32 research outputs found

    Intermediate cell states in epithelial-to-mesenchymal transition

    Get PDF
    The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in ā€˜pureā€™ epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS

    Intermediate cell states in epithelial-to-mesenchymal transition

    Get PDF
    The transition of epithelial cells into a mesenchymal state (epithelial-to-mesenchymal transition or EMT) is a highly dynamic process implicated in various biological processes. During EMT, cells do not necessarily exist in ā€˜pureā€™ epithelial or mesenchymal states. There are cells with mixed (or hybrid) features of the two, which are termed as the intermediate cell states (ICSs). While the exact functions of ICS remain elusive, together with EMT it appears to play important roles in embryogenesis, tissue development, and pathological processes such as cancer metastasis. Recent single cell experiments and advanced mathematical modeling have improved our capability in identifying ICS and provided a better understanding of ICS in development and disease. Here, we review the recent findings related to the ICS in/or EMT and highlight the challenges in the identification and functional characterization of ICS

    Targeting the Epithelial-to-Mesenchymal Transition: The Case for Differentiation-Based Therapy

    Get PDF
    Although important strides have been made in targeted therapy for certain leukemias and subtypes of breast cancer, the standard of care for most carcinomas still involves chemotherapy, radiotherapy, surgery, or a combination of these. Two processes serve as obstacles to the successful treatment of carcinomas. First, a majority of deaths from these types of cancers occurs as a result of distant metastases and not the primary tumors themselves. Second, subsets of cells that are able to survive conventional therapy drive the aggressive relapse of the tumors, often in forms that are resistant to treatment. A frequently observed feature of malignant carcinomas is the loss of epithelial traits and the gain of certain mesenchymal ones that are programmed by the cell-biological program termed the epithelial-to-mesenchymal transition (EMT). The EMT program can confer (i) an ability to disseminate, (ii) an ability to become stem-like tumor-initiating cells, (iii) an ability to found new tumor colonies at distant anatomical sites, and (iv) an elevated resistance to therapy. These multiple powers of the EMT program explain why it has become an attractive target for therapeutic intervention. Recent work has revealed the variable nature of the EMT, with multiple versions of the program being observed depending on the tissue context and the stage of tumor progression. In this review, we attempt to crystallize emerging concepts in the research on EMTand stemness and discuss the benefits of using a differentiation-based therapeutic strategy for the eradication of stem-like populations that have adopted various versions of the EMT program.National Institutes of Health (U.S.) (grant R01 CA078461)National Institutes of Health (U.S.) (grant (P01 CA080111)Samuel Waxman Cancer Research FoundationMassachusetts Institute of Technology. Ludwig Center for Cancer Researc

    Toward Modeling Context-Specific EMT Regulatory Networks Using Temporal Single Cell RNA-Seq Data.

    Get PDF
    Epithelial-mesenchymal transition (EMT) is well established as playing a crucial role in cancer progression and being a potential therapeutic target. To elucidate the gene regulation that drives the decision making of EMT, many previous studies have been conducted to model EMT gene regulatory circuits (GRCs) using interactions from the literature. While this approach can depict the generic regulatory interactions, it falls short of capturing context-specific features. Here, we explore the effectiveness of a combined bioinformatics and mathematical modeling approach to construct context-specific EMT GRCs directly from transcriptomics data. Using time-series single cell RNA-sequencing data from four different cancer cell lines treated with three EMT-inducing signals, we identify context-specific activity dynamics of common EMT transcription factors. In particular, we observe distinct paths during the forward and backward transitions, as is evident from the dynamics of major regulators such as NF-KB (e.g., NFKB2 and RELB) and AP-1 (e.g., FOSL1 and JUNB). For each experimental condition, we systematically sample a large set of network models and identify the optimal GRC capturing context-specific EMT states using a mathematical modeling method named Random Circuit Perturbation (RACIPE). The results demonstrate that the approach can build high quality GRCs in certain cases, but not others and, meanwhile, elucidate the role of common bioinformatics parameters and properties of network structures in determining the quality of GRCs. We expect the integration of top-down bioinformatics and bottom-up systems biology modeling to be a powerful and generally applicable approach to elucidate gene regulatory mechanisms of cellular state transitions

    Cellā€“cell adhesion: linking Wnt/Ī²-catenin signaling with partial EMT and stemness traits in tumorigenesis [version 1; referees: 4 approved]

    Get PDF
    Changes in cell adhesion and motility are considered key elements in determining the development of invasive and metastatic tumors. Co-opting the epithelial-to-mesenchymal transition (EMT) process, which is known to occur during embryonic development, and the associated changes in cell adhesion properties in cancer cells are considered major routes for tumor progression. More recent in vivo studies in tumor tissues and circulating tumor cell clusters suggest a stepwise EMT process rather than an ā€œall-or-noneā€ transition during tumor progression. In this commentary, we addressed the molecular mechanisms underlying the changes in cell adhesion and motility and adhesion-mediated signaling and their relationships to the partial EMT states and the acquisition of stemness traits by cancer cells

    A Theoretical Model of the Wnt Signaling Pathway in the Epithelial Mesenchymal Transition

    Get PDF
    Abstract Background Following the formation of a primary carcinoma, neoplastic cells metastasize by undergoing the epithelial mesenchymal transition (EMT), which is triggered by cues from inflammatory and stromal cells in the microenvironment. EMT allows epithelial cells to lose their highly adhesive nature and instead adopt the spindle-like appearance, as well as the invasive and migratory behavior, of mesenchymal cells. We hypothesize that a bistable switch between the epithelial and mesenchymal phenotypes governs EMT, allowing the cell to maintain its mesenchymal phenotype even after it leaves the primary tumor microenvironment and EMT-inducing extracellular signal. Results This work presents a simple mathematical model of EMT, specifically the roles played by four key proteins in the Wnt signaling pathway: Dishevelled (Dvl), E-cadherin, Ī²-catenin, and Slug. The model predicts that following activation of the Wnt pathway, an epithelial cell in the primary carcinoma must attain a threshold level of membrane-bound Dvl to convert to the mesenchymal-like phenotype and maintain that phenotype once it has migrated away from the primary tumor. Furthermore, sensitivity analysis of the model suggests that in both the epithelial and the mesenchymal states, the steady state behavior of E-cadherin and the transcription factor Slug are sensitive to changes in the degradation rate of Slug, while E-cadherin is also sensitive to the IC50 (half-maximal) concentration of Slug necessary to inhibit E-cadherin production. The steady state behavior of Slug exhibits sensitivity to changes in the rate at which it is induced by Ī²-catenin upon activation of the Wnt pathway. In the presence of sufficient amount of Wnt ligand, E-cadherin levels are sensitive to the ratio of the rate of Slug activation via Ī²-catenin to the IC50 concentration of Slug necessary to inhibit E-cadherin production. Conclusions The sensitivity of E-cadherin to the degradation rate of Slug, as well as the IC50 concentration of Slug necessary to inhibit E-cadherin production, shows how the adhesive nature of the cell depends on finely-tuned regulation of Slug. By highlighting the role of Ī²-catenin in the activation of EMT and the relationship between E-cadherin and Slug, this model identifies critical parameters of therapeutic concern, such as the threshold level of Dvl necessary to inactivate the GSK-3Ī² complex mediating Ī²-catenin degradation, the rate at which Ī²-catenin translocates to the nucleus, and the IC50 concentration of Slug needed to inhibit E-cadherin production

    Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition

    Get PDF
    Epithelial-to-mesenchymal transition (EMT), a fundamental transdifferentiation process in development, produces diverse phenotypes in different physiological or pathological conditions. Many genes involved in EMT have been identified to date, but mechanisms contributing to the phenotypic diversity and those governing the coupling between the dynamics of epithelial (E) genes and that of the mesenchymal (M) genes are unclear. In this study, we employed combinatorial perturbations to mammary epithelial cells to induce a series of EMT phenotypes by manipulating two essential EMT-inducing elements, namely TGF-Ī² and ZEB1. By measuring transcriptional changes in more than 700 E-genes and M-genes, we discovered that the M-genes exhibit a significant diversity in their dependency to these regulatory elements and identified three groups of M-genes that are controlled by different regulatory circuits. Notably, functional differences were detected among the M-gene clusters in motility regulation and in survival of breast cancer patients. We computationally predicted and experimentally confirmed that the reciprocity and reversibility of EMT are jointly regulated by ZEB1. Our integrative analysis reveals the key roles of ZEB1 in coordinating the dynamics of a large number of genes during EMT, and it provides new insights into the mechanisms for the diversity of EMT phenotypes

    Integrative transcriptomic analysis reveals a multiphasic epithelialā€“mesenchymal spectrum in cancer and non-tumorigenic cells

    Get PDF
    Epithelialā€“mesenchymal transition (EMT), the conversion between rigid epithelial cells and motile mesenchymal cells, is a reversible cellular process involved in tumorigenesis, metastasis, and chemoresistance. Numerous studies have found that several types of tumor cells show a high degree of cell-to-cell heterogeneity in terms of their gene expression signatures and cellular phenotypes related to EMT. Recently, the prevalence and importance of partial or intermediate EMT states have been reported. It is unclear, however, whether there is a general pattern of cancer cell distribution in terms of the overall expression of epithelial-related genes and mesenchymal-related genes, and how this distribution is related to EMT process in normal cells. In this study, we performed integrative transcriptomic analysis that combines cancer cell transcriptomes, time course data of EMT in non-tumorigenic epithelial cells, and epithelial cells with perturbations of key EMT factors. Our statistical analysis shows that cancer cells are widely distributed in the EMT spectrum, and the majority of these cells can be described by an EMT path that connects the epithelial and the mesenchymal states via a hybrid expression region in which both epithelial genes and mesenchymal genes are highly expressed overall. We found that key patterns of this EMT path are observed in EMT progression in non-tumorigenic cells and that transcription factor ZEB1 plays a key role in defining this EMT path via diverse gene regulatory circuits connecting to epithelial genes. We performed Gene Set Variation Analysis to show that the cancer cells at hybrid EMT states also possess hybrid cellular phenotypes with both high migratory and high proliferative potentials. Our results reveal critical patterns of cancer cells in the EMT spectrum and their relationship to the EMT process in normal cells, and provide insights into the mechanistic basis of cancer cell heterogeneity and plasticity
    corecore