4 research outputs found

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    Dynamic Switching State Systems for Visual Tracking

    Get PDF
    This work addresses the problem of how to capture the dynamics of maneuvering objects for visual tracking. Towards this end, the perspective of recursive Bayesian filters and the perspective of deep learning approaches for state estimation are considered and their functional viewpoints are brought together

    An RNN-Based IMM Filter Surrogate

    No full text
    The problem of varying dynamics of tracked objects, such as pedestrians, is traditionally tackled with approaches like the Interacting Multiple Model (IMM) filter using a Bayesian formulation. By following the current trend towards using deep neural networks, in this paper an RNN-based IMM filter surrogate is presented. Similar to an IMM filter solution, the presented RNN-based model assigns a probability value to a performed dynamic and, based on them, puts out a multi-modal distribution over future pedestrian trajectories. The evaluation is done on synthetic data, reflecting prototypical pedestrian maneuvers
    corecore