests.  

A latent response model was proposed for identifying the students who try to game the 

system (Baker et al., 2004). Using a pre-test–post-test approach the gaming behaviour was 

classified in two categories: a) with no impact on learning and b) with decrease in learning 

gain. The variables used in the model were: student’s actions and probabilistic information 

about the student’s prior skills. 
 

 

Table 1 Related research overview  

 

Approach Input Output 

Rule-based approach 

(de Vicente & Pain, 2002) 

Learner’s actions 

Motivational traits 

Motivational states 

 

Focus of attention 

(Qu et al., 2005) 

Learner’s focus of attention 

Current task 

Expected time to perform the task 

Confidence 

Confusion 

Effort 

Factorial analysis 

(Zhang et al., 2002) 

Learner’s actions 

 

Attention 

Confidence 

Engagement tracing  

(Beck, 2004) 

Probability of correct response 

given a specific response time 

Engagement 

Blind guessing 

Dynamic mixture model  

(Johns & Woolf, 2006) 

Student proficiency 

Evidence of motivation 

Student’s response to a problem 

Motivated 

Unmotivated-hint 

Unmotivated-guess 

Bayesian network  

(Arroyo & Woolf, 2005) 

Problem-solving time 

Mistakes 

Help requests 

Attitudes to learning 

Attitudes towards the tutor 

Attitudes towards the system 

Latent response model  

(Baker et al., 2004) 

Student’s actions 

Probabilities of prior skills 

Harmful gaming 

Non-harmful gaming 

Non-gaming 

Combined approach 

(Walonoski & Heffernan, 2006) 

Classroom observations 

Logged actions 

Guessing and checking 

Hint/ help abuse 

Non-gaming 

 

 

The same problem of undesired gaming behaviour was addressed in (Walonoski & 

Heffernan, 2006a), an approach that combines classroom observations with logged actions in 

order to detect gaming behaviour manifested by guessing and checking or hint/help abuse. 
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Suggested prevention strategies (Walonoski & Heffernan, 2006b) include two different active 

interventions for the two types of gaming behaviour and a passive intervention. When the 

system detected that a student was exhibiting one of the two gaming behaviours, a message 

was displayed to the student encouraging him/her to try harder, ask the teacher for help or 

pursue other suitable actions. The passive intervention had no triggering mechanism and 

consisted of providing visual feedback on the student’s actions and progress that was 

continuously displayed on the screen and available for viewing by the student and teacher.  

All these approaches have the advantage of unobtrusively monitoring the learners’ 

behaviour and identifying patterns associated with motivational issues. However they differ 

from our proposed approach in two aspects. First, the environments used include only 

problem-solving activities while we are interested in learning-type activities as well. Second, 

the domain is mathematics, which is rather technical and also a rather specialized domain 

which does not allow easy generalization to different areas; the domain considered in our 

research is HTML, which is at the border between technical and non-technical subjects and, 

therefore, may allow for an easier generalization across domains. 

 

 

3.  Motivation Modelling Framework 

 

Our framework for motivation modelling includes two phases (Cocea, 2006). The first phase 

is related to disengagement and aims to identify the disengaged learners in an unobtrusive 

manner by monitoring their activity when using the system. The second phase includes a 

dialog with the learner that aims to get the learner involved in a self-assessment of several 

motivational characteristics related to Social Cognitive Learning Theory (Bandura, 1986). 

Using this two-step process, a complete motivational profile of the learner is obtained and 

personalized intervention can be delivered based on it. Moreover, monitoring the engagement 

status of the learner allows intervention at appropriate times. 

In this paper we focus on the first phase of the modelling framework. More specifically, 

we explore three different ways of refining the disengagement detection approach. The steps 

taken in the development of this approach are briefly presented in the following subsections. 

They include: 1) a pilot study where we investigated the possibility of predicting 

disengagement from log files; 2) a main study where we identified the relevant actions for 

predicting disengagement; and 3) a validation study where we applied our approach to a 

second system in order to cross-validate the results. 

The first two studies used data from HTML-Tutor
1
, a web interactive learning 

environment based on NetCoach (Weber et al., 2001). HTML-Tutor offers an introduction to 

HTML and publishing on the Web; it is online and can be accessed freely.  

The tutorial is in German and contains seven chapters/high-level topics on HTML and 

publishing on the Web, e.g. text elements, hyperlinks, layout etc. The list of topics is 

displayed on the left of the screen – see Fig.1a. Each item in the list links to a file that is 

displayed in the main part of the screen. Several tools are accessible at the top of the screen 

among which are: a manual on how to use the system, communication tools, frequent 

questions, preferences on the way the information is displayed on the screen, a glossary of 

terms, taking notes and visualising statistics on the personal usage of the system (e.g. topics 

covered and performance on tests). A forward and back navigation bar is available under the 

tools bar and above the content. A guided tutorial about how to use the system is also 

available – see Fig.1b. 

 

                                                
1 http://art.ph-freiburg.de/HTML-Tutor/login-d.html 
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For the validation study, data from iHelp
2
, the web-based learning environment from 

University of Saskatchewan, was used. iHelp includes two web-based applications designed 

to support both learners and instructors throughout the learning process: the iHelp Discussion 

system and iHelp Learning Content Management System or iHelp Courses. The iHelp 

Discussion system allows communication between students, between students and instructors 

and between students and subject matter experts. 
 

 

(a) 

 
  

(b) 

 

Fig.1 (a) HTML-Tutor screenshot; (b) Screenshot of the tutorial on how to use HTML-Tutor.  

 

 

The iHelp Courses is designed for students working at a distance. It provides students with 

course content (text and multimedia), examples and quizzes/surveys. The content is 

organized in packages (containing hierarchical activities) with a single package displayed at a 

time on the left of the screen – see Fig.2. Each activity links to a file within the content 

package that is displayed in the main part of the screen. Forward and back navigation is 

available in the top right frame. The left hand menu included course actions, like preferences 

and search and other actions like logout. Access to collaboration tools, i.e. chat and 

                                                
2 http://ihelp.usask.ca/ 
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discussion forum, is available at the bottom of the screen. The later is displayed in the bottom 

area of the screenshot in Fig.2. 
 

 

Fig.2 iHelp Courses screenshot. 

 

 

3.1. PILOT STUDY  

 

A pilot study (Cocea & Weibelzahl, 2006) with a limited number of HTML-Tutor users has 

brought valuable information for the granularity of the timeframe for analysis. In this pilot 

study, we have used complete sessions as units of analysis; data from 20 learners 

(corresponding to 20 sessions) were analysed. Details on the methodology are given in the 

next section while here the focus is on findings that informed the design of the following 

study. Total time spent on the course turned out to be an important predictor of 

disengagement. However, according to this model a decision whether a learner is engaged or 

disengaged could only be made after 45 minutes, i.e. at a time when most disengaged 

students would have already left the system. We also noticed variation in the engagement 

level throughout a session: a learner could be engaged and then be disengaged for a while and 

engaged again and so on. We are interested in detecting disengagement and intervening 

appropriately before the learner leaves the system. We therefore decided to split learning 

session into sequences of 10 minutes for analysis.  

The main purpose of this pilot study was to investigate the possibility of predicting 

disengagement from actions common to most e-Learning systems, like reading pages and 

taking tests. Waikato Environment for Knowledge Analysis (WEKA) (Witten & Frank, 2005) 

was used for analysis and decision trees method was chosen for its high interpretability. 75% 

correctly predicted instances (accuracy) for both engagement and disengagement, and 0.70 

correctly identified instances (true positive rate) of disengagement, encouraged us to continue 

with our approach. 

 

 

3.2. PREDICTION MODEL DEVELOPMENT 

 

The prediction model was developed on HTML-Tutor data. A list of all possible events that 

are recorded by HTML-Tutor is presented in Table 2. The second column displays the 

derived attributes used in the analysis for each of the possible events. For example, two 
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attributes related to reading pages are used: the number of pages and the average time spent 

reading pages. The other three columns display the range, mean and standard deviation for 

each attribute; all attributes referring to time are measured in seconds. 

 
 

Table 2 Logged events and derived attributes used in the analysis with their range, mean and standard deviation 

 

Events Parameters/ Attributes Range Mean Std. Dev. 

Goal The selected goal (from a list of 12 goals) 0-12 0.16 1.00 

Number 0-2 0.00 0.08 
Preferences 

Time spent selecting them 0-61 0.12 2.39 

Number of pages 0-29 2.61 3.43 
Reading pages 

Average time 0-600 270.73 258.49 

Number of pre-tests 0-34 0.21 2.19 

Average time 0-288 0.71 10.23 

Number of correct answers 0-33 0.17 1.92 
Pre-tests 

Number of incorrect answers 0-7 0.03 .371 

Number of tests 0-31 2.01 3.78 

Average time  0-600 80.56 176.19 

Number of correct answers 0-28 1.34 2.65 
Tests 

Number of incorrect answers 0-11 0.66 1.39 

Number of times accessed (frequency) 0-26 0.62 1.88 
Hyperlink 

Average time  0-600 31.64 98.94 

Number of times accessed 0-2 0.01 0.10 
Manual 

Average time  0-121 0.35 5.17 

Number of times accessed 0-2 0.01 0.13 
Help 

Average time 0-267 0.74 11.99 

Number of times accessed 0-5 0.10 0.39 
Glossary 

Average time 0-600 12.24 61.57 

Number of times accessed 0-1 0.01 0.08 
Communication 

Average time 0-2 0.00 0.08 

Number of times accessed 0-3 0.03 0.20 
Search 

Average time 0-600 13.84 89.19 

Number of times accessed 0-6 0.01 0.22 
Remarks 

Average time 0-113 0.14 3.73 

Number of times accessed 0-1 0.01 0.07 
Statistics 

Average time 0-159 0.53 8.25 

Number of times accessed 0-1 0.00 0.06 
Feedback 

Average time 0-18 0.05 0.83 

 

Three human experts were involved in labelling the data with the level of engagement: one 

who classified all sequences (rater 1) and two (rater 2 and rater 3) who were involved in a 

coding reliability study presented below. They had access only to the unprocessed log files 

(split into sequences of 10 minutes) containing all events. In the pilot study, only two 

categories, engaged and disengaged, were used; however, due to the introduction of the 

sequences of 10 minutes of activity as the unit of analysis, the human raters occasionally had 

difficulty in deciding between the two, and thus a new category was introduced: neutral.  

A small study was conducted to verify the reliability of the human coding. It included an 

informal assessment and an additional expert rating. The informal assessment was conducted 

using only 10 sequences; these were coded by rater 1 and rater 2. The ratings based on the 

given instructions were discussed to prevent different results due to instruction vagueness or 

suggestibility. The percent agreement between was 80% (only 2 different ratings from 10); 

the kappa measurement of agreement was 0.60 (p=.038) and the Krippendorff's alpha was 
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0.60 as well. In the additional expert rating, another expert (rater 3) coded 100 sequences 

randomly sampled from the 1015 entries in the dataset; the instructions used for the informal 

assessment were expanded with typical situations or patterns for each case. Details can be 

found in Cocea & Weibelzahl (2007a). The additional expert rating resulted in a rater 

agreement (between rater 1 and rater 3) of 92% (only eight different ratings from 100; in 

further discussion between the raters the eight disagreements were resolved) with a kappa 

measurement of agreement of 0.826 (p<.01) and Krippendorff's alpha of 0.8449. Although 

the percent agreement is high, we can see that kappa and Krippendorff's alpha have lower 

values. The percent agreement is not always the best indicator for agreement as it tends to be 

too liberal, while Cohen’s Kappa and Krippendorff's alpha are known to be more 

conservative (Lombard et al., 2003). For the last two coefficients, values above 0.80 denote 

high inter-coder reliability, indicating that the engagement level within a 10 minutes 

sequence was established in an objective and reliable manner.  

To establish whether there are significant differences in prediction levels due to certain 

attributes, three datasets (see Table 3) of HTML-Tutor data with different numbers of 

attributes were analyzed (Cocea & Weibelzahl, 2007a). The first dataset (DS-30) included all 

30 attributes, the second dataset (DS-10) included 10 attributes related to reading pages, 

taking tests, following hyperlinks and consulting the glossary (these attributes were selected 

based on frequency of use by learners) and the third dataset (DS-6) included six attributes 

related only to reading pages and taking tests. 
 

 
Table 3 HTML-Tutor datasets and attributes  

 

Dataset Attributes 

DS-30 30 attributes related to all events 
DS-10 10 attributes related  to pages, tests (displayed below), 

hyperlinks (number of hyperlinks, average time) and glossary 
(number of times accessed, average time) 

DS-6 6 attributes related  to pages and  tests (number of pages, 
average time on pages, number of tests, average time on tests, 
number of correctly answered tests, number of incorrectly 
answered tests) 

 

 

The analysis included eight methods (Mitchell, 1997). These methods represent the most 

commonly used techniques for the data types of our datasets: nominal data for the predicted 

variable and numeric data for the predictors. All methods have the default Weka parameters 

unless specified otherwise. The eight methods described briefly are:  

(a) Bayesian Nets with K2 algorithm and a maximum of 3 parent nodes (BN); Bayesian nets 

are popular in user modelling, having the advantage of providing a probability estimation 

rather than a threshold; also, they have shown high accuracy and speed when applied to 

large databases;  

(b) Logistic regression (LR) models the probability of a categorical variable (e.g. 

disengagement in our case) occurring as a linear function of a set of predictor variables;  

(c) Simple logistic classification (SL) uses the LogitBoost algorithm that performs additive 

logistic regression (combines several logistic regression models);  

(d) Instance based classification with IBk algorithm (IBk) is a K-nearest neighbours classifier 

which is simple and effective; the nearest-neighbour method has been widely used in 

pattern-recognition since the 1960s;  

(e) Attribute Selected Classification using J48 classifier and Best First search (ASC) 
combines the two methods referred to in its name: attribute selection and classification; 
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the dimensionality of training and test data is reduced by attribute selection before being 

passed on to the J48 classifier;  

(f) Bagging using REP (reduced-error pruning) tree classifier (B); bagging is one of the 
methods used to improve classifier accuracy by combining results of several classifiers 

trials; the REP tree classifier is used because it is a fast decision tree learner (reduces the 

time required for the bagging to be performed);  

(g) Classification via Regression (CvR) performs classification using regression methods; for 

each class of the predicted variable (engaged and disengaged in our case) a regression 

model is built;  

(h) Decision Trees with J48 classifier based on Quinlan’s C4.5 algorithm (Quinlan, 1993) 

(DT); the decision trees have the advantage of high interpretability and the possibility to 

convert to classification rules (e.g. to attach actions to certain situations corresponding to 

certain rules); however, even if they work well on relatively small datasets, scalability 

becomes an issue on large real-world databases. 

 

Several stand-alone or combined prediction measurements are reported:  

(a) percentage correct or accuracy: 

instances ofnumber  total

instances classifiedcorrectly  ofnumber 
=Accuracy  

The percentage of correct classifications shows how well the engagement level of the learners 

is accurately identified (for both engaged and disengaged). 

 

(b) True Positive (TP) rate – illustrated for disengaged class: 

instances disengaged ofnumber  total

 instances disengaged classifiedcorrectly  ofnumber 
 =rateTP  

The True Positive rate for the disengaged class shows how well the disengaged learners are 

identified; it illustrates the correct classifications for the disengaged class. 

 

(c) False Positive (FP) rate – illustrated for disengaged class: 

instances disengaged ofnumber  total

 instances disengaged classifiedy incorrectl ofnumber 
 =rateFP  

The False Positive rate for the disengaged class shows to what degree engaged learners are 

incorrectly predicted as disengaged; it illustrates the incorrect classifications for the 

disengaged class. 

 

(d) Precision:   

rateFPrateTP

rateTP

  

 
Precision

+
=  

Precision can be seen as a measurement of fidelity (closeness of repeated measures) for a 

given classification class (e.g. engaged or disengaged). High precision and low bias leads to 

high accuracy. 

 

(e) Error:  

instances ofnumber  total

instances classifiedy incorrectl ofnumber 
=Error  

The error rate is the proportion of errors made over the whole of the test instances and, like 

accuracy, indicates the overall performance of a classifier. 

 

The results are displayed in Table 4; they indicate a good level of prediction across all 

methods and datasets, with accuracy levels between 84% and 88%, and TP rate between 0.87 
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and 0.93. The mean absolute error varies between 0.10 and 0.15. The best overall prediction 

was obtained with the second dataset, i.e. DS-10: 88% correctly predicted instances, using 

Classification via Regression (CvR) and the best prediction for disengaged learners was 0.93 

obtained using Bayesian Networks (BN).  

The very similar results obtained from eight different data mining methods and using three 

different datasets indicates consistency of prediction and of the attributes used for prediction. 

The fact that there is small variation between the three datasets indicates that the most 

valuable attributes for predictions are the ones related to reading pages and taking tests (the 

only ones included in DS-6). These attributes also correspond to the most frequent actions 

within the HTML-Tutor. The fact that the best performance is obtained on DS-10 indicates 

that attributes related to hyperlinks and glossary contribute to a more accurate prediction. 

However, considering the Minimum Description Length principle (Witten & Frank, 2005), 

the frequency of events, the sparsity of data and the computational complexity, we argue for 

the use of the minimum number of attributes in the prediction model. Therefore, it should 

include only actions related to reading and tests: number of pages accessed, average time 

spent on pages, number of tests taken, average time spent on taking tests, number of correctly 

answered tests and number of incorrectly answered tests. 
 

 

Table 4 Predictions of engagement level from HTML Tutor logs 

 

  BN LR SL IBk ASC B CvR DT 

Accuracy 87.07 86.52 87.33 85.62 87.24 87.41 87.64 86.58 

TP rate (disengaged) 0.93 0.93 0.93 0.92 0.93 0.93 0.92 0.93 

Precision (disengaged) 0.91 0.90 0.90 0.91 0.92 0.92 0.92 0.91 

DS-30 

Error 0.10 0.12 0.12 0.10 0.10 0.12 0.12 0.11 

Accuracy 87.18 85.88 85.82 85.13 86.03 86.87 88.07 85.16 

TP rate  (disengaged) 0.93 0.93 0.93 0.91 0.92 0.92 0.91 0.91 

Precision (disengaged) 0.91 0.89 0.89 0.92 0.91 0.91 0.92 0.90 

DS-10 

Error 0.11 0.13 0.14 0.10 0.12 0.13 0.12 0.13 

Accuracy 86.68 84.15 84.05 85.18 86.95 86.90 87.21 86.20 

TP rate (disengaged) 0.93 0.93 0.93 0.90 0.92 0.92 0.91 0.92 

Precision (disengaged) 0.90 0.87 0.87 0.90 0.92 0.91 0.92 0.91 

DS-6 

Error 0.12 0.15 0.15 0.12 0.12 0.13 0.13 0.13 

 

 

 

3.3. CROSS-SYSTEM VALIDATION  

 

The next step was to cross-validate our prediction approach using a different e-Leaning 

system (Cocea & Weibelzahl, 2007b). Hence, we analyzed log files from an HTML course 

within iHelp, the web-based e-Learning system from University of Saskatchewan briefly 

described at the beginning of Section 3. We looked at 10 minute sequences, focussing on the 

same actions that were found most relevant in the previous experiment: reading pages and 

taking tests. Only 4 attributes were exactly the same as the ones used with HTML-Tutor: 

number of pages accessed, average time spent on pages, number of questions and average 

time spent on tests. Information on the correctness of answered questions was not available. 

Two new attributes related to reading speed were introduced: the number of pages exceeding 

the threshold established for maximum time required to read a page (420 seconds/7 minutes) 

and the number of pages below the threshold established for minimum time to read a page (5 

seconds). The thresholds were established on the bases of the average reading speed and 

number of words per page; for details see Cocea & Weibelzahl (2007b). 
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Four datasets were used in the analysis: 1) DS-all+2 contains all attributes (including the 

two new ones – hence the notation ‘+2’) and all sequences (including those of less than 10 

minutes); 2) DS-all-2 was obtained by eliminating the two additional attributes from DS-

all+2; 3) DS-600+2 contains all attributes, but only sequences of 10 minutes (600 seconds) 

(i.e. sequences of less than 10 minutes due to user log-off were skipped) and 4) DS-600-2 

obtained by eliminating the two additional attributes from DS-600+2 (see Table 5). DS-all-2 

and DS-600-2 were used to obtain a direct comparison with the HTML Tutor results. The 

other two datasets were used to investigate the impact of the two new attributes on prediction.  
 

 

Table 5 iHelp datasets  

 

Dataset Sequences Attributes 

DS-all+2 All sequences New attributes included 
DS-all-2 All sequences New attributes excluded 
DS-600+2 10-minutes sequences only New attributes included 

DS-600-2 10-minutes sequences only New attributes excluded 

 

 

Table 6 Predictions of engagement level from iHelp logs 

 

  BN  LR  SL  IBk  ASC  B  CvR  DT 

Accuracy  89.31 95.22  95.13  95.29  95.44  95.22  95.44  95.31 

TP rate (disengaged) 0.90  0.95  0.95  0.94  0.94  0.94  0.95  0.95 

Precision  0.90  0.95  0.95  0.96  0.97  0.97  0.96  0.96 

DS-all+2 

Error  0.13  0.07  0.10  0.05  0.08  0.08  0.08  0.07 

Accuracy  81.73  83.82  83.58  84.00  84.38  85.11  85.33  84.38 

TP rate (disengaged) 0.78  0.82  0.81  0.79  0.77  0.79  0.80  0.78 

Precision  0.86  0.86  0.86  0.89  0.91  0.91  0.91  0.91 

DS-all-2 

Error  0.22  0.24  0.26  0.20  0.25  0.23  0.23  0.25 

Accuracy  94.65  98.06  97.91  98.59  97.65  97.65  97.76  97.47 

TP rate (disengaged) 0.95  0.97  0.96  0.98  0.96  0.96  0.96  0.96 

Precision  0.94  0.99  0.99  0.99  0.99  0.99  0.99  0.99 

DS-600+2 

Error  0.07  0.02  0.04  0.02  0.05  0.04  0.03  0.03 

Accuracy  84.29  85.82  85.47  84.91  84.97  85.38  85.26  85.24 

TP rate (disengaged) 0.78  0.77  0.76  0.77  0.75  0.76  0.75  0.75 

Precision  0.88  0.92  0.92  0.89  0.92  0.92  0.92  0.92 

DS-600-2 

Error  0.18  0.22  0.23  0.20  0.25  0.23  0.24  0.24 

 

The same system, i.e. Weka, and the same eight data mining methods were used. The 

results are displayed in Table 6. For the DS-all-2 and DS-600-2 similar results to HTML-

Tutor are observed: accuracy rates are between 82% and 85% while TP rate varies from 0.75 

to 0.82. If, for the accuracy, there is a slight decrease, for the TP rate the decrease is higher. 

This may be due to the lack of attributes related to quizzes/surveys results. 

For the DS-all+2 and DS-600+2 the results vary between 89% and 98% for the accuracy 

and between 0.90 and 0.99 for the TP rate, indicating that the two new attributes improve the 

prediction level. The best overall prediction was 98.56%, obtained using Instance Based 

Classification with IBk algorithm on DS-600+2. The best disengagement prediction was 0.98 

using the same method and the same algorithm. This is not surprising since this method is 

known to be simple and effective (Witten & Frank, 2005). 

The similarity of results for HTML-Tutor and iHelp obtained using similar attributes and 

the same methods indicates that engagement prediction is possible using information related 

to reading pages and taking tests, information logged by most e-Learning system. Hence, we 
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can conclude that our proposed approach for engagement prediction is system independent 

and could be generalized to other systems.  

However, while designing the approach we identified aspects that could improve the 

prediction even more. The pursued path was ‘construction’ (using HTML-Tutor data), 

followed by validation (using iHelp data). As mentioned in the introduction, we observed two 

patterns of behaviour with HTML-Tutor which proved to be present with iHelp as well. This 

led to the introduction of two new attributes related to reading speed and to the idea of 

investigating the prediction of the two patterns. Thus, we introduced the attributes in the 

validation study and observed a considerable improvement of prediction. Hence, the 

following study followed the reversed path, i.e. from the validation study back to the 

‘construction’ in order to verify whether the two additional attributes improve prediction in 

HTML-Tutor data as well. Very much related to this is the idea of verifying if the separation 

of different types of engagement improves prediction. This investigation is supported not 

only by our observations on the data, but also from literature, several studies reporting usage 

of different categories of ‘motivational status’. Another observation on data from both 

HTML-Tutor and iHelp led to the idea of the third study: at the first login on the system, 

learners adopted an exploratory behaviour which is different from the following behaviour 

that can be characterized as usage of the system. Thus, we also investigate whether the 

elimination of the exploratory behaviour improves prediction.  

 

 

4. Disengagement Prediction Refinement 

 

This section includes the three studies introduced previously: 1) reading speed attributes 

validation study; 2) patterns of disengagement prediction study; and 3) elimination of 

exploratory sequences study.  

 

 

4.1. VALIDATION OF READING SPEED ATTRIBUTES 

 

For each sequence of 10 minutes in the HTML-Tutor log data, the two attributes used with 

iHelp were added: the number of pages exceeding the 420 second threshold and the number 

of pages below five seconds. We compared the predictions obtained after adding these 

attributes with the predictions obtained without them. All three datasets, DS-30, DS-10 and 

DS-6, were included. The study design is presented in Table 7. Our hypothesis is that the two 

additional attributes will improve the overall and especially the disengagement prediction 

level.  
 

 

Table 7 Validation of reading speed attributes study design  

 

 30 attributes 10 attributes 6 attributes 

With original attributes DS-30 DS-10 DS-6 

With the 2 additional attributes DS-30+2 DS-10+2 DS-6+2 

 

 

As in the ‘construction’ study, log files of 48 subjects were used; they spent between 1 and 

7 sessions on HTML-Tutor, each session varying between 1 and 92 sequences. The dataset 

included 1015 entries (i.e. sequences), of which 943 were of exactly 10 minutes and 72 varied 

between 7 and 592 seconds. The datasets used in this study included only the 943 entries of 

exactly 10 minutes. 
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As in the previous studies, Waikato Environment for Knowledge Analysis (WEKA) 

(Witten & Frank, 2005) was used for analysis and the eight methods presented in Section 3.2 

were considered; the experiment utilized 10-fold stratified cross-validation iterated 10 times. 

We were interested in the quality of the predictions in terms of two classification parameters: 

the percentage of correct classifications (accuracy) as well as the true positive rate for 

disengaged. The results are grouped in six figures: the first three (Fig. 3, Fig. 4 and Fig. 5) 

display the comparison for the accuracy, while the next three (Fig. 6, Fig. 7 and Fig. 8) 

display the comparison for the true positive rate for disengaged. 
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Fig. 3 Accuracy for original dataset with 30 attributes 

(DS-30) and the same dataset with the two additional 

attributes (DS-30+2) 
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Fig. 4 Accuracy for original dataset with 10 attributes 

(DS-10) and the same dataset with the two additional 

attributes (DS-10+2) 

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

Methods

P
e
rc

e
n

ta
g

e
 c

o
rr

e
c
t

DS-6 86.68 84.15 84.05 85.18 86.95 86.90 87.21 86.20

DS-6+2 87.48 87.97 87.95 85.89 86.18 88.46 88.92 88.21

Comparison 0.055 0.000 0.000 0.000 0.118 0.000 0.000 0.000

BN LR SL IBk B ASC CvR DT

Fig. 5 Accuracy for original dataset with 6 attributes 

(DS-6) and the same dataset with the two additional 

attributes (DS-6+2) 
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Fig. 6 TP rate (disengaged) for original dataset with 30 

attributes (DS-30) and the same dataset with the two 

additional attributes (DS-30+2) 
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Fig. 7 TP rate (disengaged) for original dataset with 10 

attributes (DS-10) and the same dataset with the two 

additional attributes (DS-10+2) 
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Fig. 8 TP rate (disengaged) for original dataset with 16 

attributes (DS-6) and the same dataset with the two 

additional attributes (DS-6+2) 

 

 

For the first three database pairs, there are significant differences for 6 out of 8 methods: 

LR, SL, IBk, ASC, CvR and DT. In all cases, the accuracy is higher for the databases with 
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the two additional attributes. Therefore, we consider that in the case of overall prediction, our 

hypothesis was confirmed. The accuracy increase is statistically significant. To demonstrate 

that we applied either the paired t-test if both result sets were normally distributed, or the 

Wilcoxon test otherwise. The normal distribution was verified using the Kolmogorov-

Smirnov test. All differences were significant (p<.014) with only two exceptions. First, the 

observed decrease in Bagging using REP (B) was not significant (p>.05) for all three data 

sets; the fact that bagging predictors are rather stable against perturbations of the data sets 

(Breiman 1996) might explain this lack of improvement. Second, the increase for Bayesian 

Nets (BN) also did not reach a statistically significant level; this may be due to the influence 

of the ordering of the attributes on the K2 algorithm (the reading attributes were added last). 

To further investigate this aspect, the algorithm could be run with different (random) 

orderings. 

For applying these algorithms in a diagnosis of real learners, the true positive rate is of 

importance as well: while identifying disengaged learners is critical for enabling appropriate 

intervention, not classifying engaged learners as disengaged by mistake is important for not 

interrupting engaged learners. As shown in Fig. 6, Fig. 7 and Fig. 8, the impact of the 

additional attributes varies across data sets and classification methods. While there is no 

significant change for BN and ASC, CvR (for all datasets) and DT (for DS-10 and DS-6) 

significantly improve. The remaining methods show an inconsistent picture with both 

increases and decreases. All changes are relatively minor, with a maximum improvement of 

.03 and a maximum reduction of .02.    

In two situations, Fig. 6: SL and Fig. 7: B, it appears in the graph that the true positive rate 

for the two databases (DS-30 and DS-30+2 in Fig. 6; DS-10 and DS-10+2 in Fig. 7) has the 

same value: 0.93 in Fig. 6 and 0.92 in Fig. 7. At the same time for these cases it appears that 

the differences for each of the two pairs of databases are significant. This is explained by the 

fact that the figures displayed are rounded to two digits. The four digit values are: for Fig. 6, 

DS-30: 0.9343; Fig. 6, DS-30+2: 0.9267, Fig. 7, DS-10: 0.9153 and Fig. 7, DS-10+2: 0.9248. 

The results suggest a trade-off between accuracy and the true positive rate, especially for 

logistic regression and simple logistic classification, for which we observed a significant 

increase in accuracy and a significant decrease of the true positive rate. This involves, on the 

one hand, a better detection of engagement (hence, the increase in accuracy) and, on the other 

hand, an increase of misclassification of disengaged instances as engaged (false positive rate) 

(hence a decrease of true positive rate).  

 

In summary, the two new reading speed attributes improve the accuracy of classification, 

but have mixed effects for the true positive rate. While the differences in terms of accuracy 

are stable across different methods and statistically significant, the nominal improvement is 

limited (.01–.04). Correlation via Regression shows the biggest improvement in the true 

positive rate (relevant for diagnosis) and the best overall performance with up to 89.8% 

correct classifications and a true positive rate of up to 0.94.  Considering that the two new 

attributes are supposed to be indicators of disengagement, the results are somehow surprising: 

we expected a stronger effect on the true positive rate for the disengaged class when using the 

new attributes. Trying to clarify these results, in the study conducted for prediction of the two 

patterns, we also looked at the impact of the attributes on the predictions.  

 

 

4.2. DISENGAGEMENT PATTERNS PREDICTION 

 

Disengagement, in fact, comprises at least two different types of behaviour. The experts who 

rated the sequences reported that some learners seem to spend a very long time on a single 
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page, while others seem to click through pages without reading. We designed a study to 

investigate whether predicting these two patterns of disengagement as opposed to a single 

disengagement state would improve the prediction model. We labelled these patterns as 

follows: 1) fast browsing through pages/tests was denoted as “disengaged-fast” (DF) and 2) 

long time spent on the same page/test was denoted as “disengaged-long” (DL). Although 

these names are not expressing opposite situations, their names were chosen because they 

express the corresponding behaviour most accurately. The investigation was conducted with 

both HTML-Tutor and iHelp. 

In the light of the results of the reading speed study, we decided to run two trials: with and 

without the two additional reading speed attributes. This would enable us to cross-compare 

the results of the two studies. 

 

 

4.2.1. Disengagement Patterns in HTML-Tutor 

 

The study design was very similar to the previous study. We started from the same six 

datasets (used in the validation of speed attributes study), but used four levels of engagement: 

engaged, neutral, “disengaged-long”, and “disengaged-fast”. To distinguish the datasets used 

in this study compared to the previous one, the “L/F” label was added on the names of the 

datasets to indicate that “disengaged-long” and “disengaged-fast” patterns are used.  

The sequences were coded as “disengaged-long” or “disengaged-fast” using the same rules 

as the ones used in the validation study briefly presented in Section 3.3: if in a sequence the 

learner spent more that 420 seconds (7 minutes) on a page or test, the sequence was coded 

“disengaged-long” (DL); if in a sequence 2/3 of the total number of pages were below 5 

seconds, the sequence was coded “disengaged-fast” (DF).  

The same maximum threshold was used as with iHelp because all pages from HTML-

Tutor require less than 400 seconds to be read. The minimum threshold, 5 seconds, was also 

the same; this threshold has been used in other studies (e.g. Farzan & Brusilovsky, 2005), and 

there seems to be an agreement about this minimal time to process the information on a page, 

regardless if the time is spent to read the page or to look for other links. 

From the total of 943 sequences of 10 minutes, 646 were DL and only 21 DF. Thus, as 

there were too few instances of DF, we focused on the DL pattern. The same software and 

methods were used for the analysis; 10-fold cross-validation iterated 10 times was applied. 

Table 8 shows the accuracy and the TP rate for DL for all datasets. In order to see whether 

there are significant differences between the two distributions, we applied the same procedure 

as in the validation of reading speed attributes study. 

Good accuracy levels were obtained, with values between 85.2% and 89.2%, which are 

slightly lower than the ones obtained when disengagement was only one category (see Table 

4) and also slightly lower than the ones presented in the validation of reading speed attributes 

study (Fig. 3, Fig. 4 and Fig. 5, Section 4.1). This was expected due to the introduction of the 

two patterns. On the other hand, the TP rates for “disengaged-long”, with the two additional 

attributes, with values between 0.89 and 0.95, are higher than the previous results from both 

the prediction model development study and the reading speed attributes validation study 

(Fig. 6, Fig. 7 and Fig. 8, Section 4.1). 

To have a picture of the predictions across all trials, some distributions of accuracy and TP 

rates are displayed in Fig. 9, Fig. 10 and Fig. 11. These distributions give an idea of the most 

frequent accuracy levels and help identify situations in which a relatively good level of 

prediction is obtained from compact and consistent predictions rather than an average 

between poor and very good prediction levels. 
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Table 8 HTML Tutor predictions of engagement levels when the two disengaged patterns, DL and DF, are 

considered; true positive rate is displayed only for DL. 

 

  BN LR SL IBk ASC B CvR DT 

Accuracy 84.33 86.31 87.14 84.66 87.12 86.81 87.16 86.10 
DS-30-L/F 

TP rate  0.89 0.94 0.95 0.93 0.95 0.94 0.94 0.94 

Accuracy 86.68 87.50 88.32 85.82 87.68 88.27 89.12 87.53 
DS-30+2-L/F 

TP rate 0.93 0.95 0.94 0.94 0.93 0.94 0.95 0.95 

Accuracy 83.40 85.96 85.69 84.37 86.66 86.37 87.47 85.20 
DS-10-L/F 

TP rate 0.88 0.93 0.94 0.92 0.93 0.94 0.94 0.92 

Accuracy 86.94 87.63 87.96 85.80 85.83 88.65 89.22 88.27 
DS-10+2-L/F 

TP rate  0.94 0.93 0.93 0.93 0.95 0.95 0.95 0.95 

Accuracy 83.06 83.90 84.00 82.41 86.95 86.52 86.73 85.86 
DS-6-L/F 

TP rate  0.89 0.92 0.93 0.91 0.93 0.93 0.93 0.92 

Accuracy 86.33 87.01 87.16 85.16 85.97 87.81 88.44 87.83 
DS-6+2-L/F 

TP rate 0.94 0.92 0.91 0.94 0.95 0.94 0.94 0.95 

 

 

Fig. 9 displays the distribution of the accuracy for the best method (CvR) on DS-6-L/F. 

Most values are between 86% and 93%, and all of them are above 81%. What appears like 

vertical axes in the graph is a result of the fact that values are based on fractional percent of 

the 95 test cases; for example 85/95 is approximately 89%. More common results for a 

certain value of accuracy are visible in the higher frequency of dots along the vertical lines 

(e.g. most frequent values are around 89%). 
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Fig. 9 Distribution of accuracy with CvR on DS-6-L/F. 
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Fig. 10 Distribution of TP rate for DL using CvR on 

DS-6-L/F (without the two additional attributes). 
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Fig. 11 Distribution of TP rate for DL using CvR on 

DS-6+2-L/F (with the two additional attributes). 

 

For the TP rate for “disengaged-long” on DS-6-L/F and DS-6+2-L/F using CvR we notice 

close values: 0.94 with the two additional attributes and 0.93 without them. The graphs 

displayed in Fig. 10 and Fig. 11 show that the distributions have more or less the same range, 
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with the exception of an outlier around the value of 0.81 in Fig. 10. However, the values are 

distributed differently, with a higher density of larger numbers when the two attributes are 

used.  
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Fig. 12 Accuracy comparison between DS-30-L/F and 

DS-30+2-L/F. 
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Fig. 13 Accuracy comparison between DS-10-L/F and 

DS-10+2-L/F 
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Fig. 14 Accuracy comparison between DS-6-L/F and 

DS-6+2-L/F. 
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Fig. 15 TP rate for DL comparison between DS-30-L/F 

and DS-30+2-L/F. 
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Fig. 16 True positive rate for DL comparison between 

DS-10-L/F and DS-10+2-L/F. 
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Fig. 17 True positive rate for DL comparison between 

DS-6-L/F and DS-6+2-L/F. 

 

The datasets with the two additional reading speed attributes show higher accuracy than 

the corresponding datasets without the attributes – see Fig. 12, Fig. 13 and Fig. 14. All 

differences are statistically significant.  
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Most TP results are higher for these datasets as well. In a few cases, in particular for DS-6, 

the differences did not reach statistical significance. All SL results, one LR (DS-6) and one 

ASC (DS-30) result show a decrease in TP rate.  

For LR in Fig. 17 it appears that the values are the same, although the difference is 

significant; as in a previous situation this is explained by the fact that the results were 

rounded to two digits. Looking at the values with four digits, for DS-6-L/F the value is 

0.9238 and for DS-6+2-L/F is 0.9150. Consequently, for LR the true positive rate is higher 

for the dataset without the new attributes.  

 

In summary, separating the two disengagement patterns results, on the one hand, in a 

decrease in accuracy of up two 5%. On the other hand, the true positive rate for DL increased 

for most methods. (An equivalent analysis for DF was not possible due to the small number 

of cases.) In other words, in an on-line course where it is important to identify people who 

spend too much time on single pages, it may be worthwhile to separate out “disengaged-

long” behaviour from “disengaged-fast” behaviour. However, this comes with the cost of 

incorrectly classifying some engaged learners as disengaged. Overall, it would be 

recommended to use the reading speed attributes in connection with the DF/DL classification, 

as it improves accuracy as well as TP rate in most cases. This is not surprising as DF/DL is 

certainly related to reading speed. 
 

 

4.2.2. Disengagement Patterns in iHelp 

 

In order to cross-validate the results in a second e-Learning system, we replicated the study 

using the iHelp data. However, only the datasets with the new reading speed attributes were 

used: DS-all+2 and DS-600+2. As we don’t need to distinguish them from the ones without 

the additional attributes, ‘+2’ was eliminated from the notation. In order to distinguish the 

datasets used in this study from the following one, we added “L/F” to indicate that 

“disengaged-long” and “disengaged-fast” patterns are included.  

From the total of 450 sequences, 169 were DL and 82 were DF. DS-all-L/F includes all 

instances, while DS-600-L/F includes only sequences of exactly 10 minutes (340 with 161 

DL and 8 DF). Both datasets include all attributes. Since DS-600-L/F contained only 8 DF 

instances, we investigated only the overall and DL prediction on this dataset. The larger 

number of DF instances in DS-all-L/F compared to DS-600-L/F indicates that the learners 

that are “disengaged fast” tend to spend less than 10 minutes on the system; they also tend to 

occur before the learner leaves the system and, consequently, this pattern may indicate that a 

learner is about to logout.    

The same tool and methods were used, as well as the 10-fold stratified cross-validation 

iterated 10 times. The results are presented in Table 9. 

An additional measurement is presented – d prime – that indicates how well the 

disengagement levels can be distinguished. D-prime is a measure used especially in signal 

theory to judge how well signals can be distinguished from noise. The d-prime formula 

adapted to statistical notation is:   

 

)()(
'

FPzTPzd −=  

 

The z-transform function has the role of transforming measures with different ranges of 

absolute values to a common scale to allow comparison. This function has a normal 

distribution with the mean value set to 0 and the range of most values is within 3 standard 

deviations above and below the mean. 
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D-prime values above 2 show that engagement levels can be accurately distinguished and 

identified. 

 

Table 9 iHelp predictions of engagement levels with the two disengaged patterns, DL and DF. 

   BN  LR  SL  IBk  ASC  B  CvR  DT 

Accuracy  89.27 91.13 91.13 88.87 88.98 90.22 90.62 89.73 

TP rate DL 0.91 0.92 0.91 0.92 0.91 0.91 0.91 0.91 

FP rate DL 0.01 0.02 0.02 0.04 0.02 0.01 0.02 0.02 

d' 3.67 3.46 3.39 3.16 3.46 3.67 3.46 3.46 

TP rate DF 0.73 0.84 0.85 0.76 0.74 0.79 0.81 0.80 

FP rate DF 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

d' 2.36 2.75 2.79 2.46 2.39 2.56 2.63 2.59 

DS-all-L/F 

Error 0.11 0.09 0.09 0.08 0.11 0.10 0.10 0.10 

Accuracy  93.14 94.58 94.40 94.13 93.76 93.90 94.28 93.81 

TP rate DL 0.93 0.94 0.93 0.94 0.93 0.93 0.93 0.93 

FP rate DL 0.02 0.03 0.02 0.04 0.02 0.02 0.02 0.03 

d' 3.53 3.44 3.53 3.31 3.53 3.53 3.53 3.53 

DS-600-L/F  

Error 0.08 0.06 0.07 0.05 0.08 0.07 0.07 0.07 

 

 

Similar to the HTML-Tutor study, accuracy results are pretty high for both datasets, 

ranging between 88.9% and 94.6%. The TP rate for DL is also high with values from 0.91 to 

0.94; the FP rate for DL ranges from 0.01 to 0.04. The TP rate for DF has unexpectedly high 

values between 0.73 and 0.84, while the FP rate for DF goes from 0.02 to 0.04; the error 

ranges from 0.05 to 0.11. In all cases the smaller dataset with sequences of exactly 10 

minutes (DS-600-L/F) exceeded the complete dataset (DS-all-L/F). The d prime values are 

extremely good for both DL and DF, indicating a good discrimination of both patterns. The 

distribution of accuracy on DS-all-L/F for one of the bests performing methods, SL, is 

presented in Fig. 18, where we can see that most values fall between 86% and 96%. These 

values are lower than the original results (see Table 4) where no distinction between the two 

disengagement patterns was made. The distribution of TP rate for DL includes values from 

0.70 to 1 (Fig. 19), with most values above 0.86. Again, compared to the original results, the 

prediction performance decreased. 
 

 

Distribution of percent correct with SL

0

20

40

60

80

100

80 85 90 95 100

Percent correct

T
ri

a
l 

o
n

 D
S

-a
ll

-L
/F

 

Fig. 18 Distribution of accuracy with SL on            

DS-all-L/F. 
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Fig. 19 Distribution of TP rate for DL on DS-all-L/F, 

using SL method. 

 

 

Fig. 20 displays the distribution of TP rates for DF. The results obtained were 

unexpectedly high, with most values above 0.75, with the highest density of values around 
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0.88 and with 19 cases (out of 100) with value 1, meaning exact prediction. Considering the 

low number of instances for DF, these values were surprising and encouraging. 
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Fig. 20 Distribution of true positives rate for DF on DS-all-L/F, using SL method. 

 

 

In summary, the iHelp data confirms the results of the HTML-Tutor study. The 

introduction of the two disengagement patterns led to a small decrease, i.e. around 3%, for 

the overall prediction. However, the prediction values are still very good; moreover, a good 

discrimination has been shown for both patterns, “disengaged-long” and “disengaged-short”, 

suggesting that the disengagement patterns should be used in on-line courses where the 

identification of the two types of disengaged learners is of particular importance.  

 

 

4.3. EXCLUSION OF EXPLORATORY PATTERNS 

 

Besides the two patterns investigated in the previous study, we observed with both HTML-

Tutor and iHelp that on the first login to the system, the learners tend to behave in an 

exploratory manner; they click on the menu options and on the links to the main chapters of 

the course in a rather “chaotic” way. This familiarising behaviour is different from what was 

observed with the following sequences, when the learners seem to focus on the content. 

Given this difference, the presence in the analysis of the initial sequences where the 

exploratory behaviour occurs may negatively influence the results. This study was conducted 

in order to explore the influence of the exclusion of these exploratory sequences on prediction 

values. Both systems, HTML-Tutor and iHelp, were considered. 

 

 

4.3.1. HTML-Tutor 

 

From the 943 sequences, the 65 of them representing the first sequence of the first session, 

were eliminated. Consequently, the dataset used for analyses included 878 instances. We 

included all datasets, i.e. DS-30, DS-10 and DS-6, with (labelled “dl/df/e/n”) or without 

(labelled “d/e/n”) the two patterns; all datasets contained the reading speed attributes.  

The results are displayed in Table 10. The accuracy values vary between 86% and 89%, 

while the TP rates for DL range from 0.91 to 0.96; the FP rates are from 0.14 to 0.23 and the 

error values are between 0.07 and 0.11. The d prime values are above 2 for all datasets 

indicating a good discrimination of the “disengaged-long” pattern in all of them. 
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Table 10 HTML-Tutor: Prediction results without the exploratory sequences 

 

  BN  LR  SL  IBk  ASC  B  CvR  DT 

Accuracy  87.82 89.07 89.53 87.47 87.82 89.21 89.53 88.21 

TP rate d 0.93 0.94 0.94 0.93 0.94 0.93 0.94 0.93 

FP rate d 0.21 0.23 0.20 0.20 0.23 0.18 0.18 0.21 

Error 0.10 0.10 0.10 0.09 0.11 0.10 0.10 0.10 

DS-30+2 

(d/e/n)  

d' 2.28 2.29 2.40 2.32 2.29 2.39 2.47 2.28 

Accuracy  86.83 88.39 88.83 85.73 87.59 88.84 89.35 88.92 

TP rate DL 0.93 0.95 0.95 0.93 0.95 0.95 0.95 0.96 

FP rate DL 0.19 0.20 0.18 0.18 0.21 0.16 0.16 0.16 

Error 0.08 0.08 0.08 0.07 0.09 0.09 0.08 0.08 

DS-30+2 

(dl/df/e/n) 

d' 2.35 2.49 2.56 2.39 2.45 2.64 2.64 2.75 

Accuracy  87.81 88.43 88.31 87.35 88.06 89.18 89.45 88.19 

TP rate d 0.93 0.93 0.93 0.92 0.94 0.93 0.94 0.93 

FP rate d 0.21 0.21 0.19 0.19 0.22 0.18 0.18 0.21 

Error 0.10 0.10 0.11 0.09 0.11 0.11 0.10 0.10 

DS-10+2 

(d/e/n)  

d' 2.28 2.28 2.35 2.28 2.33 2.39 2.47 2.28 

Accuracy  86.83 87.98 88.01 85.98 87.59 88.92 89.34 88.88 

TP rate DL 0.93 0.94 0.94 0.93 0.95 0.95 0.96 0.96 

FP rate DL 0.19 0.21 0.17 0.16 0.21 0.16 0.16 0.16 

Error 0.08 0.08 0.08 0.07 0.09 0.09 0.08 0.08 

DS-10+2 

(dl/df/e/n) 

d' 2.35 2.36 2.51 2.47 2.45 2.64 2.75 2.75 

Accuracy  87.76 87.89 87.53 86.10 88.01 88.23 88.52 87.86 

TP rate d 0.93 0.92 0.91 0.93 0.94 0.93 0.92 0.94 

FP rate d 0.23 0.18 0.17 0.23 0.22 0.19 0.17 0.24 

Error 0.11 0.11 0.11 0.10 0.11 0.11 0.11 0.11 

DS-6+2 

(d/e/n) 

d' 2.21 2.32 2.30 2.21 2.33 2.35 2.36 2.26 

Accuracy  87.06 87.35 87.44 84.59 87.63 88.19 88.64 88.35 

TP rate d 0.94 0.93 0.93 0.93 0.95 0.94 0.94 0.96 

FP rate DL 0.21 0.16 0.14 0.20 0.21 0.17 0.16 0.18 

Error 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 

DS-6+2s 

(dl/df/e/n) 

d' 2.36 2.47 2.56 2.32 2.45 2.51 2.55 2.67 

 

 

Looking at accuracy, we observe the following:  

1) compared to results from the validation of reading speed attributes (no patterns included): 

a) Datasets with all attributes: the values are more or less the same, with four cases where 

the values are higher when the exploratory sequences are considered, and four cases 

where the values are higher with exploratory sequences excluded (see Fig. 21); b) 

Datasets with 10 attributes: the values are lower when the exploratory sequences are 

included for half of the cases, i.e. four out of eight (see Fig. 22); c) Datasets with 6 

attributes: the values are higher when the exploratory sequences are included for five out 

of eight cases (see Fig. 23);  

2) compared to the results from the pattern detection study: a) Datasets with all attributes: 

the values are higher when the exploratory sequences are excluded, in six cases out of 

eight (see Fig. 24); b) Datasets with 10 attributes: the values are higher when the 

exploratory sequences are excluded for most cases - seven out of eight (see Fig. 25); c) 

Datasets with 6 attributes: the same situation as for the datasets with 10 attributes (see 

Fig. 26). 
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Fig. 21 Accuracy comparison between DS-30+2 and 

DS-30+2 (d/e/n). 
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Fig. 22 Accuracy comparison between DS-10+2 and 

DS-10+2 (d/e/n). 
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Fig. 23 Accuracy comparison between DS-6+2 and DS-

6+2 (d/e/n). 
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Fig. 24 Accuracy comparison between DS-30+2-L/F 

and DS-30+2 (dl/df/e/n). 
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Fig. 25 Accuracy comparison between DS-10+2-L/F 

and DS-10+2 (dl/df/e/n). 
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Fig. 26 Accuracy comparison between DS-6+2-L/F 

and DS-30+2 (dl/df/e/n). 

 

 

Looking at the true positive rate for disengaged and respectively, “disengaged-long”, we 

observe the following:  

1) compared to results from the validation of the reading speed attributes (TP for 

disengaged): a) Datasets with all attributes: the values are the same in four cases and in 

the other four the values are higher when the exploratory sequences are excluded (see Fig. 

27); b) Datasets with 10 attributes: the same situation as for the datasets with 30 attributes 

(see Fig. 28); c) Datasets with 6 attributes: in one case the values are the same; for the 

other seven the values are higher when the exploratory sequences are excluded (see Fig. 

29); 

2) compared to the results from the patterns detection study (TP for “disengaged-long”): a) 

Datasets with all attributes: the values are higher when the exploratory sequences are 

excluded in four cases; in one case the opposite situation is encountered; for the other 

three cases, the values are the same (see Fig. 30); b) Datasets with 10 attributes: the same 

situation as for the datasets with 30 attributes (see Fig. 31); c) Datasets with 6 attributes: 

in four cases the values are the same; in one case the value is higher when the exploratory 

sequences are included; for the remaining three cases, the values are higher when the 

exploratory sequences are excluded (see Fig. 32). 
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Fig. 27 TP rate for disengagement (d) comparison 

between DS-30+2 and DS-30+2 (d/e/n). 
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Fig. 28 TP rate for disengagement (d) comparison 

between DS-10+2 and DS-10+2 (d/e/n). 
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Fig. 29 TP rate comparison for disengagement (d) 

between DS-6+2 and DS-6+2 (d/e/n). 
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Fig. 30 TP rate for DL comparison between DS-30+2-

L/F and DS-30+2 (dl/df/e/n). 
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Fig. 31 TP for DL comparison between DS-10+2-L/F 

and DS-10+2 (dl/df/e/n). 
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Fig. 32 TP rate for DL comparison between Ds-6+2-

L/F and DS-6+2 (dl/df/e/n). 

 

 

Summarizing the results, if the accuracy was more-or-less the same with or without the 

exploratory sequences, the TP rate for disengaged and “disengaged-long” improved in most 

cases when the exploratory sequences were excluded. This indicates that excluding the 

exploratory sequences positively influences the prediction and suggests the training should 

not include the exploratory sequences.  

 

4.3.2. iHelp 

 

Like in the previous study with iHelp data, two datasets were used: DS-all including all 

sequences and DS-600 including only sequences of exactly 10 minutes. Both datasets 

included the reading speed attributes and the two patterns of disengagement: “disengaged-

long” and “disengaged-fast”. To distinguish these datasets from the ones used in the patterns 

of disengagement study, “dl/df/e” was added to the names of the datasets. 

From dataset DS-all, 11 exploratory sequences were excluded, while from DS-600 only 3 

such sequences were eliminated. This indicates that in 8 cases out of 11 the learners spent 

less than 10 minutes on their first login to the system. The results are displayed in Table 11. 

They show good levels of accuracy, between 88% and 95%, TP rates for DL between 0.92 
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and .94 and TP rates for DF (only for DS-all) from 0.70 and 0.81. The FP rates for DL vary 

between 0.01 and 0.04, while the ones for DF range from 0.04 to 0.05; the error has values 

between 0.05 and 0.08. The d prime values over 2 indicated a good discrimination of both 

“disengaged-long” and “disengaged-fast” patterns.  

Comparing the results presented in Table 11 with the ones from the patterns of 

disengagement study (Table 9, Section 4.2.2) and focusing on accuracy, we observe the 

following: 1) for DS-all: in five cases the values are higher when the exploratory sequences 

are included and in three cases the values are higher when the exploratory sequences are 

excluded – see Fig. 33; 2) for DS-600: for all eight methods the values are higher when the 

exploratory sequences are excluded – see Fig. 34. 

 
Table 11 iHelp: Prediction results without the exploratory sequences 

 

  BN  LR  SL  IBk  ASC  B  CvR  DT 

Accuracy  88.48 91.48 91.46 88.79 89.18 90.16 90.53 89.57 

TP rate DL 0.92 0.93 0.92 0.92 0.92 0.92 0.92 0.92 

FP rate DL 0.01 0.02 0.02 0.04 0.02 0.02 0.02 0.02 

d' 3.73 3.53 3.46 3.16 3.46 3.46 3.46 3.46 

TP for DF 0.71 0.81 0.81 0.70 0.71 0.75 0.76 0.76 

FP for DF 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

d' 2.20 2.63 2.63 2.28 2.30 2.43 2.46 2.46 

DS-all 

(dl/df/e) 

Error 0.08 0.07 0.07 0.06 0.09 0.08 0.07 0.08 

Accuracy  93.53 94.98 94.63 94.47 94.06 94.27 94.66 94.33 

TP rate DL 0.93 0.94 0.94 0.94 0.94 0.94 0.94 0.94 

FP rate DL 0.02 0.02 0.02 0.03 0.02 0.02 002 0.02 

Error 0.07 0.06 0.07 0.05 0.07 0.07 0.06 0.06 

DS-600 

(dl/df/e) 

d' 3.53 3.61 3.61 3.44 3.61 3.61 3.61 3.61 
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Fig. 33 Accuracy comparison between DS-all-L/F and 

DS-all (dl/df/e). 
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Fig. 34 Accuracy comparison between DS-600-L/F and 

DS-600 (dl/df/e). 
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Fig. 35 TP rate for DL comparison between DS-all-L/F 

and DS-all (dl/df/e). 
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Fig. 36 TP rate for DL comparison between              

DS-600-L/F and DS-600 (dl/df/e). 
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Comparing the results from Table 11 with the ones from the patterns of disengagement 

study (Table 9, Section 4.2.2) and focusing on true positive rate for DL, the following can be 

observed: 1) for DL-all: in seven cases the values are higher when the exploratory sequences 

are excluded, and in one case the values are the same – see Fig. 35; 2) for DS-600: for five 

methods the values are higher when the exploratory sequences are excluded and for the other 

three the values are the same – see Fig. 36. 

Comparing the results from Table 11 with the ones from the patterns of disengagement 

study (Table 9, Section 4.2.2) and focusing on true positive rate for DF (only dataset DS-all), 

a decrease is observed for all methods when the exploratory sequences are excluded – see 

Fig. 37. 
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Fig. 37 TP rate for DF comparison between DS-all-L/F and DS-all (dl/df/e). 

 

 

Summarizing the results from this study, on one hand, we observe an increase for accuracy 

and true positive rate for DL and, on the other, a decrease for the true positive rate for DF 

when the exploratory sequences are excluded. Considering that from the 11 exploratory 

sequences that were eliminated, 10 were DF, the fact that the already small number of DF 

sequences was reduced even more may explain the decrease in the true positive rate for DF. 

However, the elimination of these sequences brought an increase of the overall predictive 

values and of the ones for DL, suggesting that the exclusion of the exploratory sequences 

may be more beneficial when detection of the DL pattern is of particular interest. 

 

The two studies presented previously deal only with exploratory behaviour occurring at 

the very beginning of the interaction with the system, when the exploratory behaviour most 

frequently occurred – in our case the first sequence of the first session. However, for some 

users this behaviour could occur for less than 10 minutes, for more than 10 minutes or at 

subsequent logins to the system, i.e. at the beginning of each session or even during sessions. 

Therefore, the elimination of the exploratory behaviour only from the beginning does not 

solve the whole problem. Moreover, from an educational point of view, the exploratory 

behaviour, although different from the general usage of the system, is not necessarily a 

deviation from learning. This aspect is discussed in more detail in the next section. 

 
 

 

5. Summary and Discussion 

 

The studies presented in this paper describe and refine a general approach for disengagement 

prediction for e-Learning systems. We argue that disengagement detection will play a vital 

role in the development of personalized e-Learning environments that adapt to motivational 
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characteristics of learners. The most frequent characteristic used for adaptation in e-Learning, 

so far, is knowledge; other learner characteristics often used include learning goals, interests, 

preferences, and others. However, these characteristics are influenced by learner’s 

motivation, and considering them separately, leads to an incomplete and potentially 

inaccurate view of the learner. 

As a step towards this aim we developed an approach for prediction of disengagement as 

one aspect of motivation that will help identify unmotivated learners that often have learning 

difficulties. This, in turn, will facilitate personalised interventions that would take into 

account their motivational status as well as other characteristics. 

In this paper we presented three refinement studies aiming to improve our approach to 

disengagement detection. An overview of the key results is presented in Table 12.  

 
Table 12 Overview of the advantages and disadvantages of the different refinement strategies for 

disengagement detection 

 

Refinement Description Advantages Disadvantages 

Reading speed Number of pages above 

maximum or below 

minimum threshold 

Accuracy prediction 

improves significantly 

Mixed results for TP rate 

Disengagement 

patterns 

Separation of 

“disengaged-long” and 

“disengaged-fast” 

behaviour 

Better TP rate for 

“disengaged-long” in most 

cases; works better in 

combination with reading 

speed attributes 

Slightly lower accuracy rate than 

standard model due to additional 

class 

Exclusion of 

exploratory 

sessions 

Exclusion of the very 

first sequence after 

login when exploratory 

behaviour occurs 

Better accuracy and TP rate 

for “disengaged-long” in 

most cases 

Exploratory behaviour does not 

occur only at the first login; 

decrease of the TP rate for the  

“disengaged-fast” behaviour 

 

The first refinement study showed that the general approach can be improved by using two 

additional attributes related to reading speed. These attributes are system-specific, i.e. the 

parameters would need to be computed for each particular system. Their impact seems to 

depend on the system as well. An overall increase of accuracy was observed for both HTML-

Tutor and iHelp systems, with a greater increase for iHelp. While the TP rates increased for 

iHelp, the results were mixed for HTML-Tutor. Therefore, we concluded that for iHelp the 

benefit of using the reading attributes is twofold: considerably increased prediction and 

decreased time for processing. For HTML-Tutor, however, the results do not allow any 

conclusion and further investigation is required. One of the aspects that may account for the 

difference of results obtained with the two systems may lie in the way they are deployed; 

while the iHelp course was used in a formal educational setting, HTML-Tutor is freely 

available on the web. Although their structure and ‘interaction possibilities’ are very similar, 

the actual interactive behaviour may differ exactly because the first is somehow constrained 

while the latter is not. The constraints do not seem to be within the systems or the way the 

systems can be used, but in the goals the users have when using them. For example, on the 

one hand, when a system is used in educational settings, the learners may be more focused 

and systematic in their use of it, especially when the users are distance-learning students that 

usually have a job, as is the case of iHelp. On the other hand, when the system is freely 

available, it could be used by students in formal education as extra material and a way of 

testing their knowledge; it could be used by people interested in learning HTML without 

being in formal education, or by people interested only in a particular theme to remind them 

of concepts they have forgotten, etc. As information on the users’ status was not available, we 

could not look into the different behaviour of these possible groups. Also, although HTML-
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Tutor asks for the goals of the user when registering with the system, most users did not 

select one. Further investigation with data from a system that has such information available 

could bring some light on this matter.  

Currently our approach uses average speed measurements for the reading speed attributes. 

Ideally, individual differences in reading would be accounted for, by having the reading 

speed measurements personalised to each user’s reading rate. This would be easier to do in 

more constrained environments than in systems freely available on the web. A short test 

before using the system may provide this information, although some users, if not the 

majority, would skip it in a free environment.  

The second refinement study showed that two patterns of disengagement can be 

distinguished: “disengaged-long” and “disengaged-fast”. This distinction is valuable for 

personalized intervention. These two patterns of behaviour are in line with existing results 

described in the literature (cf. Section 2), but extend and generalize them: “blind guessing” in 

Beck (2005) or “unmotivated-guess” in Johns & Woolf (2006) are similar to the fast click 

through pages (denoted as “disengaged-fast” in our approach), as they describe students’ rush 

and lack of attention (see Table 13). However, they are both specific for one type of learning 

activity, i.e. problem solving. We are not aware of an existing pattern that would correspond 

to the “disengaged-long” pattern found in our research. In systems where only problem 

solving activities are available, it is more likely to have a “disengaged-fast” pattern only, 

while in systems where both learning and problem-solving activities are present, it is more 

likely to have a “disengaged-long” as well as a “disengaged-fast” pattern. However, the fact 

that the interaction with the system for the two types of learning activities, i.e. reading and 

problem solving, is considerably different does not imply that the “disengaged-fast” 

behaviour can not occur during other learning activities. Therefore, further differentiation 

may be necessary for a more accurate prediction and a more personalised intervention. The 

opposite situation may occur as well – “disengaged-long” behaviour during problem solving 

activities, although the literature does not report on anything similar; in our data we also 

noticed that such behaviour is uncommon. 

 

Table 13 Patterns of disengagement in our approach vs. related approaches. 

Patterns Our approach Related approaches 
Long time on a page “Disengaged-long” No correspondence 

Blindly guess (Beck, 2005) 
Click fast through pages “Disengaged-fast” 

Unmotivated (guess/ hint) (Johns&Woolf, 2006) 
 

 

Another difference that distinguishes our approach from related approaches concerns the 

domain: while existing results were based on rather technical domains, i.e. mathematics, we 

were able to demonstrate and validate our approach in a domain that is not as structured and 

hierarchical. We expect that the patterns observed may generalize more easily to many other 

domains, precisely because they are not highly dependent on structure.  

The results of the patterns of disengagement study showed a slight decrease in the 

accuracy of the prediction which was expected due to the introduction of an additional class, 

but also a good distinction between the two patterns. Moreover, an increase of the true 

positive (TP) rate for the “disengaged-long” class is observed. This last aspect may be the 

most important one, as disengagement during learning activities (when the “disengagement-

long” behaviour is more likely to occur) is potentially more harmful for learning than 

disengagement during test-type activities because in most on-line courses, the knowledge 

acquisition phase precedes and is prerequisite to a testing phase. Therefore, identifying the 

“disengaged-long” behaviour is the essential first step that allows personalized intervention. 
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Such intervention may include, but is not limited to: (a) investigate more on motivational 

aspects, e.g., engage the learner in a dialog to identify motivational characteristics (Cocea, 

2006), (b) act upon known motivational characteristics of the learner, e.g., if the learner does 

not feel confident about the learned material, intervene either automatically or via the tutor 

with the aim of increasing their confidence (Hurley & Weibelzahl, 2007), (c) identify learners 

that may need help from the tutor, e.g., let the tutor prioritise among the disengaged learners, 

(d) provide help automatically to the tutor, e.g., provide priorities among disengaged learners 

depending on level of knowledge and motivational issues, leaving the final decision with the 

tutors, or (e) provide help automatically directly to the learner, e.g., give feedback on their 

performance accounting for their motivational characteristics and suggesting further learning 

activities.  

The last study considered the particular case of what we called exploratory sequences. 

These are characterized by an exploratory behaviour and usually occur at the first login of a 

learner to the system. Given the fact that this behaviour is quite different and seems somehow 

“chaotic” compared to that observed in subsequent actions, we have explored their influence 

on the prediction values, expecting an improvement of prediction. While, unsurprisingly, we 

were able to demonstrate this effect for most cases, we observed a decrease in the prediction 

of the “disengaged-fast” (DF) pattern. This may be explained by the small number of DF 

instances and the fact that it dropped even more by the exclusion of exploratory sequences 

(mostly annotated as DF). Looking at the overall results for both HTML-Tutor and iHelp, the 

exclusion of these sequences has more benefits than drawbacks when judged strictly from the 

statistical point of view.  

However, exploratory behaviour may occur not only at the first contact with a system, but 

within later interaction as well, without necessarily being a distraction from learning. In fact, 

the exploration may even facilitate better use of the system; for example, exploring its 

capabilities, like the glossary and statistics (of scores and material covered), allows quicker 

access to them when needed. While most users would explore the system at the first login, the 

exploratory behaviour varies in length and rigour. Some users prefer to find out as many 

capabilities of the system as possible before starting to use it while others start using the 

system after a minimal exploration and explore the system again when they need a certain 

capability that was not covered in their initial exploration. Given that the exploratory 

behaviour may occur not only when they first use the system but also at various points 

thereafter, eliminating only the first exploratory sequences from training may have a negative 

impact on the performance of the models as exploratory behaviour may not be classified 

correctly any more. This may explain the decrease in performance for some methods. As for 

the educational aspect of these exploratory sequences, even if a clear improvement in 

performance would occur, it is not obvious that this would be the way to proceed. This is an 

example of the difference between “classic” data mining and educational data mining, where 

the educational dimension should have prevalence over performance.  

 

 

6. Conclusions 

 

In this paper, we have presented three studies aiming to refine a general approach to 

disengagement prediction in e-Learning systems. This work addresses a limitation of current 

e-Learning systems: not taking into account the motivational characteristics of the learner. 

The studies presented in this paper are meant to improve the prediction of engagement levels, 

with a special focus on disengagement, as one aspect of (lack of) motivation. The goal is to 

be able to predict the level of engagement of the learner, which in turn would allow for 

personalized intervention based on both knowledge and motivational characteristics. The idea 
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is also to monitor the learner’s behaviour in interacting with the system in an unobtrusive 

way so as not to interrupt the learning and to intervene only when necessary.  

Our approach to detection of disengagement is simple and the information needed is 

related to actions that take place in most learning environments: reading pages and taking 

tests (solving problems). Therefore, this approach could be generalized to other systems, the 

validation study being an example for that. The similarity of results across data mining 

methods is also an indicator of the consistency of our approach. However, when integrating 

this approach in a real system, a decision must be made as to which prediction model to use. 

Among the range of possible procedures, the following two seem most advantageous in terms 

of time and space complexity, as well as scalability: (a) an initial test on data from the system 

followed by the usage of the average among the first three methods that perform best 

(majority vote); (b) an initial test on data from the system followed by the usage of the best 

performing method.  

Besides this aspect, other courses of actions could be taken, like incrementally updating 

the information at some interval of time like, for example, every minute. Another possibility 

would be a survival analysis to detect when a learner is about to drop out. However, we think 

that having a trajectory of the learners’ engagement status, with the three types of behaviour, 

i.e. engaged, “disengaged-long” and “disengaged-fast”, allows a better diagnosis and could 

be of better use for the tutor or the system when deciding for a certain personalised 

intervention strategy. 

One of the major challenges in our approach was to define disengagement in the context of 

e-Learning environments in terms of actions of learners when interacting with the system. 

This challenge was even more difficult due to the type of systems we wanted to look at – 

more specifically systems that provide learning content as well as problem-solving activities. 

Most research on motivation focused on problem solving activities which are more specific 

and hence, easier to assess and model in terms of disengagement compared to other learning 

activities. To overcome this problem we used human experts that assessed the level of 

engagement of learners based on their actions. This assessment was subsequently used in 

building the prediction models. 

The studies presented in this paper brought more insight on the disengagement behaviour 

within e-Learning systems. The lessons learned include: (a) reading speed characteristics can 

help identify the levels of engagement; we found that simple attributes related to reading 

speed can improve the prediction level; however, this seems to be system-dependent or rather 

context-dependent: within an educational setting or freely on the Web; (b) two patterns of 

disengagement can be observed in the behaviour of learners: “disengaged-long” and 

“disengaged-fast”; the “disengaged-long” pattern is primarily associated with reading 

activities, while “disengaged-fast” occurs both during reading and problem solving; (c) a 

balance between educational benefits and prediction performance levels needs to be 

considered in educational data mining; in our particular case, although excluding the 

exploratory behaviour from the prediction model training improves the prediction, it would 

be wrong from an educational point of view to exclude this behaviour as if it were a 

distraction from the goal when, in fact, exploring the system may lead to a better use of what 

it offers to the learner. 

Another challenge very much related to those mentioned previously is the subject domain. 

Most previous research used technical domains like mathematics or programming which are 

more “controllable” compared to non-technical domains. The domain used in our approach, 

HTML, is at the junction between technical and non-technical domains, therefore, allowing 

an easier generalization of our approach to other domains, including non-technical ones.  

However, the interaction design of the system may limit the generalisability of these findings; 

we looked at web-based systems that include reading and problem solving-activities and it is 
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unlikely that our specific findings would extend beyond this type of environments. 

Nevertheless, one lesson learned is that even if a domain is less structured or even 

structureless, it does not necessarily impair the possibility of modelling the user’s activity. 

Still, the modelling process as presented here is of an explorative nature and, in this sense, 

closer to typical data-mining by aiming to discover information which is hidden in the data. 

The approach presented here was specifically tailored to learning environments, but, 

considering the last observation, its applicability may stretch to other interactive behaviours 

as well. Voluntary and involuntary interruptions occur frequently when using computer or 

web-based systems. Involuntary interruptions, which would correspond to the “disengaged-

long” pattern, are likely to decrease performance on more complex tasks (Speier et al., 2003). 

In such situations, a brief summary of what the user was previously doing may facilitate the 

“re-engagement” with the task. To the same purpose, spatial presentation formats could be 

used as they have been proven to mitigate the effects of interruptions, while symbolic formats 

have not (Speier et al., 2003). For example, an area where this could be useful is e-commerce. 

When a user has been inactive for some time, displaying the products previously viewed may 

be very helpful; depending on the previous activity level, the summary could be accompanied 

by product recommendations from the system. 

In summary, we propose a simple approach for disengagement prediction that extends 

beyond previous approaches by including other learning activities besides problem solving. 

This approach gives very good results using attributes from only two actions: reading pages 

and taking tests, and can distinguish between two patterns of disengagement: “disengaged-

long” and “disengaged-fast”. Its simplicity and the characteristics of the chosen domain – 

HMTL – make it easier to generalize across systems and domains. 
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