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Abstract
Changes in cell adhesion and motility are considered key elements in
determining the development of invasive and metastatic tumors. Co-opting
the epithelial-to-mesenchymal transition (EMT) process, which is known to
occur during embryonic development, and the associated changes in cell
adhesion properties in cancer cells are considered major routes for tumor
progression. More recent   studies in tumor tissues and circulatingin vivo
tumor cell clusters suggest a stepwise EMT process rather than an
“all-or-none” transition during tumor progression. In this commentary, we
addressed the molecular mechanisms underlying the changes in cell
adhesion and motility and adhesion-mediated signaling and their
relationships to the partial EMT states and the acquisition of stemness traits
by cancer cells.
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Introduction
Cell–cell adhesion is a fundamental biological process in  
multicellular organisms which defines cellular and tissue  
morphogenesis1. The signaling conveyed by adhesion between 
cells and with the underlying extracellular matrix (ECM) is 
tightly coordinated with gene regulation during normal tissue  
homeostasis2,3. Disruption of cell–cell adhesion, the subsequent 
changes in adhesion-mediated signaling, and the increase in 
cell motility are characteristic steps observed during the devel-
opment of invasive metastatic cancer. Tumor progression and  
embryonic development often display the process of epithelial-
to-mesenchymal transition (EMT) that results in the conversion 
of cells with strong cell–cell adhesion and an epithelial mor-
phology into cells with more motile and invasive characteristics, 
as seen in mesenchymal cells4. EMT includes a weakening of  
strong intercellular homotypic cadherin-based cell–cell junctions, 
and of the cadherin–catenin anchorage to the cytoskeleton, while 
inducing the expression of adhesion molecules that convey  
weaker and heterotypic adhesion. These properties increase the 
ability of cancer cells to detach from the primary tissue, bind to 
ECM components and to other cells (for example, fibroblasts), 
and migrate toward the lymph and blood systems. In addition 
to displaying EMT-like properties, invasive tumor cells display  
traits seen in normal stem cells and therefore are described as  
cancer stem cells (CSCs)5.

Cell–cell adhesion is regulated by cell adhesion molecules  
(CAMs), which are transmembrane receptors linked to the  
cytoskeleton that govern the assembly of cells into three- 
dimensional tissues6. CAMs also determine the interaction of 
cells with the surrounding environment and regulate the response 
to external stimuli. Changes in the expression of and signaling  
by CAMs play an important role in different stages of cancer  
development6. Here, we discuss recent studies on how changes 
in cell adhesion, EMT, and the acquisition of stem cell properties  
can promote invasive cancer development.

Cancer-associated epithelial-to-mesenchymal transition 
is not a binary switch but a stepwise transition process
The process of EMT in cancer cells confers properties that  
enhance their metastatic ability via increased motility and  
invasiveness, the ability to dismantle the ECM, and an increased 
potential to induce a stem cell–like state7,8. Recent reports sug-
gested that a complete EMT is not essential for metastasis9–13. 
Metastatic cancer cells were shown to depend on epithelial cytok-
eratin expression for survival14, and in a study15 with breast can-
cer cells, metastasis was shown to require the expression of 
epithelial cell adhesion (E- and P-cadherin) and cytoskeletal  
(cytokeratins K5, K8, and K14) proteins14–16. While the adhesive 
properties of cells are altered during EMT, a binary switch  
from an epithelial to a mesenchymal state is rarely seen during 
normal embryonic development11,17 or in cancer9,17. Instead, cells  
undergoing EMT attain various states that are intermediate  
between the epithelial origin and a mesenchymal potential,  
evident by the co-expression of CAMs for both epithelial and  
mesenchymal states, together with a partial loss of E-cadherin 
or its displacement from the cell membrane or both18,19. Such  
stepwise/partial EMT observed in cancer cells may explain tumor 

heterogeneity and the different tumorigenic abilities of cancer 
cells from various niches within the tumor. Cancer cells with a 
partial EMT were found to be more efficient in tumor budding, 
invasion, and metastasis since these processes apparently  
require both EMT and mesenchymal-to-epithelial transition 
(MET)9.

A partial EMT was described in studies on different tumor  
types20–26. In ovarian cancer, the EMT process was subdivided  
into four types depending on the degree of epithelial or mesen-
chymal marker expression21. The transforming growth factor-
beta (TGF-β)-induced EMT in MCF10A breast epithelial cells is 
also a stepwise process with intermediary states20. In studies on 
skin and breast cancer in mouse models and in patient-derived  
xenograft (PDX) tissues, cancer cells undergoing EMT were  
subdivided into six phenotypically and functionally distinct 
states on the basis of the extent of loss of the epithelial marker  
EpCAM (epithelial cell adhesion molecule) and gain of the 
cell–ECM adhesion receptor integrin α5 (CD51), integrin β3  
(CD61), and vascular cell adhesion molecule 1 (VCAM1) 
(CD106)25. After intravenous injection, cells displaying a hybrid 
EMT subtype were better at reaching the circulation, coloniz-
ing the lungs, and forming metastases25. Different CAMs that are 
used to identify stages of stepwise EMT apparently also play a  
functional role in the increased metastatic ability of such cells8.

Intermediate epithelial-to-mesenchymal transition 
states, circulating tumor cell clusters, and metastasis
Studies in recent years revealed that the dissemination of cancer 
cells occurs as multicellular clusters rather than single cells,  
and circulating tumor cells (CTCs), which play a key role in 
determining metastatic ability, also involve an incomplete/ 
intermediate/partial EMT19,27. CTC clusters were reported in  
different types of cancer (breast, lung, colorectal, and prostate),  
and increased CTC clusters were observed during the later 
stages of metastasis28,29. Individual cells within the CTC clusters  
display different EMT subtypes that contribute to successful 
survival within the circulation, extravasation, and tumor  
seeding19,24–26. Previous studies hypothesized that a single  
disseminated tumor cell is the precursor of a metastatic tumor. 
When a cluster of different tumor cells is involved, the meta-
static tissue is polyclonal, providing a possible explanation for 
variations in response to cancer therapy27. In CTC clusters, the 
cells remain cohesive to each other because of the presence of  
EpCAMs on their surface21,30.

In pancreatic ductal adenocarcinoma (PDAC), more differentiated 
cells with partial EMT traits expressing E-cadherin, claudin-7, 
and EpCAM were shown to invade and metastasize as  
multicellular tumor clusters26. In a study with human breast  
cancer cells, CTC clusters were shown to be more metastatic than 
single CTCs31. Such CTC clusters displayed an increase in the 
junctional cytoplasmic plaque protein plakoglobin (γ-catenin)31. 
Plakoglobin is a paralogue of β-catenin that, in addition to 
its interaction with adherens junctions, is a key component 
of desmosomes, a specialized epithelial cell–cell adhesion  
structure32. When compared with β-catenin (whose overexpres-
sion enhances tumorigenesis), plakoglobin is associated mostly  
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with tumor suppression33. Interestingly, breast cancer cells  
expressing plakoglobin that are shed into the circulation as 
multicellular clusters were more metastatic than plakoglobin- 
deficient single cells31. It was suggested that plakoglobin- 
expressing CTCs are more likely to get trapped in small  
capillaries than are single tumor cells, thereby promoting the 
extravasation of CTC clusters in distant organs31.

In inflammatory breast cancer (IBC), CTC clusters that enhance 
metastasis are organized as intra-lymphatic tumor cell emboli 
that retain membrane-bound E-cadherin, maintain cell–cell  
adhesion, and invade as clusters that display a partial EMT  
(characterized by vimentin expression)34. Invasion via CTC  
clusters can also involve the activation of α-catenin, another  
adherens junction plaque protein that promotes the contractil-
ity of the actomyosin system in cell–cell junctions35. Cancer 
cells expressing E-cadherin were recently shown to form  
heterotypic adhesion complexes with cancer-associated fibrob-
lasts that express N-cadherin, thereby assisting in cancer cell  
migration36. Such a mechanotransduction process could explain 
why E-cadherin expression at the surface of CTC clusters  
increases their invasive ability.

Epithelial-to-mesenchymal transition, cancer stem 
cells, and metastasis
A link between cell adhesion and stem cell–like properties in  
cancer cells was proposed on the basis of serial tumor sections 
in which cells at the invasive edge of the tumor (that eventu-
ally bud off into the circulation and metastasize) displayed EMT  
markers together with stemness characteristics37. Moreover, in 
a set of mammary tumor cell lines, the loss of E-cadherin was  
shown to induce stem cell–like behavior (enrichment in CD44high/
CD24low stem-like cells and ability to form mammospheres)38. 
Other studies in a murine model of mammary tumor revealed 
that both normal and cancer stem cells display characteristics of  
EMT10. An increased expression of the EMT transcription  
factor (EMT-TF) ZEB1 (which inhibits E-cadherin transcription) 
was reported in tumor-initiating stem-like cells in colorectal and  
pancreatic cancer39. The stabilization of β-catenin by SNAIL 
(another EMT-TF) expression leads to the expansion of the 
stem cell niche in colorectal cancer (CRC)40. Together, these  
observations suggested that EMT induces stemness in invasive 
cancer cells. Since the loss of E-cadherin and transition into a 
mesenchymal state often characterize CSCs, a pharmacologically 
triggered MET was proposed as a potential therapeutic approach  
aiming to eliminate tumor-initiating cells41. Indeed, by inducing 
MET and E-cadherin expression in mammary tumor stem cells 
(through an increase in cyclic AMP [cAMP] and a consequent 
activation of protein kinase A, or PKA), a suppression of the  
tumorigenic potential was observed42.

However, an induction of MET might not always be an effective 
means to block metastasis, since several studies reported that  
a partial loss of EMT, or a MET-like process, is often required 
for successful metastasis43–45. For example, loss of the EMT-TF  
Prrx1 in breast cancer cells induces MET and leads to the  
establishment of a CSC niche and was required for metastasis43. 
In squamous cell carcinoma (SCC), a Twist-1–mediated EMT 

was necessary in primary tumor cells for local invasion and the  
intravasation of tumor cells into the circulation, but the silenc-
ing of Twist-1 and the re-acquisition of E-cadherin were neces-
sary for extravasation and colonization in the distant tissue44. 
TGF-β was shown to trigger MET through activation of the 
TF inhibitor of differentiation-1 (ID1)45, which leads to re-
expression of E-cadherin and the submembrane sequestering 
of β-catenin, together with the loss of mesenchymal vimentin. 
Such ID1-induced MET also confers CSC-like characteristics  
(enrichment of CD44high/CD24low cells and the formation of 
mammospheres). While an EMT and the loss of E-cadherin are  
advantageous at the primary tumor site, CSCs in metastatic foci 
re-express E-cadherin under the influence of TGF-β and ID1.  
Such observations indicate that the epithelial or mesenchymal  
state of cancer cells affects their stemness/invasive properties  
differently, depending on whether the cells are localized in the 
primary tumor, in the circulation, or at distant metastatic sites. 
In another study with mammary epithelial cells, long-term  
constitutive activation of Twist-1 led to the production of non-
proliferative migratory cells46, while a transient induction of  
Twist-1 led to the expression of both epithelial (E-cadherin) and  
mesenchymal (vimentin) states together with CSC character-
istics and a greatly enhanced invasive metastatic phenotype46.  
Twist-1 levels in skin cancer cells determine the extent of their 
invasiveness, but both low Twist-1 (low E-cadherin, benign  
papilloma) and high Twist-1 (no E-cadherin, malignant tumor) 
cells showed stem cell–like behavior, indicating that stemness  
traits in cancer cells do not require a complete loss of the  
epithelial phenotype47. Finally, numerous recent studies also  
described how cells that display both epithelial and mesenchy-
mal markers are enriched in CSC markers and become more  
metastatic and how such cells acquire stem cell–like traits before 
they lose E-cadherin22,25,26,46,48.

Epithelial or mesenchymal cancer cell adhesion properties  
could also be involved in determining the metastatic site (orga-
notropism) of tumor cells. In a murine model of PDAC, the  
stabilization of E-cadherin by the adherens junction plaque  
protein δ-catenin (p120) was essential for liver metastasis, while 
cells displaying a full EMT metastasized to the lungs, even in the  
absence of p12049. Thus, while EMT at the primary tumor site 
was associated with an induction of stemness and enhanced  
invasiveness, it is unclear whether both a partial reversion to an  
epithelial state and the acquisition of CSC properties are  
required for successful metastasis.

Signaling via cell adhesion molecules in cancer stem 
cells
Studies with EMT-TFs involved in the loss of E-cadherin  
suggest that changes in cell adhesion properties are required 
to establish and maintain cancer cell stemness traits41. In both  
normal and cancer stem cells, the activation of WNT signaling 
and EMT-associated changes in cell adhesion involve the  
displacement of β-catenin from adherens junctions, where it links  
E-cadherin to the actin cytoskeleton50. In most types of cancer, 
β-catenin accumulates and evades the proteasomal destruction  
complex, translocates into the nucleus, and induces the trans-
activation of target genes together with lymphoid enhancer  
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factor/T-cell factor (LEF/TCF) factors50. These target genes often 
include CAMs that promote the generation of CSCs51.

The CAM CD44 is induced by EMT; it is a β-catenin–TCF  
target gene and integrates multiple signaling pathways that lead 
to the development of CSC traits. CD44 anchors cells to the  
ECM by binding to hyaluronic acid and activates various  
signaling pathways52,53. Overexpression of CD44 marks cells 
with CSC properties and is associated with advanced stages of 
cancer development in the breast, bone, parathyroid gland, liver, 
colon, and pancreas52. Loss of E-cadherin in breast cancer cells is  
associated with increased CD44 expression and stemness38. 
The accumulation of nuclear β-catenin was shown to increase  
CD44 expression in normal intestinal epithelial and in CRC  
cells54. CD44, in turn, enhances WNT/β-catenin signaling by 
phosphorylating the WNT receptor LRP655 and can also act  
via the JAK/STAT3 pathway in various CSC subpopulations56. 
In CRC cells, the CD44 adhesion receptor is internalized, 
forms a complex with STAT3 and p300, translocates into the  
nucleus, and activates cancer-associated genes57. In nasopharyn-
geal carcinoma and breast cancer, CD44 activates STAT3 and 
promotes the maintenance of a stem cell–like subpopulation58,59. 
In addition to WNT/β-catenin and JAK/STAT3 signaling,  
PI3K/AKT signaling is induced by CD44. The generation of 
breast CSCs can involve a BMP-2–mediated degradation of Rb, 
leading to SMAD activation and increased CD44 expression60. 
CD44s and CD44v isoforms are prognostic markers for several 
cancers, and CD44 is used in targeted cancer therapy using  
anti-CD44 antibodies and CD44 antagonizing peptides61.

The neural cell adhesion immunoglobin-like molecule L1CAM 
(L1) is another WNT/β-catenin target gene that induces  
stemness in cancer cells by activating various signaling  
pathways47. Increased β-catenin-TCF–mediated transactivation  
enhances L1 expression in CRC cells, resulting in elevated cell  
motility, invasiveness, and liver metastasis62,63. The mechanisms  
downstream of L1 involve the activation of nuclear factor 
kappa light chain enhancer of B cells (NF-κB) signaling through 
the scaffold protein ezrin and the Rho-associated protein  
kinase, leading to the elevated transcription of IGFBP2, SMOC2, 
and LGR5, known markers of intestinal and colonic epithelial 
stem cells64,65. The L1-mediated induction of NF-κB signaling 
and the activation of stemness-associated genes support studies  
demonstrating that NF-κB activation induces dedifferentiation 
and the establishment of CSCs in the intestinal epithelium66.  
In both mammary epithelial and CRC cells, L1 can suppress  
E-cadherin and induce nuclear β-catenin accumulation67,68. 
In CRC cells, the L1-mediated increase in β-catenin–TCF  
transactivation results in increased ASCL2, a TF that determines 
intestinal stem cell fate by regulating various stemness-associated 
genes69. The induction of ASCL2 and NF-κB activation by L1 
are examples of the means by which changes in cell adhesion 
during tumorigenesis can induce stemness traits in cancer cells. 
Therapeutic approaches, including short hairpin RNA/small  
interfering RNA (shRNA/siRNA)-mediated downregulation 
of L1 or high-affinity monoclonal antibodies against L1, have  
shown promise in several different cancers70.

The cell–ECM adhesion receptors of the integrin family  
represent another means by which changes in cell adhesion can 
affect CSCs and metastasis. The integrin subunits α6(CD49), 
β1(CD29), and β3(CD61) are known markers of both normal  
and cancer stem cells71–75. For example, the knockdown of 
integrin α6 in glioblastoma cells severely affects a stem cell  
subpopulation, inhibiting its self-renewal, proliferation, and 
tumor formation76. The expression of integrin β3 induces various 
CSC subpopulations in breast, lung, and pancreatic cancer73,77.  
Integrins signal through KRAS, NF-κB, and SRC kinase-
mediated activation of EMT TFs in stem cells during normal  
development78. Therapeutic targeted interference with integrin-
mediated signaling, such as the targeting of focal adhesion  
kinase (FAK) activation or of integrin–ECM interactions 
through enzymes such as lysyl oxygenase or glycocalyx proteins 
(that is, mucins), are being investigated for designing cancer  
therapeutics79.

Another mechanism operating during integrin-induced stem-
ness traits involves integrin-linked kinase (ILK). ILK is a focal  
adhesion-associated serine/threonine kinase that interacts with  
several integrins in a complex with Parvin and PINCH and acts 
as a multifunctional effector of growth factor signaling and cell–
ECM interactions80,81. In CRC, ILK induces β-catenin–LEF1  
interaction and transactivation, the loss of E-cadherin via 
induction of EMT-TFs, and the induction of stem cell  
markers82–88. In breast CSCs, interleukin-6 (IL-6), a key growth 
factor, induces the expression of the TF E2F1 via a STAT3/ 
cyclin D1/CDK2 loop and subsequently triggers the activation  
of NF-κB and NOTCH signaling, which enhance ILK  
expression89. Activation of ILK is required for breast CSC  
maintenance90, and ILK also responds to mechanical stress and 
hypoxia by activating PI3K/AKT signaling, which leads to the 
expression of CD44 and other stemness-associated genes in  
breast cancer cells91.

Conclusions and perspectives
The development of distant metastases, after the formation of a 
primary tumor, involves many stages and often takes decades in 
humans. The molecular basis of the numerous steps involved 
in the process of metastasis is still poorly understood. While  
co-opting the EMT process by cancer cells is considered a 
key step, recent in vivo studies revealed that EMT does not  
proceed by a binary step from an epithelial to a mesenchymal  
state. Rather, it involves many stages and variations on the  
theme with different hybrid epithelial/mesenchymal states 
being the rule rather than the exception. Hybrid epithelial/ 
mesenchymal states, the development of stemness charac-
teristics, and the gain and sometimes loss of the same traits  
during the long process of metastasis point to the high degree of  
plasticity in the cancer cell phenotype. The studies discussed 
here show that there are a number of tumor cell subpopulations  
in the same tumor, displaying varying degrees of EMT. Which  
EMT stage is necessary for the induction of stem cell traits and 
what the molecular signaling steps involved in this process are  
remain to be determined. The role for and necessity of these  
different tumor cell subpopulations for successful metastasis  
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also await further investigation. The changes in CAMs and 
the associated cytoskeletal proteins involved in the trans- 
differentiation and hybrid EM phenotypes are only starting to be 
revealed. Careful in vivo analyses of human tumors and studies 
in animal models in vivo will hopefully determine the molecular  
characteristics of the changes in cell adhesion and motility as  
related to these cancer cell phenotypes and the associated  
stemness traits and their relevance to the development of  
metastases and will hopefully provide future avenues for effective  
cancer therapies.
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