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Abstract

This thesis is related to the field of digital signal processing; where the aim

of this research is to develop features of an infinite impulse response adaptive

notch filter capable of tracking multiple complex sinusoid signals.

Adaptive notch filters are commonly used in: Radar, Sonar, and Com-

munication systems, and have the ability to track the frequencies of real or

complex sinusoid signals; thus removing noise from an estimate, and enhanc-

ing the performance of a system.

This research programme began by implementing four currently pro-

posed adaptive notch structures. These structures were simulated and com-

pared: for tracking between two and four signals; however, in their current

form they are only capable of tracking real sinusoid signals.

Next, one of these structures is developed further, to facilitate the ability

to track complex sinusoid signals. This original structure gives superior

performance over Regalia’s comparable structure under certain conditions,

which has been proven by simulations and results.

Complex adaptive notch filter structures generally contain two parame-

ters: the first tracks a target frequency, then the second controls the adaptive

notch filter’s bandwidth. This thesis develops the notch filter, so that the

bandwidth parameter can be adapted via a method of steepest ascent; and

also investigates tracking complex-valued chirp signals.

Lastly, stochastic search methods are considered; and particle swarm

optimisation has been applied to reinitialise an adaptive notch filter, when

tracking two signals; thus more quickly locating an unknown frequency, after

the frequency of the complex sinusoid signal jumps.
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Chapter 1

INTRODUCTION INCLUDING

AIMS AND OBJECTIVES

1.1 Introduction to Adaptive Notch Filters

The specific aim of this PhD programme is to develop aspects of a Complex

Adaptive Notch Filter (CANF) capable of tracking multiple Complex Sinu-

soid Signal (CSSs); with primary applications in Radar, Sonar and Commu-

nication Systems. This research has focussed primarily on four areas, which

are:

1. Creating a new type of structure,

2. Adapting the notch bandwidth parameter in the structure,

3. Considering the tracking of a complex-valued chirp signal, and

4. Enhancing the performance of the system further by implementing

stochastic search methods to reinitialise the notch filter.

This introductory chapter is split into three sections: where the first

section introduces the topic of Adaptive Notch Filters (ANFs), next some of

the applications for ANFs are listed in the second section; then in the third

section, the aims, objectives, and the structure of this thesis are discussed.

Thus to begin, ANFs are introduced, where firstly their application in Digital

Signal Processing (DSP) is highlighted.

1
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Generically, the aim in signal processing is to manipulate data via ad-

vanced mathematical techniques; and in adaptive filtering unknown signals

or data is located and separated from a noisy environment, and adaptation

is necessary if the signal is unknown or time-varying. Specifically, ANFs

locate, extract, and track, sinusoid signals from a sampled data source; and

this process is shown in Figure 1.1.

Figure 1.1. A conventional adaptive notch filter simulation, showing
the signal immersed in noise, the filter, then the frequency of the signal
which corresponds to the notch frequency.

Currently, ANFs are generally synthesised by utilising all-pass functions

such as [1] - [3], although previously Direct Coefficient Scaling (DCS) im-

plementations such as [4] have also been used; an all-pass implementation is

shown below in Figure 1.2.

Figure 1.2. The implementation of a notch filter, which is built from
an all-pass function A(z); herein the bandpass output is denoted as
b(n), and the notch output is denoted as e(n).
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Therefore, considering Figure 1.2, the notch and bandpass equations are

Hnotch(z) =
1

2
[1 +A(z)] Hbp(z) =

1

2
[1−A(z)]; (1.1.1)

wherein, in the form primarily applied in this thesis

A(z) =
z−1β − α
1− αz−1β

. (1.1.2)

Next, the stages of an ANF can be explained, by splitting them into the

following four areas, which are labelled a) to d):

a) Time domain

Initially, all signals are sampled in the time domain, where each sample will

have a numerical value: and in this thesis the data is sampled in discrete

intervals of (n); however, in DSP more advanced techniques are possible in

the frequency domain. Therefore in this application, a z-transform converts

from a discrete time form into a complex frequency domain representation:

where z = ejθ.

b) Frequency domain

The frequency domain shows all the individual frequency components that

are present at one instant in time; and once in this domain, as the aim in

this application is to locate a target frequency an inverse transform is not

required. The frequency domain may also contain phase information, which

is required to recombine the frequency components when converting back

to the time domain; phase information is also important when considering

complex frequencies.
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c) Notch

A simple fixed notch filter response is shown below in Figure 1.3, this shows

that two parameters can be altered; where β controls the notch frequency,

and α controls the notch bandwidth.

Figure 1.3. The effect of changing the notch frequency and bandwidth
parameters in a fixed notch filter B structure from [1].

d) Locating unknown frequencies

In the frequency domain, by minimising a cost function, it is possible to

locate an unknown target frequency with an ANF; an example of which is

shown in Figure 1.4.

Figure 1.4. Locating a target signal with an adaptive notch filter,
where the target signal frequency is 1.2566.
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Adaptive notch filtering has been around for several decades, and Finite

Impulse Response (FIR) structures and their realisation is indeed mature;

however, the use of Infinite Impulse Response (IIR) structures is not com-

plete or fully understood. An IIR structure applies feedback from its output,

thus requires a shorter length of filter, which produces a more effective re-

sponse per computation; however, this feedback creates instability if not

properly constrained, whilst FIR filters are unconditionally stable. There-

fore, developing a new type of IIR structure will produce a beneficial piece

of research in the area of DSP.

Many structures have been proposed for ANF that facilitate the abil-

ity to track a single time-varying Real Sinusoid Signal (RSS), or multiple

RSSs. Tracking these signals and eliminating noise is important practically;

particularly with technology advancing to smaller geometries, increasing the

vulnerability of a system to noise related errors. As we live in a changing

world, noise sources will continually shift; increasing and decreasing; there-

fore, every system is susceptible to noise, particularly moving vehicles. Thus,

being able to mitigate the effects of this changing noise; by filtering it out,

is clearly key to any powerful robust system.
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1.1.1 The Strengths of Adaptive Notch Filters

Why would ANFs be used? This is a question that can be asked; and to

answer this question the strengths of this technology are:

1. The design [1] adapts simply and is computationally efficient, thus it

is canonic in the number of multipliers and delay elements,

2. Structures are easily extendible to facilitate the tracking of multiple

signals,

3. ANFs have the ability to mitigate broadband noise, and can provide

Signal-to-Noise Ratio (SNR) performance enhancements; thus enhanc-

ing the performance of a system,

4. This technology provides numerically robust solutions, and

5. As this design is based on a structurally lossless prototype [1], the

all-pass solution provides no gain enhancement; therefore, the signal

cannot be detrimentally changed, even if there is an error in the algo-

rithm.

This thesis focuses on developing aspects of a CANF, which is an ANF

that is capable of tracking a CSS; where a CSS contains a real (Re) and

an imaginary (Im) component. Although there are many ANFs, far fewer

CANFs have been published to date. Tracking multiple sinusoid signals is

also possible with ANFs: in real or complex form; and this is achieved by

cascading the structures.

1.2 Published Applications of Adaptive Notch Filters

There have been many applications for ANFs, and the applications noted

in this research programme are described now in this section; where these

applications were noted from 1991-2014.
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Traditionally radar and sonar are the primary applications for ANFs,

and a publication in 2008 [5] shows that ANFs are still used in this type of

system.

A further military application found in this review has been noted as,

‘Inserting an ANF into the missile acceleration control loop sensor feedback

to reject the bending mode which causes the resonance or instability’ [6].

A common recent application for ANFs is communication systems, such

as the global navigation satellite system [7], and a ultra-wideband based

wireless multimedia system [8].

Notch filters are also commonly used in safety critical control systems:

as stated in [9]; where complexity is an issue, due to design size limits in

high reliability technology.

Another area where ANFs have been used is medical measurements,

where notable applications are removing power-line noise from Biomedical

signals: [10] - [11], and Electrocardiography (ECG) [12].

ANFs have also been implemented in various power applications, such

as: tracking phases in AC systems: [13] - [14], active power filters [15], and

removing voltage flicker [16].

Assisting with the mechanical resonant mode compensation problem for

hard disk drives is another application, where publications are noted as [17]

and [18].

In 2008 an audio application was noted as effective bass enhancement in

[19]; and there has also been an ANF implementation within an earthquake

simulator, which is referenced as [20].

A further notable utilisation for this technology is removing harmonics

and inter-harmonics [21]; then quasi harmonic signals in [22], which was

published in 2012, and provides another recent application.

One point to note is that from 2006 to 2008 ten of these referenced ap-

plications were published, highlighting that ANFs are still a fast developing
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area of interest.

1.3 Aims, Objectives and Thesis Structure

The specific aim of this PhD programme is to develop aspects of a CANF;

and this research has focussed primarily on four areas, which are:

1. Creating a new type of structure: Chapter 4,

2. Adapting the notch bandwidth parameter in the structure: Chapter

5,

3. Considering the tracking of a complex-valued chirp signal: Chapter 6,

and

4. Enhancing the performance of the system further by implementing

stochastic search methods to reinitialise the notch filter: Chapter 7.

This research began by implementing four existing adaptive notch struc-

tures, due to: Chambers & Constantinides [1], Regalia [2], Cho, Choi &

Lee [3], and Kwan & Martin [4], which were simulated and compared; which

is included as Chapter 3 of this thesis. However, in this form these existing

structures are capable of tracking only RSS.

Next in Chapter 4, one of these structures which was originally developed

for RSSs is extended to track CSSs. This provides a comparison to the recent

research of Regalia detailed in [23], where the lattice structure from [2], has

been developed to a form capable of tracking CSSs.

Chapter 5 of this thesis considers adapting the notch bandwidth param-

eter, as this should improve the performance of the CANF further. In this

chapter three methods are evaluated for adapting the notch bandwidth pa-

rameter, and it is adapted in different parts of the structure: when multiple

CSSs are tracked.
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In Chapter 6 tracking complex-valued chirp signals is considered, and

the notch bandwidth parameter is also adapted in this scenario; this chapter

also considers the tracking of a complex-valued chirp signal and a hopping

signal simultaneously; and includes the computational complexity of the

structures proposed in Chapters 4 - 6 of this thesis: for a floating point

Matlab implementation.

The final research topic considered within Chapter 7 of this thesis; applies

stochastic search methods to reinitialise a notch filter, thus quickly locating a

new frequency. This chapter also specifically considers applying a stochastic

search method in the scenario where two signals are being tracked and one

signal hops to an unknown frequency.

Lastly, this thesis is concluded in Chapter 8, where opportunities for

further research are also highlighted. There is also an Appendix in Chapter

9, which contains additional information that is relevant to this thesis.



Chapter 2

REVIEW OF IIR ADAPTIVE

NOTCH FILTERS

In this chapter, literature relevant to developing aspects of a Complex Adap-

tive Notch Filter (CANF) is reviewed. The first section contains a historical

background on the field of adaptive filtering; the second section then in-

troduces ANF structures, next section three shows the synthesis of the four

structures that are evaluated in this thesis: [1] - [4], which track real sinusoid

signals. Then other CANFs are discussed in the fourth section, highlighting

their relevance to the later chapters of this thesis. Lastly, in the fifth section

the evaluation criteria for ANFs are described which have been applied in

this research.

2.1 Historical Background

The development of linear least-squares estimation theory, a subject with

close links to adaptive filter theory; and adaptive filter theory has been

historically documented by Kailath as [24] in 1974, and in 1986 by Haykin

[25]. The studies indicate from earliest times that man has been interested

in the interpretation of observations to make estimations and predictions.

For instance the Babylonians employed a rudimentary form of Fourier series

to this end. However, the onset of a theory of estimation is attributed to

Galileo Galilei, who in 1632, attempted to minimise some functions of errors.

10
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The next milestone was the inception point of linear least-squares estimation

theory, which was completed by Gauss in 1795; when Gauss first used the

method of least-squares to study the motion of heavenly bodies. Although

later, argument arose as whether Gauss or Legendre initiated this theory,

now it has been accepted that Gauss was indeed the pioneer.

Least-squares was applied to stochastic or non-deterministic processes

by Kolmogorov, Krein and Wiener in the late 1930s and early 1940s. Al-

though there were different aims, as they worked independently, there was

an overlap in the results that they created. Next, Kolmogorov who was in-

spired by Wold’s earlier work on the decomposition of stationary processes,

then comprehensively developed the prediction of discrete time processes.

Masani found that the importance of Kolomogorov’s work, in the predic-

tion of a scalar value, was so useful that he wrote “So thorough had been

Kolmogorov’s treatment of the univariable in the discrete case that there is

little left to do”, as mentioned in [24].

Relationships were recognised by Krein, between Kolmogorov’s work and

some earlier results by Szego on orthogonal polynomials. Which led to the

application of bilinear transformations, and then these results were extended

to continuous-time. The true father of linear-least squares estimation in en-

gineering could however be seen to be Wiener, and Shannon acknowledged

that “Credit should be given to Professor N. Wiener, whose elegant solution

of the problems of filtering and prediction of stationary ensembles has con-

siderably influenced the writer’s thinking in the field”. Solving anti-aircraft

fire-control problems and providing a solution to the continuous time linear

prediction problem were indeed aspects of Wiener’s work. Wiener also de-

veloped an explicit formula for the optimum predictor, and considered the

filtering problem of estimating a representation of an additive noise process.

Wiener created an explicit formula in terms of an integral equation known as

the Wiener-Hopf equation. This equation arose first in 1894 in astrophysics,
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and therefore has been widely studied. Then in 1947 Levinson, formulated

the classical Wiener filtering problem in discrete-time. In terms of discrete-

time signals, the Wiener-Hopf integral equation is in a matrix form, and is

known as the normal equation

Rxxaopt = rxd, (2.1.1)

wherein, Rxx is the autocorrelation matrix of the FIR filter input vec-

tor x(n − K), i.e. Rxx = E{x(n − K)x(n − K)T } with x(n − K)T =

[x(n−K), x(n−K−1), ..., x(n−K−N +1)]. Herein, N is the tap length of

the transversal FIR filter, E{.} is the mathematical expectation operator, n

is the discrete time index, K is the step ahead parameter of the forward pre-

diction error filter, (.)T is a vector transpose; and rxd is the cross-correlation

vector between the FIR filter input vector x(n − K) and the desired re-

sponse d(n), i.e. rxd = E{x(n−K)d(n)}; lastly, the parameter vector of the

optimum Wiener filter in transversal form is aopt.

The solution of (2.1.1) is termed as the normal equation, due to the fun-

damental characteristic of optimal filters in the least-squares sense which was

published in 1984 by Papoulis as [26]. In a geometric sense, the estimation

error e(n) is normal to the vector which represents the filter output d̂(n) as

shown in Figure 2.1. In addition the filter input data x(n−K), used to form

d̂(n), is orthogonal to the estimation error; this is known as the “principal

of orthogonality”. A further point to add is that capitals are used in this

thesis to denote matrices, whilst bold text is used to denote vectors.

Figure 2.1. The geometric representation of the normal equation.
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If the input data’s statistics are stationary, then the correlation ma-

trix Rxx is Toeplitz, named after Toeplitz who was a mathematician [27].

Toeplitz creates a square matrix if all the elements on its diagonal are equal,

and the elements on any other diagonal parallel to the main diagonal are

equal; Levinson exploited this property to find a recursive procedure for the

solution of the normal equation. Levinson’s motivation to formulate this

algorithm was to see the effect on the filter output of increased filter order.

Interestingly, he did not want to resolve the equation for each new order, and

instead used the results for filter order N-1, to calculate the results for filter

order N: forming a recursive algorithm. Levinson published his work in 1947

as [28] the Wiener Root Mean Square (RMS) error criterion in filter design

and prediction. Durbin rediscovered Levinson’s recursive algorithm in 1960,

when he fitted scalar time-series data to autoregressive models. In 1963

Whittle deduced that there is close affinity between the Levinson-Durbin

recursion and that of Szego’s polynomials. These polynomials showed an

unusual property unlike the classical orthogonal polynomials defined in a

straight line, Szego’s polynomials are defined on a circle. Thus, to obtain a

recursion for their generation two auxiliary polynomials must be introduced.

The next major development in terms of least-squares estimation was

delayed until the late 1960s. The work that followed Wiener and Kolo-

mogorov’s developments, was inappropriate for application to overcome the

shortfalls evident in the precedent theory: assumption of stationarity, re-

quirement of an infinite amount of available data, and the restriction of

scalar quantities. Consequently, in the late 1950s for the space age applica-

tions; it was necessary to determine satellite orbits, from vector observations

composed of position and velocity measurements. These measurements were

accumulated with each pass of a satellite; therefore, the requirement for

a new algorithm and approach was clear. Swerling was first to propose a

new algorithm; however, it was Kalman who developed a more restrictive
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algorithm, thus providing the solution to this particular space age problem.

The first solution by Kalman was for a discrete-time problem; but later by

collaborating with Bucy a continuous-time solution was developed, known

as the Kalman-Bucy filter. Then, it was Kailath who derived a solution to

the linear filter problem, creating the Kalman filter via the innovatius ap-

proach. This process was truly innovative as it allowed the whiteness to be

tested, which was documented in a book by Candy in 1986 entitled ‘Signal

processing the model-based approach’ [29].

Work on adaptive filters truly began in the 1950s and many researchers

worked on various applications of this technology. Widrow and Hoff in [30]

considered the application of an adaptive filter for a pattern recognition

problem, and from this scheme named the ‘Adaptive linear threshold logic

element’ came the Least Mean Square (LMS) algorithm. Theoretically, the

LMS algorithm was developed by Robbins and Monroe in 1951 [31], to solve

certain statistical sequential parameter estimation problems. The LMS al-

gorithm may also sometimes be referred to as a stochastic gradient method,

because on average, it moves down the error performance surface, i.e. cal-

culating the mean-squared-error as a function of the filter parameters, in

the direction of the true negative gradient. The essential difference between

the stochastic approximation method and the LMS algorithm is, the former

uses a reducing step size parameter. The LMS algorithm does not follow this

method completely as if the step size decays to zero, the adaptive capacity

would be lost, which is clearly not the case. In 1967 Sakrison [32] noted the

use of a Newton search direction would improve the convergence properties

of stochastic approximation methods.

Kalman filter theory was applied by Godard in 1974 to a transversal

FIR filter, for the development of an adaptive filter algorithm. He was not

the first researcher to implement this approach, but his approach is often re-

garded as the best [33]. The Recursive Least Squares (RLS) algorithm, which
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is computationally complex, was obtained from a method of least-squares,

this method was derived by many researchers, but Plackett is recognised as

the first in [34]. As the RLS algorithm offers much faster convergence many

researchers have attempted to simplify its complexity, initially by Morf in

1974 solving the deterministic dual, which parallels the stochastic problem

that Levinson then went on to solve. Well known forms of these fast algo-

rithms are the Fast Kalman algorithm [35] and the Fast RLS Transversal

Filter (FTF) algorithm [36].

The concept of the design of an adaptive IIR filter which minimises a

mean-square-error first appeared in signal processing in the mid 1970s, which

is documented in [37] and [38]. Whereas, the derivation of algorithms for

the stability theory approach for the adaptation of IIR filters, was initially

considered in the late 1970s and the early 1980s by Larimore, Treichler and

Johnson in [39]. Since then, many new improved adaptive algorithms have

been developed; one example of this is the affine projection algorithm, which

is detailed in [40].

An ANF generally minimises a mean-square-error, to adjust the fre-

quency of its notch; thus estimating the frequency (θ) of a target signal:

which is being tracked. ANFs are produced from structures, which may

be cascaded to track multiple target signals. This type of approach avoids

stability problems in learning in more general IIR structures.

The first references to filtering CSSs as considered in this research were

[41] - [43]; which are discussed in detail in the introduction to tracking CSSs:

Chapter 4 of this thesis. It should be duly noted that Chambers’ thesis [44]

provided an excellent source of background information for this thesis and

research.

The key parts to an ANF are the ‘structure’ and the ‘adaptive algorithm’;

although, other aspects of an ANF such as: adapting the notch bandwidth

parameter, evaluating the algorithm’s convergence, or considering a specific
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application, may provide suitable topics for research; thus considering this

point, structures are discussed first.

2.2 Introduction to Adaptive Notch Filter Structures

To introduce ANF structures, firstly the two methods used to implement

them are discussed; these methods are defined as Direct Coefficient Scaling

(DCS) and all-pass structures; which Regalia highlights in his 2010 publica-

tion [23], and ‘Adaptive IIR Filtering in Signal Processing and Control’ [45],

which is a research monograph that he published in 1995.

DCS structures were the original method exploited to implement ANFs,

and examples of these are Kwan & Martin [4] and [46]; where Nehorai’s

structure [46] has been widely cited in this field. However, all-pass structures

such as: [1], [2] and [3] have been published more recently. Currently, all-pass

structures are considered to provide superior solutions as: 1) DCS solutions

alter the magnitude response of a filter, whilst an all-pass solution passes

all frequencies unaltered, and 2) all-pass structures generally require less

computations in synthesis, thus providing more simplistic solutions.

When tracking multiple sinusoid signals equation-error and output-error

solutions are required, and these solutions are produced by cascading DCS

or all-pass structures. Hence on the next page, Figure 2.2 and Figure 2.3

demonstrate the difference between equation-error and output-error solu-

tions.

An output-error approach minimises some function of the ‘overall’ notch

filter output e(n): which is typically the squared error; the overall error is

calculated for the complete structure, and creates a gradient term grad(n) for

each arm of the structure. Therefore, the output-error approach requires an

arm for each frequency being tracked, where these arms produce a gradient;

and in Figure 2.2, the gradient terms are shown as grad(n) 1 and grad(n) 2.
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Figure 2.2. The output-error approach for tracking two sinusoid sig-
nals.

Whereas, an equation-error approach produces a local notch filter output

e(n), and filter regressor signal term x(n) for each notch filter in the cascade.

Therefore, in the equation-error approach each notch filter is tracking an

individual frequency; which is being fed from the output of the previous

notch filter, where the previous notch filter is assumed to have removed the

frequency it has tracked from the input to the next notch filter in the chain.

In Figure 2.3 below, the local errors are shown as e(n) 1 and e(n) 2; then

the remaining regressor terms, are defined as x(n) 1 and x(n) 2.

Figure 2.3. The equation-error approach for tracking two sinusoid
signals.

From Figure 2.3, it can be observed that equation-error approaches sim-

plify the overall computational complexity of a structure utilised to track

multiple sinusoid signals; however, at the cost of robustness to tracking close

proximity sinusoids. Thus, under certain conditions an equation-error ap-
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proach is much more likely to fail than an output-error method, which is

demonstrated in Chapter 3 of this thesis.

In this research four particular structures are evaluated, which were high-

lighted by Regalia in his 2010 publication [23]. These four structures are due

to: Chambers & Constantinides [1], Regalia [2], Cho, Choi & Lee [3], and

Kwan & Martin [4]. Although, Chambers & Constantinides’ structure has

been abbreviated to Chambers [1] in this thesis.

The four approaches selected from [23] provide a good comparison as

they contain a mixture of DCS, all-pass, equation-error and output-error

approaches. The justification for this statement is that Kwan & Martin’s

design [4] provides a DCS solution in an output-error form; the remain-

ing three designs: [1], [2] and [3], are all-pass structures, where [2] and [3]

are equation-error approaches; whilst [1] is an output-error solution. These

structures are evaluated in Chapter 3 of this thesis; where Chapter 3: An

Evaluation of Real Notch Filters, highlights the strengths and weaknesses of

each approach; which concludes this introduction to ANF structures.

2.3 Synthesising Adaptive Notch Filter Structures

A sensible way to compare these four structures is to investigate how they

are synthesised. Therefore, in this section the structures are introduced in

terms of their second order notch transfer function, update equation and

diagram: which shows how each structure can be implemented.

Hence from this information, all four structures can be synthesized in

Matlab, in a form capable of tracking a single RSS; where the structures

required for tracking multiple RSSs are included in Chapter 3.

Next, the synthesis of Chambers’ structure is shown first; followed by

Regalia’s approach, then Cho, Choi & Lee’s method, and the section is

completed with the synthesis of Kwan & Martin’s structure.
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2.3.1 Chambers’ All-pass Structure

The notch transfer function for Chambers’ Notch Filter B (NFB) approach

[1] is

Hnotch(z) =
(1 + α)

2

1− 2βz−1 + z−2

1− (1 + α)βz−1 + αz−2
. (2.3.1)

In this structure α is the pole radius squared, and β = cosω0. Then, β is

updated by applying the NLMS equation as follows

β(n) = β(n− 1)− µe(n)grad(n)

ψ(n)
; (2.3.2)

wherein, ψ(n) = ψ(n− 1)γ + (1− γ)grad(n)2.

Figure 2.4. Chambers’ output-error all-pass notch filter B structure
[1].

Figure 2.5. The all-pass filter Hap1(z) shown in Figure 2.4 from Cham-
bers’ paper [1].
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2.3.2 Regalia’s All-pass Solution

The second structure: Regalia’s all-pass method from [2], is implemented as

shown in Figure 2.6 below; wherein x(n) is the regressor term.

(a)

(b)

Figure 2.6. A block diagram of Regalia’s original structure from
1991 [2], which is used in an equation-error approach; where (a) shows
how the all-pass structure can be implemented to produce a band-pass
filter and a notch filter; herein the bandpass output is denoted as b(n),
and the notch output is denoted as e(n). Then the second part (b)
demonstrates the implementation of the all-pass filter A(z).

This structure’s notch transfer function is

Hnotch(z) =
2(k2 + k1(1 + k2)z

−1 + z−2)

1 + k1(1 + k2)z−1 + k2z−2
; (2.3.3)

wherein, k2 = r2 and k1 = − cosω0; then in synthesis k1 = sin θ1 and

k2 = sin θ2.

The parameter k1 is updated by applying the NLMS equation as follows

k1(n) = k1(n− 1)− µe(n)x(n)

ψ(n)
; (2.3.4)

herein, ψ(n) = ψ(n− 1)γ + (1− γ)(x(n))2.
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2.3.3 Cho, Choi & Lee’s All-pass Method

The notch transfer function for the third structure by Cho, Choi & Lee [3]

is

Hnotch(z) =
1 + k0(1 + k1)z

−1 + k1z
−2

1 + a0(1 + a1)z−1 + a1z−2
; (2.3.5)

herein a1 = αk1, k1 = 1 and k0 = a0 = − cosω0.

Then to implement the update the following parameters are calculated:

A(n) = 2.x(n− 1), B(n) = x(n− 2) + x(n− 1),

C(n) = γC(n− 1) +A(n).B(n), and D(n) = γD(n− 1) +A(n)2;

wherein x(n) is the regressor term. Please note that as shown above, an

additional delay is required to generate the B(n) parameter; and also observe

that, no adaptation gain is used in this implementation; although the authors

recommend setting γ to 0.5. Also, upper case letters are used to follow the

convention in [3], as they correspond to calculating parameters which form

the reflection coefficients.

These parameters then allow k0 to be updated via the update k0 =

−C(n)

D(n)
.

Figure 2.7. Cho, Choi & Lee’s all-pass structure [3].
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2.3.4 Kwan & Martin’s Direct Coefficient Scaling Solution

The fourth structure considered is Kwan & Martin’s structure [4], and its

notch transfer function is

Hnotch(z) =
2− k2

2

1− 2(2−k2−k21)
2−k2 z−1 + z−2

1− (2− k2 − k21)z−1 + (1− k2)z−2
; (2.3.6)

wherein, r is the pole radius which equates to r =
√

1− k2, and

k1 =
√

1− r2 − 2r cosω0, herein ω0 is the notch frequency.

The sensitivity output s′(n): which equates to the gradient with the

adjustment grad(n) = 2s′(n)
k2

; updates the tracking parameter k1 via the

Normalised Least Mean Square (NLMS) update as follows

k1(n) = k1(n− 1)− µe(n)grad(n)

ψ(n)
; (2.3.7)

herein, µ is the adaptation gain; and ψ(n) = ψ(n − 1)γ + (1 − γ)grad(n)2;

where, 0� γ < 1: which is the forgetting factor.

Figure 2.8. Kwan & Martin’s direct coefficient scaling structure im-
plemented to track a single sinusoid signal, which is created from two
bi-quads; although the second bi-quad may be simplified slightly [4].



Section 2.4. Relevant Complex Adaptive Notch Filter Publications 23

From these notch transfer functions, it’s clear that the DCS form is more

complex to synthesise than the all-pass forms; particularly when cascaded

to track multiple sinusoid signals in its output-error form: which is shown

in Chapter 3.

2.4 Relevant Complex Adaptive Notch Filter Publications

This section focusses on CANFs, primarily considering the research of Nishimura

and Regalia’s 2010 publication [23], where Regalia develops his structure into

a form capable of tracking CSSs, which is considered first.

2.4.1 Regalia’s Complex Adaptive Notch Filter Structure

The paper which is most relevant to this research is Regalia’s modified struc-

ture [23]: which he has developed to enable his design to track CSSs. This

publication provides a strong foundation, and good reference point for com-

parison in this research.

The structure which Regalia published in 2010 has been included as

Figure 2.9 in this thesis. Although, interestingly this structure is included in

his 1999 publication [47] as Fig. 6; and further details of variations to this

structure are also included within this comprehensive paper.

Figure 2.9. Regalia’s design developed into a form capable of tracking
complex sinusoid signals [23].
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As in his earlier publications, Regalia also applies the equation-error

approach in [23]; although, he has not included a simulation to demonstrate

that his method is capable of tracking multiple CSSs. However, he does

include Fig. 5, which claims a gradient descent algorithm fails to track a

CSS; although this research disputes this result, as it proves that it is possible

to track a CSS with a gradient descent method, which this research refers

to as an output-error approach. Chapter 4 of this thesis demonstrates that

actually an output-error approach is more robust than an equation-error

method; and shows a scenario where Regalia’s equation-error approach fails

to track two CSSs.

Within [23] Regalia demonstrates that his structure is capable of track-

ing Complex-Valued Chirp Signal (CVCS) in Fig. 3 of his paper; which is

investigated in Chapter 6 of this thesis, wherein the performance of both

approaches is compared for tracking a CVCS. However, it should be noted

that tracking multiple CVCS is a significant challenge.

2.4.2 Nishimura’s Complex Adaptive Notch Filter Structure

Nishimura has published several papers on CANFs; where the first was pub-

lished in 1996 as [48]. In Nishimura’s research he has developed Kwan &

Martin’s design [4] into a CANF, and his earlier papers show a few variations

of the structure he developed, such as [48] and [49]: where the structure

from [49] is shown in Figure 2.10; however, his later papers, such as [50]:

which was published in 2013, do not include a structure.

Interestingly, Nishimura applies an output-error approach for the track-

ing of multiple signals, which is common throughout his publications. His

2013 publication [50] also includes a detailed tracking analysis, as do many

of his publications.

In [50] Nishimura et al. have referenced Regalia’s CANF; therefore, it is

surprising that they have not compared the performance of their structure
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Figure 2.10. Nishimura’s complex adaptive notch filter structure from
[49].

to his. In his research Nishimura et al. also adapts the notch bandwidth

parameter, which is discussed in Chapter 5 of this thesis. Nishimura also

considers the tracking of linear chirps in [51], and publishes some analysis of

this; which highlights the relevance of Chapter 6 of this thesis; then in [13]:

which is his most recent paper that was published in 2014, he exploits CANFs

to track the phases of AC components. Therefore in summary, Nishimura’s

research provides another useful CANF structure, which employs an output-

error method for tracking multiple signals; however, it would be interesting

to see how its performance compares to Regalia’s or the structure proposed

in this research: which is a suggestion for future research.

Also observe that Chapter 5 of this thesis investigates adapting the notch

bandwidth parameter: which is a topic that Regalia has not actively re-

searched, and the literature relevant on adapting the notch bandwidth pa-

rameter is included in the introduction to Chapter 5. Which is also the

case for Chapter 7 of this thesis, where this chapter implements a genetic

algorithm.

In the final section of this chapter, which completes this review of relevant

literature; the evaluation of adaptive schemes used for enhancing sinusoids

in noise is considered.



Section 2.5. Adaptive Notch Filter Evaluation Criteria 26

2.5 Adaptive Notch Filter Evaluation Criteria

Primarily, three methods have been used as evaluation criteria for ANFs in

this thesis, which are described in the next three parts of this section; these

three methods are: bias, variance and Signal-to-Noise-Ratio Improvement

Ratio (SNR IR). However, the SNR has also been calculated in this thesis,

by applying the formula

SNR(dB) = 10. log10

[
S2

σ2

]
; (2.5.1)

herein, S is the amplitude of the signal, and σ2 is the variance of the estimate.

2.5.1 Bias

The first of these bias, can be described as the average distance away from

the target value for an estimator. Consider the actual frequency is θ, the

estimation of a frequency at one instance is θ̂(n) = f(x), where x denotes

the observation sequence, then the mean of the estimator E{θ̂(n)} = mθ;

thus the bias of the estimator is given by

∆ω = θ −mθ. (2.5.2)

In practice, to obtain the mean a sample average is used, which is

mθ =
1

N

N∑
n=1

(θ̂(n));

therefore, the practical estimate for bias can be shown to be

∆ω ≈ θ −
[

1

N

N∑
n=1

(θ̂(n))

]
. (2.5.3)

In this research, this is calculated from a sufficient number of samples to

attain statistical stability; which in practice is achieved by averaging 200
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steady-state yielded reliable results.

2.5.2 Variance

The second method variance, represents the average squared deviation of

the estimator away from the mean, which may be expressed as

σ2θ = E{|θ̂ −mθ|2}; (2.5.4)

again this has been estimated for the last 200 values; and in practice the

variance is estimated via the following formula

σ2θ ≈
1

N

N∑
n=1

(θ̂ −mθ). (2.5.5)

Evaluating Complex-Valued Chirp Signals

When tracking CVCSs: which is considered in Chapter 6 of this thesis;

CVCSs should be evaluated differently as their frequency is constantly chang-

ing; therefore, a CANF may favour certain parts of a CVCS. Thus when

evaluating a CVCS, its full range should be considered; and only the first

hundred or so values should be omitted i.e. whilst the CANF is locking onto

the target signal. Hence by applying this method, a result cannot select the

favoured part of a CVCS for one approach, which ensures a fair comparison.

However, if as a consequence of using the complete CVCS, the number

of samples was an issue in a particular scenario, a sensible approach would

be to select various samples over the CVCSs full range, possibly in steps of a

thousand; thus reducing the complexity of this performance estimate. Please

also note, that bias cannot be used to evaluate a CVCS, as its frequency is

constantly changing.
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2.5.3 Signal-to-Noise Ratio Improvement Ratio

The last measurement considered in this thesis is the SNR IR, which is a

purely a theoretical performance estimation; thus cannot be applied to the

data. Please note that, this performance estimation has only been applied

to the real structures.

To begin with Kwan and Martin’s paper [4] provides a description of the

SNR IR, which can be defined as:

SNR IR =
SNRout

SNRin
;

herein, SNRin is the SNR at the input to the filter, and SNRout is the

SNR at the output of the filter.

Kwan and Martin’s paper contains a table of the SNR IR for Hush’s, Ne-

horai’s and their structure, which is included in this thesis as Table 2.1;

wherein r is a given pole radius.

Table 2.1. Signal-to-noise-ratio improvement ratios for real adaptive
notch filter structures published in [4].

Paper Kwan & Martin Nehorai Hush
[4] [46] [52]

Calculation
2

1− r2
1

1− r
1 + r2

1− r2

To complete this section of the review, the SNR IR is calculated for

the four structures primarily considered in this research, and interestingly a

published value has not been noted for Regalia’s or Cho Choi & Lee’s struc-

ture. The calculations for Chambers’ structure have been included, as this

is the design developed in this research; although it has been acknowledged

that the SNR IR for Chambers’ structure has been published in [1].
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Whilst analysing these results it was noted that the research by Hush et

al. [52] showed a similar calculation to Chambers’ structure [1].

Now moving on, the SNR IR is calculated with the following method.

As Kwan & Martin state in [4] “The SNR improvement ratio is defined as

the SNR at the output of the bandpass filter divided by the SNR of the input

signal”. Now as Regalia shows in [2]: which Figure 2.6 a) also illustrates,

the bandpass and notch transfer functions are in fact very similar; as from

the all-pass function A(z), the bandpass transfer function Hbp(z) is

Hbp(z) =
1

2
[1−A(z)]; (2.5.6)

then for the notch transfer function Hnotch(z), is almost the same which is

Hnotch(z) =
1

2
[1 +A(z)]. (2.5.7)

Therefore, the bandpass function may be used to derive the SNR IR for a

notch filter starting with the SNRin; which assuming that the signal power

is equal to one, is

SNRin =
1

σ2n
; (2.5.8)

wherein, σ2n is the variance of the noise. Then the SNRout is defined as

SNRout =
|Hbp(e

j2πω0)|2

σ2n
1

2πj

∮
c|Hbp(z)|2 dzz

. (2.5.9)

Therefore, the SNR IR for a notch filter can be derived to be

SNR IR =
SNRout

SNRin
=

|Hbp(ej2πω0 )|2

σ2
n

1
2πj

∮
c|Hbp(z)|2

dz
z

1
σ2
n

; (2.5.10)
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which simplifies to

SNR IR =
|Hbp(e

j2πω0)|2
1

2πj

∮
c|Hbp(z)|2 dzz

. (2.5.11)

Then as Kwan & Martin state in [4], assuming the input consists of a single

sinusoid in white noise with power σ2n, the ratio can be computed as follows

SNR IR =

[
1

2π

π∫
−π

Hbp(ω)H∗bp(ω)dω

]−1
. (2.5.12)

This simplification occurs because |Hbp(e
j2πω0)|2 = 1; which is exploited

for Chambers’ NFB structure next; then for the other structures compared

in this Chapter, and Chapter 3 of this thesis.

The SNR IR for Chambers’ NFB structure

The |Hbp(e
j2πω0)|2 for the NFB structure [1] is calculated as follows

Hbp(e
jω) =

(1− α)

2

(1− ejω)(1 + ejω)

1− (1 + α)βejω + αej2ω
, (2.5.13)

where β = cos 2πω0 = cosω0. Therefore, |Hbp(e
jω)|2 is calculated as

|Hbp(e
jω)|2 =

(1− α)2

4

(1− ejω)(1 + ejω)

(1− (1 + α)βe−jω + αe−2jω)
.

(1− e−jω)(1 + e−jω)

(1− (1 + α)βejω + αe2jω)
.

Then by: multiplying this equation out, replacing β with cosω0, and ap-

plying trigonometric identities: including the relation cos θ ≡ 1
2(ejθ + e−jθ),

produces the expression |Hbp(e
jω0)|2 =

4(1− 2α+ α2)(1− cos2 ω0)

4(1 + α2 + (1 + α)2 cos2 ω0 − (α+ α2) cos2 ω0 + 2α cos 2ω0 − (1 + α) cos2 ω0)
;
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which simplifies to

|Hbp(e
jω0)|2 =

1− 2α+ α2 − cos2 ω0 + 2α cos2 ω0 − α2 cos2 ω0

1− 2α+ α2 − cos2 ω0 + 2α cos2 ω0 − α2 cos2 ω0
= 1.

Next, as it has been proven that |Hbp(e
jω)|2 = 1. Now the remainder of

the SNR IR is evaluated as follows, starting with

|Hbp(z)|2 =
(1− α)2

4

(1 + z−1)(1− z−1)
1− (1 + α)βz−1 + αz−2

(1 + z)(1− z)
1− (1 + α)βz + αz2

.

Therefore, the SNR IR can be expressed as

SNR IR =

[
1

2πj

∮
c

(1− α)2

4

(z2 − 1)(1− z2)dz
(z2 − (1 + α)βz + α)(1− (1 + α)βz + αz2)z

]−1
.

To simplify this expression, assuming that β = 0: as [1] and [4] did, thus

ω0 = π
2 ; which leaves

SNR IR =

[
(1− α)2

8πj

∮
c

(z2 − 1)(1− z2)dz
(z2 + α)(1 + αz2)z

]−1
;

where the poles are z = 0, j
√
α, −j

√
α, j 1√

α
and −j 1√

α
. However, the

last two poles are outside the unit circle, and thus do not contribute to

the integral. Then completing the square, and using the ‘cover up rule’ to

extract the residuals gives us

SNR IR =

[
(1− α)2

8πj
2πjΣ{Res}

]−1

Wherein, Res = residuals inside |z| = 1, of

(z2 − 1)(1− z2)
(z − j

√
α)(z + j

√
α)(1− j

√
αz)(1 + j

√
αz)z

, which equates to

SNR IR =

[
(1− α)2

4

(1 + α) + (1 + α)

2α(1− α)
+
−1

α

]−1
=

[
(1− α)2

4

2α

α(1− α)

]−1
;
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yielding the final result for the NFB’s SNR IR to be

SNR IR =
2

1− α
. (2.5.14)

The SNR IR for Chambers’ NFA structure

Now for the Notch Filter A (NFA) structure [1], the bandpass transfer func-

tion is

Hbp(z) =
(1− α)z−1(β − z−1)

1− (1 + α)βz−1 + αz−2
. (2.5.15)

Then calculating |Hbp(z)|2 produces the expression

|Hbp(z)|2 =
(1− α)2(zβ − 1)(β − z)z

(z2 − (1 + α)βz + α)(1− (1 + α)βz + αz2)
,

which allows the SNR IR to be calculated as

SNR IR =

[
(1− α)2

2πj

∮
c

(zβ − 1)(β − z)dz
(z2 − (1 + α)βz + α)(1− (1 + α)βz + αz2)︸ ︷︷ ︸

=2πj
∑
K

]−1
;

where K = Residuals of poles inside |z| = 1. Now to make this easier,

consider β = 0. Where the poles are z = j
√
α, −j

√
α, 1

j
√
α

and − 1
j
√
α

; as

before the last two poles should be omitted; producing the expression

= [(1− α)2
∑

Residuals of
z

(z − j
√
α)(z + j

√
α)(1− j

√
αz)(1 + j

√
αz)

]−1,

which equates to

SNR IR =

[
(1− α)2

[
1

2

1

(1 + α)(1− α)
+

1

2

1

(1 + α)(1− α)

]]−1
.
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This expression then simplifies to

SNR IR =

[
(1− α)2

(1 + α)(1− α)

]−1
;

which rearranges to the final solution for the NFA structure, which is

SNR IR =
(1 + α)

(1− α)
. (2.5.16)

The SNR IR for Regalia’s structure

Firstly, the all-pass function was located from Regalia’s 1988 publication [47]

as (4.3), which is

A(z) =
k2 + k1(1 + k2)z

−1 + z−2

1 + k1(1 + k2)z−1 + k2z−2
. (2.5.17)

Then the band-pass function |Hbp(z)|2 = 1
2 [1−A(z)] is derived to be

|Hbp(z)|2 =
(1 + k1(1 + k2)z

−1 + k2z
−2)− (k2 + k1(1 + k1)z

−1 + z−2)

1 + k1(1 + k2)z−1 + k2z−2
;

which simplifies to

|Hbp(z)|2 =
1− k2 + k2z

−2 − z−2

1 + k1(1 + k2)z−1 + k2z−2
=

(1− k2)(1− z−2)
1 + k1(1 + k2)z−1 + k2z−2

.

Interestingly, this is the same result as was derived for the NFB all-pass

function; except k2 = r2, therefore, the SNR IR for Regalia’s structure is

SNR IR =
2

1− r2
. (2.5.18)

The SNR IR for Cho, Choi & Lee’s structure

For this structure, the bandpass transfer function needs to be derived from

the notch transfer function; where the notch transfer function is
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F (z) =
1 + k0(1 + k1)z

−1 + k1z
−2

1 + a0(1 + a1)z−1 + a1z−2
. Herein, a1 = αk1 and k1 = 1; there-

fore,

Hbp(z) = 1− F (z) =
(a0(1 + a1)− k0(1 + k1))z

−1 + (a1 − k1)z−2

1 + a0(1 + a1)z−1 + a1z−2
.

(2.5.19)

Next, calculating |Hbp(z)|2 produces the equation

|Hbp(z)|2 =
(a0(1 + a1)− k0(1 + k1))z + (a1 − k1)

z2 + a0(1 + a1)z + a1
.

(a0(1 + a1)− k0(1 + k1))z + (a1 − k1)z2

1 + a0(1 + a1)z + a1z2
. (2.5.20)

Then assuming k0 = a0 = 0, provides a SNR IR equation of

SNR IR =

[
1

2πj

∮
c

(a1 − k1)(a1 − k1)z2dz
(z2 + a1)(1 + a1z2)z

]−1
=

[
1

2πj

∮
c

(a21z − 2a1k1z + k21z)dz

(z2 + a1)(1 + a1z2)

]−1
; (2.5.21)

where the poles are z = j
√
α, −j

√
α, 1

j
√
α

and − 1
j
√
α

. Again omitting the last

two poles, then calculating the sum of the residuals of the poles, produces

the expression

SNR IR =

[
(a1 − k1)2

2(1 + a1)(1− a1)
+

(a1 − k1)2

2(1 + a1)(1− a1)

]−1
;

which simplifies to the final solution for Cho, Choi & Lee’s structure, which

is

SNR IR =
1− a21

(a1 − 1)2
=

(1− a1)(1 + a1)

(1− a1)(1− a1)
=

1 + a1
1− a1

. (2.5.22)
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Now to complete this section, Table 2.2 contains the SNR IR for the

structures which have just been evaluated; and Table 2.2 also includes cal-

culated values for the SNR IR, using α = 0.9025: where α is equivalent to

r2, which is the pole radius.

Table 2.2. Signal-to-noise-ratio improvement ratios for the structures
evaluated in this research.

Chambers Chambers Cho, Choi Kwan &
Paper NFA NFB Regalia & Lee Martin

[1] [1] [2] [3] [4]

Calculation
1 + α

1− α
2

1− α
2

1− r2
1 + α

1− α
2

1− r2

SNR IR 19.51 20.51 10.78 19.51 10.78

It is no surprise that these results are similar, as three of these designs

are based around the all-pass transfer function.

2.6 Summary

This chapter may be summarised as follows: The first section provided a

historical background on the subject of adaptive filtering; then the second

section introduced ANF structures, explaining the difference between DCS

and all-pass structures, before moving onto equation-error and output-error

approaches: which are required to track multiple sinusoid frequencies. Then

four second order structures were introduced, which were due to: Chambers

[1], Regalia [2], Cho, Choi & Lee [3], and Kwan & Martin [4].

In the third section the synthesis of these four structures was demon-

strated; and when considering the synthesis Chambers’ structure appears the

simplest; however, it was clear that the direct-coefficient-scaling approach is

much more complex than the all-pass solutions.

Then the fourth section discussed CANFs, where Regalia’s 2010 publica-

tion is reviewed, highlighting its relevance to this research; then Nishimura’s
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research is summarised. The last section of this chapter, introduced the three

evaluation criteria applied in this thesis, which are: bias, variance and SNR

improvement ratio. The SNR improvement ratio was calculated for the four

structures, where Chambers’ NFB structure provided the best result. Please

take note that some interesting points are highlighted for papers published

between 1991-2013 in Appendix 9.1. of this thesis.

This concludes the relevant literature review; next, Chapter 3 compares

the four structures due to: Chambers [1], Regalia [2], Cho, Choi & Lee [3],

and Kwan & Martin [4], for tracking up to four RSSs; providing further infor-

mation on the structures, simulations, and tabular results, thus highlighting

the strengths and weaknesses of each structure.



Chapter 3

TRACKING REAL SINUSOID

SIGNALS WITH ADAPTIVE

NOTCH FILTERS

This chapter considers adaptive notch filtering for tracking up to four Real

Sinusoid Signals (RSSs). The chapter is split into two sections, where the

first section introduces the IIR Least Mean Square (LMS) algorithm, shows

the effect of changing the notch bandwidth parameter, and provides further

information on the structures considered in the second section; then, the

second section of the chapter compares the structures due to: Chambers [1],

Regalia [2], Cho, Choi & Lee [3], and Kwan & Martin [4], for the tracking

of up to four RSSs; where these structures were formally introduced in the

previous chapter.

3.1 Introduction

The first section of this chapter begins by, introducing the LMS algorithm;

then shows different notch bandwidths, and lastly defines a RSS.

37
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3.1.1 The Infinite Impulse Response

Least Mean Square Algorithm

The IIR LMS algorithm is at the centre of the research papers [1] - [4].

Thus, it should be duly noted that, an update equation, such as the LMS

algorithm, is certainly the heart to any adaptive design. Therefore, a brief

mathematical explanation follows of the IIR LMS algorithm; please also note

that [53]: a book titled ‘Statistical Digital Signal Processing and Modelling’,

has provided a useful source of theoretical information on this topic.

To begin with examine Figure 3.1, where the transfer function H(z) for

this figure can be expressed in the form

H(z) =
b0 + b1z

−1 + ...+ bqz
−q

1 + a1z−1 + ...+ apz−p
; (3.1.1)

wherein Figure 3.1, u(n) is the input signal and y(n) is the output signal.

Then respectfully for equation (3.1.1), p and q represent the orders of the

numerator and denominator respectively; herein, the values p and q are

connected to stages c) and d) in the computation that follows.

Figure 3.1. A possible structure for the infinite impulse response
adaptive least mean square algorithm [53] p539.
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Figure 3.1 is updated via the following computation, where the value

e(n) equates to the error calculated in the algorithm, and d(n) represents

the desired signal. This simplified LMS IIR adaptive filter assumes that

the step size or adaptation gain µ, is small enough to form an estimate of

the gradient energy recursively; and these estimates ψak(n) and ψbk(n) are

applied to update the adaptive filter coefficients. It should be noted that

this structure is initialised with a0 = b0 = 0: as this is the usual practice in

a practical implementation; however, other values such as random numbers

could be applied.

Computation: For n = 0,1... calculate

a) y(n) = aTny(n− 1) + bTnu(n)

b) e(n) = d(n)− y(n)

c) For k=1,2,...,p

ψak(n) = y(n− k) + Σp
l=1an(l)ψak(n− l)

an+1(k) = an(k) + µe(n)ψak(n)

d) For k=0,1,...,q

ψbk(n) = u(n− k) + Σp
l=1an(l)ψbk(n− l)

bn+1(k) = bn(k) + µe(n)ψbk(n)

This computation shows that the IIR LMS algorithm is updating two sets of

coefficient values, one for the numerator and the second for the denominator.

The two separate updates are shown by the input and output loops in Figure

3.1, and by steps c) and d); however, step c) is connected to step d) by the

inclusion of an in the calculation ψbk(n).

Please note that this description is for an output-error formulation; and

also that the although the low complexity of the LMS is attractive; the

weakness of this method is that setting the adaptation gain is key to its

success; as if the gain is too high the estimate will oscillate, whilst if the

gain is too low the estimate may not converge quickly enough.
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Comment on Recursive Adaptive Filtering

Adapting recursive filters are more challenging than non-recursive filters due

to the gradients involved. The main challenge in an adaptive filter is to keep

the instantaneous poles inside the unit circle, thus avoiding instabilities.

This may be simpler for a notch filter as the poles can be kept constant by

fixing one parameter. For instance with Chambers’ approach, the poles are

kept constant by fixing the notch bandwidth parameter α. Once α has been

fixed, the second parameter β adapts to track a frequency, which is a positive

aspect of working with notch filters i.e. being able to fix one parameter.

3.1.2 The Effect of Changing the Notch Bandwidth Parameter

The effect of applying different values to the notch bandwidth parameter

is demonstrated next. Thus, Figure 3.2 shows the effect of applying three

different values to the notch bandwidth parameter α, whilst fixing β at 0.5:

which are the two parameters in Chambers’ structure.

Figure 3.2. Notch filter plots for the notch filter B structure [1],
demonstrating different notch filter widths created by changing the
notch bandwidth parameter α.
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It should be duly noted that, when notches overlap problems occur when

cascading structures via the equation-error approach. This notch overlap

may be caused by notches being very close together, or by using a lower

value of α i.e. 0.6 as shown in Figure 3.2; therefore, the equation-error

approach will have the inability to resolve sinusoids that are close together.

3.1.3 Further Analysis Related to the Four Structures

As the previous chapter primarily discussed the synthesis of the structures

from the four publications [1] - [4], and calculated the SNR improvement

ratio; in this section the additional content of each paper is reviewed in

more detail.

Frequency Tracking using Constrained Adaptive Notch Filters Synthesised from

All-Pass Sections by Chambers and Constantinides

Chambers’ publication [1] contains two notch filter structures which can be

created using the all-pass blocks shown in the previous chapter; these struc-

tures are referred to as Notch Filter A (NFA) and Notch Filter B (NFB):

where the NFB structure has been used for comparison in this chapter, and

its synthesis was included in Chapter 2. The NFA structure, shown in Figure

3.3, is slightly more computationally complex than the NFB structure; how-

ever, the NFA structure may offer a solutions to potential applications, due

to its differing structure: which may produce an advantage in a particular

application.

A simulation has been included to demonstrate the different tracking

results produced from the NFA and NFB structures, which may be observed

as Figure 3.4.

It is clear from observing Figure 3.4, that these two structures create

quite different results; as the NFB structure overshoots far more than the

NFA structure. This demonstrates that the performance of this all-pass
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Figure 3.3. Chambers’ notch filter A all-pass adaptive notch filter
structure from [1].

Figure 3.4. Simulation results for tracking one Real Sinusoid Signal
with Chambers’ notch filter A and notch filter B structures [1].

notch filter structure can be changed significantly, by constructing the notch

filter in a different manner; and there are many ways to implement and

different types of all-pass structure.

Chambers’ paper provides a comprehensive description of the innovative

NFA and NFB structures, which includes their SNR improvement ratio. This
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publication also comprises of a simulation that compares the NFA and NFB

structures to Kwan & Martin’s structure [4] for the tracking of a single RSS,

then another simulation where the NFB structure is compared to [4] for the

tracking of two RSSs; however, the results are not tabulated for either of the

simulations: although all the parameters to recreate these simulations are

included.

An Improved Lattice-Based Adaptive IIR Notch Filter by Regalia

Regalia’s structure from [2] is created from an all-pass filter, this method

utilises a COordinate Rotation DIgital Computer (CORDIC) approach and

applies a Schur recursion, which is clearly described in [45]: Regalia’s re-

search monograph; which provides an excellent foundation to the subject of

IIR Adaptive Filtering, as it contains detailed analysis, questions, and ex-

amples on many structures and approaches, then suggests areas for further

research.

In this publication [2], Regalia applies a stable associated differential

equation; which when cascaded to track multiple signals produces an equation-

error approach. Regalia’s research demonstrates that equation-error meth-

ods outperform the output-error variance minimization methods, since the

basin of attraction is wider for the instrumental variable methods: for a

fixed notch filter bandwidth; however, this wider basin of attraction can

be a disadvantage when multiple frequencies are present. Regalia compares

his approach to: Cho, Choi & Lee [3], and Kwan & Martin [4], providing

a range of simulations; although only includes one table, which is for this

particular result; and unfortunately does not consider multiple RSSs in this

publication.
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Adaptive Line Enhancement by using an IIR Lattice Notch Filter

by Cho, Choi & Lee

Cho, Choi & Lee have published an all-pass design in [3], which is an IIR

filter followed by an FIR filter; as if this had been an IIR followed by an

FIR, computational complexity would have been an issue. They propose

two adaptation methods, where the first method adapts two coefficients for

a sinusoid, whilst the second adapts only one coefficient: which is the method

evaluated in this chapter. They provide four tables comparing there method

to Rao and Kung [54]: as did Kwan & Martin, and Nehorai’s approach [46];

however, only show and plot the mean-square-error.

As described in this paper, the effect of changing the λ parameter is

shown in Figure 3.5. Herein, observe that by using a value of 0.5 for the λ

parameter1, you achieve a more stable result with faster convergence; this

demonstrates that in this paper λ does not directly equate to the adaptation

gain as it did in [1] - [2] and [4]; and that in [3] they refer to the forgetting

factor as λ not as γ, which has been changed for consistency in this thesis.

Figure 3.5. The effect of changing the lambda (λ) parameter in Cho,
Choi & Lee’s structure [3].

1Please note, that the preferred value of λ: i.e. 0.5, has been used for the
simulations in this chapter.
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Overall this is a interesting piece of research, which Regalia regularly

cites; and it provides a good point for comparison.

Cho and Lee also published a more comprehensive paper in 1993 [55];

where they primarily evaluated equation-error and output-error responses;

although they refer to an output-error approach as a triangular cascade;

and the equation-error approach as a linear cascade structure. They also

state that the triangular structure performs better than the linear cascade

structure, but requires more computational complexity. They declare that

second order ANFs provide better results for the detection of multiple sinu-

soids than the higher-order ANFs, which is useful to know; and that it’s the

transfer function and algorithm that matter, not the structure in the case of

cascading low-order ANFs; and this in an interesting point to be considered

in the analysis that follows in the next section. This paper only considers

tracking four sinusoid signals which are equally spaced apart, and does not

tabularise the results, which would make them much clearer; however, it is

an interesting publication which contains a lot of good analysis including a

SNR improvement ratio calculation. The structures from [55] are included

in Appendix 9.1, as they are not the focus of this publication; although one

structure is based on Kwan & Martin’s approach.

Adaptive Detection and Enhancement of Multiple Sinusoids Using a

Cascade IIR filter by Kwan & Martin

In Kwan & Martin’s publication [4], a structure known as a bi-quad is ap-

plied to facilitate the tracking of RSSs; this method has been described as

Direct Coefficient Scaling (DCS) by Regalia in [23]: which differs from the

all-pass structures applied in this thesis. Two bi-quad structures are con-

sidered in this paper, the first for constant bandwidth which is the version

evaluated in this chapter, and the second for signals with a constant quality

factor. This paper also contains comprehensive information on tracking mul-
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tiple sinusoids applying the output-error approach, and includes a range of

simulations with results embodied into two tables: where one compares the

approach to a method by Rao and Kung [54]. Kwan & Martin’s paper is well

cited, and also provides a thorough description of the SNR improvement ra-

tio. Lastly, as all-pass structures are currently generally considered superior

to DCS approaches, this paper provides a good reference for comparison.

3.1.4 The Definition of a Discrete Real Sinusoid Signal

In this fourth and final part of this section, the form of the RSSs tracked in

this chapter is defined; therefore, a RSS takes the form

u(n) = S sin(ω(n)) +W (n); (3.1.2)

wherein, the signal fed into the filter input is u(n), S is the amplitude of

the signal, ω(n) is the frequency being tracked, lastly W (n) is the random

white noise added to the signal. Please note that ω may be normalised, by

multiplying with a factor of 2π.

This definition completes this introduction, which comprised of further

information relevant to the tracking of RSSs; leading onto the next section

of this chapter, which compares the four structures: firstly for the tracking

of up to four RSSs, then secondly by the number of computations required

by each structure.

3.2 A Comparison of Four Designs for Tracking up to Four Real

Sinusoid Signals

Over the last three decades various structures have been proposed to perform

digital adaptive notch filtering; however, a critical comparison of the key

important approaches has not been performed for tracking multiple RSSs.
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Hence, as a structure may excel under certain conditions, it may however be

weak in other scenarios.

Historically, all-pass variations have been developed more recently than

DCS; and generally all-pass designs are computationally simpler and usually

deliver superior tracking performance, when compared to structures based

on DCS: so naturally have been the preferred choice.

An analysis of four adaptive notch filters is undertaken to assess their

abilities to track between two and four RSSs. These four structures due to:

Chambers [1], Regalia [2], Cho, Choi & Lee [3], and Kwan & Martin [4],

all utilise the Normalised Least Mean Square (NLMS) type of learning al-

gorithm, thereby permitting a fair comparative study. This analysis investi-

gates the differences in performance between output-error and equation-error

approaches, and also compares a DCS method to three all-pass decomposi-

tions [1] - [3].

In this section the results obtained from tracking multiple RSSs are pre-

sented. These results are shown in Figure 3.7 - Figure 3.10, and Table 3.1 -

Table 3.4, where the first two sets of results are for tracking two sinusoids,

the third for tracking three sinusoids, and the fourth for tracking four si-

nusoids. Please note that all the results in this chapter have been obtained

using an ensemble average of ten, which has been found sufficient to obtain

statistically stable results. The frequencies tracked were randomly selected

and a further analysis of these frequencies is included in Section 3.2.6, which

is in the later part of this chapter.

3.2.1 Tracking a Single Real Sinusoid Signal

The four structures have been implemented initially to track a single RSS,

producing similar results as shown in Figure 3.6. The tracking performance

of each structure is recorded in the following colours: [1] is presented in

blue, [2] is shown as red, [3] is displayed as black, and [4] is shown in green.
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Figure 3.6. Tracking a single real sinusoid signal with approaches [1]
- [4].

All the structures were initialised with the notch frequency at 0.9425

radians, which is equivalent to 0.15 in the range -0.5 to 0.5, and the con-

version being multiplication by 2π. The frequency being tracked was also

set to 0.9425 radians for the first 100 samples; which then hopped to 1.2566

radians at sample 101, thus the tracking of this change can be observed over

the remaining samples. The SNR applied to the signals in Figure 3.6 was 10

dB. The NLMS adaptation parameters set for each algorithm were: µ [1] =

0.001, γ [1] = 0.99, µ [2] = 0.005, λ [2] = 0.97, λ [3] = 0.05, γ [3] = 0.9, and

µ [4] = 0.01, γ [4] = 0.97.

After these preliminary results, which show similar performance; struc-

tures [1] - [4] were implemented and compared against each other for tracking

multiple RSSs, and up to four RSSs were tracked.

It should be noted that, from [1] the NFB structure was selected for

this evaluation; and from [4], the constant bandwidth version has been used

throughout these results. The reason for this decision is that the NFA struc-

ture is more complex in terms of computations, therefore utilising this ap-

proach would be less attractive, particularly for an output-error approach; as

inherently an output-error approach is more complex than an equation-error

solution.

To facilitate consistency throughout the results, the value 0.9025 has
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been used for the term α: which is the pole radius parameter. Also note, that

the performance of each algorithm was optimised empirically through the

adaptation gains (µ), whilst ensuring convergence to a satisfactory solution.

3.2.2 Tracking Two Real Sinusoid Signals

The results in Table 3.1 correspond to the tracking of two RSSs, which are

initialised at 0.6283 and 0.6912 radians in the ANFs, with target frequencies

of 0.8796 - ω1 and 10.7540 - ω2. These signals have amplitudes of 1 and

0.01, and the variance of the noise added to the signals was 0.01; which

corresponds to SNR of 17 and -3 dB. The NLMS adaptation parameters set

for each algorithm were: µ [1] = 0.000125, γ [1] = 0.99, µ [2] = 0.001, λ [2]

= 0.97, λ [3] = 0.05, γ [3] = 0.98, and µ [4] = 0.005, γ [4] = 0.9.

Table 3.1. Results for tracking two real sinusoid signals a); wherein
∆ω1 & ∆ω2 are sample biases and σ2

1 & σ2
2 are the sample variances;

and a † labels a value smaller than 0.00005.
Chambers Regalia Cho, Choi Kwan & Martin
[1] [2] & Lee [3] [4]

∆ω1 0.0011 0.0018 -0.0005 0.0002
∆ω2 0.000† 0.0002 0.0001 0.000†
σ2
1 3.556× 10−4 2.743× 10−3 1.034× 10−3 3.426× 10−4

σ2
2 2.491× 10−5 1.5532× 10−4 3.224× 10−4 2.6989× 10−5

Figure 3.7. Tracking results for two real sinusoid signals corresponding
to the results in Table 3.1.

In Figure 3.7 observe that Regalia’s method [2] does not fully converge
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to the solution, and if the sample range is extended the value converges to

approximately 0.9; however, this value does not fully stabilise.

Table 3.2 provides results for the the tracking of two RSSs, which are

initialised at 1.2566 and 1.3195 in the ANFs, with target frequencies of 2.1991

- ω1 and 1.1310 - ω2. These signals have amplitudes of 1.02 and 1.24, and the

amount of noise added was 0.01; which corresponds to SNR of 17.2 and 18.9

dB. The NLMS adaptation parameters set for each algorithm were: µ [1] =

0.000225, γ [1] = 0.9, µ [2] = 0.001, λ [2] = 0.97, λ [3] = 0.05, γ [3] = 0.98,

and µ [4] = 0.006, γ [4] = 0.9.

Table 3.2. Results for tracking two real sinusoid signals b); wherein
∆ω1 & ∆ω2 are sample biases and σ2

1 & σ2
2 are the sample variances;

and a † labels a value smaller than 0.00005.
Chambers Regalia Cho, Choi Kwan & Martin
[1] [2] & Lee [3] [4]

∆ω1 0.000† 0.0015 0.0004 0.000†
∆ω2 0.000† -0.0035 0.000† 0.0003
σ2
1 6.648× 10−5 1.451× 10−4 1.798× 10−4 3.857× 10−5

σ2
2 4.778× 10−5 9.839× 10−4 9.359× 10−5 1.006× 10−4

Figure 3.8. Tracking results for two real sinusoid signals corresponding
to the results in Table 3.2.

When working in the range -0.5 to 0.5, the values 0.6283 and 0.6912

radians, are equivalent to 0.1 and 0.11.

Therefore, these results show similar performance for all structures with

these parameters. Analysing the results further shows that Cho, Choi &
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Lee’s structure converges fastest: at around 200 samples, with Chambers’

solution providing the second quickest convergence: at around 1100 samples;

however, Chambers’ structure also achieves the least variance in the final

solution.

3.2.3 Tracking Three Real Sinusoid Signals

The results collated in Table 3.3, are for tracking three RSSs that were

initialised to: 1.131, 1.382 - ω2 and 1.257 - ω3, which correspond to the

target frequencies, where the frequency at 1.131 instantaneously hops to

1.508 - ω1 at sample number 1000. These signals amplitudes are: 1.24, 1.00

and 1.02, then noise was added to yield SNRs of 4.1, 2.2 and 2.4 dB. The

Table 3.3. Results for tracking three real sinusoid signals; wherein
∆ω1–∆ω3 are the sample biases, and σ2

1–σ2
3 are the sample variances;

and a † labels a value smaller than 0.00005.
Chambers Regalia Cho, Choi Kwan & Martin
[1] [2] & Lee [3] [4]

∆ω1 0.000† 0.020 -0.001 0.000†
∆ω2 0.000† 0.009 0.008 0.000†
∆ω3 -0.001 0.005 0.011 1.2564
σ2
1 1.72× 10−4 2.43× 10−3 9.66× 10−4 8.93× 10−5

σ2
2 2.01× 10−4 1.43× 10−3 3.82× 10−3 1.29× 10−4

σ2
3 1.28× 10−4 1.84× 10−3 3.21× 10−3 1.48× 10−4

Figure 3.9. Tracking results for three real sinusoid signals correspond-
ing to the results in Table 3.3.

NLMS adaptation parameters set for each algorithm were: µ [1] = 0.00015,
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γ [1] = 0.99, µ [2] = 0.003, λ [2] = 0.97, λ [3] = 0.05, γ [3] = 0.98, and µ [4]

= 0.004, γ [4] = 0.9.

The results from tracking three RSSs show that, Kwan & Martin’s struc-

ture converges to the most accurate solution, with Chambers’ solution being

a close second; however, Chambers’ solution converges more quickly than

Kwan & Martin’s structure. Again, Cho, Choi & Lee’s solution converges

very quickly; although shows the most variance in its solution. Figure 3.9

also shows that oscillation in the tracking is appearing, this is due to the fact

that the adaptation gains have not been reduced enough for this scenario,

and this is discussed further in Section 3.2.5.

3.2.4 Tracking Four Real Sinusoid Signals

The results in Table 3.4 correspond to the tracking of four RSSs; which are

initialised at: 2.8274 - ω1, 2.5761 - ω2, 1.2566 and 0.7540 - ω3; however,

one target frequency 1.2566 instantaneously changes to 0.6283 - ω4 at 1000

iterations. These signals amplitudes are: 1.24, 1.02, 1.00 and 0.5, where

the noise added was 0.3; which corresponds to SNR of 4.1, 2.4, 2.2 and -3.8

dB. The NLMS adaptation parameters set for each algorithm were: µ [1] =

0.000025, γ [1] = 0.99, µ [2] = 0.001, λ [2] = 0.97, λ [3] = 0.05, γ [3] = 0.99,

and µ [4] = 0.005, γ [4] = 0.9.

With the implementation applied in this research, when tracking four

RSSs, all the algorithms except Chambers’ showed some instability i.e. they

did not converge to the solution. With Kwan & Martin’s structure being

the most unstable: requiring twenty-one simulations to obtain ten results;

whilst for Cho, Choi & Lee’s structure, it was necessary to simulate twelve

times.
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Table 3.4. Results for tracking four real sinusoid signals; wherein
∆ω1–∆ω4 are the sample biases, and σ2

1–σ2
4 are the sample variances;

and a † labels a value smaller than 0.00005.
Chambers Regalia Cho, Choi Kwan &
[1] [2] & Lee [3] Martin [4]

∆ω1 0.0002 -0.0023 -0.0001 0.000†
∆ω2 -0.0025 -0.0052 0.000† 0.0003
∆ω3 -0.0001 -0.0102 -0.0004 0.0002
∆ω4 0.002 0.0125 0.0036 -0.0001
σ2
1 2.0478× 10−5 3.4400× 10−4 0.0012 1.5172× 10−4

σ2
2 3.9586× 10−5 8.8078× 10−5 0.0010 4.5953× 10−4

σ2
3 5.7369× 10−5 7.8236× 10−4 9.7064× 10−4 1.6630× 10−4

σ2
4 3.9586× 10−4 7.8752× 10−4 0.0031 1.2033× 10−4

Figure 3.10. Tracking results for four real sinusoid signals correspond-
ing to the results in Table 3.4.

3.2.5 The Normalised Least Mean Square Parameters

Applied in this Chapter

In this analysis, it became clear that as the number of RSS tracked increased,

the value of the adaptation gain needed to be reduced; otherwise, oscillations

appear as can be observed in Figure 3.9. To demonstrate this point a table

of the adaptation gains used in this chapter is included as Table 3.5.
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Table 3.5. The Normalised Least Mean Square parameters applied,
for the results in this chapter. Wherein, the values used in 1 RSS is
Figure 3.6, 2 RSSs a) is Figure 3.7, 2 RSSs b) is Figure 3.8, 3 RSSs is
Figure 3.9, and 4 RSSs is Figure 3.10.

Chambers Regalia Cho, Choi Kwan
[1] [2] & Lee [3] Martin [4]
µ γ µ γ λ γ µ γ

1 RSS 0.001 0.99 0.005 0.97 0.5 0.9 0.01 0.97
2 RSSs a) 0.000125 0.99 0.001 0.97 0.5 0.98 0.005 0.9
2 RSSs b) 0.000225 0.9 0.001 0.97 0.5 0.98 0.006 0.9
3 RSSs 0.00015 0.99 0.003 0.97 0.5 0.98 0.004 0.9
4 RSSs 0.000025 0.99 0.001 0.97 0.5 0.99 0.005 0.9

3.2.6 Analysis of the Frequencies selected in this Chapter

The frequencies tracked in the simulations in this chapter were randomly

selected, and a further analysis of these frequencies is shown below.

(a) Figure 3.7 (b) Figure 3.8

(c) Figure 3.9 (d) Figure 3.10

Figure 3.11. Frequency analysis of the signals tracked in this chapter.

These results are included for completeness, to show any relationship in
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the selected frequencies: which may be useful in any further analysis.

3.2.7 The Computational Complexity of the Four Structures

In this section, the computational complexity of the four structures is con-

sidered for a direct Matlab implementation, which is embodied in Table 3.6;

providing another suitable method of comparison.

Table 3.6. The complete complexity of the four real structures re-
quired at one time sample, whilst tracking one and two real sinusoid
signals.

Complexity of the four structures
whilst tracking a single real sinusoid signal
Method ÷s ×s +s
Chambers [1] 2 9 9
Regalia [2] 1 15 10
Cho, Choi & Lee [3] 1 15 17
Kwan & Martin [4] 3 14 12

Complexity of the four structures
whilst tracking two real sinusoid signals
Method ÷s ×s +s
Chambers [1] 4 20 24
Regalia [2] 2 27 19
Cho, Choi & Lee [3] 2 30 32
Kwan & Martin [4] 6 36 27

Table 3.6 clarifies that Kwan & Martin’s solution is indeed the most

complex, and also confirms that the equation-error approaches simplify the

computational complexity, when tracking multiple sinusoids. It should be

noted that particularly for Field Programmable Gate Array (FPGA) imple-

mentations, a divide is more complex to implement than a multiplication;

and that these designs have been synthesised in Matlab using floating point

implementation.
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3.3 Discussions on the Tracking of Multiple Real Sinusoid Signals

The remarks provided on the overall performance of each structure are as fol-

lows. Chambers’ structure [1] provides a high performance, robust solution,

that converges well in most simulations; although, as this is an output-error

approach; it is more computationally complex than the equation-error solu-

tions.

Regalia’s structure [2] provides a strong solution; although, this structure

struggles to track multiple RSSs in certain conditions: such as RSSs being

in close proximity. Cho, Choi & Lee’s structure [3] provides a very powerful

solution; however, initially this is quite unstable during convergence, and

also shows the most variance in the final solution; therefore, this solution

would not suit certain scenarios.

Kwan & Martin’s structure [4] is generally outperformed by the all-pass

solutions, the solution is also quite computationally complex, particularly as

this is an output-error approach.

These simulations also show that each all-pass structure has some su-

perior properties to the others; therefore, the most appropriate structure

should be carefully selected for any application. The computational com-

plexity for these structures in tracking one and two RSSs has been included,

which confirms that Kwan & Martin’s structure is more computationally

complex than the all-pass structures, and that equation-error approaches

do certainly reduce the overall complexity of a system that tracks multiple

RSSs.

3.4 Summary

This chapters’ first section introduced the IIR LMS algorithm, next it showed

different notch bandwidths, then it reviewed the four papers due to: Cham-

bers [1], Regalia [2], Cho, Choi & Lee [3], and Kwan & Martin [4], and lastly
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defined a RSS.

Then the chapters’ second section comprised of simulations and analysis

relevant to these four papers: which were also introduced in the literature

review. These simulations and analysis provide a comparison of these four

structures for tracking up to four RSSs, thus highlighting the strengths and

weaknesses of each approach; and lastly this chapter included the compu-

tational complexity of each approach, and frequency plots of the signals

tracked in this chapter.

Therefore, after providing a thorough evaluation of these structures ca-

pable of tracking RSSs, in the next chapter CSSs are considered. The first

part of the chapter describes a CSS, the next section then provides a sum-

mary of Regalia’s recent publication [23]. The final section develops the

new structure proposed from this research, and concludes by comparing its

performance to Regalia’s scheme.



Chapter 4

COMPLEX ADAPTIVE

NOTCH FILTER

DEVELOPMENT

4.1 Introduction

This chapter considers tracking complex sinusoids, whilst the previous chap-

ter considered real sinusoids. The chapter begins by defining a Complex

Sinusoid Signal (CSS), then introduces Complex Adaptive Notch Filters

(CANFs); in the next section Regalia’s 2010 publication [23] is discussed.

Then the third section develops Chambers’ structure [1] into an equivalent

complex form, and considers tracking two CSSs. Next, the new structure is

compared to Regalia’s approach; and lastly the results are discussed, then

the chapter is summarised.

A CSS has a real and imaginary component, as is generally the case

in complex signals. The complex LMS algorithm was initially considered

around 1975, when the first publication on this topic was written by Widrow

as [41]; this is a short two page paper, which considers an adaptive linear

combiner, showing a structure and the algorithm.

Papers in this field appear to have been steadily published over time, with

a further publications in 1986 [42] by Shynk: where he generalizes the Gauss-
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Newton algorithm for adaptive IIR filters to include complex coefficients, in

another short publication, again showing a structure and the algorithm.

In 1994 Pei and Tseng published a more comprehensive paper as [43],

which is clearly an IIR CANF that is built from first-order structures; how-

ever, this requires two structures to track a single CSS: which they refer to

as a chirp signal. Pei and Tseng highlight that their approach can be ap-

plied to suppress narrowband interference in Quadrature Phase Shift Keying

(QPSK) spread-spectrum communication systems; and show several simula-

tions: which the earlier publications have not included, one of which demon-

strates that changing the notch bandwidth parameter clearly alters the mag-

nitude response in this approach. Pei and Tseng’s paper [43] clearly shows

the concept of a CANF, although this idea has now been refined more, most

significantly by removing the second CANF structure, and also by utilising

all-pass components.

The paper which is most relevant to this chapter was published in 2010 by

Regalia [23], which provides an excellent benchmark for comparison; please

note that this paper has been reviewed in Chapter 2 of this thesis, although

the simulations are included in the next section.

4.1.1 The Definition of a Discrete Complex Sinusoid Signal

Thus to begin, a CSS is defined; in [23] Regalia describes that tracking a

single frequency ω0, for a CSS of the form

u(n) = Sej(ω0n+φ) +W (n), (4.1.1)

can be achieved: which is the form considered in this chapter. Within this

equation S is a scale factor that defines the amplitude of the signal, and φ

is a random phase uniformly distributed over (0, 2π), the final term W (n) is

zero mean unity variance complex white noise.
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4.2 A Complex Adaptive Notch Filter by Regalia

Now, Regalia’s recent 2010 publication [23] is described; and in this paper,

he modified the lattice structure from his earlier research [2], so it has the

ability to track CSS; this modified structure is shown in Figure 4.1.

Figure 4.1. Regalia’s modified structure capable of tracking complex
sinusoid signals [23].

Now the mathematics of Regalia’s paper is described, and the update is

achieved as follows

x(n) = Im[e(n)grad(n)]; (4.2.1)

wherein, x(n) is an intermediate term, and Im is the imaginary part of a

CSS. This intermediate term x(n) is then used to update ψ as

ψ(n) = γψ(n− 1) + (1− γ)Re[x(n)∗x(n)]; (4.2.2)

herein, Re is the real part of a complex signal and (.)∗ is the complex conju-

gate of the term x(n). The terms x(n) and ψ then update theta as follows

θ(n) = θ(n− 1) + µIm

[
x(n)

ψ(n)

]
. (4.2.3)
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When implementing this approach, it was also discovered that a phase

shift of 2π is necessary, when θ becomes greater or less than ±π. This can be

observed in Figure 4.2, when the frequency hops at 1000 and 2000 iterations,

by the estimated signal jumping over the scale. It should be noted that θ(n),

is the parameter which is plotted to produce the simulation results.

Next, the results that Regalia published demonstrating his structures

ability to track a frequency hopping CSS is shown in Figure 4.2.

Figure 4.2. Regalia’s published result for tracking a hopping single
complex sinusoid signal [23].

Interestingly, Regalia claims that a gradient descent algorithm fails to

track a CSS where his structure succeeds, and this claim is shown in Figure

4.3.
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Figure 4.3. Regalia’s frequency hop experiment using a gradient de-
scent algorithm, instead of his proposed scheme [23].

Finally in this paper, it should be noted that Regalia compares his scheme

to a gradient descent approach, this result is shown in Figure 4.4.

Figure 4.4. Regalia’s comparison of his scheme against a gradient
descent approach [23]; which compares the mean driving terms of his
proposed method with a gradient descent algorithm, when normalised
for the same local convergence properties.

Therefore, as Regalia has created an equation-error approach; an original

output-error structure is developed, this is described in the next section:

which is a gradient algorithm.
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4.3 Original Complex Adaptive Notch Filter Development

In this section, Chambers’ structure from [1] is developed into a form capable

of tracking CSSs, as few of these structures have been modified to enable

the tracking of CSSs. Many systems are now commonly functioning with

CSSs particularly in communications e.g. In-phase and Quadrature (I&Q)

sampling in sensors or in modulators / demodulators.

This design has the advantage that, being developed from an all-pass

design based on a structurally lossless prototype [1], which is canonic in the

number of multipliers and delay elements; it can also be easily expanded to

facilitate the tracking of multiple CSSs. The output-error learning algorithm

has also been developed, which facilitates tracking of CSSs that have similar

frequencies. Tracking similar frequencies is not possible in the recent work

of Regalia shown in [23], as demonstrated in this chapter.

It should be noted that in this research, as in [23], that the results for

tracking CSS have been achieved with a relatively low SNR of 0 dB.

4.3.1 Filter Realisation

Initially, a standard first order real all-pass filter is considered, whose z-

domain transfer function is

Hap(z) =
z−1 − α
1− αz−1

, (4.3.1)

where 0� α < 1 and is a real coefficient. The all-pass structure is modified

to the following form, which can be derived as

Hap(z) =
z−1β − α
1− αz−1β

; (4.3.2)

wherein, it should observed that an additional phase parameter β has been

introduced. This value equates to β = ejθ, where θ is the complex phase shift
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angle which is equivalent to the frequency being tracked. Then Figure 4.5

shows the notch structure created from utilising this complex all-pass filter.

The derivation of the z-domain transfer function for the proposed complex

notch filter shown in Figure 4.5 is

Hnotch(z) =
E(z)

U(z)
=

1

2
{1 +A(z)} =

1

2

(1 + α)(1− z−1β)

1− αz−1β
. (4.3.3)

The parameter α controls the notch width of the filter in this equation,

and α is fixed during the learning process for stability reasons. Whilst on the

other hand, the parameter β controls the notch frequency, and is adapted

during learning.

Figure 4.5. The proposed complex adaptive notch filter structure,
where the structure within the box defined by the dashed line is denoted
CNF in Figure 4.6.

The input to the gradient output of the z-domain transfer function, that

is required later in developing the learning algorithm, is given as

GRAD(z)

U(z)
=

1

2

(1 + α)(−jz−1β)

1− αz−1β
. (4.3.4)

In the next section of this chapter, the learning algorithm to control β: or

equivalently θ is developed.
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4.3.2 Learning Algorithm Development

An output-error based learning algorithm is derived, where the cost function

(J) is defined as

J = |e(n)|2 = e(n)e∗(n), (4.3.5)

herein, |.| and (.)∗ denote the modulus and conjugate of a complex number.

An update for the unknown parameter θ can be derived from J via the LMS

type of algorithm. The update equation derivation begins as

θ(n) = θ(n− 1)− µ

2
5 J |θ=θn−1 , (4.3.6)

wherein the adaptation gain is µ. By applying differentiation by parts to

(4.3.5) gives

5J = e(n)5 e∗(n) +5e(n)e∗(n), (4.3.7)

thus (4.3.6) becomes

θ(n) = θ(n− 1)− µRe(e∗(n)5 e(n)), (4.3.8)

herein the signal 5e(n) = grad(n) in Figure 4.6. The non-quadratic nature

of the cost function J in (4.3.5) with respect to θ in β = ejθ, requires the

adoption of a normalised LMS type update for θ.

The NLMS algorithm includes a recursive calculation of the gradient

energy ψ. This calculation is

ψ(n) = ψ(n− 1)γ + (1− γ)(grad(n).grad∗(n)), (4.3.9)

wherein the γ term is the forgetting factor: which is a value between zero

and one. The parameter γ is chosen to be approximately ≥ 0.9 for most
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results, and the initialising value for ψ0 is 1.0. Updating (4.3.8) with (4.3.9)

then yields the final update equation for the updated θ to be

θ(n) = θ(n− 1)− µRe
[
e∗(n)

grad(n)

ψ(n)

]
. (4.3.10)

From the conversion mentioned after (4.3.8): β(n) = ejθ(n), the angle of

β(n), may now be plotted: which is a result in radians.

4.3.3 Tracking Two Complex Sinusoid Signals

Now, the structure required to track multiple CSSs is considered. To track

two CSSs with this new structure an output-error approach is applied; thus,

calculating gradients as shown in Figure 4.6. Herein, an additional complex

notch filter structure CNF 3 is required to generate the gradient value for

CNF 2. This requires only two additional significant multipliers as in Figure

4.5, i.e. for the α and β multipliers.

Figure 4.6. The proposed structure required for tracking two complex
sinusoid signals.

This structure is easily expanded to track more than two frequencies;

however, in this chapter just two CSSs are considered. To preserve the

stability of the notch structures, α is fixed to 0.8 in all these simulations. The

adaptation gain µ is empirically selected to avoid instability in the learning

algorithm in these experiments. Please note that formal stability analysis

has not been completed in this thesis, however background information to
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facilitate this may be found in [34].

4.4 Simulation Results and Comparison

This section of the chapter, provides a comparison of this new structure to

Regalia’s approach [23], for tracking frequency hopping CSSs. The simu-

lations for tracking a single CSS are shown in Figure 4.7; next Figure 4.8

shows the result for tracking two CSSs. The results within this chapter, as

in [23], have been achieved with a SNR of 0 dB.

(a)

(b)

Figure 4.7. A comparison for tracking one complex sinusoid signal
with: (a) The proposed structure, and (b) Regalia’s structure [23].
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Both Figure 4.7 and Figure 4.8 include a target signal which is frequency

hopping. This target signal (shown in a dotted red line) is first initialised,

then instantaneously changes or hops every 1000 samples in Figure 4.7.

The proposed structure in Figure 4.7 (a) achieved its result with the

following tailoring parameters set to: µ = 0.15 and γ = 0.97. In both simu-

lations θ0 was initialised as−1.26. Similar tracking performance for Regalia’s

structure [5], with the result displayed in Figure 4.7 (b), was achieved with

the values µ = 0.05 and γ = 0.8.

Therefore, Figure 4.7 demonstrates that the proposed structure performs

as well as, or better than the previous approach [23], as there are visible

convergence improvements in these results. One example of the improved

performance is the faster convergence to the final frequency, which occurs

following the final hop at sample number 2000.

It should be noted that adding the term ψ to Regalia’s scheme presented

in [23] improves the performance of his structure further, thus adopting a

NLMS approach; which facilitates a fair comparison, as if ψ was omitted

from [23], the structure proposed in this chapter significantly outperforms

Regalia’s.

Both Figure 4.7 (a) and (b) contain an artefact, where the notch output

is oscillating: which is labelled as ‘artefact 1)’ in (a), and ‘artefact 2)’ in (b);

and this artefact occurs in simulations when the magnitude of the gradient

approaches zero.

Now the ability of both structures is compared for tracking the frequen-

cies of two CSSs, and this result is shown in Figure 4.81, on the next page;

and within Figure 4.8 the exact normalised frequencies that are tracked fin-

ish the simulation at 1.5708 and 1.1938. The parameters that produced the

result in Figure 4.8 (a) are: µ = 0.08 and γ = 0.99, whereas for Figure 4.8

1An analysis of the CSSs frequencies tracked in Figure 4.8 is included in section
6.4.3 of this thesis.
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(b): µ = 0.02 and γ = 0.8, these values have been found empirically to yield

optimum results for convergence with equivalent tracking performance.

(a)

(b)

Figure 4.8. A comparison for tracking two complex sinusoid signals
with: (a) The proposed structure, and (b) Regalia’s structure [23].

From Figure 4.8 (b), please observe when the target frequencies are closer

together: after sample number 1500, Regalia’s structure fails to converge,

this effect worsens if you decrease the value of α further below 0.8. This

failing is a consequence of using an equation-error based learning algorithm

in [23], which reduces the complexity of the gradient generated in the learning

algorithm. The frequencies within Figure 4.8 were selected at the point

Regalia’s design fails; as it cannot track frequencies that are within 0.377:

when α is set to 0.8.
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The average estimated frequency errors and the variances in the fre-

quency estimates are shown in Table 4.1, which are calculated from the last

200 samples in Figure 4.8 (a) and (b).

The advantage of this proposed structure is confirmed by the reduction

in error and variance presented in Table 4.1.

Table 4.1. Results for tracking two complex sinusoid signals, compar-
ing Regalia’s method to the proposed structure; wherein ∆ω1 & ∆ω2

are sample biases and σ2
1 & σ2

2 are the sample variances.
Regalia [23] The proposed structure

∆ω1 0.0235 -0.0014
∆ω2 -0.0176 0.0001
σ2
1 0.0075 0.0030
σ2
2 0.0145 0.000775

Notes on the new structure

It should be observed that, both the structure in [23], and this new struc-

ture, require only one delay element when utilised to track a CSS: which is

equivalent to a single pole and zero or one notch. The original structures,

which are only capable of tracking RSS, require two delay elements, thus

have two poles and two zeros: which creates two symmetrical notches.

4.5 Discussions on Complex Adaptive Notch Filter Development

An original CANF structure has also been developed from [1], and this new

structure is based upon an output-error learning algorithm. Its superior

tracking performance over Regalia’s CANF [23], has been demonstrated;

particularly for tracking two CSS in close proximity.

Generally, an output-error approach will facilitate more reliable track-

ing than an equation-error approach for real and complex signals; however,

output-error approaches are slightly more computationally complex. For

practical applications such as safety critical control systems [9]: where notch
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filters are often used, the low complexity and robustness of this proposed

structure are indeed very attractive.

4.6 Summary

This chapter firstly introduced tracking CSSs, then evaluated Regalia’s 2010

publication [23]. Next, it developed Chambers’ structure [1] into an equiv-

alent form, and compared its performance to Regalia’s scheme [23] for the

tracking of a single CSS, then two CSSs; this provided a comparison of the

equation-error and output-error approaches within CANFs, thus highlight-

ing the advantages of both methods.

The next chapter of this thesis considers adapting the notch bandwidth

parameter, with the aim of improving the performance of the CANF devel-

oped in this chapter further.



Chapter 5

ADAPTING THE NOTCH

BANDWIDTH AND

FREQUENCY PARAMETERS:

α AND β SIMULTANEOUSLY

5.1 Introduction

In this chapter, the new CANF structure is extended further; as previously

in Chapter 4 the notch bandwidth parameter α was fixed. Now, the design is

developed so that both parameters α and β can be adapted simultaneously,

to facilitate further improvements to the performance of this CANF.

Within this CANF β tracks the frequency of the CSS, whilst α controls

the bandwidth of the notch; where α is a real value in the range: 0� α < 1.

However, α must not exceed unity, as if this was the case, a pole would move

outside the unit circle; thus, creating instability in the filter. Previously, little

research has been published with respect to updating the notch bandwidth

parameter, although a literature review on this topic has been included in

the next section of this chapter.

Please note that, all results within this chapter have been produced with

a SNR of 0 dB, unless otherwise stated.

72
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The effect of using different values of α is demonstrated in Figure 5.1.

Consider when observing Figure 5.11, that part (a) utilises a low value of α,

to implement a wide notch, whilst (b) applies a value of α close to unity, to

produce a narrow notch.

(a) α = 0.80: a wide notch.

(b) α = 0.95: a narrow notch.

Figure 5.1. The effect of using different values of α when tracking a
complex sinusoid signal, the red curves represent the target frequencies
whilst the blue curves are the frequency estimates - this notation is
used in the ensuing figures.

Observe within Figure 5.1, that in part (a) the ‘wide notch’ quickly

locates the target frequency, however, the estimate contains a significant

amount of noise: once the target signal has been located; whilst in (b),

1To observe different notch widths, please refer to Figure 3.2 from Chapter 3 of
this thesis.
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the ‘narrow notch’ is much slower to locate the target frequency; although

once the target frequency has been located, the noise on the estimate is

significantly less.

Table 5.1 clearly shows the number of samples required to locate the

target frequency in Figure 5.1 at: initialisation 0 samples, hop one - 1000

samples, hop two - 2000 samples, then at hop three - 3000 samples. Thus

highlighting that a wide notch locates a target frequency much more quickly

than a narrow notch.

Table 5.1. The number of samples required to locate a target signal
with a wide and a narrow notch.

Number of samples required to locate the target
Initialisation Hop One Hop Two Hop Three

(a) wide notch 100 100 50 100
(b) narrow notch 200 200 150 450

Therefore assuming a hopping CSS is being tracked, stronger perfor-

mance can be achieved by selecting a wide notch each time the CANF

searches for a frequency; then adapting to a narrow notch once the tar-

get frequency has been located. This approach will improve a system’s SNR

improvement ratio2, thus ultimately the CANF’s performance.

To further demonstrate the improvement achieved in the final values, the

mean and the variance for the last 200 samples from Figure 5.1 have been

included in Table 5.2.

Table 5.2. The difference from the final value and the variance, when
tracking a complex sinusoid signal with a narrow and a wide notch;
wherein ∆ω is the sample bias and σ2 is the sample variance.

(a) wide notch α = 0.8 (b) narrow notch α = 0.95
∆ω 0.0001 -0.0002
σ2 1.3563× 10−5 2.2431× 10−6

2For more information on the SNR improvement ratio, please refer to Section
2.5.3, from Chapter 2 of this thesis.
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Table 5.2 shows that using a narrow notch can reduce the variance by a

factor of 10, which can again be reduced to 10−7 by increasing α to 0.98; how-

ever, sometimes in a simulation where α is set to 0.98 the target frequency

is not located with such a narrow notch.

Please note, that this assumes the target frequency is fixed or hopping,

and tracking constantly changing signals such as Complex-Valued Chirp Sig-

nal (CVCS), will be investigated in Chapter 6 of this thesis.

5.1.1 Literature Review on Adapting the

Notch Bandwidth Parameter

There are very few papers relevant to updating the notch bandwidth param-

eter in ANFs; which are reviewed as follows.

In 1993, Knill developed the ANF which this research is based on [1], to

adapt the notch bandwidth parameter. Within Knill’s publication [56], she

derived the update for α to be

α(n) = α(n− 1)− µα
5αi(n)

ψ(n)
, (5.1.1)

although, Knill refers to ψ as σ2 in [56]. Next, she defines the gradient

estimate of the adaptation surface 5αi(n), the mean square estimate as

5αi(n) =
∂e2(n)

∂αi(n)
= −2e(n)

∂y(n)

∂α(n)
. (5.1.2)

This is interesting, however Knill does not include any results or perfor-

mance improvements for the update of α in this publication.

From 2001 to 2003 Mvuma, Nishimura, and Hinamoto published several

papers that investigated improving the performance of ANFs further; two of

these papers [57] and [58] directly update the notch bandwidth parameter.

When reviewing these papers, it was noted that these researchers utilise
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the same all-pass notch transfer function that this CANF was developed

from i.e.

H(z) =
1− 2βz−1 + z−2

1− β(1 + α)z−1 + αz−2
. (5.1.3)

In [57] the β and α parameters are updated with the following equations,

herein β is adapted with the following update

β(n) = β(n− 1) + µβ
y(n)x(n)

ψβ(n)
; (5.1.4)

wherein, ψβ is the gradient energy in the NLMS algorithm as with this

original ANF structure. Then α is updated with the following equation

α(n) = α(n− 1)− µαy(n)ψ(n); (5.1.5)

wherein, they state that it can be shown that ψ(n) is

ψ(n) = β(n)(1 + α(n))ψ(n− 1)− α(n))ψ(n− 2) + β(n)e(n− 1)− e(n− 2);

(5.1.6)

Interestingly, the signs reverse in their second paper [58], where the update

equation for β is declared as

β(n) = β(n− 1)− µβy(n)x(n), (5.1.7)

then α is updated as follows

α(n) = α(n− 1) + µαyα(n)ψα(n). (5.1.8)

A significant point to note herein, is that the updates utilised for α and β

are both using the opposite signs, as in [57] β is reduced and α is increased,
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however in [58] β is increased whilst α is reduced. This result is highlighted

later in this chapter, particularly since it has not been explained in these

papers.

A further point to note, is that the α parameter in [57] does not converge

to unity, in [57] it converges to values between 0.77 and 0.88 for the four

results shown in Figure 3 of [57], which is similar to Figure 4 in [58].

To quote Mvuma “For optimization of the performance of the filter, α is

adaptively adjusted to search for its optimum value, αopt, which corresponds

to the maximum value of the performance index using an LMS adaptation

algorithm.” Therefore, he does not explain why the sign has changed; which

is a significant point that is considered in this chapter.

They also describe how adapting α improves the SNR improvement ratio

or factor as they refer to it in both papers; and this improvement is shown

as Figure 2 within [57] and [58].

These papers certainly provide an interesting reference point for adapt-

ing a notches bandwidth; and Nishimura has continued to work on ANFs,

publishing papers on CANFs such as [50] and [51]: which are discussed in

section 2.4.2 of Chapter 2.

Also in 2003, Punchalard et al. published a paper [59], which again is

based on the same all-pass notch transfer function which this CANF was

developed from

Hnotch(z) =
1 + 2βz−1 + z−2

1 + β(1 + α)z−1 + αz−2
; (5.1.9)

therefore, it may be deduced that this structure adapts the notch band-

width parameter quite effectively. However, two of the signs in 5.1.9 are

inverted, which appears in error. Again, Punchalard derives effectively the

same updates as Knill (5.1.1), thus updating both α and β with a negative

sign.
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Punchalard does not show the value to which α converges, although

they do include well presented three-dimensional plots showing the effect of

adapting the notch bandwidth parameter, which is shown as Figure 1 in [59].

Punchalard also limited the range of α from 0.7 to 0.96, and highlighted the

same advantages included in the introduction to this chapter, with respect

to the effects of adapting α. A last point is that in the conclusion, he also

suggests further work on the theoretical analysis of the algorithm.

In 2008 Levin and Ioannou showed a specific application for adapting

the notch bandwidth parameter in [18], which is selecting a notch band-

width parameter for individual disk drives. Although, Levin does not di-

rectly adapt the notch bandwidth parameter in his design, section C of this

paper describes how the notch bandwidth parameter is changed off-line, then

replaced with an on-line configuration; which is clearly a different approach

to a fully adaptive structure. Levin, who originally worked on neural net-

works has continued to research ANFs and published another paper in 2011;

however, he did not actively adapt the notch bandwidth parameter in this

publication.

In Chapter 10 of Regalia’s research monograph [45], he shows that adapt-

ing the notch bandwidth parameter in a direct co-efficient scaling structure

such as Kwan and Martin’s structure alters the magnitude response; there-

fore, bandwidth adaptation should only be attempted in all-pass structures.

In Chapter 10, Regalia also adapts the notch bandwidth parameter by reduc-

ing it over time, which obviously wouldn’t work for a hopping CSS; although

this clearly shows that he recognises the benefits of applying this update.
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5.2 Methods Evaluated for Adapting the Notch Bandwidth Pa-

rameter α

Now, as a literature review on updating α the notch bandwidth parameter

has been completed, which is known as α in this structure and research; α is

updated for the CANF that has been developed in Chapter 4. Four methods

are considered for updating α simultaneously whilst tracking a CSS with β;

and these four methods have been described in Sections 5.2.1 to 5.2.5.

5.2.1 The Partial Gradient Term for Adapting α

In this first method, a partial gradient term is derived and evaluated for

updating α; which is the method that was applied for updating β. To

begin this process, observe Figure 5.2, which shows the structure required

to generate the partial gradient update; ‘grad α(n)part’ the gradient for the

parameter α is derived as follows.

Figure 5.2. The structure required to implement the partial gradient
update for α.

Firstly, recall from Section 3.3 of this thesis, that the z-domain transfer
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function for this CANF is

Hnotch(z) =
E(z)

U(z)
=

1

2
{1 +A(z)} =

1

2

(1 + α)(1− z−1β)

(1− αz−1β)
. (5.2.1)

Then, if it is assumed that α is fixed in the denominator: as was the case

for β; since α is real, thus the gradient for α can be calculated to be

∂Hnotch(z)

∂α
=

1

2

(1− z−1β)

(1− αz−1β)
=
GRAD α(z)part

U(z)
. (5.2.2)

Interestingly, the expression (5.2.2) is very similar to the notch filter output

e(n) from the notch structure (5.2.1); with the exception of a multiplication

of (1+α), which can simply be cancelled by multiplying by its inverse. Next

as before, the instantaneous cost function J for this structure, is defined as

J = |e(n)|2 = e∗(n)e(n). (5.2.3)

Again, |.| and (.)∗ denote respectively the modulus and conjugate of a com-

plex number. As before, a LMS type update for the unknown parameter α

can be derived from J . This derivation begins with the update equation

α(n) = α(n− 1) +
µα
2
5 J |α(n)=α(n−1), (5.2.4)

where µ is the adaptation gain. Hence, by applying the differentiation of a

product rule to (5.2.3), creates the expression

5J = e(n)5 e∗(n) +5e(n)e∗(n), (5.2.5)

herein, as 5e(n) = e(n)
1

(1 + α(n− 1))
thus (5.2.4) becomes

α(n) = α(n− 1) + µαRe

(
e∗(n)e(n)

1

(1 + α(n− 1))

)
. (5.2.6)
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The NLMS algorithm includes a recursive calculation of the gradient energy

ψ; and this calculation is

ψα(n) = ψα(n− 1)γ + (1− γ)(grad α(n).grad α∗(n)), (5.2.7)

where the term γ is the forgetting factor: this is a value between zero and

one, which is typically � 0. Thus, updating (5.2.6) with (5.2.7) yields the

final update equation for α to be

α(n) = α(n− 1) + µRe(e∗(n).grad α(n)/ψα(n)). (5.2.8)

When this is simulated, as shown in Figure 5.3 (a), this method does

not converge as expected: due to a simplification that is explained later in

this section; and the approach still fails to converge, even with a significant

reduction in noise, which was implemented by increasing the SNR from 0

to 14 dB. From Figure 5.3 (a) observe that at 2000, and 4000 samples,

the gradient attempts to overshoot unity: which would create instability;

therefore α must be constrained, thus demonstrating its non-convergence

with this approach. Also note that, β does not track the target frequency

correctly, which is shown in Figure 5.3 (b), as between 2000 and 2600 samples

β fails to lock onto the new target frequency, as shown in Figure 5.8 (b).

To create these results, different adaptation gains are required for the

update of α and β; wherein µβ was defined as 0.1; whilst µα was set to

0.0004. The forgetting factor: γ, used for the adaptation of both α and

β was 0.9. The parameter α was initialised at 0.8, and if the notch filter

output: e(n) exceeded three, α was reset to 0.8, in an attempt to facilitate

more stability in the overall convergence of both values.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.3. The partial gradient approach for adapting α, whilst
following a hopping complex sinusoid signal which is tracked by β;
with a signal-to-noise-ratio of 14 dB.
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5.2.2 The Cost Function for the Notch Bandwidth Parameter

A key point to be noted is that in this derivation the cost function applies

a direction of ascent as α updates; previously this has been implemented

by other researchers although not fully explained, which is the case in [57]

and [58]. The expected result was that the cost function for α would be

implemented with a direction of descent.

This can be explained, by producing a simulation where the notch fre-

quency is perfect, whilst the notch bandwidth is defined, then the noise

variance does indeed decrease; this simulation is included as Figure 5.4;

wherein, part (a) shows that the notch frequency is fixed at the target fre-

quency, whilst part (b) illustrates the adaptation of α, which adapts from

0.8 converging to minus one, lastly part (c) demonstrates that the noise

variance decreases as α converges to minus one. Therefore, Figure 5.4 shows

that a cost function applying a direction of descent reduces the noise out-

put, however, if β also adapts the performance of the adaptive filter reduces

significantly; as α should not converge to minus one; which is the case, as

shown in part (b).
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(a) Shows that β has been fixed to the target frequency

(b) The unrestricted adaptation of α applying a method of steepest
descent

(c) The notch filter output e(n) output from the CANF

Figure 5.4. Adapting α, whilst β is fixed at the target frequency; with
the full gradient term and a decreasing cost function.
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Following on from Figure 5.4, the reduced performance is demonstrated

in Figure 5.5, where the transfer function for this notch filter is plotted whilst

β is fixed, with values of α set to -0.8 then -0.99.

Thus, if a single CSS with noise is assumed, whilst β is set at the exact

correct frequency of this CSS; then the only output of the filter will be the

noise. Therefore, to minimise the noise the notch filter will become as wide

as possible, as it attempts to reduce the noise variance. This effect is shown

in Figure 5.5, which illustrates as α approaches minus one, the notch widens

over the complete frequency spectrum, thus producing essentially an all-stop

response.

Figure 5.5. The frequency response of the notch filter, wherein α is
approaching minus one, whilst β is fixed at the target frequency.

Thus considering Figures 5.4 and 5.5, the effect of α increasing is demon-

strated in Figure 5.6; wherein the integral: which is defined in (5.2.9) and

(5.2.10), also increases. Therefore, this implies that a method of steepest as-

cent should be used to adapt α, to enable the transfer function to approach

the perfect notch case. The perfect notch case is when the CSS has been

removed, so all that is left in the notch output is the white noise.

Describing this mathematically, the noise variance (σ2) of the notch out-
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put signal, which is found from the power spectral density, can be defined

as

σ2 =
1

2π

∫ π

−π
P (ω)dω; (5.2.9)

where P (ω) is the power spectral density of the notch output signal. This

equation may also be re-arranged to the form

σ2 =
σ2N
2π

∫ π

−π
|C(ω)|2dω, (5.2.10)

where C(ω) = C(z)|z=ejω , and the remaining term σ2N is the input noise

variance. Thus a steepest ascent algorithm should be utilised in the adap-

tation of α. Therefore, the cost function should apply a direction of ascent

to produce a solution to this integral.

Figure 5.6. The increase in the integral or mean-square-error as α
approaches unity.

Thus, Figure 5.6 demonstrates that for the adaptation of α, the update

equation should apply a direction of ascent; therefore the update equation
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for α should be

α(n) = α(n− 1) + µαRe(e
∗(n).grad α(n)/ψα(n)). (5.2.11)

Now that the correct form of the learning algorithm has been identified,

as the partial gradient approach significantly reduced the design’s ability to

converge; this method is developed further in the next section. Therefore, a

full gradient term is developed next, by removing the assumption that α is

fixed in the denominator; which implies that the partial gradient approach

is too simplistic for the update of α, and therefore is not considered further

in this form within a steepest ascent algorithm.

5.2.3 The Full Gradient Term for the Update of α

As the initial results showed that the partial gradient result achieved poor

performance; by removing the assumption that α is fixed in the denominator,

a full gradient term can be derived as follows. As with the partial gradient

approach, this process begins with the notch filter equation

Hnotch(z) =
E(z)

U(z)
=

1

2

(1 + α)(1− z−1β)

(1− αz−1β)
(5.2.12)

=
1

2
(1 + α)(1− z−1β)(1− αz−1β)−1. (5.2.13)

Now, as the term (1−z−1β) does not contain α, there is no need to differen-

tiate it with respect to α. Thus, differentiating the remaining two products

containing α from (5.2.13), with respect to α; via the differentiation of prod-

ucts rule creates the expression

∂

∂α
=

1

2
(1− z−1β)[z−1β(1 + α)(1− αz−1β)−2 + (1− αz−1β)−1]. (5.2.14)
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Equation (5.2.14) can now be rearranged to the form

∂

∂α
=

1

2
(1− z−1β)

[
z−1β(1 + α)

(1− αz−1β)2
+

1

(1− αz−1β)

]
. (5.2.15)

Next, implementing a common denominator for (5.2.15), creates the expres-

sion

∂

∂α
=

1

2
(1− z−1β)

[
z−1β(1 + α) + (1− αz−1β)

(1− αz−1β)2

]
. (5.2.16)

Now by multiplying out (5.2.16), and simplifying this term leaves

∂

∂α
=

1

2
(1− z−1β)

(1 + z−1β)

(1− αz−1β)2
. (5.2.17)

Lastly, splitting the denominator, creates the expression

∂

∂α
=

1

2

(1 + z−1β)

(1− αz−1β)
× (1− z−1β)

(1− αz−1β)
. (5.2.18)

To implement this expression a second filter is required, as to multiply two

z-domain transfer functions, it is necessary to cascade two filters in the time

domain. Therefore, the full gradient term has been derived as

GRAD α(z)full
U(z)

=
1

2

[
(1 + z−1β)

(1− αz−1β)︸ ︷︷ ︸
A

× (1− z−1β)

(1− αz−1β)︸ ︷︷ ︸
B

]
. (5.2.19)

The structure required to generate the full gradient term for α, which is

created from two cascaded filters, is shown in Figure 5.7, this can be built in

two configurations shown as (a) and (b), which produce similar results; al-

though (b) requires two more additions in its implementation. The different

methods for creating the full gradient term occur as A and B from (5.2.19)

can be implemented in two ways.
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(a) Implementation one of the full gradient term for updating α

(b) Implementation two of the full gradient term for updating α

Figure 5.7. Two structures capable of implementing the full gradient
term for updating α.
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In Figure 5.8 the full gradient structure is simulated; and this result

demonstrates that this approach provides promising results. Figure 5.8 (a)

shows that the result is now clearly stable, as α is not attempting to exceed

unity. Also, α is stabilising to the expected value i.e. just below unity, whilst

β is tracking correctly, which can be observed in Figure 5.8 (b). Please also

observe, that the noise on the estimate is reducing further as α increases,

as there is less noise around 4500 samples, when compared to 3250 samples.

Therefore, altogether this result provides a significant improvement to the

partial gradient approach.

(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.8. The full gradient approach for adapting α, whilst following
a hopping complex sinusoid signal which is tracked by β.
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The simulation Figure 5.8 was produced with µβ set to 0.15; and µα

being 0.0008. The forgetting factor γ was fixed at 0.9 for the adaptation of

α and β.

Again, α was initialised at 0.8, then only adapted if the gradient for β

is greater than five, where the gradient for β is shown as grad(n) in Figure

5.7. Then the adaptation of α was constrained by:

if α(n) > 0.989

α(n) = α(n− 1);

end;

if α(n) < 0.8

α(n) = α(n− 1);

end;

if econj(n) > 6.ψerror

α = 0.8;

end;.

Please note, that these constraints have been found empirically to pro-

duce the optimum result in terms of convergence speed and robustness, and

are discussed further later in section 5.2.6.

When simulating this structure it can be observed that, occasionally

α is adapting before β has located the target frequency, and this effect is

shown at 3100 samples in Figure 5.8; as α has adapted before β locks onto

the target frequency and requires to be reset to 0.8, which occurs at 3470

samples. This issue can be corrected, and further constraints are discussed

later in this chapter.

In the next section, as a significant improvement has been achieved, the

full gradient term is simplified via heuristic methods.
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5.2.4 Heuristic Simplifications of the Full Gradient Term

Approach 1

Now applying a heuristic approach, which reduces complexity; observing

that previously the gradient for β as in Chapter 4 Section 4.3.2 is derived

following the β multiplier, it was noted that the point close to the α multi-

plication: shown in Figure 5.9 as x, may assist in deriving the gradient for

α.

Also, it was observed that the partial gradient component: 1−z−1β
1−αz−1β

from

(5.2.19); did not successfully converge to a solution, therefore the other com-

ponent: 1+z−1β
1−αz−1β

was trialled; and as the transfer function at the bottom of

the all-pass filter can be derived to be the second component of this equation.

Thus, this part of the full gradient term may be found to provide a suitable

approximation for this value. Interestingly, this term contains a high-pass

zero, thus provides more smoothing of the gradient.

Figure 5.9. The structure which implements the first heuristic sim-
plification for updating α.

Calculating this mathematically, the point shown as x in Figure 5.9 can

be derived as X(z) = 1
2

(1 + z−1β)

(1− αz−1β)
U(z); which is the second component

of (5.2.19). The expression for X(z) can be proven, as before, by using

the point w: shown in Figure 5.9, which can be derived to be W(z) =
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1
2

(1 + α)

(1− αz−1β)
U(z). Then by adding a delay, which replaces the extra filter

required. The gradient term applied in this first heuristic approach, can be

defined to be

GRAD α(z)h1
U(z)

=
1

2

(1 + z−1β)

(1− αz−1β)
z−1. (5.2.20)

Interestingly, this first heuristic approach showed some convergence, which

is demonstrated in Figure 5.10, where part (a) of this simulation shows that

α is converging to approximately 0.96 each time the target frequency hops;

and part (b) demonstrates that the target frequency is correctly tracked, as

β locks onto the target frequency each time it hops. Simulations have has

been extended to 7000 samples, to prove that α is converging.

This result was created with µβ set to 0.1; and µα equal to 0.03. As

before γ was set to 0.9, for the adaptation of both α and β. As with the

previous result, α was initialised at 0.8, then α’s adaptation was constrained

as follows:

if α(n) > 0.99

α(n) = α(n− 1);

end;

if α(n) < 0.8

α(n) = α(n− 1);

end;

if econj(n) > 10

α = 0.8;

end;.

However, by observing Figure 5.10 (a), it is clear that α does not appear

to approach either of these limits.

In conclusion, this simulation shows that the full gradient term for α can

be approximated, but as a consequence of this simplification some perfor-
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mance is lost; as this solution performs poorly around zero, which is shown

from 3000 to 6000 samples.

Therefore, a second slightly more complex simplification is trialled in the

next part of this section.

(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.10. Results for following a hopping complex sinusoid signal
which is tracked by β, with the first heuristic simplification of the full
gradient term for adapting α.
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Approach 2

As a significant amount of performance was lost with the first simplification,

a second simplification is now investigated which utilises the full gradient

term, although without implementing a second filter. This includes an ad-

ditional multiplication that was not applied in the first simplification, along

with the delay which again replaces the second filter. This structure required

to implement this term is shown in Figure 5.11.

Figure 5.11. The structure required to apply the second heuristic
approach for updating α.

Then, expressing the second heuristic simplification mathematically, pro-

duces the gradient term

GRAD α(z)h2
U(z)

=
1

2

[
(1 + z−1β)(1− z−1β)

(1− αz−1β)2
z−1
]
. (5.2.21)

Therefore, this approach utilised both terms A & B from (5.2.19) without

cascading the structure. This second simplification initially converged, how-

ever then drifted, thus was not pursued further.

Next, a method of interconnecting the adaptation of α and β is inves-

tigated; i.e. the adaptation of α will be influenced by the adaptation of β.
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5.2.5 The Interconnected Parameter Approach

At the beginning of this chapter, it was noted that one possible approach

to implement the adaptation of α, is for α to adapt, once β has stabilised.

Therefore, a successful method for adapting α could be to interconnect it

with the adaptation of β.

Now, as the NLMS algorithm contains the term ψ from the adaptation

of β, which has been called ψβ; the term ψβ can be used in the update of α

as shown in (5.2.22) below; which defines the update equation for α, in this

interconnected approach as

α(n) = α(n− 1) + µαRe

(
e∗(n)e(n)

1

(1 + α)
/ψβ(n)

)
. (5.2.22)

The term ψβ is the recursive calculation of gradient energy, thus implies that

as β stabilises, ψβ increases, which has the effect of increasing α in a stable

manor to a maximum, which as previously stated is a value just below unity.

The structure required to implement this result is shown in Figure 5.2,

where the only difference from the partial gradient approach is that ψβ has

been used in the NLMS update instead of ψα.

This approach shows quite a promising result, when implemented for

the partial gradient term, and the result is shown in Figure 5.12 (a). Then

Figure 5.12 (b) shows that β is still correctly tracking the CSS’s frequency,

whilst the noise on the estimate is significantly reducing as α increases.

This simulation was achieved with µβ fixed at 0.2; whilst µα was set to

0.1; which are large values, when compared to the other simulations. As

before γ was set to 0.9, for the adaptation of both α and β.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.12. The interconnected parameter approach for adapting α,
whilst following a hopping complex sinusoid signal which is tracked by
β.
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Again α was initialised at 0.8, and with this approach, it was constrained

via the following method:

if α(n) > 1

α(n) = α(n− 1);

end;

if econj(n) > 10

α = 0.8;

end;.

The gradient energy ψβ in the adaptation of β

For this interconnected approach, the effect of utilising the parameter ψβ

has been plotted in Figure 5.13.

Figure 5.13. The value of ψβ when tracking a complex sinusoid signal,
wherein ψβ is utilised in the adaptation of α.

Figure 5.13 shows that as β locks onto the target frequency, as is the case

at: 250, 1250, 2250 and 3250 samples; the recursive calculation of gradient

energy for β increases: which is the term ψβ. As ψβ grows, the notch filter

output e∗(n) directly controls the value of alpha, as grad α(n)/ψβ influences



Section 5.2. Methods Evaluated for Adapting the Notch Bandwidth Parameter α 99

the update less. It was shown earlier: in 5.2.1, that the notch filter output

e(n) is the partial gradient of α; therefore this explains why α successfully

converges to a value just below unity.

Simplifying this explanation further, once β successfully locks onto a tar-

get frequency; the gradient energy increases; which has the effect of enabling

the notch filter output e(n) to directly control the value of α. As e(n) is the

gradient of α, this provides a satisfactory result.

This concludes four approaches for adapting the parameter α, and the

results can be summarised as follows: a1) the partial gradient term does not

converge correctly, thus produces poor convergence in the results; a) the full

gradient term, converges quickly and provides significant improvement on the

variance achieved; however, this requires a second filter in its implementa-

tion, which will add complexity to the design; b) the heuristic simplification

of the full gradient approach provides some improvement, although looses

a lot of performance; c) the interconnected parameter approach provides a

very stable adaptation for α, however does not converge as quickly as the

full gradient term.

For clarity, the final values that these approaches converge to along with

their variances, have been included in Tables 5.3 and 5.4, which are located

in the discussions section at the end of this chapter.

5.2.6 Further Constraints Necessary for the Update of α

Now, further constraints are implemented to improve the overall perfor-

mance of the CANF further for the full gradient term. As it was observed

that although the variance has been improved, some of the tracking speed

when locking onto a different frequency has been lost; thus if α adapts be-

fore β locks onto the target frequency the CANF’s performance is reduced.

Therefore, the adaptation of α has been constrained further in an attempt

to speed up the tracking speed.
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This research found that by only adapting α if the gradient of β is less

than a value, i.e. when β has locked onto a target frequency, results could be

improved further; this result has been shown in Figure 5.14. The constraint

that was applied herein, was to only adapt α if the gradient for β is greater

than five, and all other parameters are the same as in Figure 5.8.

Another approach to implement a further constraint is to fix α, when the

notch filter output exceeded a limit for a fixed duration: n samples; and this

method did achieve some success, however sometimes triggers incorrectly;

therefore, stopping the adaptation of α unnecessarily.

(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.14. Results for tracking a hopping complex sinusoid signal,
with a further constrained full gradient term updating α.
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A further point to note, which was discovered in this research is, if α

approaches unity for a length of time, instability occurs; as α is approaching

the structure’s stability limit i.e. a pole on the unit circle. Therefore, when

α is at its limit the structure shows some instability, and this appears as

a blip around 4800-5000 samples which is shown in Figure 5.15. However,

this instability can be removed by restricting the adaptation of α to a limit,

and this has been implemented in the results; although, this would seem the

sensible place to include this information. Please also note when observing

Figure 5.15, that noise has almost entirely been removed; unfortunately,

some of this performance has to be lost to improve stability.

(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.15. The instability that occurs, when α approaches unity for
a period of time.
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Some further observations are: setting the constraints is key to the suc-

cess of adapting both parameters; therefore, care should be applied when

selecting the constraints for certain environments, and the next development

step could be to apply adaptation to the selection of constraints.

If the amount of noise changes, the value at which the notch filter output

e(n) resets α needs to be adjusted; therefore, for lower noise levels it must

be reduced, and for higher noise levels it must be increased.

A method that proved successful for resetting the adaptation of α, was

to create a ψerror parameter, which resets the value of α to 0.8; this can be

implemented as follows

ψerror(n) = ψerror(n− 1)γ + (1− γ).econj(n);

if econj(n) > 6.ψerror

α = 0.8;

end;

wherein, econj(n) = e(n)∗e(n) thus the notch filter output is converted to be

an absolute value.

5.3 Tracking Two Complex Sinusoid Signals, whilst Adapting a

Single Value for α

Within the first section of this chapter, it was demonstrated that α can

be adapted simultaneously with β to track a single CSS; now, the effect of

adapting α whilst tracking two CSSs frequencies is investigated.

For these investigations, the three working solutions are considered, which

are: a) the full gradient approach, b) the heuristic simplification, and c) the

interconnected parameter approach.

In the output-error approach shown in Figure 5.16, if additional notch

filters were required for updating α, this will produce a more complex struc-

ture. Therefore, initially only the value of α in the final notch structure has
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been adapted, which is labelled as CNF 1 in Figure 5.16.

Figure 5.16. Potential structure for adapting a single value for α
whilst tracking two complex sinusoid signals.

Again, the results from this section have been embodied into Table 5.5;

which is located in the discussions section at the end of this chapter.

5.3.1 The Full Gradient Approach for Tracking Two Complex Si-

nusoid Signals, whilst Adapting a Single α Value

In this section, two CSSs are tracked; whilst a single value for α is adapted

in the part of the structure shown as CNF 1 in Figure 5.16. The parameter

α, is updated via the full gradient approach in CNF 1, and this updated

value of α is utilised throughout the entire structure.

This approach shows convergence and an improvement on previous re-

sults, which can be observed in Figure 5.17.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.17. Tracking two frequencies whilst adapting a single value
for α with the full gradient approach.

From this result, it is clear that α remains at 0.8, until β locks onto both

frequencies, once both values of β are locked, as is the case around 2250

samples; α increases to a maximum, thus facilitating a further reduction in

noise on the tracked signals. This reduction in noise is clearly visible, when

comparing the noise at 2500 samples, to the noise at 10000 samples.
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This simulation was produced with µβ = 0.1; and µα = 0.01, and γ was

fixed at 0.8, for the adaptation of both α and β. For this result, α was

initialised at 0.8; and the constraints applied to this result, were the same

as for the full gradient term when tracking a single CSS; which is shown in

section 5.2.3.

5.3.2 The Heuristic Simplification Approach for Tracking Two

Complex Sinusoid Signals Frequencies, whilst Adapting a

Single α Value

Now, the heuristic approach is considered to evaluate the inevitable reduc-

tion in performance as a result of simplifying the full gradient term; whilst

updating a single value of α in CNF 1. The results for this simulation are

shown in Figure 5.18, which confirms that this method provides a reasonable

solution for this scenario.

The values used to create Figure 5.18 were: µβ = 0.1, µα = 0.04 and γ

= 0.8 for the adaptation of α and β. The notch bandwidth parameter α was

initialised at 0.8; then constrained in the same method as for the heuristic

simplification when tracking a single CSS; which was shown in section 5.2.4.

Figure 5.18 shows that the heuristic simplification does appear to reduce

the noise on both estimates, however, far more significantly on the lower

value 1.7593.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.18. Tracking two frequencies whilst adapting a single value
for α with the heuristic approach.
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5.3.3 The Interconnected Parameter Approach for Tracking Two

Complex Sinusoid Signals Frequencies, whilst Adapting a

Single α Value

As two CSSs have been successfully tracked, with both the full gradient

and heuristic simplification approaches; lastly the interconnected parameter

approach is evaluated. To facilitate a fair comparison, again a single value of

α is updated via the interconnected parameter approach, in the part of the

structure shown as CNF 1: in Figure 5.16, throughout the entire structure.

The results for this experiment are shown in Figure 5.19. Now, by ob-

serving Figure 5.19, it can be concluded that the interconnected parameter

approach does not appear to work well in this scenario, as α is not truly

converging, which is shown in Figure 5.19 (a), whilst (b) clarifies that there

is little improvement in the noise reduction.

This simulation was produced with µβ set to 0.25; whilst µα was set to

0.04; as previously noted these are relatively large values, when compared

to the other equivalent simulations. Also when tracking two CSSs with this

method, more favourable results are achieved by reducing γ to 0.8: which

was also the case with the previous result; and this value of γ was applied

to the adaptation of both α and β. Again α was initialised at 0.8, then

constrained by the same method applied for the interconnected approach

when tracking a single CSS; and these constraints are included in section

5.2.5.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 5.19. Tracking two frequencies whilst adapting a single value
for α with the interconnected parameter approach.
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5.4 Tracking Two Complex Sinusoid Signals, whilst Adapting Unique

α Values

In this section of the chapter, updating multiple values of α is considered. As

two frequencies are being tracked by separate all-pass sections, it is clearly

possible to update different values of α for each frequency that is being

tracked; however, this will increase the complexity of the designs, for instance

particularly the full gradient approach. Thus in Figure 5.16, α could be

adapted in CNF 2 and CNF 1; instead of just being updated in CNF 1.

Please note, that since a value of alpha is being updated for θ1 and θ2,

it follows that these unique values of α are referred to as α1 and α2, which

naturally correspond to the θ values.

Therefore, the three approaches are again considered and simulated in

this section; however, final values and variances have again been tabulated

in the discussions section within Table 5.6, to clearly show a fair comparison

between these structures; thus the full gradient approach is considered first.

5.4.1 The Full Gradient Approach for Tracking Two Complex Si-

nusoid Signals, whilst Adapting Unique α Values for each

Signal

To begin this comparison on adapting multiple values of α, relating to each

CSS being tracked, firstly the full gradient approach is considered. To im-

plement this approach an additional notch structure is required, in the same

manner an CNF 3; this extra structure is labelled as CNF 4, and also de-

rives the gradient for α2 from CNF 2. This complete structure required to

implement the full gradient approach for tracking two CSSs, whilst adapting

unique α values is shown on the next page as Figure 5.20.
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Figure 5.20. A structure capable of tracking two complex sinusoid
signals, whilst adapting unique α values for each signal with the full
gradient approach.

Please note that in Figure 5.20, CNF 1 and CNF 2 are effectively double

CANF structures, as they derive the full gradient term for α, and these

structures are shown earlier in Figure 5.7.

The simulation for this structure is included as Figure 5.21; which was

produced with µβ = 0.1, µα = 0.001; γ was set to 0.8 for the adaptation

of α, and 0.9 for the adaptation of β. Other constraints were as previously

implemented for this approach.
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(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 5.21. Tracking two frequencies whilst adapting separate α
values with the full gradient approach.

As expected, the full gradient approach produces a very powerful solution

when adapting multiple values of α, as there is very little variance on the

estimates after convergence; however, it also adds significant complexity.
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5.4.2 The Heuristic Simplification Approach for Tracking Two

Complex Sinusoid Signals, whilst Adapting Unique α Values

for each Signal

Now, considering the heuristic simplification; which is implemented by up-

dating α2 directly in CNF 2, as adding a further section: which would effec-

tively be CNF 4, did not improve the result further. It was discovered that

this approach did achieve a slight overall improvement, and the simulation

is included as Figure 5.22.

(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 5.22. Tracking two frequencies whilst adapting separate α
values with the interconnected parameter approach.
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Figure 5.22 shows that one value improves much more than the other; as

there is still clearly more noise on the estimate for 2.1991, when compared

to its comparable value 1.7593.

This result was produced with µβ = 0.1, µα = 0.03, again γ was set to

0.8 for the adaptation of both α and β. Other constraints were as previously

implemented for this approach.

5.4.3 The Interconnected Parameter Approach for Tracking Two

Complex Sinusoid Signals, whilst Adapting Unique α Values

for each Signal

Implementing the interconnected parameter approach to track two CSSs,

whilst updating multiple values of α can be achieved very simply, and pro-

duces pleasing results with a small amount of variance, which are shown in

Figure 5.23; wherein (a) shows that as expected one value of α1 converges

to 0.99; however, interestingly the second value of α2 is converging to 0.81.

This convergence is peculiar, although produces quite a nice result as Figure

5.23 (b) shows, however the solutions are not converging to the exact true

values, which is clarified in Table 5.6. Therefore, some accuracy in the final

solution is lost with this approach.

This result was produced with µβ = 0.1, µα = 0.15, again γ was set to

0.8 for the adaptation of both α and β. Other constraints were as previously

implemented for this approach.
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(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 5.23. Tracking two frequencies whilst adapting separate α
values with the interconnected parameter approach.

5.5 Discussions from Adapting the α and β Parameters Simulta-

neously

The results from these simulations are now discussed; where the results are

embodied in tables, thus facilitating a clear comparison. Also, an analysis of
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the multiple CSSs frequencies tracked in this chapter, is included in section

6.4.3 of this thesis; please also note that, figures for the additional compu-

tational complexity required to adapt the notch bandwidth parameter, are

included in section 6.4.4 of this thesis.

5.5.1 Tracking a Single Complex Sinusoid Signal whilst also Up-

dating α

Firstly, the results for tracking a single CSS whilst updating α, are sum-

marised in Tables 5.3 and 5.4; and within the first Table 5.3 the final value

tracked is -0.48, which when normalised by multiplying by 2π produces

−3.0159: the value shown in the simulations.

Table 5.3. A comparison of methods for adapting α, with a final value
of -0.48; wherein ∆ω is the sample bias and σ2 is the sample variance.

Method a) Full b) Heuristic c) Interconnected
gradient term simplification parameter

∆ω 0.0001 0.0003 -0.0004
σ2 5.8668× 10−7 4.0660× 10−6 5.1478× 10−7

It was observed that all the approaches, and particularly the heuristic

approach did not adapt α as effectively when the target frequency is close

to zero; therefore, an additional result is included as Table 5.4 to show a

second set of results tracking -0.05, which when normalised is -0.3142.

Table 5.4. A comparison of methods for adapting α, with a final value
of -0.05; wherein ∆ω is the sample bias and σ2 is the sample variance.

Method a) Full b) Heuristic c) Interconnected
gradient term simplification parameter

∆ω -0.0002 0.0005 -0.0003
σ2 1.2722× 10−6 1.5679× 10−5 3.2575× 10−6

These results show that updating α, whilst tracking a single CSS does in-

deed generate improvements in the overall performance with all three adapta-

tion methods for α. The full gradient approach is computationally the most
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complex, as it requires an additional filter; however, this method achieves

the best result, as there is less variance in the estimate. The interconnected

approach provides a good simple solution, and the heuristic simplification

creates some improvement reducing the variance slightly, for little additional

computational complexity.

5.5.2 Tracking Two Complex Sinusoid Signals whilst

Updating a Single Value of α in CNF 1

Firstly, the results are provided in Table 5.5 for tracking two CSSs, whilst

updating a single value of α in the final section of a output-error structure,

which is shown as CNF 1 in Figure 5.16. Please note, that the first value in

Table 5.5 is for the original structure, where α is fixed at 0.8; and that the

normalised values shown on the y-axis in the simulations, equate to 1.7593

for 0.28, and 2.1991 for 0.35.

Table 5.5. A comparison of methods for adapting α in CNF 1, whilst
tracking two complex sinusoid signals; wherein ∆ω1 & ∆ω2 are sample
biases and σ2

1 & σ2
2 are the sample variances; and a † labels a value

smaller than 0.00005.

Method The Adapting α Adapting α Adapting α
original via a) Full via b) via c) Inter-
structure gradient Heuristic connected

term simplification parameter
∆ω1 0.0003 0† 0† -0.0003
∆ω2 0.0010 0.0001 0† 0.0003
σ2
1 0.0032 2.52× 10−4 0.0018 0.0026
σ2
2 0.0013 7.52× 10−4 4.93× 10−4 0.0013

The results show that the full gradient approach achieves a definite im-

provement in both signals, whilst the heuristic approach only significantly

improves one of the CSSs final variances; interestingly, the interconnected

parameter approach shows little improvement in this scenario. Overall, some

improvement can be achieved in adapting a single value of α, however, if this
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is attempted the full gradient approach should generally be used.

5.5.3 Tracking Two Complex Sinusoid Signals, whilst

Adapting Unique α Values for each Signal

In this section the results for tracking two CSSs, whilst updating separate

values of α are detailed in Table 5.6; which also includes the original value

for the structure, with a fixed value of α which is 0.8. Again, the normalised

values shown on the y-axis in the simulations, equate to 1.7593 for 0.28, and

2.1991 for 0.35.

Table 5.6. A comparison of methods for adapting two α values, whilst
tracking two complex sinusoid signals; wherein ∆ω1 & ∆ω2 are sample
biases and σ2

1 & σ2
2 are the sample variances; and a † labels a value

smaller than 0.00005.

Method The Adapting α Adapting α Adapting α
original via a) Full via b) via c) Inter-
structure gradient Heuristic connected

term simplification parameter
∆ω1 0.0001 0† 0† -0.001
∆ω2 0† -0.0001 0.0004 0†
σ2
1 0.0032 2.51× 10−4 0.0015 2.74× 10−4

σ2
2 0.0013 1.06× 10−4 3.05× 10−4 5.34× 10−4

These results prove that the full gradient term produces the most accu-

rate final solution, as although the interconnected parameter approach has

achieved a similar variance, it is not precisely converging to the true value.

However, if computation complexity is an issue both the heuristic simplifi-

cation and interconnected approach should be considered. This result also

demonstrates that, adapting multiple values of α does indeed improve the

performance of a CANF when tracking multiple CSSs, however of course

adding extra computational complexity3.

3Figures for the additional computational complexity required to adapt the notch
bandwidth parameter, are included in section 6.4.4 of this thesis.
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5.5.4 Overall Observations for Adapting the Notch Bandwidth

and Frequency Parameters Simultaneously whilst Tracking

Hopping Complex Sinusoid Signals

Overall, it has been demonstrated that the performance of a CANF can be

significantly improved if both the notch bandwidth and frequency param-

eters are updated simultaneously when tracking hopping CSSs, although

this can significantly increase the complexity of the design. Adapting the

notch bandwidth and frequency parameters also improves the ability of this

structure for the tracking of CSSs which are further apart.

Three methods for updating the notch bandwidth parameter have been

evaluated, firstly for tracking a single hopping CSS; then tracking two hop-

ping CSSs whilst adapting a single notch bandwidth parameter for the overall

structure, lastly individual notch bandwidth parameters were updated for

each hopping CSS; this research also shows the strengths and weaknesses for

each of the three approaches.

It has also been shown that a method of steepest ascent is required for

the adaptation of the notch bandwidth parameter α.

5.6 Summary

This chapter considers adapting the notch bandwidth and frequency pa-

rameters simultaneously in a CANF. Three methods of adapting the notch

bandwidth parameter have been demonstrated in this chapter, along with

schemes for tracking two CSSs whilst updating an overall notch bandwidth

parameter for the complete structure, or for each frequency which is being

tracked.

In the next chapter of this thesis, tracking CVCSs is investigated; initially

with only the parameter β adapting to track the signal, i.e. with a fixed notch

bandwidth.



Chapter 6

TRACKING A

COMPLEX-VALUED CHIRP

SIGNAL

This chapter considers tracking a Complex-Valued Chirp Signal (CVCS),

and begins with an introduction and initial results for tracking a CVCS;

then the notch bandwidth parameter is adapted, as in the previous chapter:

to attempt to improve the results further. Next, the chapter moves onto

tracking a CVCS and a hopping CSS simultaneously; and lastly it includes

frequency plots for the CSSs tracked in Chapters 4 to 6 of this thesis, and

the computational complexity of adapting the notch bandwidth parameter

when tracking one or two CSSs; before concluding with a discussion of the

results and a summary.

So to begin with, the introduction defines a CVCS, then moves onto

initial results; which compare Regalia’s structure to the scheme developed

in Chapter 4 of this thesis.

6.1 Introduction and Initial Results

In Regalia’s paper [23], he demonstrated that the complex version of his

design is capable of tracking a CVCS, which in this case is a quadratically

119
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varying frequency of the form

u(n) = ejφ(n) + b(n); (6.1.1)

wherein

φ(n) = φ2n
2 + φ3n

3; (6.1.2)

where φ2 = −0.004 and φ3 = 1.2× 10−6.

Regalia’s result, which is labelled as Fig. 3 in [23], has been included in

this chapter as Figure 6.1, noting that if the NLMS algorithm is used to pro-

duce this simulation, a similar result can be achieved to the LMS algorithm’s

result; with the exception that the gain should be increased. Therefore, Re-

galia specifies that µ should be 0.02 for the LMS variant; however if the

NLMS learning algorithm is selected µ should be increased to 0.08, and the

value required for γ is 0.8.

Equivalently a comparable result may be produced with the proposed

structure: which is shown in Figure 6.2; however, to produce this result, as

the plotted value is the angle of the complex result; a phase shift of −2π

is required when the plotted value exceeds one. Figure 6.2 was achieved by

using the following parameters: µ = 0.15, γ = 0.8 and α = 0.9.

It is clearly visible when comparing Figure 6.1 with Figure 6.2, that both

structures produce similar results. Please note that measured values for the

simulations in sections 6.1 and 6.2 of this chapter are included in Table 6.1,

which is located in the discussions section of this chapter: section 6.4.1.
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Figure 6.1. Tracking a complex-valued chirp signal with Regalia’s
structure.

Figure 6.2. Tracking a complex-valued chirp signal with the proposed
structure.
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To create a full evaluation of tracking a CVCS, the full gradient term

for β is also evaluated, to investigate if this outperforms the simplified term

when tracking a CVCS. Please note that, the full gradient term for β is

derived in Appendix 9.2 of this thesis.

In this analysis more noise was also added, to investigate if the full

gradient term improved results in noisier environments, when tracking a

CVCS. It was noted that the simplified β term and the full gradient term for

β both tracked a CVCS for SNR up to approximately -12.5 dB, then both

approaches struggled beyond this value.

The simulation of tracking a CVCS with the full gradient term for β is

shown in Figure 6.3; which was produced with the following parameters: µ

= 0.3, γ = 0.9 and α = 0.9.

Figure 6.3. Tracking a complex-valued chirp signal with the full gra-
dient term for β, within the proposed structure.
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6.2 Tracking a Complex-Valued Chirp Signal whilst Adapting α

Following on from the result shown in Figure 6.2, and applying the simplified

update for β; the variations of this structure which update α are simulated,

to investigate if adapting α improves the results further. Again, this has been

investigated for the three viable approaches, where firstly the full gradient

approach is considered. Please note that measured values for the simulations

in this section are included in Table 6.1, which is located in the discussions

section of this chapter: section 6.4.1.

The Full Gradient Approach for Adapting α, whilst Tracking

a Complex-Valued Chirp Signal

In this section of the chapter a CVCS is tracked with the full gradient ap-

proach for adapting α; the result to this simulation is shown in Figure 6.4.

Wherein, the simulation was produced with the following parameters: µβ

= 0.1, µα = 0.0008, γα = 0.9 γβ = 0.7. The parameter α was initialised

at 0.9; and was constrained with the same method used previously for this

approach.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 6.4. Tracking a complex-valued chirp signal whilst adapting α
with the full gradient approach.
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Please note, that in these simulations for tracking a CVCS, the lower

limit for α has been increased to 0.9; which is the value Regalia applied in

his publication [23].

The results show that, as α increases the noise reduces; however, the

target signal is then lost so α is reset. Therefore, this does not produce an

ideal result, as the overall variance from the target signal is increased when

the tracking drifts, thus little improvement is shown in the overall variance

estimates.

The Heuristic Approach for Adapting α, whilst Tracking

a Complex-Valued Chirp Signal

In this section, the heuristic approach for updating α is trialled and the

results for updating α whilst tracking a CVCS are shown in Figure 6.5;

which shows that some improvement is achieved, once α exceeds the value

of 0.9, which occurs at approximately 700 samples. However, the value of α

does not fully stabilise with this method.

Figure 6.5 was produced with the following parameters: µβ = 0.15, µα

= 0.05, γ = 0.8 for both the adaptation of α and β. The parameter α was

initialised at 0.8; and was constrained with the same method used previously

for this approach.
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(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 6.5. Tracking a complex-valued chirp signal whilst adapting α
with the heuristic approach.
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The Interconnected Parameter Approach for Adapting α, whilst Tracking a

Complex-Valued Chirp Signal

As the heuristic approach for adapting α was capable of tracking a CVCS,

now the interconnected parameter approach is investigated. Therefore, Fig-

ure 6.5 shows the results for updating α, whilst tracking a CVCS, with the

interconnected parameter approach.

(a) The adaptation of α in this CANF

(b) The tracking performance of the CANF

Figure 6.6. Tracking a complex-valued chirp signal whilst adapting α
with the interconnected parameter approach.
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The result shows much improved tracking performance, except when α is

constrained, i.e. being reduced to 0.9; as when this occurs the performance

drops, which is apparent at samples 210, 650 and 1400. However, if these

constraints are removed, the notch can loose the target signal altogether.

Figure 6.5 was produced with the following parameters: µβ = 0.4, µα

= 0.1, γ = 0.8 for both the adaptation of α and β. The parameter α was

initialised at 0.9; and was constrained with the same method used previously

for this approach.

To summarise, these results demonstrate that a CVCS can be tracked

with this proposed structure, although no improvement is gained by updat-

ing the notch bandwidth parameter.

6.3 Tracking a Chirp and a Hopping Signal, whilst Adapting Mul-

tiple α Values

As little improvement was produced when tracking a CVCS and adapting

α, in this section tracking a CVCS at the same time as a frequency hopping

CSS is investigated.

To begin with, tracking a CVCS and a hopping CSS without adapting α

is considered, where the CVCS was produced as in (6.1.1), with the following

parameters

φ(n) = −0.0005n2 + 0.1× 10−6n3. (6.3.1)

Whilst the hopping signal initialises at 0.2, then hops to -0.2 at 1000 samples;

the result for this simulation is shown below in Figure 6.7.
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Figure 6.7. Tracking a complex-valued chirp signal and a hopping
complex sinusoid signal simultaneously.

This provides a satisfactory result, which can be used as a starting point

for comparison. As before, measured values are included in Table 6.2, which

is located in the discussions section of this chapter: section 6.4.2.

6.3.1 The Full Gradient Approach for Adapting α values, whilst

Tracking a Complex-Valued Chirp Signal and a Hopping

Complex Sinusoid Signal Simultaneously

In this first simulation two values of α are adapted by applying the full

gradient approach, whilst simultaneously tracking a CVCS and a hopping

CSS.

The result is shown as Figure 6.8, where the following parameters were

used: α1(0) = 0.8, α2(0) = 0.8, µβ = 0.1, µα = 0.001, γβ = 0.9 and γα =

0.8.
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(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 6.8. Tracking a complex-valued chirp signal and a hopping
complex sinusoid signal simultaneously, whilst adapting multiple values
of α with the full gradient approach.

Please take note that, the CVCS selected for this simulation has a lower

gradient than the CVCS that was tracked in the previous section.

Figure 6.8 shows a pleasing result, as the amount of noise is clearly

reducing on both signals.
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6.3.2 The Heuristic Simplification Approach for Adapting α Val-

ues whilst Tracking a Complex-Valued Chirp Signal and a

Hopping Complex Sinusoid Signal Simultaneously

In this second simulation two values of α are adapted via the heuristic simpli-

fication method, whilst tracking a CVCS and a hopping CSS simultaneously.

This result is shown as Figure 6.9, where the following values were applied:

α1(0) = 0.8, α2(0) = 0.8, µβ = 0.1, µα = 0.015 and γ = 0.8 for the adaptation

of α and β.

(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 6.9. Tracking a complex-valued chirp signal and a hopping
complex sinusoid signal simultaneously, whilst adapting multiple values
of α with the heuristic approach.
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Figure 6.9 shows some success, however, both α values drift towards the

end of the simulation i.e. after 3250 samples, thus the heuristic approach

may have limited performance for tracking a CVCS and a hopping CSS

simultaneously.

6.3.3 The Interconnected Parameter Approach for Adapting α

Values, whilst Tracking a Complex-Valued Chirp Signal and

a Hopping Complex Sinusoid Signal Simultaneously

In the last result of this chapter, adapting two values of α with the inter-

connected parameter approach whilst tracking a CVCS and a hopping CSS

simultaneously is investigated. This result is shown as Figure 6.10, where

the following parameters were set: α1(0) = 0.8, α2(0) = 0.8, µβ = 0.1, µα

= 0.15 and γ = 0.9 for the adaptation of both α and β.
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(a) The adaptation of both α values in this CANF

(b) The tracking performance of the CANF

Figure 6.10. Tracking a complex-valued chirp signal and a hopping
complex sinusoid signal simultaneously, whilst adapting multiple values
of α with the interconnected parameter approach.

Figure 6.10 shows a working solution, as the amount of noise is clearly

reducing on both signals; however, both α values are only converging to

around 0.94, which is not very close to unity; therefore, the variance will not

be significantly reduced.
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6.4 Discussions from Tracking a Complex-Valued Chirp Signal

This chapter now concludes, with discussions from this chapter on tracking

a CVCS; along with the computation complexity of the algorithm variants

for adapting both the notch bandwidth and frequency parameters.

6.4.1 Tracking a Complex-Valued Chirp Signal

This section tabulates the results for tracking a CVCS with Regalia’s ap-

proach; then equivalently with the proposed structure, firstly with the sim-

plified gradient term, then in a full gradient form1. Next, α is adapted for

the results a) to c), utilising the successful methods that have previously

been applied for adapting α when tracking CSSs.

Table 6.1. A comparison of methods for tracking a complex-valued
chirp signal; wherein σ2 is the sample variance.

Method Regalia The Full
2010 original gradient for

structure β structure
σ2 0.0026 0.0017 0.0016

Method Adapting α Adapting α Adapting α
via a) Full via b) via c) Inter-
gradient Heuristic connected
term simplification parameter

σ2 0.0074 0.0029 0.0036

The results show that, the proposed structure produces slightly superior

results than Regalia’s equivalent structure; although, adapting α via these

trialled methods whilst tracking a CVCS, provides no real improvement.

Please note, that when tracking a CVCS the variance has been calcu-

lated from the 50th to the final sample; this is due to the fact that all the

structures perform well over certain parts of the CVCS, therefore, to achieve

a true comparison the variance for the complete CVCS simulation should be

considered.

1The ‘full gradient form’ for β is derived in Appendix 9.2.



Section 6.4. Discussions from Tracking a Complex-Valued Chirp Signal 135

6.4.2 Tracking a Complex-Valued Chirp Signal and a Hopping

Complex Sinusoid Signal Simultaneously whilst Adapting

Multiple α Values

This section tabulates the results for tracking a CVCS and a hopping CSS

simultaneously, firstly by only adapting the β parameter to track the signals.

Then, separate values of α are adapted via methods a) to c), to evaluate

if by simultaneously updating α, whilst still tracking signals with β, will

instantiate further improvements in the results.

Table 6.2. A comparison of methods for adapting two α values, whilst
tracking a complex-valued chirp signal and a hopping complex sinusoid
signal; wherein σ2

1 & σ2
2 are the sample variances.

Method The Adapting α Adapting α Adapting α
original via a) Full via b) via c) Inter-
structure gradient Heuristic connected

term simplification parameter
σ2
1 7.02× 10−4 8.96× 10−6 7.82× 10−4 3.83× 10−4

σ2
2 5.76× 10−4 6.45× 10−5 2.07× 10−4 1.39× 10−4

Table 6.2 demonstrates that the full gradient approach generates a sig-

nificant improvement to both signals; whilst the heuristic approach struggles

in this scenario: which is clear from 3500 to 4000 samples in the simulation;

the interconnected approach generates some improvement reducing the noise

on both signals by 50%.

6.4.3 Analysis of the Complex Sinusoid Signals Frequencies

that have been Tracked

A further analysis of the multiple CSS frequencies tracked in the simulations

from chapters 4-6 of this thesis is shown in Figure 6.11.
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(a) Figure 4.8 (b) Figures 5.17 to 5.19, and
Figures 5.21 to 5.23

(c) Figures 6.1 to 6.3 (d) Figure 6.10

Figure 6.11. Frequency analysis of the complex sinusoid signals
tracked in chapters 4-6 of this thesis.

These results are included for completeness, to show any relationship in

the selected frequencies: which may be useful in further analysis of conver-

gence.

6.4.4 Computational Complexity of the Algorithms, including the

Additional Calculations Required when Adapting α

This section contains the number of calculations required to track CSSs,

whilst adapting parameters for all the scenarios considered in this chapter,

and is also applicable to Chapter 5.

Therefore, tracking one and two CSSs is considered, whilst adapting a

single value of α in CNF 1; then updating a values of α, for each CSS being
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tracked i.e. updating multiple α parameters.

Firstly, Table 6.3 includes the complete number of calculations required

for tracking a single CSS, first with α fixed: the original structure from Chap-

ter 4; then with α simultaneously updating with β, via the three successful

methods a) to c).

Table 6.3. The complete complexity for adapting α whilst tracking a
complex sinusoid signal.

Method ÷s ×s +s
The original structure 2 10 8
Adapting α a) Full gradient approach 4 19 15
Adapting α b) Heuristic simplification 3 15 11
Adapting α c) Interconnected approach 4 12 10

Please note that constraints have not been included in these calculations,

however, would add minimal computational complexity.

Secondly, Table 6.4 contains the additional complexity required to adapt

α when tracking a CSS for the three successful methods.

Table 6.4. The additional complexity for adapting α whilst tracking
a complex sinusoid signal.

Method ÷s ×s +s
Adapting α a) Full gradient approach 2 9 7
Adapting α b) Heuristic simplification 1 5 3
Adapting α c) Interconnected approach 2 2 2

Next, Table 6.5 includes the complete complexity required to adapt a

single value of α when tracking two CSSs.

Table 6.5. The complete complexity for adapting a single value of α
whilst tracking two complex sinusoid signals.

Method ÷s ×s +s
The original structure 4 24 21
Adapting α a) Full gradient approach 6 33 28
Adapting α b) Heuristic simplification 5 30 26
Adapting α c) Interconnected approach 6 26 23
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Lastly, Table 6.6 shows the complete complexity required to adapt mul-

tiple values of α when tracking two CSSs.

Table 6.6. The complete complexity for adapting two values of α
whilst tracking two complex sinusoid signals.

Method ÷s ×s +s
Adapting α a) Full gradient approach 8 43 42
Adapting α b) Heuristic simplification 6 34 28
Adapting α c) Interconnected approach 8 29 27

Table 6.6 demonstrates that adapting multiple values of α with the full

gradient approach effectively doubles the computational complexity of the

design.

Overall, these results show that if computational complexity is an is-

sue in a specific application where updating α would be an advantage; then

it may be worth considering the heuristic simplification or interconnected

approaches, as the full gradient approach adds significant complexity partic-

ularly when tracking multiple CSSs.

6.4.5 Overall Observations for Tracking a

Complex-Valued Chirp Signal

Lastly, some overall observations for tracking a CVCS are highlighted. This

chapter has demonstrated the strong performance of this design for tracking

a CVCS, and compared the approach to Regalia’s scheme [23]

The chapter highlighted that it is possible to produce a full gradient

term for the adaptation of β: using the method applied to derive the full

gradient term for the notch bandwidth parameter: α, which may improve the

results in tracking signals for certain scenarios, as this approach improved

the results slightly for tracking a CVCS.

The results demonstrate that no real improvement is achieved, from up-

dating both the α and β parameters when tracking a CVCS, with the meth-
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ods evaluated herein; although some improvement was demonstrated, when

tracking a less severe CVCS and a hopping CSS simultaneously.

The computational complexity for the proposed design with a fixed notch

bandwidth parameter, and an adapting notch bandwidth parameter, for the

tracking of one CSS and two CSSs, has also been included in this chapter;

and it has been shown that adapting the notch bandwidth parameter can

double the complexity of the design.

6.5 Summary

This chapter has demonstrated that the CANF structure developed earlier in

this thesis is capable of tracking a CVCS, and has compared its performance

to Regalia’s scheme.

It has also considered adapting the notch bandwidth parameter when

tracking a CVCS, and when tracking a hopping CSS and a CVCS; and

that adapting the notch bandwidth parameter can facilitate a reduction in

variance when tracking a hopping CSS and a CVCS.

Lastly, the chapter included frequency plots for the CSSs tracked in

Chapters 4 to 6 of this thesis; then embodied the computational complex-

ity of the approaches applied in these chapters into tables for convenient

reference.

This concludes this section of research, and the next chapter of this thesis

moves on to consider stochastic search methods, with the aim of facilitating

faster convergence to an unknown target frequency after a sudden change,

or frequency hop.



Chapter 7

STOCHASTIC SEARCH

APPROACH TO LEARNING

IN COMPLEX ADAPTIVE

NOTCH FILTERS

7.1 Introduction

Historically, there are two major classes of optimisation algorithms; these

are calculus-based techniques and enumerative techniques. The earlier chap-

ters of this thesis have focused on calculus-based optimisation techniques,

and employ the gradient-directed searching mechanism to minimise an er-

ror, which utilises a cost function. However, as local optima are frequently

obtained, enumerative techniques such as dynamic programming can be ap-

plied, although this technique may break down on complex problems of

moderate size. A third approach is genetic algorithms, where its associ-

ated algorithms are: simulated annealing [60], evolutionary strategies [61],

and evolutionary programming [62] - [63]; and these types of approaches are

classified as stochastic search or guided random techniques.

140
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This chapter firstly introduces genetic algorithms, then specifically Par-

ticle Swarm Optimisation (PSO): which is the stochastic technique imple-

mented in this chapter. Next it demonstrates how PSO can be exploited in

a CANF, firstly in a pure form for tracking a single CSS; then in a hybrid

form, for reinitialisation after a hop when tracking two CSSs, and the fur-

ther refinements required in this scenario are discussed. Lastly, the chapter

is concluded and summarised.

7.1.1 An Overview of Genetic Algorithms

Essentially, the principle of a genetic algorithm is to assess a range of values,

where the values that provide the strongest solution succeed, as is the case in

evolution. Genetic algorithms utilise the chromosomes of candidates, which

crossover and mutate at recombination; and this principle can be applied to

the adaptation of parameters in a man made system. Figure 7.1 illustrates

the concept of using an evolutionary algorithm to solve a problem, and this

illustration was obtained from [64].

Figure 7.1. The concept of a problem solution using evolutionary
algorithms [64].

Figure 7.1 shows the stages of a genetic algorithm to be: fitness assign-

ment, selection, recombination and mutation. This approach can and has

been applied to learning algorithms for some time, and a book published

in 1975 entitled ‘Adaptation in natural and artificial systems’ [65], high-
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lights the idea of applying the process observed in natural evolution to the

learning of a system. An early reference [66], which was published in 1990,

describes the applications of genetic algorithms to adapt intelligent systems,

and defines applications for genetic algorithms in: neural networks, adaptive

rule-based optimisation of combustion in multiple burner installations in the

steel industry, and controlling a dynamical system.

It should also be acknowledged that the comprehensive article [67], pro-

vides an excellent source of background information on genetic algorithms;

and highlights the application of genetic algorithms to: IIR adaptive filter-

ing, non-linear model selection, time-delay estimation, active noise control

and speech processing.

7.1.2 An Overview of Particle Swarm Optimisation

After this brief overview of genetic algorithms, swarm optimisation tech-

niques are introduced; as this is the stochastic technique that has been im-

plemented in this chapter; due to the fact that the potential solutions evolve

in a more collective swarm like manner, to yield an improved solution.

Genetic algorithms consider chromosomes, whilst swarm optimisation

techniques consider a distribution of particles; where both techniques are

utilising their best results to converge upon the optimum solution.

In 1992 papers began to be published on swarm intelligence such as

[68], although the concept of PSO was published in 1995 by Kennedy and

Eberhart [69]. They considered applications such as: modelling human social

behaviour, fish schooling and bird flocking.
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The basic principle of PSO can be described as follows; initially you

start with a distribution of particles, which are spread over the full potential

solution space; where the initial distribution over the solution space should

be referred to as the initialisation of the swarm. Then each of these particles

position is passed through a fitness function to assess how well it performs,

thus providing an overall ‘best’ solution.

Once the set of particles has been evaluated, each particle’s velocity is

updated so that it moves towards the ‘best’ solution, where each particle

considers its best position and the overall best position of the swarm; there-

fore, global sharing of information takes place herein. Then the speed of the

convergence is controlled via weighting parameters, which vary depending

on which PSO algorithm is selected. Thus, each particle essentially moves

towards the ‘best’ solution after each update.

Figure 7.2. The concept of particle swarm optimisation [70].

The concept of PSO is shown in Figure 7.2, which illustrates a three

dimensional problem; and was acquired from [70]. It shows a swarm initial-

isation at Iteration # 0, then at Iteration # N the swarm has split between
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two points A and B, and at Iteration # N+K the two scenarios where A < B

and B < A are shown; which illustrates the swarm converging on the most

likely position overall. Generally, PSO works well in applications seeking an

optimum position with two or three dimensions, which can be located over

multiple time intervals; therefore, since a CANF has a ‘best real position’

and a ‘best imaginary position’ i.e. two dimensions, PSO is well suited to

this particular application.

PSO is normally implemented by stopping the algorithm when a ‘stop

condition’ is reached, or after a given number of samples; as in normal opera-

tion the computational complexity of this type of approach is high. Therefore

to reduce the overall complexity, hybrid implementations such as [71] - [73]

have been published, where these methods combine a genetic algorithm with

a gradient descent approach; which will provide extra performance when re-

quired.

In many publications such as [74] and [75], the PSO process is shown

with a flowchart, and this has been included in this chapter as Figure 7.3;

which illustrates the standard PSO process.
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Figure 7.3. A flowchart representing the particle swarm optimisa-
tion process; where pbest is the current best position of an individual
particle, and gbest is the current best position in the swarm.

One specific weakness of stochastic search approaches is that methods

suffer from a delay, and this delay is due to fitness calculation for each value

or particle that is being evaluated.



Section 7.2. Particle Swarm Optimisation Theory 146

7.2 Particle Swarm Optimisation Theory

Now to describe PSO in more detail, the notations are defined next. These

definitions begin with (i) which is used to denote each particle in the swarm,

therefore it can take the values i = 1, 2, ..., N ; in a swarm size of dimen-

sions D, thus d = 1, 2, ..., D. The coordinates of each particle in the swarm

is represented with the vector Xi = (xi1, xi2, ...xiD), and the particle with

the ‘global best’ value is denoted by the index g. The best previous po-

sition of each particle in the swarm is represented with the vector Pi =

(pi1, pi2, ...piD), and the velocity of the i-th particle is Vi = (vi1, vi2, ...viD).

It should be noted that, each swarm is evaluated for the time interval (n).

The PSO works by calculating the fitness of each particle, i.e. how well

its position performs. Therefore, every PSO application must have a ‘fitness

function’, which will indicate how well the position performs. The fitness

function is defined as

fitness function(i) = fx(i); (7.2.1)

wherein, fx is a specific function; and the target would normally be seeking

a minimum of this function.

In PSO the particles velocities are updated by the equation

vi(n)id = ιvi(n− 1)id + rand.c1(pi(n− 1)id − xi(n− 1)id) +

rand.c2(pi(n− 1)gd − xi(n− 1)id); (7.2.2)

then the position of each particle is adjusted by the update

xi(n)id = xi(n− 1)id + χvi(n)id; (7.2.3)

where, c1 and c2 are two positive constants, χ is the constriction factor, used

to control and constrict the velocities, rand is a random number uniformly
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distributed in the range [0,1], and ι is the inertia weight.

Considering (7.2.2) further, the first term ιvi(n − 1)id is the particle’s

previous velocity weighted by the inertia weight ι; the second term, (pi(n−

1)id − xi(n− 1)id), is the distance between the particle’s best previous posi-

tion, and its current position; then the third term, (pi(n−1)gd−xi(n−1)id),

is the distance between the swarm’s best experience, and the i-th particle’s

current position. The parameters rand.c1 and rand.c2 provide randomness

that make the technique more flexible but less predictable.

As described in [76], the constriction factor may be calculated as

χ =
1

2− c−
√
c2 − 4.c

; (7.2.4)

herein, c = c1 + c2, and c > 4. Additionally, [76] also highlights that it

is also possible to update the inertia weight by finding the variance of the

population fitness as

σ2 =

N∑
i=1

(
fi − favg

f

)2

; (7.2.5)

wherein, fi is the fitness of the ith particle, favg is the average fitness of

the population of particles, and f is a normalising factor used to limit the

variance.

7.3 Applying Particle Swarm Optimisation to a Complex Adaptive

Notch Filter

In this section, PSO is exploited within a CANF; and this section begins

with a literature review of research relevant to this topic.
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7.3.1 Tracking a Complex Sinusoid Signal whilst applying Particle

Swarm Optimisation in a Complex Adaptive Notch Filter

Genetic algorithms have been implemented in ANFs for some time, and in

the 1990s, Cain et al. adopted what they refer to as Darwinian adaptation

in [77] and [78], where they essentially evaluated values related to the param-

eters of a notch filter, calculated each value’s fitness, then converged upon

the most successful value i.e. survival of the fittest, which is implemented by

narrowing the width of a distribution: over several iterations. Their method

adapts both the pole radius and frequency parameter in an ANF; however,

this approach requires access to a separate interference signal, which is quite

artificial and is unlikely to be possible in practice; thus this approach has

not been considered in this chapter. It should also be noted that in [78],

Cain et al. apply their approach to tracking two hopping CSSs.

PSO has previously been applied to adaptive filtering, where an example

of one of these publications is [74], which appeared in 2006; where this

paper highlights two weakness of PSO, which are: 1) when the particles

move towards the ‘best’ solution, a key area could be missed 2) particles

close to the ‘best’ solution tend to stagnate; then [74] suggests and evaluates

modifications to the PSO approach. It highlights three ways of implementing

convergence speed enhancements, and four ways to provide search capability

enhancements. This publication also proposes a variation of PSO which they

refer to as modified PSO, which introduces and prevents stagnation; however,

only with smaller populations. They compare the performance of modified

PSO, to PSO, and a genetic algorithm, for group sizes of ten and fifty, thus

demonstrating the improvement from modified PSO for small populations.

Known PSO applications in adaptive notch filtering are Shi and Zhang

[75]: which is a short paper that crudely highlights the potential performance

advantage of PSO when compared to LMS in locating a target signal, and
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provides a summary of both approaches. Another publication by Gaing

and Chang exploits PSO in an ANF within a larger system’s Proportional

Integral Derivative (PID) controller, which is a high-speed rail pantograph

system [79]. This publication models the pantograph system, then evaluates

four algorithms which are: global-oriented PSO, traditional PSO, evolu-

tionary programming, and differential evolution; and these algorithms are

evaluated with refined integrated time weighted squared error performance

criteria: although three other variations of this performance criteria are

briefly considered. Gaing and Chang’s publication [79], highlights an inno-

vative solution to their application; and although they do briefly consider

computational efficiency, they do not evaluate other potential solutions to

their application, such as a gradient-directed searching mechanism.

Now, this section specifically demonstrates how PSO can be utilised to

track a single CSS, using the CANF which this research has focussed on.

Therefore, PSO is used to optimise the β parameter in this CANF, as shown

in Figure 7.4.

Figure 7.4. A complex adaptive notch filter employing particle swarm
optimisation based adaptation.

Please take note that in this chapter, the PSO variation selected is con-
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sidered the most simple variation of PSO, as stated in [80]; which the authors

describe as “very intuitive and easy to program”. This variation considers

two parameters, which are: 1) a correction factor, this effects how much the

velocity is updated, and 2) inertia, where inertia is the resistance to changing

the particles direction.

When tracking a single CSS using a CANF applying PSO; the fitness

function that showed the most robust performance was found to be

fitness function(i) = e(i).e∗(i). (7.3.1)

Thus, this fitness function is namely the instantaneous magnitude of the

notch filter output squared.

In this application the fitness of each particle: which is referred to as the

‘swarm particle fitness’ (swarm particle fitness), is calculated over the ‘sta-

bility length’ (stab length); where the stab length is the number of samples

each particle is considered for before that particle moves to a new position;

and when calculating the ‘swarm particle fitness’ the first three values are

ignored to remove any initial transience caused by a particles new position;

thus the ‘swarm particle fitness’ is calculated over the remaining stability

length. Therefore, for a ‘stability length’ of L the ‘swarm particle fitness’ is

swarm particle fitness =
1

L− 3

L∑
n=4

fitness function(n); (7.3.2)

then if the ‘swarm particle fitness’ is lower than the current ‘pbest’ or ‘gbest’

value, this particle’s position becomes the new ‘best’ position. Now as de-

scribed in the introduction, the PSO algorithm considers a ‘pbest’ and a

‘gbest’ when updating the swarm velocities; where ‘pbest’ is the particles

best position, and ‘gbest’ is the overall best position achieved in the whole

swarm. Thus, an improvement in ‘pbest’ is found by considering the parti-

cle’s best position: swm(i, pb), then if there is an improvement, the particle’s
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best Re position:

(swm(i, pb Re)), and the particle’s best Im position: (swm(i, pb Im)) are

updated; along with swm(i, pb).

Figure 7.5. Swarm code example 1 - Updating the particle’s best
value.

Then ‘gbest’ is kept up to date by checking for the optimum overall

solution via the update

Figure 7.6. Swarm code example 2 - Updating the global best value.

Now, as the particles are constantly moving with a velocity, this velocity

is updated so that they converge on the ‘best’ position; which is implemented

firstly by updating each particles’ real and imaginary velocity:

swm(i, vel Re(n− 1)) and swm(i, vel Im(n− 1)), via the update;

Figure 7.7. Swarm code example 3 - Updating the particle’s velocities.
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herein ς is the correction factor, rand is a random real value in the

open interval (0,1), and ι is the inertia; then swm(i, vel Re(n − 1)), is the

previous Re velocity of the particle, swm(i, vel Im(n − 1)), is the previous

Im velocity of the particle; (swm(gbest, Re)) is the overall best Re position,

(swm(gbest, Im)) is the overall best Im position; (swm(i, Re(n − 1))) is

the particles previous Re position, and (swm(i, Im(n− 1))) is the particles

previous Im position.

The particle’s positions are then updated as follows

Figure 7.8. Swarm code example 4 - Updating the particle’s positions.

Please note that other methods were evaluated, such as only updat-

ing the velocities when an improvement was achieved. As a new particle

position will not necessarily facilitate an improvement to the ‘best’ solu-

tion: where an improvement is a new ‘best’ position, which is achieved by

a fitness function for a particle producing a new ‘best’ position; however,

these methods required extra complexity and fine tuning: particularly when

tracking two CSSs. Therefore, a simple method with slow convergence on

the ‘best’ position was found to provide the most robust overall performance,

in the scenarios considered in this chapter.

When considering variations of PSO, a useful publication is [81] which

considers the application of PSO to minimax problems. This publication
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compares the performance of PSO to that of other established approaches,

such as the sequential quadratic programming method and a recently pro-

posed smoothing technique. It also compares the performance of three vari-

ants of PSO: one with inertia weight and without constriction factor, one

with constriction factor and without inertia weight, and one with both con-

striction factor and inertia weight. This publication demonstrated that PSO

is effective in solving minimax problems in cases where the gradient based

techniques fail; however, it was outperformed by the much faster Sequen-

tial Quadratic Programming (SQP) method in less complex problems. With

respect to the different variants of PSO, the one which utilised only constric-

tion factor performed better, in terms of the cases that achieved the highest

success rate, and it was always faster than inertia weighted variation. The

variant in which both inertia weight and constriction factor were used, was

faster than the other two variants, but had the worst success rates among

all of them. Additionally it should be noted that, this publication provides

further mathematical detail on PSO; and that the comprehensive article [81]

is another good reference on this topic.
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7.3.2 Simulation Results

This section of this chapter, contains simulation results for tracking a CSS

with a CANF, whilst applying PSO to adapt the notch frequency parameters.

In the following five figures the evolution of the swarm is plotted, to illustrate

the principle of applying PSO to a CANF.

(a) Initialisation (b) The swarm’s first move

(c) The swarm’s second move (d) Further swarm development

(e) The swarm’s final position

Figure 7.9. Particle swarm optimisation - Swarm evolution.
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This result shows how a swarm is initialised over the complete potential

solution in (a), then in (b) it begins to move towards the most likely solution;

(c) and (d) show the swarm converging more, then (e) demonstrates the

complete convergence of the swarm.

In these results, a ‘stability length’ of six samples was found sufficient to

produce a result for the swarm to focus on. Also in these results, the inertia

(ι) selected was 1.0; and the correctness factor (ς) was set to 0.75; and these

values were found empirically.

In all the results in this chapter, a ‘swarm size’ of 64 was selected; pri-

marily as a value close to 50 is not excessive to run through at one time

sample. Yet 50 is still large enough to provide a reasonable distribution,

then 64 equates to 26; which is a sensible digital value to select.

In the next five figures, different CSS frequencies are located with PSO;

thus demonstrating that PSO works over the full frequency range in a CANF.

Therefore, five values have been selected in the range −π to π; then the

CANF locates these values utilising PSO, and Figure 7.10 demonstrates that

this approach provides a viable solution over the full frequency range. In all

five results the target frequency is located within 40 samples; however, when

the result is close to zero as is the case in (e), the swarm does not appear to

converge as well; as it appears to fluctuate around the solution more.
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(a) Converging to 1.4451 (b) Converging to 2.7018

(c) Converging to -2.8903 (d) Converging to -1.0681

(e) Converging to -0.0628

Figure 7.10. Tracking a complex sinusoid signal with a complex adap-
tive notch filter exploiting particle swarm optimisation.
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7.3.3 Particle Swarm Optimisation Hybrid Implementations in

Adaptive Notch Filters

The PSO approach which has been implemented does occasionally fail, due

to the swarm sometimes converging to an incorrect minimum point; and

reinitialisation is required: see section 7.4.3; which is a weakness in this type

of approach. Therefore, a hybrid arrangement is worth considering; however,

this approach has previously been implemented in [71] - [73], although not

for tracking a CSS.

Further reasons for applying a hybrid approach are: a) generally this

approach does not fully converge to a solution as accurately as a gradient de-

scent approach, b) a PSO approach also requires resetting when a frequency

hop occurs, and c) the extra computation complexity required to implement

a genetic algorithm is costly and unnecessary if continuously applied in a

system; therefore, a PSO approach should only be utilised to initially locate

unknown frequencies.

7.4 Tracking Two Complex Sinusoid Signals utilising a Hybrid

Implementation

This hybrid approach has been implemented as a genetic algorithm is gener-

ally capable of locating large changes in hops more quickly than a gradient

descent approach.

7.4.1 Implementing Particle Swarm Optimisation to Reinitialise

a Notch Filter After a Frequency Hop when Tracking Two

Complex Sinusoid Signals

In this section, the scenario where two hopping CSS are being tracked is

considered; where when one CSS hops a stochastic search method is utilised
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to quickly locate its new frequency, and this is achieved by reinitialising

the CANF; which is novel, as a genetic algorithm has not been used to

track two CSSs before. This scheme has also been implemented in a hybrid

arrangement, and the reasons for this choice are to improve stability, and

reduce complexity.

Tracking two CSSs via PSO requires a modification to the calculation

of the fitness function; as when tracking a single CSS purely evaluating the

magnitude of the notch filter output e(n) is adequate. However, as Sayed

et al. highlight in their publication [82], “there are applications where the

squared-error is not the primary parameter affecting the performance of a

system”, and tracking two CSSs whilst utilising PSO to reinitialise after a

hop in one of these frequencies, appears to be one of these applications.

Then considering their publication, Sayed et al. introduce a ‘cost func-

tion’ that is based on both the error magnitude and the phase error. This

phase-error cost function is defined as

Jpe(w) = E∠d− ∠uw|m; (7.4.1)

wherein, ∠ denotes the phase angle; the letter E denotes the expectation,

with d being a scaler, u a 1 ×M vector, m = 1, 2: which is an increment

that is discussed in their letter, and w is an unknown weight vector to be

estimated.

Although, Sayed et al. apply this principle to a gradient descent ap-

proach; the concept of considering the phase can be applied to PSO in a

‘fitness function’. Therefore, when tracking two CSSs and applying PSO to

reinitialise the CANF after a single frequency hop, the fitness function that

provides the most promising result is

fitness function = ∠e(n); (7.4.2)
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where this fitness function is seeking the lowest phase angle of the notch

filter output e(n) that can be achieved. Further to this, in [82] it was stated

that “The improvement is more significant when the adaptive filter is re-

quired to track fast channel variations, since the proposed structure can at

least track the channel phase variations, even if it fails to properly track

the channel magnitude variations”; which highlights two things: 1) they ap-

plied this method to an adaptive filter, and 2) this method works well for

tracking channel variations, hence the application to frequency hops in this

application.

Now Figures 7.11 and 7.12 demonstrate how PSO can reinitialise a

CANF, thus locating an unknown frequency, when tracking two CSSs, in

the scenario where one frequency hops; as in these figures the frequency that

hops starts at 0.2, and hops at 2000 samples, whilst the second frequency is

fixed at -0.1 throughout the simulation. When the target frequency hops at

2000 samples, the PSO algorithm is initiated to locate the new frequency;

and when this occurs the second frequency is held at its current value. In all

four of these examples, the PSO algorithm re-initialises the CANF after a

hop quickly, certainly within 250 samples in Figure 7.11 and Figure 7.12 (a);

although in Figure 7.12 (b), the PSO takes a little longer to fully converge:

another 200 samples.
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(a) Converging to -2.1991

(b) Converging to -1.3320

Figure 7.11. Tracking two complex sinusoid signals, then applying
particle swarm optimisation to reinitialise the notch filter when one
frequency hops – Results one and two.
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(a) Converging to 0.1005

(b) Converging to 2.0483

Figure 7.12. Tracking two complex sinusoid signals, then applying
particle swarm optimisation to reinitialise the notch filter when one
frequency hops – Results three and four.
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In the next three parts of this section the main issues in the implementa-

tion of this method are discussed; which are: detecting which frequency has

hopped, reinitialisation if the swarm converges to an incorrect solution, and

switching back to the gradient descent approach, after the PSO algorithm

has reinitialised the CANF, thus locating a hopping CSS.

7.4.2 Detecting which Frequency has Hopped

When tracking two CSSs, in the proposed scheme it is clearly necessary to

be able to detect which CSS has frequency hopped; therefore, a suitable

method to achieve this is to consider the gradients. Thus by adding a ψ

value for each gradient then looking for a significant change in this value,

the CSS which has hopped can be detected. Noting that, this method was

previously implemented in Chapter 5 for e(n), to detect a frequency hop

when adapting the bandwidth parameter.

A frequency hop can be detected in either CSS by implementing the code

IF grad(n) 1 > 1.25× ψ(n− 1)grad 1 will detect if CSS one frequency hops,

and

IF grad(n) 2 > 1.25×ψ(n− 1)grad 2 will detect if the second CSS frequency

hops; where the value 1.75 was found empirically: which works for most

SNRs, then

ψ(n)grad 1 = γ.ψ(n− 1)grad 1 + (1− γ)grad(n) 1.grad∗(n) 1, and similarly

ψ(n)grad 2 = γ.ψ(n− 1)grad 2 + (1− γ)grad(n) 2.grad∗(n) 2.

In the structure utilised, the PSO is implemented in section CNF 1 of the

block shown in Figure 7.13. Therefore, it may be necessary to swap the CSS

frequency estimates: β1 and β2, to enable the PSO to function correctly;

this works best by averaging the estimate of the frequency that has not

hopped; considering one hundred samples, two hundred samples before the

hop i.e. (count−300 : count−200): where count is the current sample; then

assigning this value to β2: which is the value of β that is adapted in section
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CNF 2; and this value is fixed whilst the PSO algorithm reinitialises the

CANF. The hundred samples before the hop have been ignored to prevent

any adaptation to the new CSS frequency offsetting the estimate.

Figure 7.13. The structure for tracking two complex sinusoid signals.

7.4.3 Reinitialising the Particle Swarm Optimisation if the Swarm

Converges to an Incorrect Solution

When applying PSO, occasionally the swarm converges to an incorrect so-

lution; and if this occurs, the swarm should be reinitialised. This incorrect

solution can be detected by the same manner that was applied to the band-

width parameter in Chapter 5, i.e. by implementing a forgetting factor to

the error; which is achieved as follows

ψerror(n) = ψerror(n− 1)γ + (1− γ).econj(n);

if econj(n) > 6.ψerror

Reinitialise swarm

end.
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7.4.4 Switching back from Particle Swarm Optimisation to the

Gradient Descent Approach

Problems may occur when you switch from the PSO algorithm back to the

gradient descent approach in this hybrid arrangement, this is because the

gradient descent approach has been stopped from controlling the β parame-

ter; therefore, an initial spike occurs on the transition from a PSO algorithm

back to a gradient descent algorithm.

Figure 7.14 clearly illustrates this issue of switching back from PSO to

gradient descent; and within this figure, observe at 4000 samples where the

switch occurs the CANF structure completely looses the CSS which has been

located using PSO; however, this issue has been highlighted as an area for

future work.

Figure 7.14. The issue of switching back from particle swarm optimi-
sation to the gradient descent approach.
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The stop condition

To prevent unnecessary iterations of the PSO algorithm a stop condition

should be defined; this is generally applied in most PSO applications, and

this stage is shown in Figure 7.3.

Either of two stop conditions should be applied to stop the PSO algo-

rithm, and these are: 1) a limit should be applied to the number of iterations

that the PSO algorithm can run for: such as 250, as the PSO algorithm will

converge to a solution within 250 iterations, and 2) calculating a ψerror then

stopping the algorithm when this value is low enough. However, this is also

an area for further work.

7.5 Discussions on Exploiting Particle Swarm Optimisation in Com-

plex Notch Filters

The key points from this chapter are now discussed. PSO effectively tries

a range of values which move towards its best solution, instead of apply-

ing a gradient based approach to calculate an optimum solution; therefore,

PSO is costly computationally. However, PSO can quickly locate unknown

frequencies.

This chapter has demonstrated that PSO can be utilised in a CANF

to track a CSS; which provides an alternative to the gradient descent ap-

proaches that have been considered in earlier chapters of this thesis.

It has also demonstrated that by incorporating the phase information

of the notch filter output e(n); PSO can be applied to quickly lock onto

an unknown target frequency in a system tracking two CSSs: when one

frequency hops.

A method to detect which CSS has hopped when tracking two CSSs has

been demonstrated, although switching back from PSO to a gradient descent

approach in a hybrid arrangement has been highlighted as an area for future
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work. It should also be mentioned that a PSO is unlikely to work well when

tracking a CVCS.

7.6 Summary

This chapter firstly introduced genetic algorithms, and specifically PSO; then

shows that PSO can be applied in an CANF to locate a CSS. It also considers

applying PSO when tracking two CSSs, which involves authenticating when

one of the frequencies has hopped, then demonstrates how to reinitialise a

CANF by applying PSO to find one unknown frequency after a frequency

hop: in a hybrid arrangement.

In the final chapter of this thesis: excluding the appendices, conclusions

are highlighted, along with areas for future work.



Chapter 8

CONCLUSIONS AND

POSSIBLE FUTURE WORK

This final chapter is split into two sections, where in the first section conclu-

sions are drawn from the research related chapters of this thesis i.e. Chapters

3 - 7, then the second section discusses possible areas for further research,

that were noted in this thesis. Thus, the first section considers these contri-

butions.

8.1 Conclusions

In Chapter 3 of this thesis, an analysis of four ANF structures has been

completed to assess their abilities to track between two and four RSSs. Part

of this analysis included investigating the differences in performance between

output-error and equation-error approaches. This study has demonstrated

that each structure demonstrates strengths and weaknesses, which should

be carefully noted.

This analysis of real structures can be summarised as: the most robust

solution is provided by Chambers & Constantinides [1]; Regalia’s design [2]

is a computationally simple solution, however under certain conditions does

not converge; Cho, Choi & Lee’s structure [3] is a powerful solution, but

shows the most variance in the final solution and is unstable initially, this

structure also does not converge as consistently as [1], as occasionally this

167
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structure fails to converge on solutions when tracking multiple RSSs. The

DCS solution by Kwan and Martin [4] is generally outperformed, and is also

computationally complex when compared to the all-pass approaches [1] - [3].

This comparison also highlighted that, the simplification facilitated by

applying an equation-error approach: such as [2] or [3], may lead to multiple

notch filters tracking the same signal, whilst missing other signals altogether.

Thus, in Chapter 3 four published structures have been implemented

and a critical comparison of these key approaches has been successfully con-

ducted; which highlighted the strengths and weaknesses of each approach.

Chapter 4 includes an original CANF structure; which was developed

from [1]; and this new structure is based upon an output-error learning

algorithm. Its superior tracking performance over Regalia’s CANF solution

[23] has been demonstrated; particularly for tracking two closely spaced

frequencies.

Generally, an output-error approach will facilitate more reliable tracking

than an equation-error approach for RSS and CSSs; however, output-error

approaches are slightly more computationally complex. For practical ap-

plications the low complexity and robustness of the proposed structure are

indeed very attractive. It should be noted that, an equation-error approach

may have a wider basin of attraction than output-error methods; which can

be an advantage, particularly when tracking a single CSS.

This scheme specifically allows two CSSs that are closer than the nor-

malised value of 0.3770 to be tracked, which is not possible with Regalia’s

equation-error approach.

In Chapter 5, it was demonstrated that the performance of a CANF can

be significantly improved if both the notch bandwidth and frequency parame-

ters are updated simultaneously, when tracking hopping CSSs; although this

can significantly increase the complexity of the design.

Adapting the notch bandwidth parameter also improves the ability of
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this structure for the tracking of CSSs which are further apart. In addi-

tion, novelty has been demonstrated, as it has been shown that a method

of steepest ascent is required for the adaptation of the notch bandwidth

parameter.

Three methods for updating the notch bandwidth parameter have been

evaluated, firstly for tracking a single hopping CSS; then tracking two hop-

ping CSSs, whilst adapting a single notch bandwidth parameter for the over-

all structure, lastly, individual notch bandwidth parameters were updated

for each hopping CSS; and this research showed strengths and weaknesses

for each of the three methods.

Adapting the notch bandwidth parameter can reduce the variance of the

estimate from 0.0013 to 1.06× 10−4: when tracking a single CSS, although

this will slow the convergence by approximately 50 samples.

Chapter 6 of this thesis showed the strong performance of the proposed

design for tracking a CVCS. The results demonstrate that, no real improve-

ment is achieved from updating the notch bandwidth parameter when track-

ing a CVCS, with the methods evaluated herein; although some improvement

was demonstrated when tracking a less severe CVCS and a hopping CSS si-

multaneously.

This chapter also included a result for the full gradient term for the

adaptation of β: which is derived in Appendix 9.2 of this thesis, and this

may improve the results in tracking signals for certain scenarios, as this

approach improves the results slightly for tracking a CVCS.

Chapter 6 specifically demonstrated that when tracking a CVCS, the

variance in Regalia’s estimate could be reduced from 0.0026 to 0.0017 by

utilising the proposed structure. Additionally, when tracking a CVCS and a

hopping CSS, the variances could be improved from 7.02× 10−4 and 5.76×

10−4, to 8.96 × 10−6 and 6.45 × 10−5 by adapting the notch bandwidth

parameter.
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In Chapter 7 of this thesis, a stochastic search approach was applied

to learning in a CANF; which demonstrated that PSO can be exploited

in an CANF to locate a CSS. This stochastic search method provides an

alternative to the gradient descent approaches, that have been considered in

earlier chapters of this thesis.

It has also demonstrated that by incorporating the phase information

of the notch filter output e(n); PSO can be applied to reinitialise a CANF,

thus quickly locating a new unknown frequency; in a system tracking two

CSSs, when one frequency hops.

By applying PSO, the number of samples required to locate a frequency

hop can be reduced to 200 samples, which is a reduction from 1000 samples

with a gradient descent method, in certain scenarios.

Issues around tracking multiple CSSs whilst applying PSO have been

investigated, which include: a method to detect which CSS has hopped

when tracking two CSSs, reinitialising the PSO algorithm when it fails; then

lastly, switching back from PSO to a gradient descent approach in a hybrid

arrangement. It should also be mentioned that PSO is unlikely to work well

when tracking a CVCS.

This completes the conclusions observed from this thesis, and next topics

for further research are discussed.

8.2 Further Related Research Topics

Further possible work on structures, could be initiated from a paper by

Mitra [83]: who originally worked with Regalia; as this publication shows

that a structure can be implemented in many ways, and further variations of

the structure proposed in this thesis could be investigated. Also, a complex

version of Cho, Choi & Lee’s scheme [3] would be worth investigating i.e.

producing a CANF version of [3]. Developing possible hybrid structures,
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i.e. a combination of this structure and Regalia’s approach [23], could be

another area for future research: when tracking multiple CSSs.

The CANF structure in this thesis and Regalia’s scheme [23], have the

potential issue that the gain at dc: z = 1, and Nyquist: z = -1, is not unity;

therefore, a second filter is required to provide a constant end to end SNR

improvement ratio, which should be considered.

Comparing the performance of Nishimura’s CANF structure [50], to Re-

galia’s and the structure developed in this thesis, would certainly be of in-

terest.

Completing further convergence analysis, is another area for further re-

search; particularly with respect to tracking multiple CSSs. Please note that,

some references to properties of ANFs are included in: Chapter 9, Appendix

9.1.

Implementing adaptive constraints that assist in the update of the notch

bandwidth parameter, is an area that could be explored further; along with

considering hyper-stable algorithms: which are described in Chapter 9 of

Regalia’s monograph [45].

An idea inspired from the ISP conference in December 2013, is that a sys-

tem could be developed with a CANF structure to track an unknown number

of CSSs, by first scanning the frequency domain with a method such as the

paper presented at the ISP conference [84]; this would highlight the num-

ber of CSS and their current value, then a cascaded CANF structure could

be implemented to track them, thus reducing the power and computations

required by the system.

Tracking multiple CVCSs is very challenging, and is certainly an area

that could be explored further. Also, considering different types of coloured

noise is another area which could be investigated further; for example, the

CANF may behave differently from Grey or Brownian noise.

Further work could be undertaken on applying Bayesian theory to PSO;



Section 8.2. Further Related Research Topics 172

where if there is more than one likely overall best solution, the swarm splits

to consider all the initial strong solutions; and this approach should improve

the success of PSO techniques in CANFs.

Switching back from the PSO algorithm to the gradient descent approach

requires further work, as there are instances where the gradient approach

chooses to swap the estimates over; so ω1 converges to ω2, and ω2 converges

to ω1: which is not ideal.

The primary weakness of the LMS algorithm, is the selection of a suitable

adaptation gain; which if selected incorrectly, will produce slow convergence:

if the value is too low; or oscillation around the solution: if the value is too

high. Therefore, further types of learning algorithm could also be considered;

where one example of types of algorithm that could be considered is the RLS

/ Newton type of algorithm [85].

Considering a specific application, is another suitable research topic; and

some examples of the areas where ANFs have been utilised are summarised

in: Chapter 1, section 1.2.

This concludes this thesis, which primarily developed three aspects of a

CANF for the tracking of multiple CSSs; and these aspects were:

1. Developing a new CANF structure, which is capable of tracking closely

spaced CSSs,

2. Adapting the notch bandwidth parameter with a method of steepest

ascent, to further improve the performance of the CANF, and

3. Applying PSO to reinitialise a CANF, thus quickly locating a fre-

quency hopping CSS, whilst tracking two CSSs.

In addition, tracking a CVCS has been considered; along with a critical

comparison of four structures capable of tracking RSSs.



Chapter 9

APPENDICES

This final chapter of the thesis contains two appendices; where Appendix

9.1 contains details of further literature relevant to this thesis.

Then, Appendix 9.2 contains an extension relevant to Chapters 4, 5 and

6; which is a full gradient term for the adaptation of the β parameter.

9.1 Appendix A - Further Notable Literature

This first appendix reviews recent developments in ANFs, and searching on

“Adaptive Notch Filters” (ANF) from 1991-2012 within the IEEE database

returned 514 results. To reduce this number only journals were reviewed,

which decreased the number of papers to 137. The most promising papers

were then divided into four categories: structures, algorithms, properties of

ANFs, and ANF applications. Structures and properties are discussed in the

next two subsections; as this thesis focussed on stochastic search methods

instead of algorithms, the algorithm papers were not considered further; and

the applications have been listed in section 1.2 of Chapter 1; thus, papers

on ANF structures from 1991-2012 are summarised first.
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9.1.1 Publications on Adaptive Notch Filter Structures

from 1991-2012

1991-1994

The first ANF structure located was by Kwan & Martin [86], and these

researchers had previously developed the strong DCS solution [4]. How-

ever, this structure is geared towards an analogue implementation, which

uses operational transconductance amplifiers; therefore, as this research is

based around digital signal processing (DSP), this structure has not been

considered further.

The next structure located is by Regalia [2], and this structure has been

discussed in the Relevant Literature review in Chapter 2.

Interestingly, a phase locked loop (PLL) was located next as [87], which

was published by Wulich et al. PLLs are a notable alternative to ANFs, al-

though this PLL has in fact been built using a constrained notch filter and a

complex adaptive notch filter (CANF); however, current issues around PLLs

include: unpredictable electromagnetic emissions - created by constantly

changing frequencies, inconsistent initialisation particularly at the temper-

ature extremes, and jitter. Although please take note that, currently PLLs

are generally implemented via voltage controlled oscillators.

Figure 9.1. A block diagram of a phase locked loop by Wulich et
al. [87].
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Cho & Lee’s structures are of particular interest as they provide a very

powerful solution in [3], which is included in Chapter 3 in this research;

and their next publication [55], focusses on output-error and equation-error

approaches, considering the structures shown below; although structures are

not the focus of this piece of research.

a)

b)

c)

Figure 9.2. Improved lattice structures by Cho & Lee published in
[55].
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Next, a paper by Ko and Li [88] shows another equation-error approach.

It would certainly be interesting to compare the performance of this design to

Regalia’s, however, this has not been completed in this thesis. The reason

that this approach has not been considered further, is that this is purely

a modification to the equation-error approach; which in fact adds slightly

more complexity, hence is moving back towards an output-error approach in

a hybrid arrangement. Also, this research has primarily focussed on output-

error approaches.

Figure 9.3. An equation-error structure by Ko and Li [88].

1995-1999

Linder et al. published a structure in 1996 [89], however, this is an analogue

implementation in BiCMOS so is not relevant to this research.

Then in 1997 Soderstrand et al. developed Kwan & Martin’s design

further in [90], this is of interest although has not been comprehensively

evaluated, as the improvement claimed is a reduction in complexity, not an

improvement in performance: which is what would be required to make this

DCS structure comparable to an all-pass design.

Please note that Nishimura’s CANF structures which were published at

this time are detailed in the literature review.
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2000-2004

Karimi-Ghartemani et al. published another PLL in 2002 [91], this design is

based on Phase Detection and utilises a Voltage Controlled Oscilator; and

as previously mentioned PLLs are not evaluated in this research.

In 2004 Mojiri and Bakhshai modified Regalia’s design into the analogue

form shown below in [92]; herein, ζ is the damping ratio: which determines

the notches depth. In addition he mentions that Bodson and Douglas also

modified Regalia’s design, which he cites as his third reference. Thus due to

the fact that this structure is analogue, as it clearly contains integrators; it

has been discounted from this research.

Figure 9.4. Mojiri’s analogue implementation of Regalia’s structure
[92].
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Lim et al. published a modification to the lattice structure in 2005 as [93],

showing a new method for extracting information on the distance between

the frequency of the input sinusoid and the zero of the notch, which is a

notable concept.

Figure 9.5. Lim’s modification to the notch filter output in the lattice
structure [93].

2005-2009

Mojiri et al. then published two further papers in 2007 continuing with the

analogue form, where the first paper [94] allows the structure to implement

a different learning algorithm; then Mojiri compares his design to a PLL

stating some advantages of an ANF, which he claims are ‘a more simple

implementation and faster transient response’. In the second paper [95]

Mojiri and Bakhshai demonstrate how their structure can be modified to

track multiple RSSs.

Next Regalia’s structure was modified by Yazdani et al. in 2008 as [96];

however, this was also in an analogue form, which he links to power grid

applications, Yazdani also made a further publication on the same topic in

2009.
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2010-2012

The last notable structure encountered is Regalia’s modified structure [23],

which has been discussed in detail in this thesis.

To summarise, if further work was completed on complex all-pass struc-

tures, a solid starting point for this work would be Mitra’s publication [83];

as this paper includes further details on the many ways to synthesise complex

all-pass structures, which certainly would be worth considering. In addition

a CANF version of Cho & Lee’s paper [55], would also be worth researching.

Other key notes from this summary of structures from 1991-2013 are:

Regalia’s Lattice appears to be popular, and PLLs are also widely used as

an alternative to ANFs for the tracking of sinusoid signals .

9.1.2 Publications Related to the Properties of

Adaptive Notch Filters from 1991-2012

ANF have several properties which can be analysed and developed, and

this section now provides a short overview of some papers which have been

published on this topic.

Analysing the convergence of an algorithm, is a property which certainly

should be mentioned; and Ljung published a paper in 1977 as [97], which

is still widely cited on this topic, as the paper provides a very comprehen-

sive evaluation of recursive algorithms: as it is 25 pages in total. More

recently, four papers of interest have been published by Xiao et al., where

the first paper ‘Steady state analysis of a plain gradient algorithm for a

second-order adaptive IIR notch filter’ [98], was published 2001; the second

paper ‘Tracking properties of a gradient-based second-order adaptive IIR

notch filter with constrained poles and zeros’ [99], was published in 2002;

the third paper ‘Performance analysis of the sign algorithm for a constrained

adaptive IIR notch filter’ [100], was published in 2003; and the forth paper
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‘Statistical performance of the memoryless nonlinear gradient algorithm for

the constrained adaptive IIR notch filter’ [101], was published in 2005. Then

on a similar topic ‘A structural view of stability in adaptive IIR filters’ [102],

was published in 2006 by Zhou et al.

Adapting the notch bandwidth parameter is another property of an ANF,

and there are few publications on this topic. The adaptation of the notch

bandwidth parameter, is formally considered with a separate literature re-

view, in Chapter 5 of this thesis.

A recent paper [103], which was published in 2011; provides an evaluation

of modern algorithms for creating smooth notch tracking, i.e. removing any

jagged transitions in the tracking of a signal. Where, Niedźwiecki who is the

author of this paper, has published a number of papers on this topic.

Preliminary Work Completed

This research programme: which was completed part-time, followed on from

a Master of Science qualification in Digital Communication Systems at Lough-

borough University.

Other notable background theory completed included: three statisti-

cal signal processing assignments, and all thirty-four on-line lectures in the

subject of further linear algebra presented by Professor Strang of the Mas-

sachusetts Institute of Technology [104]. There are several books written

by Strang, which assist in following this course in linear algebra, and one of

these books is [105]. Another piece of preliminary work completed compared

the LMS and RLS algorithms, which was included in the first year report

for this research programme.

A very useful book that provides a strong introduction to DSP is [106],

which introduces many aspects of this subject, and also provides relevant

information on all-pass structures; however, in 2012 a new edition of this

book has been published.
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9.2 Appendix B - Extension Related to Chapters 4, 5 & 6

9.2.1 The Full Gradient Term for β

This appendix derives the full gradient term for β, which has been derived

to evaluate the effect of the simplified version of this term, that has been

applied in the proposed structure.

The derivation begins with the transfer function of the structure, which

is

Hnotch(z) =
E(z)

U(z)
=

1

2

(1 + α)(1− z−1β)

1− αz−1β
(9.2.1)

=
1

2
(1 + α)(1− z−1β)(1− αz−1β)−1. (9.2.2)

Now to generate a derivative with respect to θ, firstly β must be replaced

by θ, as β = ejθ substituting θ back into (9.2.2) provides the form

Hnotch(z) =
1

2
(1 + α)(1− z−1ejθ)(1− αz−1ejθ)−1. (9.2.3)

Then by differentiating the two products containing θ from (9.2.3), with

respect to θ; via the ‘differentiation of products’ rule, creates the expression

δ

δθ
=

(1 + α)

2
[(1− z−1ejθ)(1− αz−1ejθ)−2(jαz−1ejθ)+

(1− αz−1ejθ)−1(−jz−1ejθ)]. (9.2.4)

Equation (9.2.4) can then be rearranged to the form

δ

δθ
=

(1 + α)

2

[
(1− z−1ejθ)(jαz−1ejθ)

(1− αz−1ejθ)2
+

(−jz−1ejθ)
(1− αz−1ejθ)

]
. (9.2.5)

Now, creating a common denominator for (9.2.5), and replacing ejθ with β
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creates the expression

δ

δθ
=

(1 + α)

2

[
(1− z−1β)(jαz−1β) + (−jz−1β)(1− αz−1β)

(1− αz−1β)2

]
; (9.2.6)

then multiplying out and simplifying leaves

δ

δθ
=

(1 + α)

2

[
jαz−1β − jz−1β

(1− αz−1β)2

]
. (9.2.7)

Thus, the full gradient term for β has been derived as

Gradfullβ =
(1 + α)

2

[
jz−1β(α− 1)

(1− αz−1β)2

]
=

(1 + α)

2

[
j

(1− αz−1β)
× z−1β(α− 1)

(1− αz−1β)

]
. (9.2.8)

The structure required to implement this full gradient term is shown in

Figure 9.6.

Figure 9.6. The structure required to implement the full gradient
term for updating β.

Now, simulating this structure with the full gradient term for β produces

the result shown in Figure 9.7. Wherein, Figure 9.7 was created with µ =
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0.25 and γ = 0.7, and for consistency a value of 0.8 was implemented for α

in these results.

Figure 9.7. Full gradient approach for adapting β, whilst tracking a
hopping complex sinusoid signal.

To facilitate a comparison with the partial gradient term for β the equiv-

alent result for the partial gradient term is shown in Figure 9.8.

Figure 9.8. Partial gradient approach for adapting β, whilst tracking
a hopping complex sinusoid signal.

From these results its clear that the full gradient term for β has more

noise in its estimate, this is because the extra complexity in the full gradient

term requires a larger adaptation gain, however, this full gradient term may

facilitate solutions to specific applications, where the simplified term fails.
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