12,646 research outputs found

    Teaching UbiComp with Sense

    No full text
    Modern computer science education has to take account of the recent changes towards smart ubiquitous computing devices. In addition, existing programming languages are needlessly difficult for novice programmers to learn concepts. We have developed Sense, an extension to the graphical programming language Scratch, and an associated sensor/actuator board. Together, these will allow novice undergraduate students to quickly develop their own smart devices while learning the fundamentals of programming. Students will first study with Sense in 2011 but developmental feedback has been positive

    Teaching UbiComp with Sense

    No full text
    Modern computer science education has to take account of the recent changes towards smart ubiquitous computing devices. In addition, existing programming languages are needlessly difficult for novice programmers to learn concepts. We have developed Sense, an extension to the graphical programming language Scratch, and an associated sensor/actuator board. Together, these will allow novice undergraduate students to quickly develop their own smart devices while learning the fundamentals of programming. Students will first study with Sense in 2011 but developmental feedback has been positive

    Transforming pre-service teacher curriculum: observation through a TPACK lens

    Get PDF
    This paper will discuss an international online collaborative learning experience through the lens of the Technological Pedagogical Content Knowledge (TPACK) framework. The teacher knowledge required to effectively provide transformative learning experiences for 21st century learners in a digital world is complex, situated and changing. The discussion looks beyond the opportunity for knowledge development of content, pedagogy and technology as components of TPACK towards the interaction between those three components. Implications for practice are also discussed. In today’s technology infused classrooms it is within the realms of teacher educators, practising teaching and pre-service teachers explore and address effective practices using technology to enhance learning

    Teaching and learning in virtual worlds: is it worth the effort?

    Get PDF
    Educators have been quick to spot the enormous potential afforded by virtual worlds for situated and authentic learning, practising tasks with potentially serious consequences in the real world and for bringing geographically dispersed faculty and students together in the same space (Gee, 2007; Johnson and Levine, 2008). Though this potential has largely been realised, it generally isn’t without cost in terms of lack of institutional buy-in, steep learning curves for all participants, and lack of a sound theoretical framework to support learning activities (Campbell, 2009; Cheal, 2007; Kluge & Riley, 2008). This symposium will explore the affordances and issues associated with teaching and learning in virtual worlds, all the time considering the question: is it worth the effort

    Reinvigorating the discipline:pervasive computing and tomorrow's computer scientists

    Get PDF
    Declining enrollments in computer science and related fields are a global concern. This issue's column, by Mike Hazas and Rebecca Marsden of Lancaster University in the UK describes the novel Lancaster Headstart program that uses the excitement of pervasive computing to attract students into the computer science

    Selected NSF projects of interest to K-12 engineering and technology education

    Get PDF
    The National Science Foundation (NSF) portfolio addressing K-12 engineering and technology education includes initiatives supported by a number of programs. This list includes projects identified by searching lists of awards in the respective NSF programs as well as projects suggested for inclusion by researchers, practitioners, and program officers. The list includes projects concerned with standards in technology education, teacher professional development, centers for learning and teaching, preparation of instructional materials, digital libraries, and technological activities in informal settings, as well as small numbers of projects in several other areas. This compilation provides current information on projects of interest to educators, instructional designers, consultants, and researchers who are concerned with the development, delivery, and evaluation of instruction to develop technological literacy, particularly in K-12 engineering and technology education. Projects are grouped under headings for each program providing primary funding. Within each program, the award numbers determine the order of listing, with the most recent awards at the beginning of the list. Each award entry includes the project title, NSF award number, funding program, amount of the award to date, starting and ending dates, the principal investigator (PI), the grantee institution, PI contact information, the url of the project Web site, a description of the project’s activities and accomplishments, relevant previous awards to the PI, products developed by the project, and information on the availability of those products
    • 

    corecore