10,637 research outputs found

    Component Optimization of a Parallel P4 Hybrid Electric Vehicle Utilizing an Equivalent Consumption Minimization Strategy

    Get PDF
    Advancements in battery and electric motor technology have driven the development of hybrid electric vehicles to improve fuel economy. Hybrid electric vehicles can utilize an internal combustion engine and an electric motor in many configurations, requiring the development of advanced energy management strategies for a range of component configurations. The Equivalent Consumption Minimization Strategy (ECMS) is an advanced energy management strategy that can be calculated in-vehicle in real-time operation. This energy management strategy uses an equivalence factor to equate electrical to mechanical power when performing the torque split determination between the internal combustion engine and electric motor. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimized fuel economy results, while maintaining a target state of charge of the battery. The goal of this work is to analyze how the algorithm operates with the WVU Chevy Blazer to find an optimal equivalence factor that can maintain a strict charge sustaining window of operation for the high voltage battery, while improving the fuel economy based on dynamic programing results calculated for this vehicle architecture. Different electric motor sizes are then explored by changing the max torque and max power to analyze how the equivalence factor changes to operate the ECMS algorithm. This research mainly focused on utilizing both the UDDS drive cycle and HwFET drive cycle to determine the effectiveness of the ECMS algorithm. The results show that as the max torque and max power of the electric motor increased, the equivalence factor found for the UDDS drive cycle and the HwFET drive cycle converged to similar value. The convergence of the equivalence factor allowed the ECMS algorithm to better maintain the target state of charge of the battery while maintaining the fuel economy and improving the fuel economy for the UDDS drive cycle and HwFET drive cycle, respectively

    The novel application of optimization and charge blended energy management control for component downsizing within a plug-in hybrid electric vehicle

    Get PDF
    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    A state-of-the-art review on torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains

    Get PDF
    © 2019, Levrotto and Bella. All rights reserved. Electric vehicles are the future of private passenger transportation. However, there are still several technological barriers that hinder the large scale adoption of electric vehicles. In particular, their limited autonomy motivates studies on methods for improving the energy efficiency of electric vehicles so as to make them more attractive to the market. This paper provides a concise review on the current state-of-the-art of torque distribution strategies aimed at enhancing energy efficiency for fully electric vehicles with independently actuated drivetrains (FEVIADs). Starting from the operating principles, which include the "control allocation" problem, the peculiarities of each proposed solution are illustrated. All the existing techniques are categorized based on a selection of parameters deemed relevant to provide a comprehensive overview and understanding of the topic. Finally, future concerns and research perspectives for FEVIAD are discussed

    Multi-objective optimisation for battery electric vehicle powertrain topologies

    Get PDF
    Electric vehicles are becoming more popular in the market. To be competitive, manufacturers need to produce vehicles with a low energy consumption, a good range and an acceptable driving performance. These are dependent on the choice of components and the topology in which they are used. In a conventional gasoline vehicle, the powertrain topology is constrained to a few well-understood layouts; these typically consist of a single engine driving one axle or both axles through a multi-ratio gearbox. With electric vehicles, there is more flexibility, and the design space is relatively unexplored. In this paper, we evaluate several different topologies as follows: a traditional topology using a single electric motor driving a single axle with a fixed gear ratio; a topology using separate motors for the front axle and the rear axle, each with its own fixed gear ratio; a topology using in-wheel motors on a single axle; a four-wheel-drive topology using in-wheel motors on both axes. Multi-objective optimisation techniques are used to find the optimal component sizing for a given requirement set and to investigate the trade-offs between the energy consumption, the powertrain cost and the acceleration performance. The paper concludes with a discussion of the relative merits of the different topologies and their applicability to real-world passenger cars

    Time-optimal Control Strategies for Electric Race Cars with Different Transmission Technologies

    Get PDF
    This paper presents models and optimization methods to rapidly compute the achievable lap time of a race car equipped with a battery electric powertrain. Specifically, we first derive a quasi-convex model of the electric powertrain, including the battery, the electric machine, and two transmission technologies: a single-speed fixed gear and a continuously variable transmission (CVT). Second, assuming an expert driver, we formulate the time-optimal control problem for a given driving path and solve it using an iterative convex optimization algorithm. Finally, we showcase our framework by comparing the performance achievable with a single-speed transmission and a CVT on the Le Mans track. Our results show that a CVT can balance its lower efficiency and higher weight with a higher-efficiency and more aggressive motor operation, and significantly outperform a fixed single-gear transmission.Comment: 5 pages, 4 figures, submitted to the 2020 IEEE Vehicle Power and Propulsion Conferenc
    • …
    corecore