132 research outputs found

    A Novel Optimization Algorithm for Notch Bandwidth in Lattice Based Adaptive Filter for the Tracking of Interference in GPS

    Get PDF
    The weak signal levels experienced at the reception of the messages transmitted by navigation satellites, makes Global Positioning System (GPS) vulnerable to unintentional and intentional interference. This calls for appropriate modelling of GPS signal sources and jammers to assess the anti-jamming and interference mitigation capabilities of algorithms developed to be implemented for GPS receivers. Using a practical simulation model, this work presents an anti-jamming technique based on a novel algorithm. A fully adaptive lattice based notch filter is presented that provides better performance when compared to existing adaptive notch filter based techniques, chosen from the literature, in terms of convergence speed whilst delivering superior performance in the excision of the interference signal. To justify the superiority of the proposed technique, the noise and interference signal power is varied for in a wide dynamic range assessing jamming-to-noise density versus effective carrier-to-noise density performance at the output of the correlator

    Technique for Measurement of Weld Resistance for AC Resistance Spot Welding via Instantaneous Phasor Measurement

    Get PDF
    The resistance measurement in the resistance spot welding (RSW), is an ongoing research topic. The high current flow during the welding process induces an electromagnetic field in the wires which are attached to the electrodes to measure tip voltage. This results an additional voltage drop which is proportional to the derivative of current. Also the presence of silicon controlled rectifier (SCR) in the welding power supply generates harmonics in both supply voltage and current. These issues together complicate the methods for resistance estimation. A set of simultaneous linear equations is derived for the on-line measurement of dynamic resistance and induced voltage constant by using the dynamic circuit analysis of weld setup. This can be solved to determine the weld resistance using instantaneous phasors measurements for the 1st, 3rd and 5th harmonics of current and measured voltage signals. The instantaneous phasor measurements for these desired harmonics are obtained by employing the following proposed method. In this thesis, a new method for the measurement of instantaneous phasor is proposed for the narrow band signals. The proposed algorithm is based on the internal model principle (IMP) defined for the cancellation of a sinusoidal disturbance signal. The IMP has two states, exhibiting the properties of being sinusoidal and orthogonal. The instantaneous values of IMP states are defined as real and imaginary components of a complex signal at each time instant. The instantaneous measurements of envelope and phase of a sinusoidal signal are determined from instantaneous values of complex signal by using arithmetic properties of complex numbers. In case of signal comprising of sum of sinusoids of different frequencies, the approach for obtaining instantaneous phasor for each sinusoidal component is presented by connecting multiple internal models in the parallel and open-loop configuration. The instantaneous phasor measurement of fundamental frequency signal is not only advantageous in detecting faults like short circuiting, harmonic distortion and frequency variations but it can also be applied to protect power system from these faults. In this work, the applicability of the proposed instantaneous phasor measurement algorithm is analyzed for scenarios of power disturbances due to the the harmonic distortion and decaying DC offset. The results are discussed and compared with few existing methods

    Adaptive notch filtering for tracking multiple complex sinusoid signals

    Get PDF
    This thesis is related to the field of digital signal processing; where the aim of this research is to develop features of an infinite impulse response adaptive notch filter capable of tracking multiple complex sinusoid signals. Adaptive notch filters are commonly used in: Radar, Sonar, and Communication systems, and have the ability to track the frequencies of real or complex sinusoid signals; thus removing noise from an estimate, and enhancing the performance of a system. This research programme began by implementing four currently proposed adaptive notch structures. These structures were simulated and compared: for tracking between two and four signals; however, in their current form they are only capable of tracking real sinusoid signals. Next, one of these structures is developed further, to facilitate the ability to track complex sinusoid signals. This original structure gives superior performance over Regalia's comparable structure under certain conditions, which has been proven by simulations and results. Complex adaptive notch filter structures generally contain two parameters: the first tracks a target frequency, then the second controls the adaptive notch filter's bandwidth. This thesis develops the notch filter, so that the bandwidth parameter can be adapted via a method of steepest ascent; and also investigates tracking complex-valued chirp signals. Lastly, stochastic search methods are considered; and particle swarm optimisation has been applied to reinitialise an adaptive notch filter, when tracking two signals; thus more quickly locating an unknown frequency, after the frequency of the complex sinusoid signal jumps

    Adaptive Interference Mitigation in GPS Receivers

    Get PDF
    Satellite navigation systems (GNSS) are among the most complex radio-navigation systems, providing positioning, navigation, and timing (PNT) information. A growing number of public sector and commercial applications rely on the GNSS PNT service to support business growth, technical development, and the day-to-day operation of technology and socioeconomic systems. As GNSS signals have inherent limitations, they are highly vulnerable to intentional and unintentional interference. GNSS signals have spectral power densities far below ambient thermal noise. Consequently, GNSS receivers must meet high standards of reliability and integrity to be used within a broad spectrum of applications. GNSS receivers must employ effective interference mitigation techniques to ensure robust, accurate, and reliable PNT service. This research aims to evaluate the effectiveness of the Adaptive Notch Filter (ANF), a precorrelation mitigation technique that can be used to excise Continuous Wave Interference (CWI), hop-frequency and chirp-type interferences from GPS L1 signals. To mitigate unwanted interference, state-of-the-art ANFs typically adjust a single parameter, the notch centre frequency, and zeros are constrained extremely close to unity. Because of this, the notch centre frequency converges slowly to the target frequency. During this slow converge period, interference leaks into the acquisition block, thus sabotaging the operation of the acquisition block. Furthermore, if the CWI continuously hops within the GPS L1 in-band region, the subsequent interference frequency is locked onto after a delay, which means constant interference occurs in the receiver throughout the delay period. This research contributes to the field of interference mitigation at GNSS's receiver end using adaptive signal processing, predominately for GPS. This research can be divided into three stages. I first designed, modelled and developed a Simulink-based GPS L1 signal simulator, providing a homogenous test signal for existing and proposed interference mitigation algorithms. Simulink-based GPS L1 signal simulator provided great flexibility to change various parameters to generate GPS L1 signal under different conditions, e.g. Doppler Shift, code phase delay and amount of propagation degradation. Furthermore, I modelled three acquisition schemes for GPS signals and tested GPS L1 signals acquisition via coherent and non-coherent integration methods. As a next step, I modelled different types of interference signals precisely and implemented and evaluated existing adaptive notch filters in MATLAB in terms of Carrier to Noise Density (\u1d436/\u1d4410), Signal to Noise Ratio (SNR), Peak Degradation Metric, and Mean Square Error (MSE) at the output of the acquisition module in order to create benchmarks. Finally, I designed, developed and implemented a novel algorithm that simultaneously adapts both coefficients in lattice-based ANF. Mathematically, I derived the full-gradient term for the notch's bandwidth parameter adaptation and developed a framework for simultaneously adapting both coefficients of a lattice-based adaptive notch filter. I evaluated the performance of existing and proposed interference mitigation techniques under different types of interference signals. Moreover, I critically analysed different internal signals within the ANF structure in order to develop a new threshold parameter that resets the notch bandwidth at the start of each subsequent interference frequency. As a result, I further reduce the complexity of the structural implementation of lattice-based ANF, allowing for efficient hardware realisation and lower computational costs. It is concluded from extensive simulation results that the proposed fully adaptive lattice-based provides better interference mitigation performance and superior convergence properties to target frequency compared to traditional ANF algorithms. It is demonstrated that by employing the proposed algorithm, a receiver is able to operate with a higher dynamic range of JNR than is possible with existing methods. This research also presents the design and MATLAB implementation of a parameterisable Complex Adaptive Notch Filer (CANF). Present analysis on higher order CANF for detecting and mitigating various types of interference for complex baseband GPS L1 signals. In the end, further research was conducted to suppress interference in the GPS L1 signal by exploiting autocorrelation properties and discarding some portion of the main lobe of the GPS L1 signal. It is shown that by removing 30% spectrum of the main lobe, either from left, right, or centre, the GPS L1 signal is still acquirable

    Adaptivni sustav za poništavanje utjecaja šuma motora na mobilne komunikacije

    Get PDF
    An adaptive system, which provides engine noise cancellation for hands-free cellular phones is developed. The system employs a cascade of three second-order adaptive notch/bandpass filters based on Gray-Markel lattice structure. This structure defines the high stability of the adaptive system. A Newton type algorithm is used for updating the filter coefficients that determines fast adaptation. In addition a new algorithm using adaptive filtering with averaging (AFA) is developed. The main advantages of AFA algorithm could be summarized as follows: high convergence rate comparable to that of the recursive least squares (RLS) algorithm and at the same time low computational complexity. The presented adaptive system for engine noise cancellation could improve considerably the speech intelligibility of hands-free cellular phones.Razvijen je adaptivni sustav koji poništava utjecaj šuma motora pri korištenju mobitela bez uporabe ruku. Sustav koristi kaskadu koja se sastoji od tri adaptivna filtra drugog reda s karakteristikom pojasnog propusta ili pojasne brane zasnovana na Gray-Markel rešetkastoj strukturi. Ta struktura osigurava veliku stabilnost adaptivnog sustava. Za određivanje koeficijenata filtra primijenjen je algoritam Newtonovog tipa. Ovaj algoritam osigurava brzu adaptaciju. Dodatno je razvijen novi algoritam koji koristi adaptivno filtriranje s usrednjavanjem (AFA). Glavne su prednosti AFA algoritma velika brzina konvergencije usporediva s brzinom konvergencije rekurzivnog algoritma najmanjih kvadrata (RLS) te niska kompleksnost izračunavanja. Prikazani adaptivni sustav za poništavanje utjecaja šuma motora mogao bi značajno poboljšati razumljivost govora pri korištenju mobitela bez uporabe ruku
    corecore