
Automatic Spike Sorting and Robust Power Line
Interference Cancellation for Neural Signal

Processing

Mohammad Reza Keshtkaran

(B.Sc., Shiraz University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2014



بي همتا انساني كه از بركت وجودش صبر تقديم به 

 ،درس ايستادگي و ايثار از خود گذشتن را آموخت

 ...شق تعليم مادري يافتع و

 

To the memory of my mother...

i



Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any university previously.

Mohammad Reza Keshtkaran

18 August 2014

ii



Acknowledgements

I would like to take this opportunity to express my sincere appreciation to

all those who supported me during my PhD pursuit. Without their help and

support this thesis would not have been possible.

I would like to express my gratitude towards my supervisor Dr. Zhi Yang,

for his guidance, encouragement and support. I sincerely thank my doctoral

committee A/Prof. Chun-Huat Heng, and A/Prof. Cheng Xiang for their insightful

feedback on my work and this thesis. I would like to thank Prof. Karim Rastgar

and Prof. Mohammad Ali Masnadi-Shirazi, my undergraduate advisors who have

been far beyond mentors for me both in my academic and personal life. I am

also grateful to Prof. Teng Joon Lim for his generous time and helpful advice.

I would like to thank A/Prof. Shuicheng Yan for helpful technical discussions,

and the course on pattern recognition. Some of the ideas presented in this thesis

would not have been developed without the insightful course I took with him.

I am grateful to Mojtaba Ranjbar, Amir Tavakkoli K.G., Mahmood Khay-

atzadeh, Mehdi Jafary-Zadeh, Mehran M. Izad, Narjes Allahrabi, Roya Bazyari,

Zahra Kadivar, Sahra Sedigh and many others who have helped me during my

PhD journey. I thank my friends Akbar, Ahmad, Atieh, Mahsa, Siavash, Pooya,

Mohammad, Amin, Sajjad, Sadegh, Kamran, Mahyar, Mostafa, Navid, Dorsa,

Elham, Maryam, Omid, Farshad, Zeinab, Maedeh and my other friends for the

great friendship and all the good time we have had together. I would like to

thank all my colleagues and friends in Signal Processing and VLSI Design Lab,

especially Tong Wu for technical helps.

I am deeply indebted to my father and sisters Shahrzad, Shahrnaz, Parinaz

and Parisa, for their eternal love, patience, and unwavering support throughout

my life and especially in the last four years. I dedicate this thesis to the memory

of my mother. Every bit of success that I have had or will have in my life

iii



undoubtedly arises from her ineffable love, selfless sacrifices, and invaluable

support.

iv



Contents

List of Tables xi

List of Figures xii

List of Symbols xv

List of Acronyms xix

1 Introduction 1

1.1 Extracellular Neural Recording . . . . . . . . . . . . . . . . . . . 1

1.1.1 Local Field Potentials . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Neural Action Potentials . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Power Line Interference Cancellation . . . . . . . . . . . . 3

1.2.2 Clustering of Neural Action Potentials (Spike Sorting) . . . 4

1.3 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview and Contributions . . . . . . . . . . . . . . . . . . . . . 6

2 Power Line Interference Cancellation: Algorithm Design 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fundamental Frequency Estimation . . . . . . . . . . . . . 13

Initial Band-pass Filtering and Spectrum Shaping . . . . . 14

Frequency Estimation . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Harmonic Estimation . . . . . . . . . . . . . . . . . . . . . 18

v



Harmonic Signal Generation . . . . . . . . . . . . . . . . . 18

Amplitude and Phase Estimation . . . . . . . . . . . . . . 20

RLS algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22

Simplification of the RLS algorithm . . . . . . . . . . . . . 23

2.2.3 Algorithm Implementation . . . . . . . . . . . . . . . . . . 26

2.2.4 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Performance Evaluation on Synthetic Data . . . . . . . . . 32

Sensitivity to SNRin . . . . . . . . . . . . . . . . . . . . . 32

Sensitivity to Power Line Frequency . . . . . . . . . . . . . 33

Trade-off between Settling Time and SNRout . . . . . . . . 35

Tracking of Amplitude and Frequency Fluctuations . . . . 36

Initial Convergence . . . . . . . . . . . . . . . . . . . . . . 38

2.3.2 Comparison with Other Methods . . . . . . . . . . . . . . 39

Performance Comparison . . . . . . . . . . . . . . . . . . . 39

Effects on Synthetic Oscillations . . . . . . . . . . . . . . . 44

2.3.3 Performance Evaluation on Real Data . . . . . . . . . . . 46

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Power Line Interference Cancellation: VLSI Architecture and
ASIC 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Algorithm Extension for Multichannel Recording . . . . . . . . . 55

3.2.1 Harmonic Estimation for Multichannel Recording . . . . . 56

3.3 Simulation and Comparative Results . . . . . . . . . . . . . . . . 58

3.4 VLSI Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Scalable Sequential Architecture . . . . . . . . . . . . . . . 60

Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Chip Implementation and Measurement Results . . . . . . . . . . 66

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

vi



4 Unsupervised Spike Sorting Based on Discriminative Subspace
Learning 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Robust discriminative subspace learning for spike sorting . . . . . 78

4.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Discriminative Subspace Learning using LDA and k-means 80

4.2.3 Discriminative Subspace Selection through Mixture model
learning with outlier handling . . . . . . . . . . . . . . . . 81

4.3 Detecting the Number of Neurons . . . . . . . . . . . . . . . . . . 84

4.4 Unsupervised Spike Sorting Algorithms . . . . . . . . . . . . . . . 86

4.4.1 Proposed Algorithm I . . . . . . . . . . . . . . . . . . . . . 86

4.4.2 Proposed Algorithm II . . . . . . . . . . . . . . . . . . . . 87

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5.1 Synthetic Data with Ground Truth . . . . . . . . . . . . . 89

4.5.2 Comparison on in-vivo Data . . . . . . . . . . . . . . . . . 92

4.5.3 Comparison on Feature Extraction . . . . . . . . . . . . . 94

4.5.4 Overlapping Spikes and Outliers . . . . . . . . . . . . . . . 99

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Conclusion and Future Works 104

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2.1 Power Line Interference Cancellation . . . . . . . . . . . . 107

Automatic Parameter Adaptation . . . . . . . . . . . . . . 107

Further Reducing the Computational Complexity . . . . . 107

Low Power VLSI Implementation . . . . . . . . . . . . . . 108

5.2.2 Spike Sorting . . . . . . . . . . . . . . . . . . . . . . . . . 108

Online Learning and Real-time Spike Sorting . . . . . . . . 108

Resolving Overlapping Spikes . . . . . . . . . . . . . . . . 109

Multichannel Processing . . . . . . . . . . . . . . . . . . . 109

Hardware Efficient Algorithm Design for Real-time Spike
Sorting . . . . . . . . . . . . . . . . . . . . . . . 110

vii



A Open Source Power Line Interference Canceller Software 111

Bibliography 113

List of Publications 124

viii



Summary

Recording the electrical activity of the brain has permitted researchers to analyse

cognition and study the brain’s mechanisms of information processing. Extra-

cellular recording is a method of measuring neuronal activity through inserting

microelectrodes into the brain tissue which picks up neural signals from popula-

tion of neurons i.e. local field potentials (LFPs), action potentials from a few

surrounding neurons (neural spikes), and noise.

Recently, there has been an increasing attention to the LFP gamma oscillations

(> 30 Hz) due to their correlation with a wide range of cognitive and sensory

processes. However, gamma oscillations are usually corrupted by power line

interference at 50/60 Hz and harmonic frequencies. It is therefore desired

to remove the interference without compromising the actual neural signals at

the interference frequency bands. Available real-time methods either fail to

work on neural signals or produce excessive distortion in the interference bands.

The first objective of this thesis was thus to develop a robust and efficient

algorithm to remove power line interference from neural recordings. We present

the theory and structure of the algorithm followed by implementation details

and practical discussions. While minimally affecting the signal bands of interest,

the proposed algorithm consistently yields fast convergence (< 100 ms) and

substantial interference rejection (output SNR > 30 dB) in different conditions of

interference strengths (input SNR from −30 dB to 30 dB), power line frequencies

(45–65 Hz), and phase and amplitude drifts. In addition, the algorithm features

a straightforward parameter adjustment since the parameters are independent of

the input SNR, input signal power, and the sampling rate. As the next aim of the

thesis, the VLSI architecture and ASIC of the proposed algorithm is presented

for real-time interference cancellation in multichannel recording. The proposed

architecture is scalable with respect to the number of channels and/or harmonics,
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where the performance is optimized through pipelining and resource sharing

techniques. The ASIC was fabricated in a 65-nm CMOS technology consuming

0.11 mm2 of silicon area and 77 µW of power.

In addition to LFP, signals from individual neurons (single-unit) are of

particular interest in many neuroscience studies and brain machine interface

applications. However, implanted microelectrodes record the superimposed spikes

from multiple surrounding neurons. Thus it is necessary to identify and cluster

(i.e. sort) the spikes from multiple neurons in order to obtain the single-unit

activity. A crucial stage in spike sorting is feature extraction which determines

the quality of the next stage clustering. Conventional spike feature extraction

approaches give a projection subspace which does not necessarily provide the

most discriminative subspace for clustering. Hence, the clusters which appear

inherently separable in some discriminative subspace may overlap if projected

using conventional feature extraction approaches, leading to a poor sorting

accuracy especially when the noise level is high. The further objective of this

thesis was to develop a noise robust and unsupervised spike sorting approach based

on learning discriminative spike features. First, two unsupervised discriminative

subspace learning approaches which can handle outliers in data are presented.

We further introduce methods for selecting the number of neurons along with

these approaches. Based on these methods, we propose two automatic spike

sorting algorithms whose comparative simulation results on synthetic and in-vivo

recordings indicate high sorting accuracy, significantly better separability of

clusters, and high level of robustness to noise.
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Chapter 1

Introduction

1.1 Extracellular Neural Recording

Recording the electrical activity of the brain has permitted researchers to analyse

cognition and study the brain’s mechanisms of information processing. Extra-

cellular recording using micro-electrode arrays provides high fidelity signals of

both single- and multi-unit activities and field potentials. Single- and multi-unit

activities are spike trains that have a dominant spectrum at 300 Hz–5 kHz, while

local field potentials (LFPs) are aggregated from a large number of synchronized

synaptic activities with a dominant spectrum in 0.1–200 Hz. While each one

possesses unique characteristics which may make it preferred over another de-

pending on the application, both LFP and neural spikes have been widely used

for brain signal analysis and information decoding [1, 2].

1.1.1 Local Field Potentials

LFPs have been receiving increasing attention in long-term BMI experiments

due to their better tolerance to neural interface degeneration and glial cell encap-

1



2 Chapter 1. Introduction

sulation. In addition, different frequency bands of LFP oscillations characterise

specific functional responses of population activity, and are useful to study the

mechanisms of information processing of the brain.

Due to various recording imperfections and experimental protocols, neural

recordings are frequently superimposed with interferences and artefacts, which

can cause erroneous data analysis. A more common cause of concern is the power

line interference which is mainly due to the capacitive coupling between the

subject and nearby electrical appliances and mains wiring [3, 4].

For studying field potentials at lower frequencies (e.g. < 30 Hz), a low-pass

filter is sufficient to reject the power line interference. However, there is an

increasing attention to the gamma band oscillations (> 30 Hz) due to their

correlation with a wide range of cognitive and sensory processes [4–14]. For

example, the frequency bands of 80–500 Hz in [7], 40–180 Hz in [9], 76–150 Hz in

[10], 0–200 Hz in [15], and 30–200 Hz in [13] have been shown useful for studying

cognitive and motor processing. In this case, in addition to the fundamental

harmonic at 50 Hz or 60 Hz, high order harmonics of the interference should also

be removed before data analysis.

1.1.2 Neural Action Potentials

In addition to LFP which reflects the population activity, neural action potentials,

which are also called spikes, provide information at the level of individual neurons

which are useful for understanding the underlying mechanisms of neural process-

ing, through for example, analysing the correlation among activities of different

neurons, or observing how a neuron responds to a specific stimulus. This is one

of the critical components that permits large-scale recording of neural activity [2].

Depending on the proximity of the micro-electrode to the surrounding neurons,

the recording may contain several spike waveforms generated by different neurons.
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An indispensable step in spike-train analysis is to sort the spikes after detection

to assign each spike to its originating neuron. This is the fundamental first step

in all multiple spike train data analyses, for example the analysis of spike rate,

spike time synchrony, and inter-spike interval [16,17]. The accuracy of the spike

sorting critically affects the accuracy of all subsequent analyses.

1.2 Thesis Motivation

1.2.1 Power Line Interference Cancellation

Power line interference is usually non-stationary, and can vary in frequency,

amplitude and phase. An ideal signal processing method should be able to

quickly and accurately track these variations and cancel the interference while

not compromising the neural signal of interest at the interference frequency bands.

Furthermore, it is desired that the algorithm does not impose any modification

or additional requirements (such as extra recording channels) on the recording

hardware. Along these lines, many methods based on adaptive filtering have

been proposed for interference removal from biomedical signals which are mainly

proposed for electrocardiography (ECG) signal processing [18–20].

There are a few application related challenges that affect the performance

of these methods when applied to neural recording. First, the spectrum of

neural data follows 1/fx(1<x<3) distribution that violates the assumption of white

Gaussian noise made in many algorithms, which may cause algorithm malfunction.

Moreover, neural signals are non-stationary and there could be transient or

sustained LFP oscillations appearing at the interference frequencies that should

remain intact. The algorithms that are tailored for a certain type of biomedical

recording (e.g. ECG) rely on specific signal characteristics (e.g. detection of

QRS waveform) to operate adequately; this makes them not applicable to neural
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recordings. When applied on neural recordings, although some of these methods

can track and remove the interference, they leave high level of distortion in

the signal, which should be avoided to properly retrieve the underlying LFP

signals. In addition to these facts, these methods require careful tuning of their

parameters to be able to operate adequately. However, the proper tuning of the

parameters is usually difficult in practical applications where the interference

and signal power can vary significantly. These limitations call for the design

of a power line interference cancellation algorithm that: 1 – works well on LFP

signals and other modalities of neural recordings. 2 – can cancel the interference

in real-time, and have low computational complexity. 3 – does not compromise

the signal of interest and can work reliably under different signal and interference

conditions. 4 – have a straightforward parameter adjustment.

1.2.2 Clustering of Neural Action Potentials (Spike

Sorting)

Common spike sorting methods involve detecting neural spikes, extracting and

selecting features from the detected spike waveforms, detecting the number of

neurons, and assigning the spikes to their originating neurons [16]. Among

these stages feature extraction and detecting the number of neurons are specially

challenging and significantly affect the accuracy and reliability of sorting process.

A good feature extraction method should retain the most useful information for

discriminating different spike shapes in a reasonably low dimension [17]. However,

many methods including principal component analysis (PCA), discrete wavelet

transform (DWT), waveform derivatives [21], Laplacian eigenmaps (LE) [22],

wavelet optimization [23], and Fourier transform [24]) used for spike sorting

do not necessarily extract features which provide the most separation between
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the clusters. Hence, the clusters which appear inherently separable in some

discriminative subspace may overlap if projected using conventional features

extraction methods. Such cluster overlaps increases the misclassification, may

lead to incorrect detection of the number of the clusters, thus hindering reliable

clustering. Therefore, a spike sorting/feature extraction method is desired to

seek for features which provide maximum separation between different clusters,

and meanwhile be robust to noise and outliers.

1.3 Thesis Objectives

In previous sections two problems including power line interference cancellation

and spike sorting were highlighted, and some limitations of current solutions were

briefly discussed. The aim of this thesis was to provide methods for improving

the quality of neural signals (both LFPs and spike trains) which are widely used

in fundamental neuroscience studies, and modern BMIs. Along these lines, the

specific objectives of this thesis were to

• Propose a reliable and computationally efficient harmonic estimation al-

gorithm to remove power line interference from neural recordings without

compromising the actual neural signals at the interference frequency bands.

• Propose an efficient and scalable VLSI architecture of the aforementioned

algorithm that is optimized for removing multiple harmonics from mul-

tichannel recordings. And to implement the proposed architecture on a

microchip in a 65-nm CMOS technology.

• Propose unsupervised spike sorting algorithms based on discriminative

subspace learning to achieve more reliable and accurate identification of

neurons and spike waveforms especially in low SNR conditions.
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1.4 Overview and Contributions

This section provides an overview of the contributions of this thesis. This thesis

contains three chapters of contributions. In the beginning of each chapter, we

provided a detailed literature review of the topics discussed in that chapter.

In Chapter 2, we proposed an adaptive algorithm for removing the 50/60 Hz

line interference and its harmonics. First, the theory and structure of the algo-

rithm were presented along with the mathematical derivations used to decrease

its computational complexity. After that, we provided alternative forms of the

algorithm parameters which have intuitive meaning to make the parameter ad-

justment straightforward, and presented a thorough guide to adjust them. We

further discussed the results of extensive simulations that are carried out to

quantitatively evaluate the performance of the proposed algorithm under various

signal and parameter conditions. The performance of the algorithm was also

compared with other popular interference removal methods. A significant portion

of this chapter has been presented in [25] and [26].

In Chapter 3, first we extended the interference cancellation algorithm to

process multichannel data efficiently. First, brief simulation results on different

types of biopotential recording were presented. Further, we proposed an efficient

and scalable VLSI architecture of the multichannel version of the algorithm. A

microchip implementation in a 65-nm CMOS technology, along with its real-time

testing results were also presented. A significant portion of this chapter has been

presented in [25] and [27].

In Chapter 4, we introduced two automatic spike sorting algorithms based on

discriminative subspace learning. First, we briefly discussed the basics of subspace

learning, and presented the formulations. After that, two robust algorithms for

spike sorting were presented which can automatically learn the feature space
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and the number of the clusters (i.e. neurons). The results of comprehensive

simulations using synthetic and real data were presented and compared with

several popular spike sorting methods. A significant portion of this chapter has

been presented in [28].

Finally, in Chapter 5, we summarized the results of the works presented in

this thesis. We also described some of the possible directions of research that are

left as open problems for future studies.

In addition to the main chapters, in Appendix A we presented the open source

software implementation of the power line interference removal algorithm.



Chapter 2

Power Line Interference

Cancellation: Algorithm Design

2.1 Introduction

As briefed in the previous chapter, power line interference may severely corrupt

neural recordings at 50/60 Hz and harmonic frequencies. While high signal-to-

noise ratio (SNR) (i.e. power of the clean neural signal divided by the power of

the interference) is preferred for reliable data analysis, the interference pickup

can be severe, degrading the SNR to as low as −20 dB (the interference is 100

times stronger than the signal). This is especially the case in some experiments

where the operation of nearby electrical appliances is unavoidable, and the desired

recording isolations cannot be obtained [3, 4, 29–31].

For studying field potentials at lower frequencies (e.g. < 30 Hz), a low-pass

filter is sufficient to reject the power line interference. However, there is an

increasing attention to the gamma band oscillations (> 30 Hz) due to their

correlation with a wide range of cognitive and sensory processes [4–14]. For

8
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example, the frequency bands of 80–500 Hz in [7], 40–180 Hz in [9], 76–150 Hz in

[10], 0–200 Hz in [15], and 30–200 Hz in [13] have been shown useful for studying

cognitive and motor processing. In this case, in addition to the fundamental

harmonic at 50 Hz or 60 Hz, high order harmonics of the interference should also

be removed before data analysis.

The interference is usually non-stationary and can vary in frequency, amplitude

and phase. The frequency variations are usually small, and mainly originated

from the AC power system [32, 33]. Nevertheless, the amplitude and phase

variations can be large, which may significantly decrease the SNR of the recorded

signal. These variations are mostly due to the subject movements, abrupt

changes in nearby AC loads, and changes in capacitive coupling [3, 32, 34]. As a

result, automatic cancellation of non-stationary power line interference would be

advantageous for reliable data analysis.

A number of solutions are available for reducing the interference pickup. To

attenuate the interference at hardware level, biopotential amplifiers are frequently

designed to take differential input with large common mode rejection ratio and

large isolated-mode rejection ratio. In addition, using active electrodes, shielding

electrodes and the subject, and grounding the nearby electrical appliances are

useful ways to further reduce the interference [3, 29, 35–37]. Despite these

considerations, large residual interference may remain in the signal [3, 4, 20,31],

thus further signal processing is required to completely remove the interference.

Notch filtering has been widely used to attenuate the interference by reject-

ing its predetermined frequency components (i.e. at 50/60 Hz and harmonic

frequencies). To avoid making excessive distortion, the filter should feature

narrow notch bandwidth, small phase distortion, and negligible artificial oscilla-

tions [18, 34, 38, 39]. However, it is difficult to meet these specifications when the

interference frequency is not stable and the filter is to accommodate the frequency
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variations. On the one hand, a very narrow notch may lead to an inadequate

removal of the interference, especially when its frequency shifts outside the notch

bandwidth. On the other hand, a wide notch can attenuated the interference, but

it also results in the excessive removal of information-bearing signal components.

These reasons have made notch filtering not a good candidate for power line

interference removal in neural recording applications [4, 34].

Other techniques based on spectrum estimation have been used for detecting

and removing the spectral peaks (thus the interference) [4]. A drawback is that,

these methods require buffering a large number of samples, which slows down the

signal processing and is not suitable for real-time implementation. Furthermore,

they usually lose their effectiveness when the interference is non-stationary [20,39].

Another popular approach is to use adaptive interference cancellation which

addresses some of the drawbacks of notch filtering. When an auxiliary reference

signal of the interference is available, the well-known adaptive noise canceller

(ANC) can be utilized to remove the interference [34, 40, 41]. However, it may

become ineffective when the interference contains higher order harmonics. More-

over, a reference signal may not always be available in practice. To address these

limitations, several reference-free adaptive methods have been proposed, mainly

tailored for ECG signal processing [18–20, 39]. Nevertheless, the performance

and reliability of these methods have not been tested on neural recordings. In

general, several issues might arise when applying the same algorithms to neural

recordings. For example, in some algorithms [18,39], the detection of QRS periods

of the ECG signals is necessary to tackle non-stationarity; however, this method

is not applicable to neural signals since the on/off period of neural oscillations

cannot be easily detected in the presence of the interference. In addition, the

power spectral density (PSD) of neural signals follows 1/fα(1<α< 3) distribution

[15,42,43] which is different from that of the ECG; this might lead to inaccurate
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operation of the interference removal algorithms that are specifically tailored for

ECG processing.

In this chapter, a robust and computationally efficient algorithm for power

line interference cancellation is proposed. It can reliably estimate and remove

the 50/60 Hz line interference and its harmonics from neural recordings. The

algorithm does not require any reference signal, and can track the variations in

the frequency, phase, and amplitude of the interference at both the fundamental

and the harmonic frequencies. The algorithm is compared with two adaptive

methods of [20] and [18], and simulation results on synthetic and real in-vivo data

are presented. The algorithm is implemented in software as well as on ASIC. The

software implementation is discussed in this chapter, and ASIC implementation

is separately detailed in Chapter 3.

The rest of this chapter is organized as follows. Section 2.2 details the

proposed algorithm, its pseudocode, and parameter adjustment. Section 2.3 gives

the experimental results based on both synthesised and real data, and presents a

performance comparison with other methods. Section 2.4 presents the discussion,

and Section 4.6 concludes this chapter.

2.2 Proposed Algorithm

A recorded neural signal from one electrode can be represented by

x(n) = s(n) + p(n), n ∈ Z, (2.1)

where x(n) is the measured signal, s(n) is the signal of interest (neural signal +

neural noise), and p(n) is the power line interference, all sampled at fs Hz. x(n)

is assumed to be zero-mean, s(n) has a 1/fα(1<α< 3) power spectrum, and p(n)

consists of a set of harmonic sinusoidal components with unknown frequencies,
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phases and amplitudes as

p(n) =
M∑
k=1

ak cos(kωfn+ φk)︸ ︷︷ ︸
hk(n)

=
M∑
k=1

hk(n). (2.2)

Here, ωf is the fundamental frequency in rad/s, ak and φk are the amplitude and

phase of the kth harmonic, and M is the number of harmonics present in the

interference.

An ideal interference cancellation algorithm should eliminate the interference

p(n), while perfectly preserving the neural signal s(n). Let ω̂f , âk, φ̂k, ĥk(n), and

p̂(n) denote the estimate of ωf , ak, φk, hk(n), and p(n), respectively. The clean

(i.e. interference-free) signal ŝ(n) is obtained as

ŝ(n) = x(n)− p̂(n), (2.3a)

where

p̂(n) =
M ′∑
k=1

ĥk(n). (2.3b)

Here, M ′ represents the desired number of harmonics to be removed from the

recorded signal. It is chosen based on the bandwidth of interest, and its maximum

value M ′
max = bπ/ω̂fc can be adopted if it is desired to remove all the harmonics

up to the Nyquist frequency.

The following approach is proposed to cancel the interference. First, the

interference fundamental frequency ωf is estimated by using a fast and numerically

well-behaved frequency estimator. Subsequently, based on the estimated frequency

ω̂f , each harmonic signal hk(n) is obtained by using discrete-time oscillators

and then its amplitude and phase (i.e. âk and φ̂k, respectively) are estimated

by using a simplified recursive least squares (RLS) algorithm. The cascaded

stages of frequency and amplitude/phase estimation allow individually adjustable
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Figure 2.1: Functional block diagram of the proposed algorithm. x(n) is the input
signal contaminated by power line interference, p̂(n) is the estimated interference, and
ŝ(n) is the output interference-free signal.

adaptation rates for each of these estimators, which helps to achieve a fast and

reliable estimation of the interference. Finally, the estimated interference p̂(n)

is subtracted from the input signal x(n) to obtain the clean signal ŝ(n). The

structure of the proposed algorithm is shown in Figure 2.1.

2.2.1 Fundamental Frequency Estimation

For robust estimation of the fundamental frequency, first, the signal is prepro-

cessed to enhance the fundamental harmonic of the interference. After that,

the enhanced signal is used for frequency estimation. The preprocessing stage

is described in Section 2.2.1, followed by the frequency estimation stage in

Section 2.2.1.
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Initial Band-pass Filtering and Spectrum Shaping

Since the input signal x(n) has a coloured PSD (1/f), the direct application of a

typical adaptive frequency estimator would lead to a biased estimation of the

frequency [44]. It is also possible that the interference p(n) is more dominant at

certain harmonic frequencies than at the fundamental frequency; this might be due

to operation of nearby electrical appliances or the amplifier distortion. This may

prevent the frequency estimator from converging to a correct frequency estimate.

To address these issues and improve the frequency estimation, the input signal

x(n) is bandpass filtered with a 4th-order infinite-impulse-response (IIR) filter

to enhance the fundamental harmonic of the interference and attenuate higher

harmonics. This filtering is also useful for attenuating lower frequency artefacts

and signal components which may negatively affect the frequency estimation.

The filter passband is by default set to 40–70 Hz to accommodate both 50 Hz

and 60 Hz power line frequencies and their worst case variations, but it can be

further customized; for example, to 55–65 Hz if the nominal power line frequency

is known to be 60 Hz. Let H(·) be the realization of the bandpass filter, the

filtered signal xf(n) is obtained as

xf(n) = H(x(n)). (2.4a)

To further reduce the estimation bias, a 1st-order differentiator is utilized

which mitigates the effect of the power law spectrum of the input signal:

xd(n) = xf(n)− xf(n− 1). (2.4b)

Here, xd(n) is the first difference signal fed into the next stage for frequency

estimation. The effect of 1st-order differentiation on the overall performance
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Figure 2.2: The effect of bandpass filtering and spectrum shaping. (a) PSD of a
real ECoG signal. (b) PSD after bandpass filtering and spectrum shaping, where the
fundamental harmonic is enhanced.

of the algorithm is not very significant; however, in practice, the first order

differentiator can be incorporated into the bandpass filter with negligible compu-

tational overhead. Figure 2.2 shows the effects of bandpass filtering and spectrum

shaping, where the fundamental harmonic of the interference is enhanced. It

should be noted that signal xd is only used for frequency estimation, and not for

amplitude/phase estimation.

Frequency Estimation

The estimation of the instantaneous frequency of a single sinusoid buried in

broadband noise has been largely investigated in the literature. Various well-

established methods exist for frequency estimation differing in performance

with regard to computational complexity, and estimation bias and variance

[45–49]. In this work, a lattice adaptive notch filter (ANF)-based frequency

estimator is utilized since it features instantaneous estimation of the frequency,

desirable performance, low complexity, and suitability for real-time finite-precision

implementation.

It should be noted that the ANF is merely used for frequency estimation and
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Figure 2.3: Signal flow graph of the all-pole lattice ANF structure. Notch frequency
and bandwidth are determined by κf and αf , respectively.

not for notch filtering, hence the all-zero section is not needed. Figure 2.3 shows

the structure of the ANF where xd(n) is the input signal from the preprocessing

stage and f(n) is the output of the all-pole section. The transfer function of the

all-pole section is given by

T (z) =
1

1− κf(n)(αf + 1)z−1 + αfz−2
, (2.5)

where κf(n) is the adaptive coefficient at time step n, which gives the frequency

estimate ω̂f(n) through ω̂f(n) = cos−1 κf(n), and 0 < αf < 1 is the pole radii and

determines the notch bandwidth. The lattice algorithm of [48] is employed to

adjust κf as follows.

c(0) = d(0) = ε > 0, f(−1) = f(−2) = 0, κf(0) = 0, (2.6a)

c(n) = λfc(n− 1) + f(n− 1)(f(n) + f(n− 2)), (2.6b)

d(n) = λfd(n− 1) + 2f(n− 1)2, (2.6c)

κt(n) =
c(n)

d(n)
, (2.6d)
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κt(n) =


κt(n) if −1 < κt(n) < 1,

1 if κt(n) > 1,

−1 if κt(n) < −1,

(2.6e)

κf(n) = γκf(n− 1) + (1− γ)κt(n), (2.6f)

where 0� λf < 1 is the forgetting factor, f(n) is the output of the all-pole

section, κf(n) is the estimated parameter (ω̂f(n) = cos−1 κf(n)), and γ is the

smoothing factor. Equation (2.6a) sets the initial condition, (2.6b)–(2.6d) form

the frequency estimator, and (2.6e) is used to limit κt in the range of [−1, 1]

to guarantee stability. (2.6f) is used to further smooth κf(n). For simplicity in

notation, in the rest of this chapter, κf is short for κf(n) and ω̂f is short for ω̂f(n).

The parameters αf and λf control the speed and accuracy of frequency

estimation. It is advantageous to use time-varying values for αf and λf due to

several reasons. In initial convergence, if the notch is too narrow (αf very close

to 1), the ANF may not sense the presence of the input sinusoid, which in turn

leads to a very slow initial convergence or even not converging to the correct

frequency estimate. Similarly, an initial value of λf very close to 1, significantly

slows down the initial adaptation. On the other hand, smaller values of αf and λf

increase the steady-state error. A solution is to start the algorithm with smaller

values of αf and λf to reach a fast convergence, and after that gradually increase

their values to obtain more accurate frequency estimation. For this purpose, αf

and λf are updated in each iteration as

αf(n) = αstαf(n− 1) + (1− αst)α∞, (2.7a)

λf(n) = λstλf(n− 1) + (1− λst)λ∞, (2.7b)
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where α∞ determines the asymptotic notch bandwidth and αst sets the rate of

change from the initial value αf(0) = α0 to the asymptotic value α∞. Similarly,

λ∞ determines the asymptotic forgetting factor and λst sets the rate of change

from initial value λf(0) = λ0 to the asymptotic value λ∞. Detailed discussion on

choosing proper values for the parameters are presented in Section 2.2.4

2.2.2 Harmonic Estimation

Having estimated κf , the algorithm proceeds to estimate the harmonic components.

Harmonic estimation comprises two stages. First, a series of harmonic sinusoids

with fundamental frequency ω̂f are generated. Subsequently, the amplitudes and

the phases of the generated harmonics are estimated to match their corresponding

components in the interference. In this section, a description of harmonic

generation followed by amplitude/phase estimation is presented.

Harmonic Signal Generation

The harmonic sinusoids are generated through using discrete-time oscillators,

which require less computation compared with the Taylor expansion method

[50]. Among different oscillator structures, a digital waveguide oscillator is

chosen (Figure 2.4(a)). This structure provides orthogonal outputs, which are

exploited to simplify the next stage RLS algorithm. More importantly, the

oscillator output frequency can be directly controlled by cos kω̂f , where kω̂f is

the oscillation frequency. This enables the output of the frequency estimator κf

to be directly employed for harmonic generation, thus avoiding the calculation

of computationally expensive trigonometric functions. To further reduce the

complexity, the frequency estimates of higher harmonics are obtained through

the recurrence formulation in (2.8), which also avoid trigonometric function

calculation. For each harmonic k, the frequency control parameter of the oscillator
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Figure 2.4: Signal flow graph of (a) Discrete-time oscillator. The parameter κk adjusts
the oscillation frequency. uk and u′k represent orthogonal sinusoids at frequency kωf .
(b) Adaptive linear combiner, used for amplitude/phase adaptation. The weights ak
and bk are adapted by the simplified RLS algorithm which minimizes the weighted least
square error between x(n) and ĥk(n).

is denoted as κk = cos kω̂f , and is recursively calculated through

κk = 2κ1κk−1 − κk−2, for k = 2, 3, · · · ,M ′, (2.8a)

where

κ0 = 1,κ1 = κf = cos ω̂f . (2.8b)

The calculated parameter κk is used to set the oscillation frequency of the

oscillator.

Figure 2.4(a) shows the signal flow graph of the digital waveguide oscillator,

whose characteristic function is represented by (2.9a):

uk(n)
u′k(n)

 =

 κk κk − 1

κk + 1 κk


uk(n− 1)

u′k(n− 1)

 , (2.9a)

G = 1.5−
(
uk(n)

2 − κk − 1

κk + 1
u′k(n)

2

)
, (2.9b)

uk(n) = Guk(n), u′k(n) = Gu′k(n). (2.9c)
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Here, u(n) and u′(n) are state variables serving as sinusoidal outputs. The

values of uk(0) and u′k(0) determine the initial phase and amplitude, which are

arbitrarily chosen. (2.9b) and (2.9c) are used to apply gain control for stabilizing

oscillation amplitude in dynamic frequency operation. The output of (2.9) can

be generally expressed as

uk(n) = vk sin(kω̂fn+ ψk), u′k(n) = v′k cos(kω̂fn+ ψk), (2.10)

where vk and v′k are the amplitudes of the generated sinusoids, and ψk is the

initial phase shift. The values of ψks do not influence any further derivations and

are neglected for simplicity.

Amplitude and Phase Estimation

The amplitudes and phases (i.e. âk and φ̂k) of the generated harmonics are not

necessarily the same with their corresponding power line interference components

in (2.2); thus, an additional step is required to estimate them. The estimate of

the kth harmonic, ĥk(n), can be obtained via (2.2) by substituting ak and φk

with their estimates that gives

ĥk(n) = âk sin(kω̂fn+ φ̂k) (2.11a)

= b̂′k sin(kω̂fn) + ĉ′k cos(kω̂fn). (2.11b)

where

b̂′k = âk cos φ̂k, and ĉ′k = âk sin φ̂k.

Here, instead of directly adapting âk and φ̂k in (2.11a) we can equivalently

adapt b̂′k and ĉ′k in (2.11b) to obtain ĥk(n). This transformation converts the

non-convex search space in âk-φ̂k coordinates into a convex search space in
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rectangular coordinates. Using (2.10) and (2.11b), ĥk(n) can be written as

ĥk(n) = b̂kuk(n) + ĉku
′
k(n). (2.12)

Here, b̂k and ĉk are defined as b̂′k/vk and ĉ′k/v
′
k, where vk and v′k merely scale

the adaptive coefficients and do not affect the estimation performance. For each

harmonic k, b̂k and ĉk are adapted by minimizing the exponentially weighted

squared error between ĥk(n) and x(n). This is done by applying the simplified

RLS algorithm, where uk(n) and u′k(n) serve as the input to an adaptive linear

combiner (Figure 2.4(b)). A detailed description of the simplified RLS algorithm

is followed in the next section. The resultant update equations to adapt b̂k and

ĉk are summarized as

r1,k(−1) = r1,k(−1) = b̂k(−1) = ĉk(−1) = 0,

r1,k(n) = λar1,k(n− 1) + uk(n)
2,

r4,k(n) = λar4,k(n− 1) + u′k(n)
2,

b̂k(n) = b̂k(n− 1) + uk(n)ek(n)/r1,k(n),

ĉk(n) = ĉk(n− 1) + u′k(n)ek(n)/r4,k(n),

(2.13)

where ek(n) = x(n) − ĥk(n) is the instantaneous error (Figure 2.4(b)), and

0� λa < 1 is the forgetting factor.

In each iteration, the most recent estimates b̂k(n) and ĉk(n) are used to obtain

ĥk(n) through (2.12). The interference-free neural signal is then obtained by

ŝ(n) = x(n)−
M ′∑
k=1

ĥk(n). (2.14)
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RLS algorithm

The RLS algorithm is used to adapt the weights of the adaptive linear combiner

in Figure 2.4(b). The weighted least squares cost function is defined as

Ek =
n∑
i=0

λn−ia e2k(i), (2.15a)

where

ek(i) = x(i)− ĥk(i), (2.15b)

is the instantaneous error and 0 < λa � 1 is the forgetting factor. The RLS

algorithm is described as follows. Let Uk(n) = [uk(n) u
′
k(n)]

T be the input

sample vector and Wk(n) = [b̂k(n) ĉk(n)]
T be the parameter vector. The input

sample correlation matrix is defined as

Rk(n) =
n∑
i=0

λn−ia Uk(n)Uk
T
(n) =

 r1,k(n) r2,k(n)

r3,k(n) r4,k(n)

 . (2.16a)

Rk(n) can be recursively calculated through

Rk(0) = εI2, ε > 0 for k = 1, · · · ,M ′,

Rk(n) = λaRk(n− 1) +Uk(n)U
T
k (n).

(2.16b)

Now, Wk can be adapted through the following RLS update equation [51].

Wk(n+ 1) = Wk(n)−R−1k Uk(n)ek(n). (2.16c)
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In the standard RLS method, matrix inversion lemma is used to obtain R−1k in

order to avoid inverse matrix calculation. In this work, we suggest a simplification

on Rk which leads to a less computational parameter adaptation. It is assumed

that the forgetting factor parameter λa is selected close to the recommended

values (i.e 0.5<W < 5). In this case, it is shown in the following section that

r2,k and r3,k would become very small compared with r1,k and r4,k, thus they can

be neglected and Rk becomes a diagonal matrix. This leads to simplified update

equations as

r1,k(−1) = r1,k(−1) = b̂k(−1) = ĉk(−1) = 0,

r1,k(n) = λar1,k(n− 1) + uk(n)
2,

r4,k(n) = λar4,k(n− 1) + u′k(n)
2,

b̂k(n) = b̂k(n− 1) + uk(n)ek(n)/r1,k(n),

ĉk(n) = ĉk(n− 1) + u′k(n)ek(n)/r4,k(n).

(2.17)

These update equations are much simpler than that of (2.16c) with regards to

the number of arithmetic operations. We also investigated the effect of this

simplification on the performance of the algorithm by comparing the results with

the case that the standard RLS algorithm was used, and no significant difference

in performance was observed, which validates the proposed approximation.

Simplification of the RLS algorithm

We propose a simplification on the RLS algorithm used in the phase and amplitude

estimation stage of the algorithm. This simplification is based on approximating

the RLS sample correlation matrix Rk(n) in (2.16a) with a diagonal matrix. The
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elements of Rk(n) can be expanded as

r1,k =
n∑
i=0

λn−ia v2 sin2(kωfi), (2.18a)

r4,k =
n∑
i=0

λn−ia v′2 cos2(kωfi), (2.18b)

r2,k = r3,k =
n∑
i=0

λn−ia vv′ sin(kωfi) cos(kωfi). (2.18c)

If it can be shown that for typical parameters values and sampling rates the

coefficients |r2,k| and |r3,k| are much less than |r1,k| and |r4,k|, then the sample cor-

relation matrix Rk(n) can be well-approximated by a diagonal matrix (i.e. r2,k=

r3,k=0). This subsequently leads to much less computational RLS update equa-

tions. In the following derivations, we first show that |r2,k|, |r3,k| � r1,k; the

inequality |r2,k|, |r3,k| � r4,k can be similarly derived and is not presented here.

We would like to show that the following inequality holds for typical parameter

values:

∣∣∣∣∣
n∑
i=0

λn−ia vv′ sin(kωfi) cos(kωfi)

∣∣∣∣∣�
n∑
i=0

λn−ia v2 sin2(kωfi), (2.19a)

or equivalently

vv′

v2
|∑n

i=0 λ
n−i
a sin(kωfi) cos(kωfi)|∑n

i=0 λ
n−i
a v2 sin2(kωfi)

� 1. (2.19b)

Note that the right-hand side of (2.19a) is always positive and equal to its

absolute value. The magnitudes v and v′ are not initially included for the

following derivation and will be considered in the last stage. After a little
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manipulation of (2.19a) using trigonometric identities we get

√
2

2

∣∣∣∣∣
n∑
i=0

λn−ia sin(2kωfi+
π

4
)

∣∣∣∣∣� 1

2

n∑
i=0

λn−ia (2.20)

which can be expressed in the complex domain as

√
2 ·
∣∣∣∣Im{ejπ4 λn+1

a − ej2kωf(n+1)

λa − ej2kωf

}∣∣∣∣� λn+1
a − 1

λa − 1
. (2.21)

Using the property |Im{z}| ≤ |z|, where z is a complex number, we can alterna-

tively show that

√
2 ·
∣∣∣∣ejπ4 λn+1

a − ej2kωf(n+1)

λa − ej2kωf

∣∣∣∣ =[
2
1+λ

2(n+1)
a −2λn+1

a cos(2kωf(n+1))

1 + λ2a − 2λa cos(2kωf)

] 1
2

� λn+1
a − 1

λa − 1
. (2.22)

We define

A =

[
2
1+λ

2(n+1)
a −2λn+1

a cos(2kωf(n+1))

1+λ2a−2λa cos(2ωf)

] 1
2

λn+1
a − 1

λa − 1

, (2.23)

B = max{ v
v′
,
v′

v
}, (2.24)

C = max
k,n
A · B, (2.25)

where v/v′ is given by (see [50])

v

v′
=

√
1 + cos(kωf)

1− cos(kωf)
. (2.26)

If we can show that C � 1, then (2.19b) holds. To show this, numerical
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Figure 2.5: The values of C at different sampling rates. It can be seen that at the
minimum sampling rate fs = 100, the maximum value of C is less than 0.1� 1. The
value of C monotonously decreases with increasing fs and Wa

simulation is used to obtain the upper bound values on all the harmonics and

in the operating condition where n� 1. For this purpose, the values of λa are

obtained from Wa through (2.29a), where Wa is swept in the range of 0.5–5 which

covers the recommended range. Figure 2.5 displays the values of C in different

sampling rates. As can be seen, in all the conditions, C < 0.1 � 1 indicating

that the inequalities |r2,k|, |r3,k| � r1,k and |r2,k|, |r3,k| � r4,k hold.

2.2.3 Algorithm Implementation

The algorithm is implemented in software and hardware. The pseudocode of

the algorithm is presented in algorithm 2.1 with the MATLAB source code

available online at [52]. The proper parameter values can be obtained through

the guidelines in Section 2.2.4. Hardware implementation and testing results are

thoroughly discussed in Chapter 3.

2.2.4 Parameter Setting

The performance of the algorithm is mainly controlled by three basic parameters

including notch filter pole radii (αf), frequency estimator’s forgetting factor
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Algorithm 2.1: Proposed Algorithm
Input: x
Output: ŝ
Constants:
fs, M ′, N , α0, αst, α∞, λ0, λst, λ∞, λa, γ
H(·)← 40–70 Hz IIR filter
Initialization:
κ0 ← 1, κf ← 0
f−2 ← f−1 ← 0
c, d > 0
uk,u

′
k > 0

r1,k, r4,k > 0

b̂k ← ĉk ← 0
αf ← α0, λf ← λ0
Recursion:
for n← 1 to N do

Bandpass filtering:
xf ← H(x(n))

Frequency Estimation:
fn ← xf + κf(1 + αf)fn−1 − αffn−2
c← λfc+ fn−1(fn + fn−2)
d← λfd+ 2f2n−1
κt ← c/d
if κt > 1 then κt ← 1
else if κt < −1 then κt ← −1
κf ← γκf + (1− γ)κt
αf ← αstαf + (1− αst)α∞
λf ← λstλf + (1− λst)λ∞

Removing Harmonics:
κ1 ← κf
e← x(n)
for k ← 1 to M ′ do

Discrete Oscillator:
s1 ← κk(uk + u′k)
s2 ← uk
uk ← s1 − u′k
u′k ← s1 + s2
G← 1.5− [u2k − u′2k (κk − 1)/(κk + 1)]
if G < 0 then G← 1
uk = Guk, u′k = Gu′k

Amplitude/Phase Estimation:
hk ← (b̂kuk + ĉku

′
k)

e← e− hk
r1,k ← λar1,k + u2k
r4,k ← λar4,k + u′2k
b̂k ← b̂k + e · uk/r1,k
ĉk ← ĉk + e · u′k/r4,k

Harmonic Frequency Calculation:
κk+1 ← 2κfκk − κk−1

ŝ(n)← e
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(λf) and amplitude/phase estimator’s forgetting factor (λa). Since, the proper

values of these parameters depend on the signal sampling rate (fs), the parameter

adjustment become less intuitive. To alleviate this issue, we have chosen other

representative characteristics such as notch bandwidth (related to the pole radii)

and settling time (related to the forgetting factors) which can be alternatively

used for parameter adjustment.

Here, we describe the relation between forgetting factors and settling time

as well as the relation between pole radii and notch bandwidth. The proper

values of the forgetting factors depend on the sampling rate, making it difficult

to adjust their values in general condition. On the other hand, settling time is

independent of the sampling rate and has a more intuitive meaning that makes

the parameter tuning straightforward. In certain parts of the algorithm such

as frequency estimation and phase/amplitude adaptation, settling time can be

associated with the forgetting factor by the following formulation

0.95
1

1− λ =
1− λnset+1

1− λ ⇒ λ = exp
ln(0.05)

tsetfs + 1
, (2.27)

where nset = fstset, λ is the forgetting factor, tset is the desired settling time, and

fs is the sampling rate. The transformation of (2.27) is used in (2.29a) to adjust

αst, λ0, λst, λ∞, and λa.

Notch bandwidth is independent of the sampling rate and can be alternatively

adjusted instead of the pole radii. Given the notch bandwidth B, the pole radii

α is obtained by

α =
1− tanπB/fs
1 + tan πB/fs

. (2.28)
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Defining four sets of variables A1, A2, B1 and B2 as

A1 = {αst,λ0,λ∞,λst,λa}, B1 = {Bst,P0,P∞,Pst,Wa},

A2 = {α0,α∞, γ
′}, B2 = {B0,B∞, γ/2},

the alternative parameters are then obtained through

A1 = exp
ln(0.05)

B1fs + 1
, (2.29a)

A2 =
1− tan (πB2/fs)
1 + tan (πB2/fs)

. (2.29b)

Here, B1 and B2 contain the alternative parameters which are independent of

the sampling rate and have intuitive units. The actual parameters, defined in

A1 and A2, can be obtained through (2.29b). It should be noted that improper

parameter setting may lead to inadequate removal of the interference. Some

guidelines on the proper adjustment of the parameters are discussed as follows.

The notch bandwidth of the frequency estimator affects both the tracking

speed and the estimation bias. A wide notch allows faster tracking of the frequency

at the expense of an increased estimation bias and variance. On the other hand,

a narrow notch leads to a more accurate frequency estimate, but it causes very

slow frequency adaptation if the desired sinusoidal component falls out of the

notch bandwidth. To address this trade-off, the notch bandwidth is initially

widened to allow fast initial convergence and then gradually narrowed down

to achieve a lower steady-state error (described in (2.7a)). In the alternative

form, B0 is associated with α0 and controls the initial notch bandwidth. Larger

values of B0 are preferred (e.g. tens of Hz) to achieve a faster initial convergence.

Similarly, B∞ is associated with α∞ and controls the asymptotic notch bandwidth.

Small values of B∞ are preferred (e.g. tenths of Hz) to achieve more accurate
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estimation of the frequency. Bst controls the rate of transition between initial

notch bandwidth B0 and the asymptotic notch bandwidth B∞, and indicates

the time in seconds, in which αf reaches 0.95α∞ in (2.7a). When the algorithm

is used to remove a large number of harmonic components, B∞ should be set

small enough to minimize the bias in the frequency estimates of higher harmonics.

For example, if it is desired to remove harmonics up to 100th order, setting

B∞ = 0.001 would be an adequate choice. In this case, although small values

of B∞ lead to slow frequency adaptation, it would not be problematic, since in

practice, the drifts in the power line frequency are usually slow and the algorithm

can still reasonably track the variations.

The forgetting factor of the frequency estimator λf is initially small to achieve

a fast convergence and is gradually increased to achieve a more accurate estimate

(described in (2.7b)). In the alternative form, P0 is associated with λ0 and controls

the initial settling time of the frequency estimation algorithm. Smaller values of

P0 are preferred (e.g. tenths of seconds) to achieve a faster initial convergence.

Similarly, P∞ is associated with λ∞ and controls the asymptotic settling time

of the frequency estimation algorithm. Considering the fact that the power line

frequency drifts are slow, larger values of P∞ are preferred (e.g. a few seconds)

to obtain a more accurate estimation of the power line frequency. Pst controls

how fast the settling time changes from the initial value of P0 to its final value

of P∞ and indicates the time in seconds, in which λf reaches 0.95λ∞ in (2.7b).

This transition time should be set large enough (e.g. a few seconds depending on

the notch bandwidth) to allow global convergence.

The settling time of the amplitude/phase estimator (Wa) controls how fast

it responds to the fluctuations in the amplitudes and phases of the harmonics.

In the alternative form, Wa is associated with λa, and indicates the time in

which the estimates of amplitude and phase reach 95% of their asymptotic
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values. The interference frequency bands (e.g. near 50/60 Hz and multiples)

contain both the interference components as well as useful neural signals which

should be preserved. For this purpose, Wa should be selected reasonably large

to obtain an accurate estimation of the interference, thus avoiding the excessive

removal of neural signals, while small enough to allow tracking of the interference

amplitude fluctuations. Depending on the recording environment and subject

movements, Wa may be selected from a few tenths of seconds to a few seconds.

A recommended set of parameter values are suggested in Table 2.1 which could

be initially used for further tuning.

Table 2.1: Recommended Values of Parameters

Parameter Recommended Range

B0 (Hz) 10 – 50
B∞ (Hz) 0.01 – 0.1
Bst (s) 0.5 – 10
P0 (s) 0.01 – 0.5
P∞ (s) 1 – 5
Pst (s) 1 – 10
Wa (s) 0.5 – 5

2.3 Results

Extensive simulations are carried out to quantitatively evaluate the performance

of the proposed algorithm under various signal and parameters conditions. The

algorithm performance is also compared with other popular interference removal

methods. Furthermore, the algorithm is tested on extracellular, electrocorticog-

raphy (ECoG) and electroencephalography (EEG) recordings to illustrate its

performance on real neural data. The results of the performance evaluation
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using synthetic data are described in Section 2.3.1, the performance comparison

results are reported in Section 2.3.2, and the results on real data are presented in

Section 2.3.3. In case the reader wishes to reproduce the results, the parameter

setting in each simulation is provided.

2.3.1 Performance Evaluation on Synthetic Data

Synthetic data are used to quantitatively evaluate the important characteristics

of the proposed algorithm under various signal conditions. Each test sequence

was synthesised by adding a synthetic interference containing 3 harmonics, to a

random portion of real ECoG and extracellular recordings that were recorded in a

controlled condition with negligible amount of power line interference. In all cases,

the phases of the harmonics are randomly chosen in the range of [0, 2π), and their

amplitudes are arbitrarily chosen in [0.1, 1] range. After adding up the harmonics

they are appropriately scaled to give the desired input SNR. The frequency and

power of the interference components are specified in each simulation.

In the rest of this thesis, SNRin and SNRout are used to denote the SNRs

of the algorithm input and output signals, i.e. x(n) and ŝ(n), respectively. It

should be noted that SNRout values are calculated after the algorithm reaches its

steady-state, unless otherwise stated.

Sensitivity to SNRin

The variations in the power of the picked-up interference are usually significant,

leading to different SNRin values from as low as −20 dB (severe interference), to as

high as 30 dB (negligible interference). To ensure proper interference cancellation,

the algorithm is desired to work reliably under various SNRin conditions. To

evaluate this aspect, we generated synthetic sequences whose SNRin ranged

from −20 dB to 20 dB. For each SNRin value, 50 sequences were generated, the
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Figure 2.6: SNRout vs. SNRin. Each figure is obtained at a different sampling rate.
The horizontal plots indicate the mean, the thick bars show the standard deviation
and the thin bars indicate minimum and maximum SNRout values over 50 runs on real
ECoG signals with synthetic interference containing 3 harmonics at 61 Hz, 122 Hz, and
183 Hz (2 harmonics for fs=250 Hz). Consistent high values of SNRout indicate the
robust operation of the algorithm with regard to different SNRin and sampling rates.
Parameter setting: {B0 = 50, Bst = 1, B∞ = 0.1, P0 = 0.1, Pst = 1, P∞ = 2, Wa = 2}.

algorithm was applied to cancel the interference, and the resultant SNRouts were

recorded. In addition the simulation was repeated with different sampling rates

for reliability resting.

Figure 2.6 shows the mean, variance, minimum and maximum of the resultant

SNRout for each SNRin condition and sampling rate. It can be seen that, consistent

high values of SNRout are observed in all the conditions, indicating that the

performance of the algorithm is highly insensitive to SNRin.

Sensitivity to Power Line Frequency

Since the accurate value of power line frequency is a priori unknown, and may

also change over time [32, 33], it is important to test the performance of the
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Figure 2.7: SNRout vs. power line frequency. The horizontal plots indicate the means,
the thick bars show the standard deviation and the thin bars indicate minimum and
maximum SNRout values over 50 runs on real ECoG signals with synthetic interference
containing 3 harmonics. Consistent high values of SNRout are achieved in the wide
range of power line frequencies and sampling rates. The reason for the slight increase
of mean SNRout with frequency is mainly due to the 1/f PSD of neural signals. With
a fixed SNRin, at higher frequencies, the power of neural signals are less, leading to a
more accurate estimation of the interference (neural signals are seen as noise to the
interference estimation algorithm), hence resulting in a better cancellation and slightly
higher SNRout compared with the lower frequencies. Parameter setting is the same as
that of Figure 2.6.

algorithm with regard to different power line frequencies. For this purpose,

synthetic sequences with fundamental frequencies ranging between 45 Hz to

65 Hz were used as the input to the algorithm, and output SNRs were measured

to test the performance. This frequency range covers the worst case power line

frequency deviations [32,33]. As can be seen in Figure 2.7, high values of SNRout

(> 30 dB) were consistently achieved for different power line frequencies in all the

SNRin conditions. The results demonstrate the robust operation of the algorithm

even in worst case power line frequency deviations. Furthermore, it can be seen

that the algorithm can automatically detect the interference at 50 Hz or 60 Hz,
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and no a priori setting of the nominal power line frequency is required.

Trade-off between Settling Time and SNRout

As discussed in Section 2.2.4, there is a trade-off between SNRout and the

amplitude settling time (Wa). To track the abrupt changes in the interference

power, fast settling time is desired. Typically, when Wa is set small to have a

fast tracking response, the SNRout would decrease. On the other hand, when

Wa is set large to achieve a higher SNRout, then the settling time will increase.

It is desirable to achieve a high SNRout along with a reasonably fast settling

time. Figure 2.8 shows the average values of SNRout versus different settling

time values (Wa). It can be seen that high values of SNRout (≈ 30 dB) can be

obtained with a reasonably low settling time (< 1 s).
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Figure 2.8: Trade-off between amplitude settling time and SNRout. The plots display
the SNRout versus amplitude settling time Wa, for different P∞ and B∞. SNRin is set
to 0 dB for all the cases. The results show that high SNRout values (> 30 dB) can
be achieved along with a reasonably fast settling time (< 1 s at Wa = 1). Parameter
setting: {fs = 1 kHz, B0 = 50, Bst = 1, P0 = 0.1, Pst = 1}
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Figure 2.9: Amplitude tracking. In (a-1)–(a-3), the amplitudes of the harmonics were
gradually increased to twice their initial values. In (b-1)–(b-3), the amplitudes of the
harmonics underwent a step jump. The actual amplitude is displayed by ( ). The
algorithm was applied with different values of Wa which led to different settling times
and SNRout values. The input SNR was set to SNRin = 0 dB, and SNRout values were
calculated after convergence (t > 35 s). As can be seen, smaller values of Wa have
led to faster amplitude tracking, however yielded lower SNRout. On the other hand,
larger values of Wa resulted in a slower amplitude tracking but yielded higher SNRout.
Parameter setting: {fs = 1 kHz, B0 = 50, Bst = 1, B∞ = 0.1, P0 = 0.1, Pst = 1,
P∞ = 1}.

Tracking of Amplitude and Frequency Fluctuations

The drifts of the power line frequency are typically small, while the fluctuations

of the harmonics amplitudes can be quite large [32, 33]. In order to effectively

reject the power line interference, the algorithm should be able to adequately

track the frequency and amplitude variations.

To illustrate the amplitude tracking performance, the harmonic amplitudes
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Figure 2.10: Frequency tracking. The actual frequency is shown by ( ). In (a)
and (c) the fundamental frequency is swept from 59 Hz to 61 Hz. It can be seen that,
the estimated values properly track the changes of the frequency, with the minimum
SNRout = 26 dB during tracking. In (b) and (d), the fundamental frequency is abruptly
changed from 50 Hz to 60 Hz, and the frequency estimates have well track the change.
In this simulation, SNRin = 0 dB and SNRout values are calculated after convergence
(t > 20 s in (b) and t > 40 s in (d)). In (a) and (b), B∞ = 1 and P∞ was varied. In
(c) and (d), P∞ = 1 and B∞ was varied. Parameter setting: {fs = 1 kHz, B0 = 50,
Bst = 1, P0 = 0.1, Pst = 1, Wa = 1}

were increased to twice their initial values and the algorithm was applied with

different settling time values (Wa). Figure 2.9 displays the first three interference

harmonics, where the they underwent a ramp change and a step change. It can

be seen that, the estimates of the amplitudes properly tracked the actual values.

To illustrate the frequency tracking performance, two simulations were done.

In the first simulation, the fundamental frequency of the synthetic harmonics was

swept from 59 Hz to 61 Hz. It can be seen in Figures 2.10(a) and 2.10(c) that,

for all the parameter conditions, the frequency estimates accurately track the

actual values. In the second simulation, the fundamental frequency underwent a
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step change from 50 Hz to 60 Hz. Figures 2.10(b) and 2.10(d) show that, the

frequency estimate converges to the actual frequency with different settling times

which depend on the parameters B∞ and P∞. It should be noted that due to the

use of time-varying parameters in (2.7), the initial convergence is much faster

than is in the operating condition.

Initial Convergence

To illustrate the convergence behaviour of the algorithm, two synthetic sequences

with interference fundamental frequency of 50 Hz and 60 Hz were used. The

interference contained 3 harmonics. Figure 2.11 shows the frequency convergence,

where the frequency estimates converged to the actual frequencies (i.e. 50 Hz

and 60 Hz) in less than 100 ms, while maintaining a high SNRout. This fast

convergence speed is mainly due to adopting time-varying αf and λf . In other

words, the initial convergence is controlled by the parameters B0, Bst, P0 and Pst,

whereas the parameters B∞,P∞ and Wa determine SNRout. The convergence

of the three estimated harmonics is displayed in Figure 2.12, where a quick

(< 100 ms) convergence to actual harmonics is observed.
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Figure 2.11: The initial convergence to two interference frequencies at 50 Hz and
60 Hz. A quick initial frequency convergence can be observed. In this simulation SNRin

= 0 dB, and the values of SNRout were calculated after t = 1 s. Parameter setting:
{fs = 1 kHz, B0 = 50, B∞ = 0.05, Bst = 0.5, P0 = 0.1, P∞ = 2, Pst = 0.5, Wa = 1}.
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Figure 2.12: Initial convergence of the estimated harmonics. The method shows
a fast adaptation of frequency, phase and amplitude. From top to bottom, 1st, 2nd,
3rd harmonic and total interference. The plots show actual components ( ) and the
estimates ( ). In this simulation, SNRin = 0 dB and SNRout = 33 dB (for t > 1 s).
Parameter setting is the same as that of Figure 2.11.

2.3.2 Comparison with Other Methods

The algorithm is compared with narrow- and wide-band notch filtering, and two

adaptive algorithms proposed by Ziarani et al. [20] and Martens et al. [18].

In this section, a performance comparison in terms of SNR improvement, mean

squared error (MSE), and convergence speed is presented in presented. Further,

a comparison between the effects of different interference removal methods on

synthetic neural oscillations is described.

Performance Comparison

Figure 2.13 shows the effect of wide- and narrow-band notch filtering on a

synthetically corrupted ECoG signal. The interference fundamental frequency was

slightly deviated from 60 Hz which translated to even higher deviations in higher

harmonics (Figure 2.13(b)). As can be seen in Figure 2.13(c), narrow-band notch

filters fail to adequately remove the interference with changing frequency. On

the other hand, wide-band notch filters distort the signal PSD (Figure 2.13(d)).
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Figure 2.13: The effect of notch filtering on ECoG signal corrupted with power line
interference. (a) PSD of the actual ECoG signal. (b) PSD of the synthetically corrupted
signal. The interference fundamental frequency is slightly deviated from 60 Hz. (c)
PSD after applying narrow-band (1 Hz) IIR notch filters centred at 60 Hz and multiples.
(d) PSD after applying wide-band (8 Hz) notch filters. (e) PSD after interference
cancellation with the proposed algorithm, where the interference is completely removed
while the signal frequency bands are minimally affected. The narrow-band filter fails to
adequately remove the interference due to its changing frequency. The wide-band filter
distorts the signal spectrum at the rejection bands.

The result of interference cancellation using the proposed method is displayed in

Figure 2.13(e). It can be seen that, the interference is adequately removed while

the signal frequency bands are highly preserved.

The adaptive methods of Ziarani et al. [20] and Martens et al. [18] have been

widely applied to ECG signals and shown effective in removing non-stationary

power line interference. Here, we compare the convergence behaviour and the

asymptotic performances of these methods against the proposed algorithm.

The first simulation is done to evaluate the asymptotic performances of the

algorithms in terms of SNRout versus SNRin. For this purpose, randomly selected
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Figure 2.14: Comparison of asymptotic performance of different interference removal
methods. The plots represent the average and the error bars indicate the maximum
and minimum SNRout. For each SNRin, the SNRout values are obtained throughout 200
independent runs on synthesised sequences of corrupted ECoG signals. The interference
consists of a stationary sinusoid fixed at 59 Hz. The SNRout values are calculated
after t = 60 s to ensure the full convergence of the algorithms. When applied on
ECoG signals, the proposed algorithm consistently yields high SNRout. The Martens’
algorithm performs well in the mean sense; however, large deviations of minimum
SNRout imply that it may not always converge. The Ziarani’s algorithm is sensitive to
the input signal power, thus same parameters cannot be used to achieve an optimal
performance for different values of SNRin. The 10-Hz and 1-Hz notch filters are centred
at 60 Hz. The parameter setting is the same as that of Figure 2.15.

portions of an interference-free ECoG recording were used and each of which

was superimposed with interference containing a single stationary sinusoid at

fI = 59 Hz with a random phase and a determined amplitude. The algorithms

were allowed to fully converge to their steady states and the values of SNRout

were calculated for t > 60 s. As can be seen in Figure 2.14, for all SNRin values,

the proposed algorithm achieves significantly higher SNRout compared with other
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methods. Furthermore, the small minimum and maximum deviations—shown by

the error bars—indicate the reliable convergence and consistent performance of

the proposed algorithm. In this simulation, large lower error bars indicate that

the algorithm under test may fail to converge.

The second simulation is carried out to evaluate the convergence behaviour

of the adaptive algorithms in the mean sense. For this purpose, random signals

with 1/f PSD (mimicking neural signal PSD) were generated, each of which was

superimposed with a single sinusoid (mimicking the interference) whose frequency

was slightly deviated from 60 Hz. Subsequently, the MSEs between the output

of each algorithm and the actual random signal (without the interference) were

calculated. The simulation was then repeated with different values of SNRin

and interference frequency (fI). In this evaluation, faster convergence and lower

MSE values are desirable factors. Figure 2.15 shows that the proposed algorithm

consistently achieves faster convergence and lower MSE compared with the other

methods. Furthermore, it can reasonably achieve its optimum performance

regardless of the initial deviation of the interference frequency from its nominal

value.

In the simulations, we observed that the two other adaptive methods were

sensitive to the large amplitude artefacts—which are usually present in neural

recording—such as electrode displacement and movement artefacts. In addition,

since the performances of the algorithms depend on their parameter setting, we

fine tuned the parameters of each algorithm to achieve its best performance—in

terms of lower MSE and faster convergence—at SNRin = 0 dB and fI = 59 Hz.

Furthermore, the adaptation blocking in the Martens’ algorithm is not applicable

to ECoG signals, thus their SAC 2 method was used.
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Figure 2.15: Learning curves of the proposed, Ziarani’s [20] and Martens’ [18]
algorithms when applied to random signals with 1/f PSD superimposed with a single
stationary sinusoid at fI Hz. The MSEs are calculated through 1000 independent
runs. The parameters of the algorithms were fine tuned to achieve their optimum
performance at SNRin = 0 dB and fI = 59 Hz which is shown in (a). (b) In low SNRin,
the proposed algorithm still yields low MSE, whereas the increased MSE using the other
methods. (c) In high SNRin, the proposed algorithm can further achieve lower MSE.
(d) At fI = 56 Hz; unlike the two other methods, the performance of the proposed
algorithm is highly insensitive to the initial frequency deviations. As can be seen in
(a)–(d) the proposed algorithm consistently yields faster convergence along with lower
MSE compared with the other methods. The nominal frequency is set to 60 Hz in the
Ziarani’s and Martens’ algorithms; however, the proposed algorithm does not require a
priori setting of nominal frequency. Parameter setting, fs = 1 kHz, Proposed:{B0 = 50,
Bst = 0.5, B∞ = 0.1, P0 = 0.1, Pst = 0.5, P∞ = 1, Wa = 1}, Ziarani: {µ1 = 8,
µ2 = 1000, µ3 = 0.02}, Martens:{τ = 200, ζ = 1, ωn/ωnp = 0.02}
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Effects on Synthetic Oscillations

Neural oscillations (bio-markers) can appear at, or in the vicinity of, the in-

terference frequency bands. Since these oscillations are useful for information

decoding, it is important to ensure that they are well preserved and/or undergo

minimal distortion during interference cancellation. To illustrate the performance

of the algorithm in this regard, it is tested on synthetic oscillations contaminated

with interference. For this purpose, a sequence of patterned oscillations in the

range of 50–70 Hz was generated and then added to a background random signal

with 1/f PSD (Figure 2.16(a)). This sequence represents a synthetic neural

signal. Subsequently, a sinusoid (representing the interference) was synthesised

and added to the signal. The frequency of this sinusoid was swept from 59 Hz

to 61 Hz, and its amplitude was logarithmically increased, setting SNRin from

10 dB to −20 dB (Figure 2.16(b)).

Different methods of interference removal were applied to the synthesised

signal. Figure 2.16(c) illustrates that the proposed algorithm has tracked and

removed the interference while reasonably preserving the signal components.

Figure 2.16(d) shows that in the Martens’ algorithm, the phase-locked loop (PLL)

has become out of lock due to the oscillations (e.g. 5 < t < 15 s). Figure 2.16(e)

shows that the Ziarani’s algorithm is sensitive to the interference power, thus

same parameters cannot be used to obtain adequate performance for different

power of the signal and/or interference. Furthermore, it has distorted the signal

near the interference frequency band. Figure 2.16(f) indicates that 10-Hz notch

filter has excessively removed the signal components. Figure 2.16(g) shows that

the 1-Hz notch filter has only attenuated the interference near t = 30 s when its

frequency was close to 60 Hz, and failed to remove the interference otherwise.

The resultant SNRouts (calculated for 0 < t < 60) are displayed in Table 2.2.
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Figure 2.16: Simulation with synthetic oscillations. Time-frequency plots: (a) Syn-
thesised signal consisting of bidirectional chirp between 50–70 Hz (representing the
signal of interest) superimposed with a 1/f PSD background signal (representing neural
noise). (b) After adding a sinusoidal interference whose frequency was swept from 59 Hz
to 61 Hz, and its amplitude was logarithmically increased, setting SNRin from 10 dB to
−20 dB. (c) The proposed algorithm has tracked and removed the interference while
reasonably preserving the signal components. (d) In the Martens’ algorithm, the PLL
has become out of lock due to the oscillations (e.g. 5 < t < 15 s). (e) The Ziarani’s
algorithm is sensitive to the interference power, thus same parameters cannot be used
to obtain adequate performance for different power of the signal and/or interference.
Furthermore, it has distorted the signal near the interference frequency band. (f) 10-Hz
notch filter has excessively removed the signal components. (g) 1-Hz notch filter has
only attenuated the interference near t = 30 s when its frequency was close to 60 Hz, and
failed to remove the interference otherwise. The resultant SNRout values (for 0 < t < 60)
are displayed in table 2.2. Parameter setting, fs = 1 kHz, Proposed:{B0 = 20, Bst = 0.5,
B∞ = 0.1, P0 = 0.2, Pst = 1, P∞ = 0.5, Wa = 1}, Ziarani: {µ1 = 12, µ2 = 0.001,
µ3 = 0.2}, Martens:{τ = 100, ζ = 1, ωn/ωnp = 0.01}
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Table 2.2: Results of Simulation with Synthetic Oscillations

Methods SNRout (dB)

Proposed 12.06

Martens 8.60

Ziarani 7.90

10-Hz Notch 2.20

1-Hz Notch −7.85

2.3.3 Performance Evaluation on Real Data

Three types of biosignals including extracellular, ECoG and EEG recordings

were used to demonstrate the performance of the algorithm on real data. These

signals were recorded in ordinary environments, thus containing a significant

amount of power line interference. The PSD of the recorded signals are displayed

in Figures 2.17(a), 2.17(d) and 2.17(g) where the presence of the power line

interference can be clearly seen. It can be observed that, the harmonics’ power

can be tens of dB higher than the signal power at the contaminated bands.

Furthermore, both odd and even harmonics may be present in the recorded

signals.

The extracellular, ECoG and EEG recordings were sampled at 40 kHz, 1 kHz

and 128 Hz, respectively. The algorithm was applied to the recorded signals to

cancel the interference. Figures 2.17(b), 2.17(e) and 2.17(h) show the PSDs after

interference cancellation, where the harmonics have been removed. In addition,

the algorithm does not distort the signal frequency components where no harmonic

is present. For example in Figure 2.17(b), the PSD remained unchanged at the

frequency of the 4th harmonic. Figures 2.17(c), 2.17(f) and 2.17(i) display portions

of the gamma band signals before and after interference cancellation.

It is worth mentioning that, a favorable property of the proposed algorithm
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Figure 2.17: Results of the experiment with real data. First column: PSD of the actual
recorded signals containing power line interference. Second column: after applying
the proposed algorithm, where the interference harmonics are removed. Third column:
the actual recorded signal ( ), and after interference cancellation by the proposed
algorithm ( ), displayed in the gamma band (> 30 Hz). Note that in (b), the
PSD remained minimally affected at 240 Hz (4th harmonic), where no harmonic was
present (compare with (a)). In this experiment common parameter setting is {B0 = 50,
B∞ = 0.05, Bst = 1, P0 = 0.1, P∞ = 4, Pst = 1}; and specific parameters settings are,
extracellular: {fs = 40 kHz, A = 2}, ECoG: {fs = 1 kHz, Wa = 1}, EEG: {fs = 128 Hz,
Wa = 0.5}.
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is that the proper parameter values remained the same (except Wa) for various

signal modalities and sampling rates, confirming the usefulness of defining the

alternative parameters. This property makes the algorithm easy to apply on

various types of biopotential recordings, with only a slight adjustment of its

parameters.

2.4 Discussion

In the design of the algorithm, a number of techniques are used to reduce its

computational complexity. First, trigonometric function calculations are avoided

in several parts including frequency estimation, harmonic frequencies calculation,

and harmonic sinusoids generation. Second, the RLS algorithm is simplified

by diagonal approximation of its covariance matrix. These considerations are

particularly important in hardware implementation, and significantly reduce the

circuit area.

Although the algorithm is mainly proposed for power line interference can-

cellation, it can also be used to cancel other types of harmonic interferences

which may present in the recording. For this purpose, the corner frequencies

of the bandpass filter should be adjusted accordingly. Furthermore, the algo-

rithm is applicable to other types of biopotential recordings including ECG and

electromyography (EMG) with no modification; further simulation results for

these signals are presented in Chapter 3. Moreover, we tested the algorithm on

signals corrupted with different types of artefacts such as muscle, eye movement,

electrode displacement, and other low and high frequency artefacts. We observed

that the algorithm is highly robust to such artefacts. It is important to note

that the input signal is assumed to be zero-mean, thus any DC bias should be

removed before applying the algorithm.
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It should be noted that the algorithm relies on the first harmonic of the inter-

ference for frequency estimation. In some situations, however, the first harmonic

is suppressed by the recording amplifier, but higher harmonics are still present in

the signal. In such situations, the bandpass filter can be accordingly adjusted

(e.g. to 90–130 Hz) to estimate the frequency of the second harmonic (κ2), and the

fundamental frequency estimate κf can be obtained through κf =
√
(κ2 + 1)/2

and subsequently be used for harmonic estimation.

2.5 Conclusion

A robust and efficient algorithm is proposed to remove non-stationary 50/60 Hz

interference and its harmonics, from neural recordings. It is highly insensitive

to the power of the interference, maintaining high output SNR (> 30 dB) in

a wide range of signal and interference conditions. It can effectively track

the variations in the frequencies, amplitudes and phases of the harmonics to

cancel the interference without compromising the actual neural signals at the

interference frequency bands. Furthermore, it features low computational and

memory requirements despite using no reference signal for estimation. This

property makes the algorithm suitable for real-time applications and hardware

implementation.

The convergence, tracking, and estimation accuracy of the algorithm can be

controlled through several parameters. An alternative form of these parameters

are introduced which have intuitive meaning, and make the parameter adjustment

straightforward.

The performance of the algorithm is quantitatively evaluated in terms of

output SNR, trade-off between settling time and SNRout, and the convergence

behaviour. High SNRout (> 30 dB) is consistently achieved in different conditions
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of SNRin (−30 dB to 30 dB), power line frequencies (45 Hz to 65 Hz), and

sampling rates (as low as 100/120 Hz). Test results on the trade-off between

settling time and SNRout as well as the tracking behaviour, demonstrate the fast

adaptation of the algorithm to interference variations, while maintaining a high

SNRout. This makes the algorithm highly suitable for practical applications such

as in wearable recording systems, where the interference power undergoes large

variations. Moreover, the algorithm features quick (< 100 ms) initial convergence.

The comparative performance evaluation between the proposed algorithm

with two other adaptive methods shows the improved performance of the proposed

algorithm in terms of noise immunity, output SNR and convergence behaviour.

The algorithm is tested on real extracellular, ECoG and EEG recordings,

where almost complete removal of the interference—while preserving the neural

signals—is observed. It is also applicable to other types of biopotential recordings

including ECG and EMG, with no modification.



Chapter 3

Power Line Interference

Cancellation: VLSI Architecture

and ASIC

3.1 Introduction

In modern BMI applications, real-time processing of neural signals at hardware

level is desired for achieving a fully integrated design. This requires the inter-

ference cancellation to be performed at the hardware side. Thus, it is desired

to attenuate the interference at the circuit level. In this chapter, we present

the VLSI architecture and chip implementation of the proposed interference

cancellation algorithm for multichannel biomedical recording applications.

In general, the sources of the interference include displacement currents

coupled to the electrodes and to the body, the imbalance in the amplifier’s input

impedances and/or skin-electrode impedances (leading to ‘the potential divider

effect’), and magnetic induction in the loops formed by the electrode wires [29].

51
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Shielding wires, electrodes, and the subject, and twisting cables are basic ways

to reduce the interference caused by coupling and magnetic induction [3, 29].

Further interference rejection can be obtained in analog by adopting a high

CMRR amplifier [53, 54], a driven right leg circuit [55], active electrodes [36, 56],

gain adaptation [35], and isolation [57]. These techniques are quite effective in

attenuating power line interference, and help relax the required input dynamic

range, but they may not completely eliminate the interference, especially in

two-electrode recording amplifiers [3].

The interference shows itself in the form of common-mode and differential

mode voltage across the amplifier’s inputs. Common mode interference voltage

can be easily rejected by adopting a high CMRR amplifier [53, 54]. In three-

electrode recording, a driven right leg circuit is the most practical way to reduce

the common mode voltage further [55]. Drawbacks are that, it is potentially

unstable, and requires relatively high biasing current to drive the small resistance

connected to the patient’s body [58]. Having said that, a major portion of the

interference is due to the transformation of the common mode voltage into a

differential mode voltage due to the potential divider effect. This effect can be

mitigated by adopting several techniques such as active electrodes, [36, 56], gain

adaptation [35], and isolation [57].

Digital and analog notch filtering are practical ways to reject the residual

interference by attenuating predetermined frequency bands (i.e. 50 or 60 Hz

and multiples). Modern analog notch filters do not require large passives and

can be fully implemented on silicon [37,59]. Analog notch filtering reduces the

risk of saturation especially when the amplifier does not have a high CMRR.

Nevertheless, a drawback is that to account for the inherent variations in power

line frequency, the notch bandwidth cannot be too narrow, thus resulting in an

increased distortion to the signals near 50 or 60 Hz (or harmonic frequencies)
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[18, 20]. This distortion may be acceptable if those bands are not included in

subsequent signal analysis. However, in some applications such as neural signal

analysis, the biosignals near 50 or 60 Hz (or harmonic frequencies) are especially

important and should undergo minimal distortion during interference rejection.

Therefore notch filtering would not be the best choice for these applications since

it distorts the signal bands of interest. Another analog approach is the direct

interference cancelling (DIC) scheme which rejects the interference by adding

to it a compensation signal which is equal to the interference but 180° phased

shifted [60]. Similar to notch filtering, this approach distorts the signals in the

vicinity of 60 Hz [60]. In addition, the transient response caused by closing the

DIC feedback may cause amplifier saturation and its large settling time (≈ 3 s)

may be unacceptable in some real-time applications [60].

Given a sufficient dynamic range of a recording amplifier, digital adaptive

filtering algorithms can be alternatively utilized to cancel out the 50 or 60 Hz

noise and harmonics with minimal distortion to the actual biosignals. Since

interference voltage can vary in orders of magnitude in different recording condi-

tions, and also its frequency may undergo small drifts, these algorithms should

be robust to different signal and interference strengths, and frequency drifts. Fur-

thermore, low computational complexity would be desirable to facilitate hardware

implementation for ambulatory or implanted recording systems.

In summary, the reasons we chose to perform adaptive filtering in digital

domain are as follows:

• In some applications the bio-signals near 50/60 Hz and harmonic frequen-

cies are particularly important and should undergo minimal distortion

(e.g. gamma oscillations in neural recording). Although it requires the

amplifier to have sufficient dynamic range, the adaptive filtering in digital

better preserves signal frequency components and introduces less filtering
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distortion to nearby frequencies compared with analog notch filtering.

• There are usually higher harmonics present in the interference for which

the frequency deviations are higher than the fundamental harmonic. This

requires the analog notch bandwidths to be larger for higher harmonics in

order to effectively suppress them in case of frequency deviations. This, in

turn, increases the distortion to the signal especially at the frequencies of

higher harmonics. Through adaptive filtering in digital, since the fundamen-

tal and harmonic frequencies are accurately estimated, the higher harmonics

can be cancelled while significantly preserving signal components, providing

higher SNR compared to the fixed-frequency analog notch filtering.

• Notch filtering in analog usually requires large passives for realization

leading to large circuit area. Through the state of the art approaches, the

area is significantly reduced, yet still not small enough to suit large channel

count or multiple harmonics (e.g. 1 mm2 in 0.18 µm in [37] for 1 harmonic

and 1 channel). The proposed architecture in this chapter scales very well

with channel count or number of harmonics to be processed which suits it

for multichannel interference removal. Apart from the performance, output

signal quality and area, the trade-off is the power consumption which is

lower for analog approaches.

In this chapter, we present the VLSI architecture and ASIC of the previ-

ously proposed algorithm in Chapter 2. The algorithm is extended to cater to

multi-channel recording, and its computational complexity and performance are

compared against other popular adaptive methods. The VLSI architecture is

optimized for removing multiple harmonics from multi-channel recordings by

making use of the same hardware blocks at higher clock rates for harmonic

estimation. A prototype was fabricated in a 65-nm CMOS, and its functionality
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is tested using real ECG, EMG, EEG, ECoG and extracellular recordings. It

should be noted that in this chapter, the simulation and testing results are not

limited to neural recordings, and we consider other modalities of biopotential

recordings as well to demonstrate the applicability of the algorithm to those

recording modalities.

3.2 Algorithm Extension for Multichannel

Recording

Let xi be the measured biopotential signal from channel i:

xi(n) = si(n) + pi(n). (3.1)

where, si(n) is the actual biosignal, and pi(n) is the power line interference,

all recorded from channel i and sampled at fs Hz. pi(n) consists of harmonic

sinusoids with unknown frequencies, phases and amplitudes as

pi(n) =
M∑
k=1

ai,k cos(kωfn+ φi,k)︸ ︷︷ ︸
hi,k(n)

. (3.2)

Here, ωf is the fundamental frequency in rad/s, ai,k and φi,k are the amplitude and

phase of the kth harmonic in the ith channel, and M is the number of harmonics

present in the interference. Denoting ĥi,k as the estimate of hi,k; the estimates of

the actual signals ŝi(n) are obtained as

ŝi(n) = xi(n)−
M∑
k=1

ĥi,k(n). (3.3)

For estimation of ĥi,k, the procedure is the same as in Section 2.2, except
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for the harmonic estimation, which is optimized for multichannel processing. It

should be noted that since the interference frequency is the same among all the

channels, the obtained frequency estimate from one channel (i.e. xj) can be used

in harmonic estimation for the other channels. In other words, we can replace

x(n) by xj(n) in (2.4a) and obtain κf for harmonic estimation.

3.2.1 Harmonic Estimation for Multichannel Recording

As previously discussed in Section 2.2.2, harmonic estimation is carried out in

the following steps: First, the harmonic frequencies (i.e. cos(kωf)) are directly

calculated from κf by using the Chebyshev method. Subsequently, M pairs

of orthogonal harmonics with fixed phases and amplitudes are generated by

using a digital wave-guide oscillator (2.9a). It is worth mentioning that the gain

control in (2.9b) may be omitted from hardware implementation to save circuit

area with negligible degradation of the performance. Finally, amplitude and

phase of each harmonic are estimated. Here, in addition to the simplified RLS

algorithm, the least mean squares (LMS) algorithm is presented for amplitude

and phase adaptation which leads to a lower computational cost with reasonable

performance trade-off.

Given from (2.9) that uk and u′k are orthogonal sinusoids with the frequency

of kωf , and fixed amplitude and phase, harmonic k in channel i is estimated

through linear combination of uk and u′k as

ĥi,k(n) = wi,k(n)uk(n) + w′i,k(n)u
′
k(n), (3.4)

where wi,k and w′i,k are adaptive coefficients.
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Defining the instantaneous error as

ei,k(n) = xi(n)− ĥi,k(n),

the RLS algorithm minimizes the cost function

Ei,k =
n∑
l=0

λn−la e2i,k(l),

where 0 � λa < 1 is the forgetting factor. As shown in Section 2.2.2, with

orthogonal inputs and λa close to 1, the sample correlation matrix of the RLS

algorithm can be well approximated by a diagonal matrix, leading to a consider-

able reduction in computational cost. The simplified RLS update equations are

obtained as

ri,k(0) = r′i,k(0) = wi,k(0) = w′i,k(0) = 0,

ri,k(n) = λari,k(n− 1) + uk(n)
2, (3.5a)

r′i,k(n) = λar
′
i,k(n− 1) + u′k(n)

2, (3.5b)

wi,k(n+ 1) = wi,k(n) + uk(n)ei,k(n)/ri,k(n), (3.5c)

w′i,k(n+ 1) = w′i,k(n) + u′k(n)ei,k(n)/r
′
i,k(n), (3.5d)

where, for channel i and harmonic k, ri,k and r′i,k are the diagonal elements of

the sample correlation matrix.

Alternatively, LMS algorithm minimizes the cost function

E ′i,k = E{|ei,k|2},
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with the update equations given as

wi,k(n+ 1) = wi,k(n) + µ1uk(n)ei,k(n),

w′i,k(n+ 1) = w′i,k(n) + µ2u
′
k(n)ei,k(n),

(3.6)

where µ1 and µ2 are step sizes. (3.6) can be alternatively used to update the

coefficients; however, given the same convergence rate, (3.5) achieves a lower

steady state error in general condition. Finally, the estimates of interference-free

signals ŝi(n) are obtained through (3.3).

3.3 Simulation and Comparative Results

Important factors to evaluate the algorithm performance include SNR improve-

ment, computational complexity and real-time performance, reliability and speed

of convergence, robustness to different magnitudes of the input signal and/or

interference, robustness to power line frequency deviations, and the requirement

for a reference signal. The proposed algorithm is compared with popular interfer-

ence cancellation methods in terms of computational complexity and interference

rejection performance. The computational complexity of the methods is presented

in Table 3.1. The interference rejection performance was evaluated by using real,

interference-free biopotential recordings contaminated with synthetic interference.

In the rest of this chapter, SNRin is defined as the ratio of the power of the

clean signal (used for synthesising the chip input) to the power of the synthesised

interference. SNRout is the ratio of the power of the actual clean signal to the

power of the residual interference and any added noise or distortion in the chip

output. They are calculated through

SNRin = 10 log(
∑
n

si(n)
2/
∑
n

pi(n)
2), (3.6a)
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SNRout = 10 log(
∑
n

si(n)
2/
∑
n

(si(n)− ŝi(n))2), (3.6b)

where si is the clean bio-signal used for synthesizing the corrupted sequence for

testing, and ŝi is the signal after interference cancellation (i.e. chip output), all

for channel i.

The parameters of all the methods were tuned to give their best performance

at SNRin = 0 dB, and interference frequency (fI) of 60 Hz.

Table 3.1: Comparison of Computational Complexity

Proposed—RLS Proposed—LMS [20] [18] ANC [40]†

Gains 10 + 2MI 10 + 2MI 4MI 5I + 13MI 2I

Multipliers 4 + 2M + 6MI 4 + 2M + 6MI 4MI I + 4MI 4I

Dividers 1 + 2MI 1 0 MI 0

Adders 13 + 4M + 7MI 10 + 2M + 4MI 5MI 5I + 14MI 4I

Registers 10 + 2M + 4MI 13 + 2M + 4MI 3MI 2I + 7MI b 14 fs/fNc
Sin/Cos 0 0 2MI 2MI 0

Reference No No No No Yes

†Only applicable to fundamental sinusoidal component of the interference, i.e. M = 1.
fN is the nominal line frequency which is either 50 Hz or 60 Hz.

Figure 3.1 shows the learning curves of different adaptive methods. The

MSE curves were estimated through 1000 independent runs using synthetically

corrupted biopotential signals. Wherever possible, the parameters were adjusted

to achieve the same convergence rate for each method for a better comparison.

The ANC used a high quality reference signal with SNR of 100 dB, while no

reference signal is required for the other methods. Despite using no reference

signal, the performance of the proposed methods is similar to that of the ANC

which requires a high quality reference signal, while outperforming the other

methods and showing a consistent performance across different signal modalities.
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It should be noted that the ANC becomes ineffective if the interference contains

high order harmonics. In the proposed method, the LMS and RLS adaptation

yield similar results; however, the LMS step sizes are more difficult to adjust and

are slightly sensitive to large frequency deviations.

Figure 3.2 shows the SNR improvement obtained using different methods.

The results show that while the method of [18] and ANC yield comparable results

to the proposed algorithms at SNRin = 0 dB, their performance significantly

deteriorates when the interference is strong (SNRin = −30 dB).

3.4 VLSI Architecture

To allow an efficient and scalable implementation for multiple channels and/or

harmonics, a sequential architecture is proposed. Moreover, pipelining and

resource sharing techniques are utilized to increase the throughput, and optimize

the area.

Scalable Sequential Architecture

The algorithm can be implemented through either a parallel or a sequential

structure. On one hand, a parallel structure yields higher throughput, however

requires large circuit area and is not scalable and practical with increasing

number of channels and/or harmonics. On the other hand, a sequential structure

is scalable, and significantly saves the area at the cost of a higher clock frequency.

The frequency increase is practical since biomedical recording applications usually

require low bandwidth (i.e. < 10 kHz). For example, to remove 5 interference

harmonics, sampled at 10 kHz, from 100 channels, the maximum clock frequency

required by the proposed sequential architecture will be 10 MHz which is in the

practical range. Thus, we propose a sequential architecture to obtain a scalable
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Figure 3.1: Learning curves of different adaptive methods on different modalities
of biopotential signals. The interference contained a single sinusoid at 57 Hz, and
SNRin = 0 dB. The nominal line frequency for [20] and [18] was set to 60 Hz, and the
ANC used a high quality (SNR = 100 dB) reference signal.
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Figure 3.2: Output SNR for different methods and signal modalities. Error bars
represent the minimum values. Each bar is the average SNRout for 100 runs on synthetic
signals with interference frequencies of fI ∼ N (60, 1). The parameters were tuned to
have the same convergence rate and highest SNRout at SNRin = 0 dB and fI = 60 Hz.

and area-efficient design, while utilizing the pipelining technique to increase

the throughput. Having said this, the throughput without pipelining is still

acceptable in biopotential recording since the sampling rate is typically not very

high (i.e. <100 kHz).

The proposed architecture is shown in Figure 3.3, with the timing diagram

of the signals in Figure 3.4, and the detailed signal flow graph in Figure 3.5.

In each cycle of fs, κf is upsampled M times to calculate κ1 · · ·κM which are

sequentially fed to the discrete-oscillator block whereM pairs of harmonic samples

are generated at the rate of M fs. To estimate phase and amplitude for multiple

channels, in each cycle of M fs, samples from I channels are multiplexed and

sequentially fed to phase/amplitude estimation block at the rate of MIfs, where
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the samples of one harmonic in I channels are estimated. At the same time, the

estimated samples are sequentially subtracted from input samples, and fed into

serial to parallel shift registers. After MI cycles, all MI samples are subtracted

from all I channels and the output is valid.

Pipelining

Pipelining is used to shorten the critical path (shown in Figure 3.5) and improve

the throughput. The registers which hold the state variables are used to achieve

pipelining (marked by P in Figure 3.5) without inclusion of extra pipeline registers.

This causes sample latency of 1 for frequency estimator, 2 for harmonic generator,

and 1 for phase/amplitude estimator. In other words, 2-sample old frequency

estimate and 1-sample old adaptive coefficients are used to estimate current

estimate of harmonics. The latency in harmonic generator only leads to a phase

shift which does not affect the adaptation. The effect of latencies in frequency

and phase/amplitude estimators is negligible since the variation in the frequency,

amplitude and phase of the interference are much slower than the sampling rate.

After pipelining, the critical path delay is equivalent to the delays of 6 adders

(11 before), 1 multiplier (4 multipliers and 2 dividers before), and 3 multiplexers

(5 before).

Resource Sharing

The hardware resources in several blocks are shared to improve the area efficiency

at the cost of twice higher clock rate for the shared computational block. For

this purpose, the inputs are multiplexed and sequentially fed to the shared

block, and the output are demultiplexed and latched. Shift registers are used to

sequentially store/retrieve the states. In the band-pass filter a biquad section

is reused for implementing the 4th-order filter. In the frequency estimator, the
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Table 3.2: Shared Hardware Resources

Block Gain Multiplier Divider Adder Registers Max Clock

Band-pass Filter 2 0 0 4 5 2fs

Freq. Estimator 5 2 1 5 5 2fs

Oscillator 0 2 0 4 2 + 2M M fs

RLS Estimator 1 3 1 4 4MI 2MIfs

LMS Estimator 2 2 0 3 2MI 2MIfs

Accumulator 0 0 0 2 I MIfs

Total—RLS 7 7 2 17 12+I+2M+4MI 2MIfs

Total—LMS 8 6 1 16 12+I+2M+2MI 2MIfs

averager and a multiplier is reused. In the amplitude/phase estimator, the

circuitry implementing the RLS/LMS update equation is reused for calculating

the two adaptive coefficients. The shared modules are highlighted in Figure 3.5.

The hardware resources and the clock rates of the blocks are listed in Table 3.2.

3.5 Chip Implementation and Measurement

Results

A prototype of the proposed—RLS algorithm was implemented in a 65-nm CMOS

process. In this prototype M=3, I=1, fs=1.25 kHz, and the chip input/output

word-length was 16-bit. The design was implemented in fixed-point, where opti-

mum word-lengths were obtained through worst-case simulation. The resource

sharing techniques were utilized (except for the bandpass filter block) to save

circuit area. The architecture was coded in Verilog, and simulated in Model-

Sim Altera. The hardware description was synthesised using Synopsys Design

Compiler for a 65-nm CMOS process.

The chip was interfaced by using an AVR microcontroller for testing purpose.

The microcontroller circuit is solely used for testing to get the data from a PC
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Figure 3.6: Chip testing results. Right: Chip output SNR vs. input SNR where
fI ∼ N (60, 1). Left: Chip output SNR vs. interference fundamental frequency where
SNRin = 0 dB. In both tests the interference contained 3 harmonics. Error bars show
the maximum and minimum values over 20 measurements.

through a USB port and feed them to the chip through a synchronous serial

interface, and similarly to read the chip output data and transfer them to the

PC. For this purpose, the microcontroller generates clock signal, reset signal, and

serialized data signal, and reads serialized output signal from the chip. In this

chip synchronous serial interface was implemented internally to communicate

with the main interference cancellation module (16-bit input and output buses).

Since there were other modules from others’ work implemented in the same chip,

we had limitation on the number of the available pins and therefore used serial

interface.

For validation, a series of synthesised and real recordings were fed into the chip

and the output was measured and verified against a full-precision golden model

implemented in MATLAB. The interference rejection performance of the chip

was tested with regard to input SNR and interference frequency. Figure 3.6(a)

shows the chip SNRout for SNRin between −20 and 20 dB, and fI ∼ N (60, 1),

where an average SNR improvement of 30 dB was obtained. Figure 3.6(b) shows

the output SNR at interference frequency range of 45–65 Hz, and SNRin = 0 dB,

where a reliable operation within this frequency range can be observed. Figure 3.7
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Chapter 3. Power Line Interference Cancellation: VLSI Architecture 69

shows samples of chip input and output signals in time and frequency domains.

It can be seen from PSDs that the harmonics are completely suppressed while

the signal components are reasonably well preserved. It should be noted that the

algorithm automatically converges to 50 Hz or 60 Hz frequencies regardless of the

initial conditions. This is not the case with [20] and [18], since their convergence

may be compromised when their initial frequency is far from actual interference

frequency.

To demonstrate the chip performance when the interference changes in fre-

quency or amplitude, we carried out three tests on ECoG signals. In all the

tests, the lengths of the input signals were 1 minute, and the SNRout values were

calculated for t > 20 s.

In Test 1, SNRin = 0 dB and the interference consisted of three stationary

harmonics with the fundamental frequency of 59 Hz. The signal was then fed into

the chip in real-time and the output was recorded. Figure 3.8 shows the result of

Test 1. The PSD of the chip output signal can be seen in Figure 3.8 showing that

the interference is significantly attenuated. Furthermore, the signals traces in

the time domain clearly show that the chip output properly follows the reference

model output.

In Test 2, the interference power was suddenly increased, changing the SNRin

from 0 dB to −10 dB. Figure 3.9 shows the chip input and output signals. It

can be seen that, the chip output consistently follows the reference model output.

Moreover, after the step jump in the interference power at ( ), the chip output

adapted to the change to reject the residual amount of the interference.

In Test 3, SNRin = 0 dB and the interference fundamental frequency was

changed from 60 Hz to 60.2 Hz. The chip input and output signals are shown

in Figure 3.10. It can be seen that, the chip output consistently follows the

reference model output. Moreover, after the frequency change at ( ), the chip
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Figure 3.8: Testing result with real-time data. (a) PSD of the clean ECoG signal
used for simulation. (b) PSD of the signal contaminated with synthetic interference
with the fundamental frequency of 59 Hz, which served as the chip input signal (SNRin

= 0 dB). (c) PSD of the chip output signal (SNRout = 28.9 dB). (d) PSD of the
output from the full-precision reference model (SNRout = 31.1 dB). The slight difference
between (c) and (d) is due the precision loss in fixed-point implementation. (e) Plots of
contaminated signal ( ), chip output ( ) and reference model output ( ), where
the interference is removed, and the chip output accurately follows the reference model
output.
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Figure 3.9: Response to a step change in interference power. The chip input signal
( ) was synthesised by adding a synthetic interference, containing three harmonics,
to a pre-recorded clean ECoG signal. The power of the increased at the time instance
indicated by ( ) (SNRin = 0 dB before ( ) and SNRin = −10 dB after ( )).
The plots show the contaminated input signal ( ), the chip output signal ( ) and
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Figure 3.10: Response to a step change in the interference fundamental frequency.
The fundamental frequency is changed from 60 Hz to 60.2 Hz at the time instance
indicated by ( ). The plots show the original signal ( ), the contaminated signal
serving as the chip input ( ), the chip output signal ( ) full-precision reference
model output ( ). It can be seen that the chip output adapts to the change and
closely follows the output of the reference model.



72 Chapter 3. Power Line Interference Cancellation: VLSI Architecture

Table 3.3: Reference Model and Chip SNRout

Test SNRin (dB)
SNRout (dB)

Reference model Chip

Test 1 0 31.1 28.9

Test 2 −10 29.5 27.8

Test 3 0 29.2 28.3
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Figure 3.11: The chip layout (left) and die (right) photos. The area consumed by the
interference removal module is approximately 0.11 mm2.

output adapted to the frequency change and approached the actual signal.

The SNRout values are displayed in Table 3.3. Slightly less SNRout values

of the chip output compared with the reference model output are due to the

precision loss caused by fixed-point arithmetic used in the chip implementation.

Figure 3.11 shows the chip micrograph, where 0.11 mm2 of area is consumed

by the module. The specifications of the fabricated chip and a comparison with

other works are presented in Table 3.4 and Table 3.5, respectively.
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Table 3.4: Summary of Chip Specifications

Specification Value

Technology 65-nm CMOS

Area 0.11 mm2

Total Power 77 µW

Supply Voltage 1.2 V

Sampling Rate 1.25 kHz

Number of Harmonics 3

Number of Channels 1

Input/Output word-length 16 bits

Clock Frequency 7.5 kHz

Average SNR Improvement 30 dB

Table 3.5: Comparison with Other Works

[61] [62] [63] This Work

Tech. FPGA FPGA 0.18 µm 65-nm

Word-length 16-bit 16-bit 20-bit 16-bit

Gate Count 77 k ≈40 k 41 k 85 k

Power 106 mW N/A N/A 77 µW

SNR imprv. 29.9 dB 15 dB N/A 31 dB

# Harmonics 1 1 4 3

Algorithm LMS ADALINE LMS Proposed—RLS

Reference Yes No Yes No

Results Exp Exp Sim Exp
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3.6 Conclusion

In this chapter we presented the scalable VLSI architecture and ASIC of the

previously proposed algorithm for power line interference cancellation in multi-

channel biopotential recording. The proposed VLSI architecture is scalable for

processing multiple channels and/or harmonics. The area is optimized through

sequential implementation and resource sharing, while the throughput is enhanced

through pipelining. The measurement results from a prototype implemented

in a 65-nm CMOS showed an average SNR improvement of 30 dB, which was

consistently achieved for input SNR of −20–20 dB and interference frequencies

of 45–65 Hz for all modalities of biopotential signals.



Chapter 4

Unsupervised Spike Sorting Based

on Discriminative Subspace

Learning

4.1 Introduction

As discussed earlier, extracellular neural signals that are recorded by inserting

microelectrodes into the brain tissue consist of LFPs, the action potentials

(also called spikes) from a few surrounding neurons, and noise. For obtaining

(multi-)unit activity, the signal is often filtered in 300–5000 Hz frequency band

and spikes are identified through using a spike detection method. In many

neuroscience studies, it is necessary to sort the spikes after detection so that the

spikes generated by an individual unit fall into one cluster. The spike sorting

stage is fundamental to the neuroscience studies which involves the analysis of

spike rates, spike time synchrony, and inter-spike interval [16, 17].

Common spike sorting methods involve detecting neural spikes, extracting

75
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Detection Alignment
Feature

Extraction
Dimension
Reduction Clustering→ →

x
y z

→ →

Figure 4.1: Spike sorting process.

and selecting features from detected spike waveforms, detecting the number of

neurons, and assigning the spikes to their originating neurons [16]. The signal

processing chain used for spike sorting is shown in Figure 4.1. For spike detection,

methods based on absolute value thresholding, nonlinear energy operator, and

wavelet have been widely used [17].

Among different feature extraction methods, principal component analysis

(PCA) and discrete wavelet transforms (DWT) are most commonly used [16,17,64].

PCA projects the spikes to a set of orthogonal basis vectors that represent the

largest variance of the data. In wavelet-based methods the spikes are decomposed

into wavelets and the decomposition coefficients are used as features. A good

feature extraction method should retain the most useful information for discrimi-

nating different spike shapes in a reasonably low dimension [17]. Some efforts have

been done to come up with better feature extraction for spike sorting including

methods based on waveform derivatives [21], Laplacian eigenmaps [22], wavelet

optimization [23], and Fourier transform [24]. Although these methods can

provide more discriminative features with reasonable dimension reduction, they

do not necessarily seek for the most discriminative subspace for clustering [65].

Hence, the clusters which appear inherently separable in some discriminative

subspace may overlap if projected using conventional features extraction meth-

ods. Such cluster overlaps increases the misclassification, may lead to incorrect
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detection of number of clusters, hindering reliable clustering. Therefore, feature

learning methods which seek for the most discriminative subspace is expected to

provide an optimal cluster separation thus improving the clustering performance

in spike sorting.

Depending on the proximity of an electrode to the surrounding neurons, the

recording may contain several spike waveforms generated by different neurons.

In practice, the number of the contributing neurons (i.e. clusters) is not known a

priori and needs to be detected from the data. Incorrect selection of the number

of the clusters heavily affects the performance of the clustering algorithm. One

way to set the number of neurons is through visual inspection of spike waveforms

by an expert observer. This method makes the spike sorting non-automatic and

is prone to human error. It is generally desired that the algorithm detects the

number of the clusters in an unsupervised manner so as to eliminate the user

intervention [16,17].

Automatic detection of the number of neurons often depends on the method

used for clustering. Some common clustering methods used for spike sorting

include k-means, mixture models, neural networks, superparamagnetic clustering

(SPC), and self-organizing maps [16, 24, 66, 67]. Several approaches based on

Bayesian/Akaike information criterion, gap statistics, and statistical test for

Gaussian distribution have been proposed to learn the number of clusters for

k-means and mixture model [68,69]. In SPC the number of clusters are detected by

sweeping the temperature and choosing the clusters which are bigger than a certain

size [67]. In general, various combinations of feature extraction and clustering

have been applied to spike sorting with different levels of success [17,64].

In this chapter, we propose algorithms for unsupervised spike sorting based

on discriminative subspace learning to extract low dimensional and most discrim-

inative features from the spike waveforms, and perform clustering. The core part
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of the algorithms involves iterative subspace selection and clustering.

In the following sections, first the problem formulations are presented and a

subspace learning method using linear discriminant analysis (LDA) and k-means

is introduced. After that, a modification is proposed to the previous algorithm to

make it able to detect and handle outliers including overlapping spikes. Further,

another algorithm is proposed for discriminative divisive clustering which learns

a hierarchy of 1-dimensional subspaces for clustering. We further introduce

methods for selecting the number of neurons along with the algorithms

4.2 Robust discriminative subspace learning for

spike sorting

Most of the feature extraction and dimensionality reduction techniques that have

been used for spike sorting give a projection subspace which is not necessarily the

most discriminative one. Feature extraction (followed by dimension reduction) is

a crucial stage which determines the quality of the next stage clustering. Thus,

feature extraction should transform the data in such a way that similar data

points are close to each other while dissimilar ones are well-separated from each

other.

4.2.1 Problem Formulation

Suppose the spikes are already detected through one of the common spike

detection approaches, aligned to their peak, and stored in X(m×n), where m is the

number of samples stored for each spike waveform and n is the total number of

the detected spikes. We are interested in finding a linear discriminative projection

matrix W(m×d) to transform the spike waveforms to a d-dimensional (d < m)
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feature space Y(d×n) as

Y = W TX. (4.1)

so that the potential clusters have maximum separability. Clustering is then

performed in the subspace Y . For now, it is assumed that the number of clusters

is known and is indicated by K; we will discuss the selection of K in Section 4.4.1

and Section 4.4.2. Let L(n×K) be the cluster indicator matrix which assigns each

data point (i.e. spike) xi to its corresponding cluster Ck so that Li,k = 1 if xi ∈ Ck,

and Li,k = 0 otherwise. The cluster density and separability can be quantized by

within- and between-class scatter matrices respectively defined as

Sw =
K∑
k=1

∑
xi∈Ck

(xi − µk)(xi − µk)
T (4.2)

= (X −MLT )(X −MLT )T , (4.3)

and

Sb =
K∑
k=1

nkµkµ
T
k =MLTLMT , (4.4)

where µk is the center of Ck, M = (µ1, · · · ,µK), and nk is the number of points in

Ck. To achieve a high cluster separability, the within-class scatter should be small

and/or the between-class scatter should be large. This leads to the following

optimization problem:

max
W ,L

Tr
W TSbW

W TSwW
. (4.5)
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4.2.2 Discriminative Subspace Learning using LDA and

k-means

When data labels (i.e. L) are known, LDA seeks for the most discriminative

linear subspace for reducing the dimensionality of the data. Given the within-

class scatter (Sw) and the between-class scatter (Sb) matrices, the optimization

problem in (4.5) forms a generalized eigenvalue problem:

SbW = ψSwW , (4.6)

where ψ is a matrix of eigenvalues. The optimal W is given by the d eigenvectors

corresponding to the largest d eigenvalues. It should be noted that the rank of Sb

is K − 1 where K is the number of classes in the data; thus, the dimensionality

of LDA subspace is at most K − 1.

When the clustering subspace is selected (W is known), a clustering method

such as k-means can be used to obtain the labels. It can be shown that k-means

specifically solves (4.5) when W is fixed [65]. Thus, the general problem in (4.5)

may be solved through alternatively solving for W and L.

With W fixed, (4.5) becomes a k-means clustering in feature space Y ; with

L fixed, it can be solved for W by LDA. A straightforward method is to fix W

(initialized by PCA) and use k-means to obtain L, and using the updated L then

perform LDA to update W and iterate this procedure until convergence (i.e. L

remains the same between two iterations). This method is referred to as LDA-Km

through which, the data are simultaneously clustered while the discriminative

subspaces are selected [65]. Figure 4.2 shows the flowchart of this method, with

added stage for shepherding of Y before k-means, for better clustering.

Since k-means is used as a building block of the algorithm, the limitations
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W←PCA(X)

Y←WTX

Do K-means 

to obtain L
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Output  
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Figure 4.2: Flowchart of the subspace learning method using LDA and k-means.

inherent in k-means such as local convergence and sensitivity to initialization

also exist here. However, various methods exist to mitigate these problems such

as repeating k-means clustering with different initializations and picking the one

which leads to the least intra-cluster distance [69].

4.2.3 Discriminative Subspace Selection through Mixture

model learning with outlier handling

The refractory period forces at least 1 ms delay between successive spiking activity

of a neuron. However, the recording from a single electrode is the superposition

of signals from a few nearby neurons that are assumed to be firing independently.

As such, it is likely for two or more neurons to fire at or around the same time,

making their spike waveforms overlap in the recorded signal.

Ideally, these overlapping spikes should be detected and resolved in such a

way that the (two or more) neurons contributing to the overlap be identified. In

a less ideal case, at least, the overlapping spikes should be identified as outliers

(or noise) and not to be assigned to any neurons.

Due to the corrupted waveform shape of overlapping spikes, samples from
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these events do not usually fall into any actual cluster in the feature space.

However, this may not be the case when the feature subspace is learned through

conventional subspace learning methods, such as the one described in Section 4.2.2,

that do not account for outliers. Furthermore, the presence of outliers may cause

the algorithm to select a suboptimal subspace for clustering. This is due to the

fact that the algorithm would force the outliers to be assigned to true clusters and

then would try to make the clusters as compact as possible (i.e. to minimize the

intra-cluster distance), which is expected to lead to a different (and suboptimal)

subspace from the case that no outlier exists. Thus it would be desirable to

detect and exclude the outliers during subspace learning.

In this section, we propose a new discriminative subspace learning method

which can handle outliers in data. The method uses Gaussian mixture model

(GMM) learning for clustering with outlier handling and LDA for subspace

selection. The new method is then used for spike sorting.

The method presented in Section 4.2.2 may become ineffective if considerable

number of outliers is present in the data. We are interested in handling outliers

and improving the convergence in subspace learning. One way to tackle this

problem is to incorporate a clustering scheme that can identify and exclude

outliers in each iteration of subspace learning. That said, the clustering method

chosen should match the inherent properties of spike features obtained through

LDA, that tries to form dense spherical and linearly separable clusters. Clustering

based on GMM seems to be a reasonable choice for this purpose for the following

reasons. First, GMM can adequately model spherical (Gaussian) shaped clusters

that are expected to be obtained by LDA in the subspace selection stage. Second,

through using GMM, the outliers can be identified by learning an additional

component—leading to K + 1 Gaussian mixtures—with small prior and large

variance. This additional component will serve as an ‘outlier collector’ whose
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Figure 4.3: Flowchart of the subspace learning with outlier handling using LDA and
GMM.

samples—in each iteration—are discarded in subspace selection using LDA. Third,

GMM better handles clusters with unbalanced densities. This facilitates the

extraction of small clusters formed by sparsely firing neurons. Forth, although

the iterative subspace learning tends to form spherical clusters, some clusters

may be more spread in a particular direction due to electrode drifts. GMM would

be expected to capture such clusters better than k-means.

Figure 4.3 shows the flowchart of the proposed subspace learning method

named as LDA-GMM. The method is similar to LDA-Km (Section 4.2.2), except

that GMM with one extra component, which is meant to collect outlier samples,

is used for clustering. The outliers are then excluded from the calculation

of W by LDA. In each iteration, after obtaining W , the whole data samples

(including the outliers) are projected to the feature subspace using W . The

stopping criteria is the change between current and previous trace ratio value

Tr(W TSbW )/Tr(W TSwW ). This value indicates that during one iteration how

much improvement is made in discriminating the clusters. If the change in

improvement is less than a small value ε, the algorithm stops and return the
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current labels L and projection matrix W .

4.3 Detecting the Number of Neurons

Automatic detection of the number of neurons often depends on the method used

for clustering. In this section, a method is proposed to detect the number of the

clusters in the aforementioned subspace learning method.

It is desired to discover in the data as many potential clusters as possible while

avoiding over-clustering. Simultaneous subspace learning and clustering through

either LDA-Km or LDA-GMM with different values of K leads to different feature

spaces. We look for a clustering with the biggest K in which the clusters are

properly well-separated that is having no over clustering.

As so, we keep increasing K and perform subspace learning. For each K,

the clusters are checked to detect whether over-clustering has occurred based

on the following assumption: If two given clusters are formed from samples

of two different actual clusters, their projection on the vector connecting their

centroids would have a distribution far from the unimodal distribution. Likewise,

if the two clusters are formed from samples of a single actual cluster in the data,

their projection on the vector connecting their centroids would have an almost

unimodal distribution. This assumption is plausible in conjunction with the

subspace learning method presented earlier. This is due to the fact that given a

fixed K, LDA-Km or LDA-GMM try their best to separate K clusters as far apart

as possible, which translates to a multimodal distribution of clusters projected on

the vectors connecting their centroids. However, when two or more clusters are

formed from a single actual cluster (i.e. over-clustering), they tend to be joint

and not well-separated from each other which translates to an almost unimodal

distribution of clusters projected on the vectors connecting their centroids.
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Figure 4.4: Projection of clusters (obtained through LDA-GMM on in-vivo data
d1122101:1) onto vectors interconnecting their centroids. The well separated clusters
result in higher scores in normality test on the projected data. Cluster pairs with test
scores below the threshold are merged together.

Recall that the cluster centroids are represented by µ1, · · · ,µK , and L denotes

the cluster indicator matrix. The cluster projection on vectors connecting their

centroids for each pair of cluster is given by

X ′i,j = {xk|xk ∈ Ci ∨ xk ∈ Cj} ,

Qi,j = (µi − µj)
TX ′i,j, (4.7)

Si,j = T (Qi,j), (4.8)

where X ′i,j a matrix containing the samples from both clusters i and j, and Qi,j

is a 1-D vector containing the projected samples onto the vector connecting the

centroids of cluster i and j. T denotes a test of unimodality, and Si,j is the test

score. A DIP test of unimodality [70] is suggested for T since it directly measures

multimodality in a sample. However, other similar similar tests including Lilliefors

test [71], and Anderson-Darling test [72] may be used with comparable results.
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Figure 4.4 shows sample clusters and histogram on their projections.

For detecting whether the two clusters i and j, are the result of over-clustering,

the test score Si,j is examined. If Si,j is less than a certain threshold, the two

clusters i and j are supposed to be originated from a single actual cluster,

otherwise they are correctly assigned as two clusters. Si,j is calculated for

i = 1, · · · ,K j > i to obtain the number of actual clusters denoted by K ′ ≤ K.

As mentioned, we are looking for a clustering with the biggest K in which

the number of the actual clusters (i.e. K ′) is equivalent to (or not less than) K.

As so, we keep increasing K and do the subspace learning until K ′ ≤ K and K ′

remains unchanged for K + 1 (no well-separated cluster for K + 1). Then, the

largest value of K ′ indicates the true number of clusters (i.e. neurons).

4.4 Unsupervised Spike Sorting Algorithms

Based on the proposed methods for subspace learning and detection of the number

of neurons, two unsupervised spike sorting algorithms are proposed.

4.4.1 Proposed Algorithm I

The first algorithm is based on the direct application of LDA-Km or LDA-GMM

to learn the spike features and sort the spikes along with the method in Section 4.3

to detect the number of neurons. This method is summarized in Algorithm 4.1.

The benefit of this method compared with Algorithm I is that 1-dimensional

subspace is used for clustering which leads to a faster convergence and better

handling of clusters with different densities. Since this is a hierarchical clustering

approach, a drawback is that misclassified samples in the top levels will affect the

clustering results in subsequent levels. The summary of the proposed algorithm

is provided in Algorithm 4.2.
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Algorithm 4.1: Spike Sorting using Discriminative Subspace Learning
Input: Xm,n: n spikes, m samples for each spike
Initialize: K ← 1, K ′′ ← 0;
repeat

K ← K + 1;
do LDA-Km or LDA-GMM on X to obtain W and extract K clusters LK ;
obtain the true number of clusters K ′ using the method in Section 4.3 ;
K ′′ ← K ′ ;

until K ′′ = K ′ < K;
Cluster X using LK′ ;

4.4.2 Proposed Algorithm II

Here, we propose a clustering algorithm based on divisive clustering scheme and

use it for spike sorting. In this method, the data are initially partitioned into

two clusters (using LDA-Km) in the most discriminative 1-dimensional subspace.

The resultant clusters are marked as child. After that, the distribution of samples

in the obtained subspace is tested for unimodality using DIP test (or similar

tests). If the test score is higher than a predefined threshold, which indicates that

the distribution is multimodal, each of the child clusters is again partitioned into

two clusters and marked as child, otherwise they are merged into one cluster and

marked as final. The same process is then repeated for each child cluster until

all the clusters are marked as final. In this process, clusters with sizes smaller

than a predefined value, or sparse samples that lie far from cluster centers, can

be neglected and assigned as outliers.

It should be noted that the threshold controls how close the distribution of

the clusters should be to unimodal distribution to be considered as final. In

general, a larger threshold value causes the algorithm to extract more spread

clusters, whereas a smaller value results in the extraction of more compact and

smaller clusters which may lead to over-clustering.
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Algorithm 4.2: Spike Sorting using Discriminative Divisive Clustering
Input: Xm,n: n spikes, m samples for each spike
Define: S = {S1,S2, · · · ,SI};
Initialize: K ← 2, S ← {X};
repeat

foreach Si ∈ S do
do LDA-Km on Si to extract K child clusters (Sji );
if AD test score on Si < Threshold then

Create a final cluster from Si
else

foreach Sji do
if Size(Sji ) > Minimum Cluster Size then

Add {Sji } to S
else

Assign Sji to the Outliers Cluster

Remove Si from S;

until All the spikes are assigned to clusters;

4.5 Results

Evaluation of spike sorting algorithms is often challenging due to the lack of

ground truth [16,17]. A common approach, however, is to use synthetic datasets,

which would provide the ground truth as well as the flexibility to evaluate different

characteristics of the spike sorting algorithm. Synthetic neural data is usually

prepared by replicating spikes from a few spike waveform templates and adding

them to a background noise mimicking neural noise, with the spike arrival time

distributions similar to those of real spike trains. In this work, we evaluate

our algorithms using synthetic data and compare the results to two other spike

sorting methods. Furthermore, we present clustering results using synthetic and

in-vivo data, in which case the performance of the algorithms can be qualitatively

assessed by looking into cluster separation.

We compared the two proposed algorithm with PCA-kmeans and Wave_clus

based on criteria such as accuracy of spike sorting, dimensionality of feature
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space for effective clustering, and sensitivity to noise.

In PCA-kmeans, PCA is used for feature extraction and dimensionality

reduction, and k-means is used for clustering. This method is supervised meaning

that the number of clusters (k in k-means) must be known, and parametric

assuming the clusters are spherical in the PCA space. Wave_clus is an spike

sorting method which uses DWT for feature extraction and SPC for clustering. It

has been shown very practical for spike sorting since it can automatically choose

the number of clusters (unsupervised), and does not impose any assumption

on the shape of the clusters (nonparametric). In this method, Haar wavelet

coefficients are used as features where the 10 coefficients with largest deviation

from normality were selected as the input to the SPC algorithm. In many

situations, SPC clusters a subset of the spikes and the remaining spikes are forced

to be classified using a KNN classifier.

4.5.1 Synthetic Data with Ground Truth

For simulation with synthetic data, we have used eight challenging datasets

provided by [67], which have been widely used in the literature to benchmark

spike sorting algorithms. The datasets C_difficult1* and C_difficult2* are

referred to as Set 1 and Set 2, respectively. Each dataset contains spikes from

three different neurons. Simulations are carried out for different noise levels and

feature dimension of 2–10 for PCA-kmeans and Wave_clus; feature dimension

was 2 for Algorithm I, and 1 for Algorithm II. The number of clusters is manually

set to 3 for PCA-kmeans, while Wave_clus and the proposed algorithms detect

it automatically. Throughout our simulations, we used the default parameters

of Wave_clus and chose the best results on multiple runs of the algorithm.

Wave_clus correctly detected the number of clusters for all cases except for

Set 2\σn=0.2 where it only detected 2 clusters. The proposed algorithms detected
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Table 4.1: Comparative Results on Synthetic Data

Dim. Set PCA-kmeans (%) Wave_clus (%) Algorithm I (%)

σn: 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

2
1 93.2 75.2 50.8 40.9 97.7 89.0 63.1 62.2 99.6 99.4 99.1 99.2

2 81.1 74.0 65.8 56.7 66.0 52.6 50.7 49.6 98.7 98.9 98.7 98.2

4
1 97.9 84.7 64.7 53.5 98.7 96.9 93.0 86.5

2 91.8 80.8 72.7 63.3 93.3 98.0 91.0 58.0 Algorithm II† (%)

10
1 98.9 95.1 85.5 76.8 98.4 98.95 95.4 86.5 98.1 99.2 99.1 98.7

2 97.8 91.3 83.0 60.6 97.3 98.4 91.7 58.9 98.6 98.7 98.8 98.3
†Feature dimension is 1.

the true number of clusters in all the cases. The results are shown in Table 4.1,

where the first column is the dimension of the feature space, and the first row

is the standard deviation of the noise (σn). Overlapping spikes are excluded in

calculating the accuracies. It can be seen that the accuracy of PCA-kmeans and

Wave_clus degrades as the dimension of the features reduces. Wave_clus (with

forced clustering) performs better than PCA-kmeans especially when the noise

level is high; however, the performance of both method degrade significantly as

the noise level increases. Interestingly, the proposed methods give significantly

higher sorting accuracies compared with the other methods and they are highly

robust to noise.

Figure 4.5 shows the feature extraction and clustering results on the most

challenging dataset Set 2\σn=0.2 (C_Difficult2_noise02). As can be seen in

Figure 4.5(a)–(c), the 2-D subspace learned by Algorithm I provides significantly

better separability of clusters compared with PCA and DWT. Figure 4.5(d) shows

the average waveforms of spikes sorted by Algorithm I (upper) and Algorithm II

(lower).
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(a) (b)

(c) (d)

Figure 4.5: Results on synthetic data (C_Difficult2_noise02). (a) PCA-kmeans
where feature dimension is 10 (projection on the first two principal components is
shown), and K is manually set to 3. Accuracy = 60.6%. (b) Wave_clus where feature
dimension is 10 (best 2-D DWT projection is shown); SPC fails to identify the third
cluster for any temperature value. Accuracy = 58.9%. (c) Proposed Algorithm I
where feature dimension is 2 (most discriminative projections). The 3 clusters are
automatically identified. Accuracy = 98.2%. Misclassified spikes are shown as ‘+’. (d)
Upper plot: Average spike waveforms of the clustering in (c). Lower plot: Average spike
waveform of the sorted spikes using Algorithm II. Accuracy = 98.3%.
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4.5.2 Comparison on in-vivo Data

The performance of the proposed algorithms is also tested on in-vivo data. The

data is recorded from the rat hippocampus and is publicly available [73]. A

sample recording d1122101:1 is used for illustration. The spikes were extracted

by negative amplitude thresholding at 3 RMS, and aligned to their peak values.

In total, 4541 spikes were detected and 64 samples were stored for each spike.

Figure 4.6(a) shows the PCA features on the first two principal components,

where only 1 cluster can be identified. Figure 4.6(b) shows the best 2-D projection

of wavelet features used in Wave_clus, where 2 clusters are identified by the

algorithm (average waveforms in Figure 4.6(d)). Figure 4.6(c) shows the results

of clustering using Algorithm I, where 3 clusters are detected (average waveforms

in Figure 4.6(e)). Algorithm II also detected 3 clusters whose average spike

waveforms are shown in Figure 4.6(f) with the corresponding inter-spike interval

histograms in Figure 4.6(g) which indicate the qualitative validity of the extracted

clusters. Figure 4.7 shows the hierarchy of 1-D features learned by the proposed

hierarchical clustering algorithm (on dataset d1122101:1).

Regardless of the clustering algorithm used, the methods that rely on PCA for

feature extraction usually fail to identify clusters with highly overlapping features

in the PCA space, thus assigning spikes generated from different neurons to the

same cluster [64,67]. We have observed this in several in-vivo recordings when the

spike waveforms of different neurons are very similar. DWT has been shown more

effective for spike feature extraction which provides better separability of clusters.

However, similar to PCA, it does not necessarily provide the most discriminative

feature subspace for clustering, and may fail to correctly discriminate spikes with

similar spike waveform when the noise level is high.
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Figure 4.6: Comparative results on real data recorded from the rat hippocampus
(d1122101:1). (a) Projection on the first two principal components. The clusters
cannot be identified through PCA. (b) Best 2-D projection of DWT features used in
Wave_clus where feature dimension is 10. Only two clusters are identified (points in
blue are assigned as outliers). (c) Discriminative features learned by Algorithm I, the
three clusters are automatically identified. (d) and (e) show the average spike waveforms
of the clustering in (b) and (c), respectively. (f) Average spike waveform of the sorted
spiked using Algorithm II. The three clusters are automatically identified and the results
are highly similar to those of Algorithm I. The histogram of the log inter-spike interval
of spikes sorted by Algorithm II, indicating the validity of the extracted clusters. Colors
correspond to the spikes in (f).
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Figure 4.7: Example of the proposed hierarchical discriminative divisive clustering
method on spike waveforms. In each level the clusters obtained from the previous
level are separated into two clusters until the resultant clusters are almost unimodal
(determined by the test of unimodality). It can be seen that the second cluster in
Level 2 and the two clusters in Level 3 are almost unimodal (with the test score below
the threshold), thus the algorithm stops at Level 3 and exports 3 clusters.

4.5.3 Comparison on Feature Extraction

Majority of the spike sorting methods in the literature are based on a conventional

clustering procedure which involves separate stages of feature extraction and

clustering [16]. In these methods, feature extraction is of crucial importance, and

highly determines the overall quality of spike sorting. As discussed in Section 4.1,

a good feature extraction method should discriminate the clusters originating from

different spike waveforms. Thus, it is of interest to compare features extraction

by the proposed algorithms with that of the other popular methods. Along this

line, we have compared features extracted by popular methods such as PCA,

discrete derivatives and PCA (DD-PCA), DWT, and laplacian eigenmaps (LE)

with the proposed methods LDA-Km and LDA-GMM.

Figure 4.8 and Figure 4.9 show the feature extraction results on synthetic

datasets C_difficult1* and C_difficult2*, respectively. It should be noted
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that since different methods lead to different cluster shapes and separability, the

suitable clustering algorithm should be selected based on the feature extraction

method used. For example, with PCA features, clustering methods such as

k-means [16], GMM [16], EM with t-distributions [74], density grid contour

clustering [75], spectral clustering [76], subtractive clustering [77], Kohonen

network [78], and fuzzy c-means clustering [79] have been used. Similar clustering

methods may be used for DD-PCA as well. With DWT based features, clustering

methods including k-means [16], SPC, [67], and variational Bayes clustering using

t-distributions [80] have been applied. With LE features, k-means clustering

have been used [22].

It can be seen in Figure 4.8 and Figure 4.9 that as the noise level increases,

the clusters originating from different neurons mix into each other, which in turn

degrades the clustering performance. This is because noise may highly interfere

with the measure based on which these methods seek the projection subspace,

such as variance or laplacian. However, the performance of the proposed methods

is highly robust to increasing level of noise because of the objective function

used. Although noise increases the final within-cluster scatter and decrease the

between-cluster scatter, the optimization process itself is not much affected by

high levels of noise.

Figure 4.10 shows the feature extraction results on in-vivo data. We chose

challenging recordings for which the PCA features do not provide a good cluster

separation. LE provides a slightly better separation than PCA, and DD-PCA

outperforms the both. Significantly outperforming other methods, LDA-Km and

LDA-GMM learned the best 2-D projection and extracted three clusters which

are clearly separated. In addition, LDA-GMM identified the possible outliers.
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Figure 4.8: Comparison of different spike feature extraction methods on dataset C_difficult1* at different noise levels. The coloring
is based on the ground truth, except for LDA-Km and LDA-GMM where it is based on the clustering results.
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Figure 4.9: Comparison of different spike feature extraction methods on dataset C_difficult2* at different noise levels. The coloring
is based on the ground truth, except for LDA-Km and LDA-GMM where it is based on the clustering results.
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Figure 4.10: Comparison of different spike feature extraction methods on in-vivo data recorded from rat hippocampus.
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4.5.4 Overlapping Spikes and Outliers

As discussed in Section 4.2.3, overlapping spikes, artefacts and noise usually

appear as outliers in the data. Incorrectly classifying outliers to the actual spike

clusters may lead to inaccurate analysis of spike trains. It is thus important to

identify the outliers and exclude them from the analysis. Furthermore, in subspace

learning considerable amount of outliers may lead to learning a suboptimal feature

subspace. Here, we illustrate the effect of outliers and compare the performance

of LDA-Km and LDA-GMM in terms of handling outliers.

To illustrate the effect of outliers in the performance of subspace learning

methods, we applied the LDA-Km and LDA-GMM methods on sample data

with and without outliers. The results are shown in Figure 4.11. It can be seen

Data PCA LDA-Km LDA-GMM
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Figure 4.11: Sensitivity of the two subspace learning methods to outliers. The
dimension of the data is 3. In both cases, PCA does not provide the proper subspace
for clustering. When there is no (or negligible number of) outliers in the data, LDA-Km
and LDA-GMM give similar results . However, when considerable number of outliers
exist in the data, LDA-Km may not give the proper discriminative subspace, whereas,
LDA-GMM is more robust to outliers and can adequately learn the optimal subspace
for cluster discrimination.
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that, PCA does not give a good low dimensional projection for this data since

the direction of maximum variation is significantly different from the direction

giving the maximum discriminability of clusters. Both LDA-Km and LDA-GMM

algorithms give similar subspaces and clustering when no outliers exist in the

data. However, when the data are contaminated with considerable number of

outliers, LDA-Km does not lead to a proper clustering.

Figure 4.12 (top) shows the evolution of three clusters in subspace learning

using LDA-Km. The algorithm starts from PCA subspace (iteration 1), and

refine the projections in each iteration. A portion of the neural recording is also

displayed in Figure 4.12 (bottom) with spike colors referring to the clusters in

Iteration 15. It can be seen in the second and fourth zoom-in pictures that the

overlapping spikes are incorrectly assigned to different clusters. This is a major

limitation in LDA-Km algorithm which is addressed in LDA-GMM.

Similarly, Figure 4.13 (top) shows the evolution of the clusters in subspace

learning using LDA-GMM on the same data sequence as in Figure 4.12. The

outliers are displayed in blue. It can be seen in Figure 4.13 (bottom) that the

overlapping spikes are correctly classified as outliers and are separated from other

true clusters.

4.6 Conclusion

In this chapter, we have presented methods for unsupervised spike sorting based

on simultaneous discriminative subspace learning and clustering. A previously

proposed method namely LDA-Km has been successfully applied to spike feature

learning with superior performance over traditional methods. However, since

this method cannot handle overlapping spikes and outliers, a new method based

on LDA for subspace selection and GMM for clustering (namely LDA-GMM)
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Iteration 1 Iteration 5 Iteration 10 Iteration 11

Iteration 12 Iteration 13 Iteration 14 Iteration 15

Figure 4.12: Scatter plots of spike features in each iteration of LDA-Km algorithm.
Iteration 1 shows the projection on the first two principal components. It can be seen
that after 15 iterations, three clusters are discovered. The sorted spike traces are shown
in the lower plot, where colors refer to clusters in Iteration 15. As can be seen, the
overlapping spikes are assigned to wrong clusters while they should be detected as
outliers.
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Iteration 1 Iteration 6 Iteration 8 Iteration 9

Iteration 10 Iteration 11 Iteration 13 Iteration 15

Figure 4.13: Scatter plots of spike features in each iteration of LDA-GMM algorithm
on the same data set as in Figure 4.12. Iteration 1 shows the projection on the first
two principal components. It can be seen that after 15 iterations, three clusters are
discovered and the outliers are identified. The sorted spike traces are shown in the
lower plot, where colors refer to clusters in Iteration 15. As can be seen, the overlapping
spikes (shown in blue) are correctly assigned as outliers.
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has been proposed. This method can properly identify overlapping spikes, thus

provide more accurate spike sorting. Furthermore, a method for detecting the

number of neurons in the proposed subspace learning scheme was presented.

Based on the introduced subspace learning methods, we proposed two spike

sorting algorithms. The first algorithm keeps increasing the number of clusters

and learns the discriminative subspace until no extra separate and significant

cluster can be identified. The second algorithm utilizes a divisive clustering

scheme which starts by dividing the data samples into two clusters in the most

discriminative 1-dimensional projection, and keeps dividing the resultant clusters

in two until achieving an almost unimodal distribution in the subspace for each

final cluster. We evaluated our algorithms against two commonly used spike

sorting methods PCA-kmeans and Wave_clus, using both synthetic and in-

vivo data. When tested on synthetic data, the proposed algorithms achieved

significantly higher accuracies in all the cases. Furthermore, the results indicate

that the algorithms are highly robust to noise. Furthermore, the superior feature

extraction capability of the algorithms has been illustrated and compared to

PCA, DD-PCA, DWT, and LE, where better cluster separability and increased

robustness to noise have been observed. Through utilizing adaptive subspace

learning we have combined the three important parts of conventional spike sorting

methods including feature extraction, dimensionality reduction and clustering

to a single stage, which resulted in a considerable improvement in spike sorting

performance.



Chapter 5

Conclusion and Future Works

5.1 Contributions

The detailed conclusion of each work presented in this thesis was discussed at

the end of each chapter. Here, we present a summary of the works and highlight

their significance.

This study explored two major problems in neural data analysis: power line

interference cancellation and spike sorting. Two main contributions were presented

for power line interference cancelation. First, a novel algorithm was proposed as

a method for narrow-band harmonic estimation, which was tailored to estimate

the power line interference and subsequently remove it from the neural data.

The proposed algorithm outperforms other competing algorithms, and features

a highly robust operation, fast adaptation to interference variations, significant

SNR improvement, low computational complexity and memory requirement,

and straightforward parameter adjustment. These features render the algorithm

suitable for wearable and implantable sensor applications, where reliable and real-

time cancellation of the interference is desired. In addition, since the algorithm

104
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highly preserves neural oscillations while cancelling the interference, it may lead

researchers to look into the frequency bands that were previously neglected due

to the distortion caused by the interference or the inadequate removal of it. To

further contribute to this purpose, the source code of the algorithm has been

made available online to facilitate its usage by biomedical research community. It

is worth mentioning that, although the algorithm is mainly proposed for power

line interference cancellation, it can also be used to cancel other types of harmonic

interferences which may present in the recording, for example interferences from

nearby electrical appliances such as motors and switching power supplies which

do not operate at the line frequency, or interferences arising from the recording

amplifiers which may produce harmonic distortion. Furthermore, it is applicable

to various types of biopotential recordings including ECG and EMG with no

modification.

Second, for efficient hardware implementation of the interference cancellation

algorithm, a VLSI architecture was proposed, and based on this architecture

an ASIC was designed and tested. The proposed VLSI architecture is scalable

with respect to the number of the recording channels and/or harmonics, and is

optimized for area. This enables on-chip and real-time interference cancellation

in high-density neural recording, which was not previously feasible using analog

techniques for fully integrated and high channel count microchips. As such, the

proposed architecture would be useful in the applications in which the data are

required to be processed at the implant side. Based on the proposed architecture,

an ASIC in a 65-nm technology was fabricated and successfully tested. The chip

consumed 0.11 mm2 of area and 77 µW of power at the clock rate of 7.5 kHz,

and fs = 1.25 kHz. When tested on different modalities of biomedical recordings,

it achieved an average SNR improvement of 30 dB for input SNR from −20 dB

to 20 dB and interference frequencies of 45–65 Hz.
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Another main contribution of this theses was to propose unsupervised spike

sorting algorithms based on discriminative subspace learning to achieve more

reliable and accurate identification of neurons and spike waveforms especially in

low SNR conditions. Two approaches for unsupervised spike sorting based on

simultaneous discriminative subspace learning and clustering have been proposed.

A previously proposed method namely LDA-Km has been successfully applied

to spike feature learning with superior performance over traditional methods.

However, since this method cannot handle overlapping spikes and outliers, a

new method based on LDA for subspace selection and GMM for clustering was

proposed. This method can properly identify overlapping spikes, thus provides

more accurate spike sorting. Furthermore, a method for detecting the number of

neurons in the proposed subspace learning scheme was presented. Furthermore,

the superior feature extraction capability of the algorithms have been illustrated

and compared to several popular feature extraction methods in spikes sorting,

where better cluster separability and increased robustness to noise have been

observed. Through utilizing adaptive subspace learning we have combined the

three important parts of conventional spike sorting methods including feature

extraction, dimensionality reduction and clustering to a single stage, which

resulted in a considerable improvement in spike sorting performance.

The proposed spike sorting algorithms can learn the most discriminative

features and extract the clusters which may appear inseparable in feature space

obtained by previously proposed feature extraction methods. In other words, the

proposed algorithms can automatically identify neural sources which may not be

identifiable from an extracellular recording through using previously proposed

approaches in the literature. This opens up the opportunity to analyse the

firing patterns from more number of individual neurons (i.e. single units). In

neuroscience research, this allows to decode complex brain processes encoded by
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the activity of relatively large neural networks. Furthermore, applications using

BMIs and neural prostheses could greatly benefit from the increased number of

recorded neurons, as this allows the decoding of more complex and precise motor

actions.

5.2 Future Works

The work presented in this thesis can be further continued and improved in

many ways. Here, we suggest some directions for future works, and potential

approaches which could be taken into consideration for further improvements.

5.2.1 Power Line Interference Cancellation

Automatic Parameter Adaptation

The proposed power line interference cancellation algorithm in Chapter 2 requires

setting of several parameters to control the adaptation. To make the parameter

adjustment straightforward, we presented alternative parameters in Section 2.2.4

and the guidelines how to adjust them. Nevertheless, it would be of interest if

the algorithm could automatically tune its parameters. One way to achieve this

would be to add a stage for adapting the parameters of the algorithm. While the

added stage itself would have some parameters to tune, the sensitivity to those

parameters would be low. The extra stage would increase the computational cost

and should be added only if the algorithm is to be used by non-expert users or

for general purpose applications.

Further Reducing the Computational Complexity

The multichannel interference cancellation algorithm presented in Chapter 3 scales

quite efficiently with the number of channels and/or harmonics. Nevertheless,
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there could be some margin for further decreasing the computational cost. One

possible approach would be to combine the sinusoidal signal generation and phase

and amplitude adaptation stages. This would lead to a structure similar to IIR

comb filter. In this case further analysis on stability should be carried out to

guarantee the reliable operation of the algorithm.

Low Power VLSI Implementation

The microchip presented in Chapter 3 was synthesised using standard library

for 65-nm technology and no circuit level optimization was carried out. That

said, through using low power design techniques the power consumption would

be largely reduced. In addition, it would be interesting to have a programmable

VLSI architecture in which the number of the channels and/or harmonics could

be programmed and changed based on the application and the bandwidth of

interest.

5.2.2 Spike Sorting

Online Learning and Real-time Spike Sorting

The spike sorting algorithms presented in Chapter 4 are based on batch processing

of spike waveforms, meaning that the spikes should first be extracted, and then

the algorithms require all (or at least a large number of) the spikes for subspace

learning. Thus, the algorithms are only suitable for offline setting. It is, however,

of practical interest to develop the online versions of the algorithms for real-time

spike sorting. In this case, when a spike is detected, the algorithm should be able

to adapt the subspace and classify the spike based on the detected spike and not

the whole data. Although some methods exist for online clustering and subspace

selection, the combination of them for subspace learning would not necessarily
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lead to an appropriate solution.

Resolving Overlapping Spikes

The proposed spike sorting algorithms can adequately detect the overlapping

spikes as outliers; however, they cannot identify the neurons contributed to the

overlap. Several methods have been proposed in the literature which try to

decompose the overlapping spike waveforms into the waveforms originated from

the source neurons. If the signals are recorded from multiple electrode, another

approach would be to use mutual dependence between channels to perform signal

separation in order to decompose overlapping spikes or identify the source neurons.

These approaches could be added as an extra stage in the proposed spike sorting

scheme without modifying the main algorithms.

Multichannel Processing

Our proposed spike sorting scheme assumed the data had been recorded with

single-electrode probes. In practice, however, many researchers use multi-electrode

probes such as tetrodes which consist of four closely spaced electrodes. In this

case, mutual information between electrodes could be used to enhance the spike

sorting performance and facilitate the resolution of overlapping spikes. This could

be incorporated into the algorithm through using blind source separation methods

such as independent component analysis to a preliminary signal decomposition

before spike sorting. Another interesting approach would be to modify the

objective function and formulate an optimization problem for subspace learning

which would accommodate signal dependencies between the channels.
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Hardware Efficient Algorithm Design for Real-time Spike Sorting

In multichannel wireless neural recording systems, spike sorting at the implant

side considerably decreases the data rate since instead of transmitting the full

spike waveforms, the spike arrival times and labels are transmitted, which can

lead to over 98% reduction in data rate. The reduced data rate would in turn

result in a significant reduction of power consumption thus extending battery life

over 270 times [81]. Thus is it of a great interest to enhance the algorithm to suit

hardware design constraints such as limited memory and computational resources.

This is indeed conditioned on the successful design of the online version of the

algorithms as previously explained.



Appendix A

Open Source Power Line

Interference Canceller Software

The power line interference cancellation algorithm introduced in Chap-

ter 2 is implemented in MATLAB and has been made available to pub-

lic at https://github.com/mrezak/removePLI [52]. The file removePLI.m

implements the exact algorithm in Chapter 2 for single channel data.

removePLI_multichan.m implements the multichannel version of the algorithm

which is introduced in Chapter 3.

A graphical user interface (GUI) is also provided for easy use of the algorithm.

The user may select the nominal AC frequency if known. In this case the initial

bandpass filter used for frequency estimation is narrowed down to the selected

frequency (i.e. 58–62 Hz or 48–52 Hz pass band) for more robust estimation.

Otherwise the algorithm uses the default pass band of 40–70 Hz. Figure A.1

shows the snapshot of the software GUI.
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Figure A.1: Snapshot of the GUI of multichannel power line interference canceller
software in MATLAB.
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