26 research outputs found

    Software-Defined Network-Based Vehicular Networks: A Position Paper on Their Modeling and Implementation

    Full text link
    There is a strong devotion in the automotive industry to be part of a wider progression towards the Fifth Generation (5G) era. In-vehicle integration costs between cellular and vehicle-to-vehicle networks using Dedicated Short Range Communication could be avoided by adopting Cellular Vehicle-to-Everything (C-V2X) technology with the possibility to re-use the existing mobile network infrastructure. More and more, with the emergence of Software Defined Networks, the flexibility and the programmability of the network have not only impacted the design of new vehicular network architectures but also the implementation of V2X services in future intelligent transportation systems. In this paper, we define the concepts that help evaluate software-defined-based vehicular network systems in the literature based on their modeling and implementation schemes. We first overview the current studies available in the literature on C-V2X technology in support of V2X applications. We then present the different architectures and their underlying system models for LTE-V2X communications. We later describe the key ideas of software-defined networks and their concepts for V2X services. Lastly, we provide a comparative analysis of existing SDN-based vehicular network system grouped according to their modeling and simulation concepts. We provide a discussion and highlight vehicular ad-hoc networks' challenges handled by SDN-based vehicular networks.Comment: 14 pages, 3 figures, Sensors 201

    Joint admission and association in vehicular networks

    Get PDF
    Abstract. To support vehicle to everything (V2X) communication which is an integral part of intelligent transportation systems (ITS), fifth generation (5G) communication systems will need to employ diverse range of technologies, which will ultimately lead to automated driving, improved traffic safety, improved traffic efficiency and infotainment.~V2X is considered as one of the most challenging applications of 5G, because it requires ultra reliable and low latency communication (URLLC) for safety critical applications and high data rates in many scenarios under mobility. Vehicles which can communicate with a base station or road side unit (RSU) are primary vehicles, which can act as relays to secondary vehicles which are out of coverage from the network. Therefore vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication are employed to provide coverage for out of coverage vehicles. In this study joint problem of admission control for primary vehicles and user association for secondary vehicles in a singe cell downlink vehicular network is considered. The objective is to maximize the number of admitted primary vehicles, while associating all secondary vehicles. We consider the underlying communication system is based on millimeter wave communication at 60 GHz and we cast the optimization problem as an ℓ₀ minimization problem. This problem is known to be combinatorial and NP-hard. Hence, we propose a sub optimal, two stage algorithm to solve it. We compare the performance of proposed algorithm against the exhaustive search algorithm. From simulation results it can be observed, although the proposed algorithm is a sub optimal algorithm it gives optimal performance with improved efficiency. Hence, the proposed algorithm is able to determine the optimal association for vehicles which are out of coverage and optimal admission for vehicles which are in coverage

    URLLC-Awared Resource Allocation for Heterogeneous Vehicular Edge Computing

    Full text link
    Vehicular edge computing (VEC) is a promising technology to support real-time vehicular applications, where vehicles offload intensive computation tasks to the nearby VEC server for processing. However, the traditional VEC that relies on single communication technology cannot well meet the communication requirement for task offloading, thus the heterogeneous VEC integrating the advantages of dedicated short-range communications (DSRC), millimeter-wave (mmWave) and cellular-based vehicle to infrastructure (C-V2I) is introduced to enhance the communication capacity. The communication resource allocation and computation resource allocation may significantly impact on the ultra-reliable low-latency communication (URLLC) performance and the VEC system utility, in this case, how to do the resource allocations is becoming necessary. In this paper, we consider a heterogeneous VEC with multiple communication technologies and various types of tasks, and propose an effective resource allocation policy to minimize the system utility while satisfying the URLLC requirement. We first formulate an optimization problem to minimize the system utility under the URLLC constraint which modeled by the moment generating function (MGF)-based stochastic network calculus (SNC), then we present a Lyapunov-guided deep reinforcement learning (DRL) method to convert and solve the optimization problem. Extensive simulation experiments illustrate that the proposed resource allocation approach is effective.Comment: 29 pages, 14 figure

    Efficient joint channel equalization and tracking for V2X communications using SC-FDE schemes

    Get PDF
    Our aim with this paper is to present a solution suitable for vehicle-to-everything (V2X) communications, particularly, when employing single-carrier modulations combined with frequency-domain equalization (SC-FDE). In fact, we consider the V2X channel to be doubly-selective, where the variation of the channel in time is due to the presence of a Doppler term. Accordingly, the equalization procedure is dealt by a low-complexity iterative frequency-domain equalizer based on the iterative block decisionfeedback equalization (IB-DFE) while the tracking procedure is conducted employing an extended Kalman filter (EKF). The proposed system is very efficient since it allows a very low density of training symbols, even for fast-varying channels. Furthermore only two training symbols are required to initialize the tracking procedure. Thus, ensuring low latency together with reduced channel estimation overheads.publishe

    Innovations in Electric Vehicle Technology: A Review of Emerging Trends and Their Potential Impacts on Transportation and Society

    Get PDF
    The adoption of electric vehicles (EVs) has gained significant momentum in recent years, driven by the need to reduce greenhouse gas emissions, improve air quality, and achieve sustainable transportation. This study presents a comprehensive review of emerging trends in EV technology and their potential impacts on transportation and society. The study explores various areas of innovation in the field of EVs, including battery technology, wireless charging, vehicle-to-grid (V2G) communication, lightweight materials, autonomous driving, vehicle-to-everything (V2X) communication, circular economy approaches, advanced charging infrastructure, energy storage, and social and behavioral innovations. This study reveals that battery technology advancements are driving the adoption of EVs. Lithium-ion batteries have improved energy density, charging speed, and lifespan. Alternative battery technologies, like solid-state and lithium-sulfur batteries, show promise for even higher energy density, faster charging, and increased safety. Wireless charging technology is emerging, with high-power and high-efficiency systems potentially addressing concerns about charging infrastructure and range anxiety. V2G communication allows EVs to serve as mobile energy storage units, contributing to grid stability, load balancing, and renewable energy integration. Lightweight materials, like advanced composites and lightweight metals, can significantly reduce the weight of EVs, improving energy efficiency and overall performance. Autonomous driving technologies have the potential to improve safety, reduce congestion, and optimize energy use. V2X communication enables a wide range of applications, like intelligent traffic management and enhanced safety features. Circular economy approaches, including designing EVs with recyclability and reusability in mind, using recycled materials in manufacturing, and developing end-of-life recycling and repurposing strategies, can minimize the environmental impact of EVs and contribute to their sustainability

    Software Defined Network-Based Multi-Access Edge Framework for Vehicular Networks

    Get PDF
    The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this work through Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing.Peer reviewe

    Vehicular Wireless Communication Standards: Challenges and Comparison

    Get PDF
    Autonomous vehicles (AVs) are the future of mobility. Safe and reliable AVs are required for widespread adoption by a community which is only possible if these AVs can communicate with each other & with other entities in a highly efficient way. AVs require ultra-reliable communications for safety-critical applications to ensure safe driving. Existing vehicular communication standards, i.e., IEEE 802.11p (DSRC), ITS-G5, & LTE, etc., do not meet the requirements of high throughput, ultra-high reliability, and ultra-low latency along with other issues. To address these challenges, IEEE 802.11bd & 5G NR-V2X standards provide more efficient and reliable communication, however, these standards are in the developing stage. Existing literature generally discusses the features of these standards only and does not discuss the drawbacks. Similarly, existing literature does not discuss the comparison between these standards or discusses a comparison between any two standards only. However, this work comprehensively describes different issues/challenges faced by these standards. This work also comprehensively provides a comparison among these standards along with their salient features. The work also describes spectrum management issues comprehensively, i.e., interoperability issues, co-existence with Wi-Fi, etc. The work also describes different other issues comprehensively along with recommendations. The work describes that 802.11bd and 5G NR are the two potential future standards for efficient vehicle communications; however, these standards must be able to provide backward compatibility, interoperability, and co-existence with current and previous standards
    corecore