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Abstract 

 

Component Optimization of a Parallel P4 Hybrid Electric Vehicle Utilizing an 

Equivalent Consumption Minimization Strategy 

 

Holden Fraser 

 

Advancements in battery and electric motor technology have driven the development of hybrid 

electric vehicles to improve fuel economy. Hybrid electric vehicles can utilize an internal combustion 

engine and an electric motor in many configurations, requiring the development of advanced energy 

management strategies for a range of component configurations. The Equivalent Consumption 

Minimization Strategy (ECMS) is an advanced energy management strategy that can be calculated in-

vehicle in real-time operation. This energy management strategy uses an equivalence factor to equate 

electrical to mechanical power when performing the torque split determination between the internal 

combustion engine and electric motor. This equivalence factor is determined from offline vehicle 

simulations using a sensitivity analysis to provide optimized fuel economy results, while maintaining 

a target state of charge of the battery. The goal of this work is to analyze how the algorithm operates 

with the WVU Chevy Blazer to find an optimal equivalence factor that can maintain a strict charge 

sustaining window of operation for the high voltage battery, while improving the fuel economy based 

on dynamic programing results calculated for this vehicle architecture. Different electric motor sizes 

are then explored by changing the max torque and max power to analyze how the equivalence factor 

changes to operate the ECMS algorithm. This research mainly focused on utilizing both the UDDS 

drive cycle and HwFET drive cycle to determine the effectiveness of the ECMS algorithm. The results 

show that as the max torque and max power of the electric motor increased, the equivalence factor 

found for the UDDS drive cycle and the HwFET drive cycle converged to similar value. The 

convergence of the equivalence factor allowed the ECMS algorithm to better maintain the target state 

of charge of the battery while maintaining the fuel economy and improving the fuel economy for the 

UDDS drive cycle and HwFET drive cycle, respectively.
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1 Introduction 

The objective of this thesis is the implementation and optimization of an advanced energy 

management strategy for a hybrid electric vehicle (HEV). This work has its origin in the 

development of the propulsion controls system for a 2019 Chevrolet Blazer, as part of 

EcoCAR Mobility Challenge (EMC) Advanced Vehicle Technology Competition, sponsored by 

the US Department of Energy through Argonne National Laboratories. 

The main goal of this energy management strategy will be to increase fuel economy and 

reduce emissions when compared to the baseline vehicle. There are many ways that an 

energy management strategy can be implemented in a HEV to control the torque produced 

from an internal combustion engine (ICE) and an electric motor (EM) through torque-splitting 

algorithms (TSAs). These strategies can be a rule-based method that relies on a set of rules 

that are executed in real-time to determine the torque split that is not dependent on 

optimization of both components. Strategies can also include a model-based optimization 

method that examines a range of possible torque splits to select the torque split that will 

optimize the efficiency of both components through minimizing a cost function over a known 

drive cycle to obtain the global optimal solution [1]. 

These model-based methods can be divided into two categories: numerical optimization and 

analytical optimization. Numerical optimization methods use techniques such as dynamic 

programing and genetic algorithms to calculate the global solution for the whole drive cycle 

offline while analytical optimization methods calculate the global solution for each time-step 

in real-time. An Equivalent Consumption Minimization Strategy (ECMS) is categorized as an 

analytical optimization method [1]. Even though these methods can calculate the global 
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optimal solution; they can be computationally intensive to implement in an actual vehicle 

due to hardware limitations. 

The work of this thesis builds upon an already existing ECMS TSA created by MathWorks. 

This introductory chapter discusses the basics of a HEV and provides an overview of the 

student designed HEV built by the WVU team. Later chapters will describe the vehicle model 

and the ECMS TSA that is used for this research. The contribution of this thesis is the 

development of a methodology for optimizing this ECMS TSA to have a baseline mode of 

operation that maximizes fuel economy while maintaining a target SOC. The thesis then 

analyzes how the fuel economy and ending SOC are affected by changing the size of the 

components of the HEV, leading to conclusions about how components affect the ECMS 

algorithm to improve fuel economy and maintain a target SOC. Future work is presented 

after the conclusion. 

1.1 Hybrid Electric Vehicles 

With the increase of greenhouse gases due to an ever-growing population and economic 

growth of a country, with the transportation sector contributing the most emissions with 

29%, a solution to reduce greenhouse gases being emitted needs to be found [2].  One 

solution to this problem are HEVs that have both an ICE and EM equipped. The adoption of 

HEVs can reduce the direct emissions that are being produced from the vehicle’s tailpipe 

and reduce the cycle life emissions that come from the refinement, distribution, and 

consumption of gasoline [3].  

1.1.1 HEV Types 

There are two main types of HEVs, Plug-in Hybrid Electric Vehicles (PHEV) and non-plug in 

HEVs. PHEVs can be characterized by their large battery that allows them to operate as a 
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fully electric vehicle, Charge Depletion (CD) mode, that only uses the EM to propel the vehicle 

or as a hybrid, Charge Sustaining (CS) mode, that uses both the ICE and EM to propel the 

vehicle. PHEVs generally recharge their battery by utilizing regenerative braking, being 

plugged into a charging station, or from the ICE. These PHEVs can have an CD range between 

15 to 60 miles, making them great vehicles for those who have short commutes to work. 

These vehicles shall operate in CS mode when its more efficient to have the ICE produce 

torque along with the EM, when the wheel torque demand is greater than what the EM can 

produce, or when the State of Charge (SOC) of the battery has been depleted to a certain 

threshold [4].   

Non-plug in HEVs do not have the same functionality as a PHEV. These vehicles have a 

smaller battery compared to a PHEV, which does not allow it to have an CD mode since 

these HEVs cannot travel far. This mode of operation is restricted to only being used when 

in emergencies when a component required to operate the ICE malfunctions so the driver 

can pull off the side of the road. These HEVs usually operate in CS mode and will only use 

the EM when the battery is between a certain amount of SOC. The only way that this battery 

can be recharged is by utilizing regenerative braking or by using the ICE. This paper will 

mainly focus on optimizing a non-plug in HEV, but this research can be applied to both types 

of HEVs [5]. 

1.1.2 HEV Architectures 

A HEVs architecture can be in series, parallel, or a combination of series and parallel 

architectures (series-parallel). A series HEV operates by only using the EM to propel the 

vehicle while the ICE acts as a generator that will either recharge the battery or provide 

power to the EM to propel the vehicle as shown in Figure 1. This type of architecture is 
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great for urban driving that sees stop-and-go traffic where ICE is inefficient [6]. Unlike 

series HEVs, parallel HEVs allow for both the ICE and EM to work together to produce the 

needed torque to propel the vehicle forward as shown in Figure 2. 

 

Figure 1: Series HEV Architecture 

 

Figure 2: Parallel HEV Architecture 

In a Parallel HEV, both ICE and EM propel the vehicle by having both operate in their 

optimum operating region as much as possible. This architecture also removes the 
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inefficiencies that an ICE will have when converting to electric power and back that a Series 

architecture sees by coupling the ICE to the wheels along with the EM. However, this 

architecture generally has a smaller battery for operation, which will not allow the HEV to 

have a true CD mode, and that the EM will act as a generator when needed instead of having 

a generator on the ICE to recharge the battery [6]. The series-parallel architecture utilizes 

both series and parallel as shown in Figure 3. 

 

Figure 3: Series-Parallel Architecture 

The series-parallel architecture can use both the ICE and EM at the same time to propel the 

vehicle or can use them individually to propel the vehicle. This architecture is the costliest 

of the three to implement, but there are benefits to utilizing this architecture. During urban 

driving or city driving this architecture can operate as a series HEV that mainly utilizes the 

EM to propel the vehicle. While during highway driving, the HEV will act as a parallel HEV 

that utilizes the ICE to propel the vehicle [6]. With these three architectures defined, this 

paper will mainly focus on utilizing a parallel HEV architecture. 
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1.1.3 Parallel HEV Architecture  

With this work mainly focusing on a parallel HEV architecture, there are six possible 

configurations for a parallel HEV. These configurations are numbered from P0 to P5 and are 

shown in Figure 4 [7]. 

 

Figure 4: Parallel HEV Architectures 

Implementing a P0 architecture has the EM being mounted to the ICE via the belt assembly. 

With the integration of the EM here, the 12 V alternator can be replaced with a 48 V EM. 

The vehicle will be able to implement hybrid modes such as start/stop functionality and 

energy recuperation through a form of regenerative braking. Even though this configuration 

provides benefits from low cost of integration and some optimization benefits for the ICE, 

this EM has a limited capacity for torque output and the energy recuperation is affected due 

to the losses from the torque from the ICE being transferred through a belt assembly [8].  

Implementing a P1 architecture allows the EM to be integrated directly onto the crankshaft 

of the ICE rather than the belt assembly compared to the P0 architecture. Doing this allows 

the EM to act as a generator during vehicle deceleration and become a vehicle starter and 

motor to propel the vehicle. This configuration not only has the hybrid functionality of a P0 

architecture but can provide a higher torque output compared to the P0 since it is not on 
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the belt assembly. The belt assembly can be removed, allowing the ICE to perform more 

efficiently since the EM will power the electrical system. There are some drawbacks to this 

configuration, being that the output torque of the EM is limited since it is not on a gearbox 

assembly, has a higher cost to manufacture, and the design for this architecture is too 

cumbersome compared to other architectures to manufacture [8]. 

The main downside to the use of a P0 and P1 is that they are mechanically coupled together 

with no options of them being disconnected, making it inefficient for torque boosting and 

energy recuperation when compared to a P2 – P5 architecture. A P2 architecture has the 

EM connected to the input shaft of the transmission. This connection can be implemented 

by attaching it through a gear assembly, connected through a belt, or directly integrated in 

the transmission. The main advantages to this are the increased energy recuperation 

potential through methods in the P0 and P1 architecture and through coasting and allow 

for electric drive/creep functionality [8]. 

Looking at P3 and P4, these architectures have the highest energy recuperation potential 

compared to P0 – P2. The reason behind this is that these architectures do not have to 

abide by both ICE losses and transmission losses, and other losses that happen in between 

their connection when the driveline is disconnected during these energy recapturing events. 

This is apparent since a P3 architecture is connected to the output shaft of the transmission 

and a P4 architecture has the EM connected to the opposite axle from the ICE assembly [8].  

With the implementation of a P4 architecture, the HEV will have one of the highest possible 

efficiencies and have other modes of operation such to propel the vehicle forward. For 

example, if the vehicle that is being converted is a front-wheel-drive (FWD) vehicle, it will 

now have the capability to be a rear-wheel-drive (RWD) vehicle as well with the integration 
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of an EM on the rear differential. The HEV will also have the capability to provide torque to 

both components at the same time functioning as an all-wheel drive (AWD) vehicle and a 

four-wheel-drive (4WD) vehicle [8]. The P5 architecture functions like that of a P4 

architecture since the EMs will be on the rear axle, but they are integrated into the rear 

wheels. With the increased efficiency that architectures P2 – P5 offer, the main downside to 

these is that they are not able to utilize start/stop functionality since there is not an EM 

directly integrated to the ICE. Architectures such as these that want to utilize start/stop will 

need to either add a 12 V reinforced starter or a 48 V generator, affectively making it a 

P4/P0 architecture [8]. 

1.2 EcoCAR Mobility Challenge 

The EMC is a four-year Advanced Vehicle Technology Competition (AVCT) that pits 11 

universities against each other to develop a HEV from a stock 2019 Chevy Blazer. This 

competition is one of a series of 12 other competitions that have headline sponsors such as 

the U.S. Department of Energy, General Motors (GM) and MathWorks, that is managed by 

Argonne National Laboratory. These competitions give students of various disciplines the 

opportunity to work as a team to redesign and develop vehicles that push the boundaries 

of automotive technology in the hopes to improve fuel economy and give students hands-

on experience in the automotive industry before graduation. Currently more than 30,000 

students from 95 educational institutions in North America have participated in these 

competitions [9]. 

The EcoCAR competition aims to improve the fuel economy of a stock Chevy Blazer and each 

university were responsible for implementing advanced driving assistance systems (ADAS) 

into each of their vehicles. This competition only allows for level 2 SAE autonomy, so features 
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such as Adaptive Cruise Control (ACC) that will maintain a set speed and a set gap length 

behind a lead vehicle and implement vehicle-to-everything (V2X) communication so the 

vehicle can make decisions to either stop or continue to drive forward when at an 

intersection were implemented in this competition. By the end of the competition, each 

university produced a production ready HEV that has a robust energy management algorithm 

that improves fuel economy, that meets certain drive quality metrics for consumer appeal. 

The vehicle must also reach a level of safety that the vehicle can be driven on main roads 

for extended periods of time [10].  

To develop this HEV, there will be three technical swim lanes that govern each aspect of the 

vehicle development process: Propulsion Systems Integration (PSI) team, Connected and 

Automated Vehicles (CAV) team, and the Propulsion Controls and Modeling (PCM) team. The 

PSI team handles all the integration of the hardware goes into the Chevy Blazer. This ranges 

from swapping out current components for new ones, designing and integrating new 

components into the vehicle and all the necessary wiring to connect all components together. 

The CAVs team handles all the ADAS features that is implemented. They develop the 

algorithms needed to utilize ACC and V2X communication. The CAVs team is responsible for 

a supervisory algorithm that collects data and a sensor fusion algorithm that determines the 

most accurate data that will be utilized by the ACC and V2X communication algorithms that 

communicates with the Hybrid Supervisory Controller (HSC) in the Chevy Blazer.   

The PCM team, which works on issues associated with this research, handles the actual 

functionality of the vehicle. The PCM team implements an advanced energy management 

strategy that utilizes both an ICE and EM to propel and stop the vehicle that maximizes 

efficiency and fuel economy. The PCM team also develops a power mode algorithm that 
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activates/deactivates various functions of operation, and a diagnostics algorithm that 

determines when the functionality of the vehicle has been compromised and provides a 

mitigation strategy. The PCM team is responsible for developing an interface that determines 

when the driver is in command or when the ACC algorithm from the CAVs team is in 

command.  

1.3 West Virginia University Vehicle Architecture 

During the first year of the EcoCAR competition cycle, all universities are to have their PCM 

team and PSI team work together to simulate and analyze potential HEV architectures that 

are feasible to develop. The West Virginia University (WVU) team took into consideration 

maximizing fuel economy while minimizing integration development and cost. The research 

that both teams conducted led to the decision to develop a HEV that has a P4 architecture 

to allow the HEV being developed to utilize AWD functionality as shown in Figure 5.  
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Figure 5: WVU Chosen Architecture 

The architecture that the WVU team chose has an ICE propel the vehicle via the front axle 

and an EM via the rear axle. The stock ICE and utilize a smaller 4-cylinder GM 2.5L LCV ICE. 

This ICE has a maximum torque of 259 NM at 4400 RPM, maximum power of 151 kW at 

6300 RPM and a maximum speed of 7000 RPM [11]. This ICE is powered by a custom-made 

fuel tank that can hold roughly 10 gallons of fuel. The stock transmission is replaced with a 

GM 9-speed 9T50 transmission that has an accumulator that can enable start/stop 

functionality. This transmission has a wider 7.6:1 gear ratio that supports excellent off-the-

line acceleration and low-rpm highway cruising [12]. 

The rear axle is propelled by an Electric Rear Axle Drive (eRAD) unit that is used in the Volvo 

V60 hybrid made by Magna. This eRAD unit has a maximum power of 50 kW, a maximum 

speed of 11000 RPM, and a maximum and continuous torque rating of 200 Nm and 90 Nm, 

respectively. This eRAD unit is an all-in-one unit, which comprises of the EM, the differential 
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gearbox that has a 9.71:1 gear ratio and an inverter. This eRAD unit is equipped with a 

disconnect clutch that will disconnect when prompted too or at high speeds. This eRAD unit 

is powered by a GM HEV4 battery pack. This battery pack has a nominal voltage of 300 

volts, total energy storage capacity of 1.5 kWh, and a maximum discharge and charge power 

of 53 kW and 65 kW, respectively. The proposed HEV architecture by WVU is a non-plugin 

HEV instead of a PHEV, making it always in CS mode. This HEV also operates in three modes 

of operation: FWD as shown in Figure 6, AWD – Motoring and AWD – Generating as shown 

in Figure 7. 

 

Figure 6: Front Wheel Drive Operating Mode 

The FWD operating mode only utilizes the ICE to propel the vehicle while the AWD operating 

mode uses both the ICE and EM to propel the vehicle. The HEV needs to be able to 

seamlessly transition between FWD and AWD by a team installed switch per competition 
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rules. This vehicle also enters this mode of operation when said vehicle sets a fault in the 

diagnostics algorithm, causing the vehicle to shut down all AWD operation, leaving the 

vehicle to propel itself using only the ICE. 

                 

Figure 7: All Wheel Drive Operation, Motoring (Left) and Generating (Right) 

While the HEV is in AWD operation as shown in Figure 7, the vehicle will be in either motoring 

or generating mode of operation. While in motoring operation, the vehicle has the eRAD unit 

work as a motor, assisting the ICE in propelling the vehicle forward. The generating operation 

has the eRAD unit work as a generator, either recapturing energy by various forms of 

regenerative braking or by pushing the ICE into a more efficient region of operation. While 

in AWD, the vehicle transitions between these two modes of operation to improve fuel 

economy while maintaining the SOC of the battery. 
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2 Literature Review 

This literature review will begin by surveying methods to optimize the fuel economy of the 

vehicle through ICE optimization and various forms of regenerative braking. This section will 

then review the energy management problem with a brief look at possible control algorithms 

that can be implemented. Finally, this section will examine the main concepts of the energy 

management algorithm that WVU implements in their HEV. 

2.1 Regenerative Braking Methods 

Since the HEV that is being designed will not be a PHEV, this creates a problem with charging 

the battery since there is no longer an external source of power that can charge it while 

being stationary. To maintain the charge of the battery pack so the eRAD unit will need to 

act as a generator to capture mechanical energy and convert it to electrical energy to be 

stored in the battery called regenerative braking. This regenerative braking will be the main 

way to recharge the battery and can be implemented in a variety of ways. The first is by 

utilizing the eRAD unit as a braking system rather than utilizing the friction brakes to slow 

down the vehicle. This form of regenerative braking can come in two forms: blended or over-

the-top braking. Blended braking (series regenerative braking) will rely on the eRAD unit as 

the brakes to slow the vehicle down and have the friction brakes make up the difference. 

Over-the-top braking (parallel regenerative braking) will mainly use the friction brakes and 

add some more braking torque from the eRAD unit, making the brakes more sensitive 

compared to only using friction brakes [13]. Per competition rules and safety risks, this HEV 

will utilize over-the-top braking instead of blended braking. 
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2.2 Internal Combustion Engine Optimization 

As automotive technology advances, more ways are being created to optimize an ICE that 

aim to minimize emissions and maximize fuel economy. The Brake Specific Fuel Consumption 

(BSFC) [g/kWh] reflects the efficiency of the ICE that is taken into consideration to achieve 

this optimization. To calculate this parameter, the fuel mass flow rate [g/s] is divided by the 

ICE output power [kW] as shown in equation 2.1 [14]. Doing this calculation generates the 

speed vs torque map BSFC shown in Figure 8. Due to confidentiality agreements with GM, a 

generic BSFC map will be used to explain this optimization process. For this specific map, 

the optimal BSFC is 265 g/kWh that has a torque output and speed of 150 Nm and 2000 

RPM, respectively. 

𝐵𝑆𝐹𝐶 =  
�̇�𝑓,𝐼𝐶𝐸

𝑃𝐼𝐶𝐸 ∗ 3600
 

2.1 

 

Figure 8: Brake Specific Fuel Consumption Map [15] 

One way to optimize the ICEs BSFC is to optimize the transmission shift schedule. This 

involves the transmission to shift the optimal gear that will provide the required torque 

output while minimizing BSFC. This is common practice in automatic transmissions in newer 

manufactured vehicles. However, this competition does not give the universities much room 

for optimizing the transmission shift schedule. One other way to improve the BSFC of an ICE 
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is to take advantage of an HEV architecture. This is by having the ICE produce more torque 

than needed while the EM acts as a generator to produce electrical power that will charge 

the battery or reduce the amount of torque the ICE will produce by having the EM provide 

motoring torque [14] shown in Figure 9. 

       

Figure 9: HEV BSFC Optimization (Left: Opportunity Charging) (Right: Motor Assist) 

The example on the left in Figure 9 uses a method called Opportunity Charging to make the 

ICE more efficient. The EM will move the ICE operating point from A to B by commanding 

negative torque to make the ICE produce more torque to push the ICE into a more efficient 

operating region. This mainly happens when the vehicle is producing a constant speed where 

the ICE would produce the minimum amount of torque required to maintain vehicle speed. 

The example on the right shows another way that the ICE can be optimized by utilizing Motor 

Assist. This example has the ICE producing a considerable amount of torque, usually when 

the driver wants to accelerate to a higher speed in a short amount of time. Instead of having 

the ICE produce all the torque needed to reach the desired speed, the EM moves the ICE 

operating point from A to B by using both components in tandem to minimize BFSC. These 

examples are generalized for an efficient speed for the ICE, but these strategies will be used 

as the ICE speed increases and decreases to minimize BSFC. 

A 

B 
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2.3 Hybrid Electric Vehicle Energy Management Algorithms 

There are two main tasks that an energy management algorithm must do; control each powertrain 

component utilizing their feedback and to optimize energy flow of each powertrain component while 

maintaining SOC. Utilizing this format to develop an energy management algorithm can increase the 

fuel economy by 10 % - 30 % depending on the architecture and components of the HEV [16]. 

These energy management algorithms can be classified into two main families, rule-based and model-

based optimization. Rule-based Algorithms rely on a set of rules that can be ran in real-time 

to determine the TSA for both the ICE and EM. These rules do not rely on any minimization 

or optimization strategies but can be derived from intuition or from knowledge of the optimal 

global solution for a vehicle following a drive cycle [1].  

Model-based optimization algorithms are the opposite of Rule-based algorithms by 

calculating the optimal torque split for a drive cycle. This is done by creating a set of possible 

torque splits given the torque input and calculating the optimal torque split that will 

minimize fuel economy. The way that this is done is through minimizing a cost function 

shown in equation 2.2 over a set drive cycle [1]. 

𝐽 =  ∫ �̇�𝑓

𝑡𝑓

𝑡𝑜

(𝑢(𝑡), 𝑡)𝑑𝑡 
2.2 

This cost function, J, looks at what control variable, u(t), will minimize the mass flow rate of 

fuel, �̇�𝑓, over a drive cycle starting at time 𝑡𝑜 and ending at 𝑡𝑓. This cost function utilizes 

constraints such as fuel consumption, SOC targets and component constraints to calculate 

the optimal global solution. This cost function can also implement a penalty cost, such as 

wanting the SOC of the battery to maintain a certain charge by the end of the drive cycle. A 

penalty like this is represented by the equation 2.3. This penalty cost is a function, for 

example, of the ending SOC. Say that by the end of the drive cycle, the SOC of the battery 
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will be 50%. This penalty function will calculate the difference of the starting SOC and the 

ending SOC and apply a cost based on the deviation. This deviation can also be weighted 

depending on the importance of the penalty cost [1]. 

𝐽 =  ∅ (𝑥(𝑡𝑓)) + ∫ �̇�𝑓

𝑡𝑓

𝑡𝑜

(𝑢(𝑡), 𝑡)𝑑𝑡 
2.3 

Model-based optimization algorithms utilize this cost function to generate the global optimal 

solution. These algorithms can achieve this solution through two methods, either numerically 

calculate them or calculate them analytically. The numerical method takes a known drive 

cycle and will calculate the optimal solution by running through every possible solution in 

offline simulation. Techniques such as Dynamic Programing and Genetic Algorithms utilize 

this method. The analytical method does its cost function minimization calculation in real-

time, online, to find the global optimal solution, this method is much quicker than the 

numerical method, but can lead to a local optimal solution rather than a global optimal 

solution depending on the design. Techniques that utilize this method are Pontryagin’s 

Minimum Principle and ECMS, which is derived from Pontraygin’s Minimum Principle [1].  

2.4 Equivalent Consumption Minimization Strategy 

The ECMS Algorithm is an effective energy management algorithm that will calculate the 

optimal torque split for a HEV. This algorithm was first introduced by Gino Paganelli back in 

1999 as a solution to the global minimization problem. He proposed turning the global 

minimization problem into an instantaneous minimization problem that will react to the 

actual energy flow of the powertrain at each instance [17]. The ECMS algorithm that will be 

utilized is represented by equation 2.4 where �̇�𝑓,𝑒𝑞𝑢𝑖𝑣(𝑡) (g/s) is the instantaneous 

equivalent fuel consumption.  
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�̇�𝑓,𝑒𝑞𝑢𝑖𝑣(𝑡) = �̇�𝑓,𝐼𝐶𝐸(𝑡) + �̇�𝑓,𝑅𝐸𝑆𝑆(𝑡) 2.4 

This instantaneous equivalent fuel consumption is made from the addition of the fuel flow 

rate from the ICE �̇�𝑓,𝐼𝐶𝐸(𝑡) (g/s) and the fuel flow rate from the rechargeable electric storage 

system (RESS) �̇�𝑓,𝑅𝐸𝑆𝑆(𝑡) (g/s). The fuel flow rate �̇�𝑓,𝐼𝐶𝐸(𝑡) can be broken down even further 

represented by the output power of the ICE 𝑃𝐼𝐶𝐸(𝑡) (kW), the ICE efficiency 𝜂𝐼𝐶𝐸(𝑡) and the 

lower heating value for gasoline 𝑄𝐿𝐻𝑉 in equation 2.5.  

�̇�𝑓,𝐼𝐶𝐸(𝑡) =
𝑃𝐼𝐶𝐸(𝑡)

𝜂𝐼𝐶𝐸(𝑡)𝑄𝐿𝐻𝑉
 

2.5 

The same can be done for the mass flow rate from the RESS by multiplying the battery power 𝑃𝐵𝑎𝑡𝑡(𝑡) 

(kW), the virtual specific fuel consumption 𝑠𝑓𝑐𝑒𝑞(𝑡) (g/kWh), and a penalty function based 

on SOC 𝑝(𝑆𝑂𝐶). This virtual specific fuel consumption is determined by dividing an 

equivalence factor 𝑠(𝑡) by the lower heating value for gasoline. After conversions, the fuel 

flow rate from the RESS is calculated by equation 2.6, giving the complete instantaneous 

equivalent fuel consumption equation 2.7. Equation 2.7 can be represented as a power 

function by multiply by 𝑄𝐿𝐻𝑉, giving equation 2.8 to be used in this research. 

�̇�𝑓,𝑅𝐸𝑆𝑆(𝑡) =
𝑠(𝑡)

𝑄𝐿𝐻𝑉
∗ 𝑃𝑅𝐸𝑆𝑆(𝑡) ∗ 𝑝(𝑆𝑂𝐶) 

2.6 

�̇�𝑓,𝑒𝑞𝑢𝑖𝑣(𝑡) =
𝑃𝐼𝐶𝐸(𝑡)

𝜂𝐼𝐶𝐸(𝑡)𝑄𝐿𝐻𝑉
+
𝑠(𝑡)

𝑄𝐿𝐻𝑉
∗ 𝑃𝑅𝐸𝑆𝑆(𝑡) ∗ 𝑝(𝑆𝑂𝐶) 

2.7 

𝑃𝑒𝑞𝑢𝑖𝑣(𝑡) = 𝑃𝐹𝑢𝑒𝑙(𝑡) + 𝑠(𝑡) ∗ 𝑃𝑅𝐸𝑆𝑆(𝑡) ∗ 𝑝(𝑆𝑂𝐶) 2.8 

The equivalence factor can range between values 1 to 4 and is meant to represent the chain 

of efficiencies through which fuel is converted to electrical power and vis-versa. The 

equivalence factor can be a single value, two values for discharge and charge, or an adaptive 

value that can change depending on exterior conditions [1]. The penalty function is meant 
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to represent the allowable SOC range that the battery can operate and is calculated by 

equation 2.9 and can be represented by Figure 10. 

𝑝(𝑆𝑂𝐶) = 1 − (
𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡
𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛

2

)

𝑎

 

2.9 

 

Figure 10: Penalty Function for Battery SOC 

This penalty function considers the deviations of the current SOC, 𝑆𝑂𝐶(𝑡) to the target SOC, 

𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 and will apply a penalty factor based on the difference. This penalty ranges from 

0 to 2, where 0 penalty is at the maximum allowable SOC, 𝑆𝑂𝐶𝑚𝑎𝑥, and 2 is at the minimum 

allowable SOC, 𝑆𝑂𝐶𝑚𝑖𝑛. These values are set so that as the SOC decreases, the penalty shall 

get higher, causing the eRAD unit to favor being a generator over a motor. The same can 

be said when the SOC starts to rise and the penalty shall decrease, making the eRAD unit 

to favor being a motor over a generator. The value for 𝑎 can take upon odd numbers such 

as 1, 3, 5, etc. and dictates the curvature of the penalty function. As the value for 𝑎 increases, 

the flatter the penalty function will get around the target SOC and steeper around the 

maximum and minimum allowable SOC [1]. 
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2.5 Related HEV Architecture Research 

Previous research has been conducted on this specific architecture that relates to methods 

such as Dynamic Programming find the optimal fuel economy for various drive cycles and 

utilizing an Adaptive ECMS algorithm to improve fuel economy and maintain state of charge 

of the battery compared to a basic ECMS algorithm. Dynamic Programming uses numerical 

methods to solve the global energy management problem for a given drive cycle by 

minimizing the cost of operation by starting at the end and working backwards. A variety of 

complex problems can be used to solve this optimal solution but must have known priori 

for this optimization to work affectively. The most common Dynamic Programming algorithm 

is based on Bellman’s principle of optimality, which starts from the final step and works 

backwards to generate an optimal cost-to-go solution [1].  

A Dynamic Programming model was created for this specific architecture by Aaron Mull of 

WVU for the EcoCAR Mobility Challenge. Mull implemented this model in MATLAB by created 

functions for all the necessary components of the vehicle such as the ICE, EM, battery, 

drivetrain, etc. The goal of Mull’s research was to assign cost functions that for each 

component that would minimize the fuel consumption and maintain the desired state of 

charge of the battery while the vehicle was operating in CS mode. Once these cost functions 

were implemented, the algorithm was verified by simulating the vehicle using various drive 

cycles to validate functionality. These results were then compared to a Simulink version of 

the model that operates forward in time compared to Dynamic Programming, proving similar 

results. Mull found that this architecture can achieve 30.74 MPG for the UDDS drive cycle 

and 32.95 MPG for the HwFET drive cycle given the cost function being utilized [18]. Due 

to the similarities of the Mull’s model and the model that will be used in this research, the 
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results from Mull’s research will be utilized as a benchmark/baseline of operation for the 

ECMS algorithm being analyzed. 

Utilizing the Dynamic Programming results as a benchmark, Jared Diethorn of WVU used 

these results to validate the Fuzzy Logic Adaptive ECMS algorithm for this architecture. 

Diethorn utilized a Simulink version of this vehicle architecture to implement an Adaptive 

ECMS algorithm to improve fuel economy and maintain state of charge. This is accomplished 

by implementing an adaptive equivalence factor that utilized fuzzy logic that looked at the 

difference of the current state of charge and the target and the driver wheel torque demand. 

Diethorn used two forms of validation to prove his research, with the first being Mull’s 

benchmark results from Dynamic Programming. The second form of validation was by finding 

the optimal equivalence factor from various drive cycles and then averaging them to find a 

single equivalence factor that would be used for all drive cycles. Diethorn did this for various 

starting state of charge and different aggressive drivers. Diethorn found that utilizing a fuzzy 

logic adaptive equivalence factor could outperform a static equivalence factor in fuel 

economy for 17 out of 44 drive cycles while 42 out of 44 drive cycles were able to maintain 

the target state of charge [19]. Even though this research mainly focuses on utilizing a static 

equivalence factor, the method used by Diethorn to find an average equivalence factor from 

multiple drive cycles will be utilized in this research. 

2.6 Additional HEV Work 

Additional work has been conducted by WVU students to develop an adaptive ECMS 

algorithm. One such student, Thomas Harris of WVU, looked at developing an artificial 

neural network that would dynamically update the equivalence factor based on a sliding 

time window of past driving behaviors. Harris used a radial basis function artificial neural 
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network to implement the adaptive portion of the ECMS algorithm and was selected 

because the radial basis function can be trained very quickly by exposing it to the entire 

training data set all at once. The radial basis function consisted of one hidden layer and 

one output layer for the system where the weights between the two layers are updated 

during training. 30 drive cycles were used to train the radial basis function artificial neural 

network and each cycle was characterized by 9 parameters. Multiple levels of variance in 

the radial basis function were examined along with different time windows (2, 3, and 4 

minutes) that were used to update the equivalence factor. Of the 5 drive cycles used for 

validation of the radial basis function, 3 achieved a percent error within roughly 2.5% of 

the results from the optimal ECMS [20].  

Hadi Kazemi of WVU proposed a predictive adaptive ECMS algorithm using intelligent 

transportation systems for HEV powertrain control. 3 real-time control strategies were 

proposed for HEVs, each of which introduced an adjustment of the equivalence factor for 

the cost of electrical energy consumption. The first real-time strategy implemented the 

original equivalence factor combined with a modification factor based on the energy 

requirements from a vehicle in the prediction horizon. This new formulation of the 

equivalence factor improved fuel economy by decreasing the number of engine on/off 

cycles during simulation. The second strategy continued from the first but introduced a 

dynamic time horizon. The length of the time window determined for each instance was 

defined by the time to the next minimum of the vehicle’s drive cycle, indicated by the last 

moment of upcoming regenerative braking. In the third strategy, the equivalence factor 

was further modified to include the cost of charging and discharging the battery in the 

near future. These costs were determined by running the vehicle model with the adaptive 

ECMS controller over a long drive cycle to determine the maximum and minimum 
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equivalence factor values. The best values of the adjustment equivalence factor variables 

were determined while the threshold of the equivalence factor was set to the maximum 

and minimum equivalence factor. The new strategy decreased the cost of electrical energy 

when there was a possible regenerative braking event on the prediction horizon, 

regardless of the SOC placement below the target value. Simulation results showed a fuel 

economy improvement of 1.8% for the UDDS drive cycle, a 4.1% improvement for the 

HWFET drive cycle and a 3.7% improvement in the US06 drive cycle [21]. 

Other work has been conducted that looked at implementing control algorithms that did 

not pertain to implementing an ECMS algorithm. One such method was developed by 

Derek George of WVU, which looked at a power-loss minimization torque split algorithm 

for the Chevy Camaro from the EcoCAR 3 competition. George looked at comparing the 

effectiveness of a power-loss algorithm to an algorithm that implemented a golden search 

algorithm that was paired with a cost function to improve fuel economy while maintaining 

state of charge. George utilized three different cost functions to determine the most 

effective power-loss strategy. The research conducted was I the VIL environment that 

showed that the cost function decreased the measured engine torque transients by 14.6% 

and improved the fuel economy by 1.7%. An emissions test was also conducted at the 

Center for Alternative Fuels, Engines, and Emissions research facility to measure the 

emissions produced by the team developed Camaro. The tests concluded that when 

compared to the base power-loss algorithm, there was a 10.4% decrease in carbon 

monoxide, a 15.6% increase in carbon dioxide, an 84.6% decrease in nitrogen oxide, and 

an 8.1% decrease in total hydrocarbons [22]. 



  

25 
 

Nicholas Connelly took a different approach to improving the fuel economy of the Chevy 

Camaro in EcoCAR 3 by modifying the transmission shift maps. These transmission shift 

maps are functions of the current vehicle speed and accelerator pedal position before 

being modified. Connelly proposed modifying these transmission shift maps to be state of 

charge dependent and independent. Connelly conducted a sensitivity analysis on the 

unmodified transmission shift maps to find the optimal versions of them that would 

provide the best fuel economy. A modified version of these transmission shift maps was 

created that took in a third parameter, state of charge, to find new shift lines for the 

transmission shift maps utilizing the same sensitivity analysis approach. Comparing the 

independent and dependent state of charge transmission shift maps showed that there 

was a negligible fuel economy difference, but both maps showed an improvement in fuel 

economy to the stock shift map [23]. 
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3 Vehicle Model Overview 

This section of the paper presents the vehicle simulation model used to conduct this 

research. The simulation is conducted in MATLAB/Simulink and is separated between four 

systems and are connected by one bus as shown in Figure 11.  

 

Figure 11: Vehicle Simulation Model 

This simulation is conducted in an ideal environment where there is no grade, no wind resistance, 

ideal weather, and ideal operating temperatures for components. The simulation starts at the Driver 

System indicated in blue. This system follows a drive trace that outputs an accelerator pedal position 

and brake pedal position that is sent to the System Signals bus to be read by other systems. The 

Controller System indicated in red reads in those pedal positions along with feedback information 

generated by the Plant System in green to calculate the required torque commands for the ICE and 

eRAD unit. These torque commands are sent to the Plant System to be sent to their respective 

components to produce the necessary torque to propel the vehicle forward. Feedback information 

for the vehicle, such as component speeds, relative velocity, produced torques, and transmission 

gear are sent out to the System Signals bus for other systems to read. Once the relative velocity has 

been sent to the Driver System, it will then calculate the next set of pedal positions needed to 
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maintain the desired drive trace until the drive cycle is complete. All data that is being logged will 

be seen and saved in the Visualization and Logging System in purple.  

3.1 Driver System 

The Driver System will act as the driver by giving accelerator pedal and brake pedal 

commands based on the current velocity of the vehicle and the drive cycle velocity that is 

being referenced. This system is split into two parts, the Longitudinal Driver model and the 

Drive Cycle Selection subsystem as shown in Figure 12. 

 

Figure 12: Driver System 

The Longitudinal Driver model is a speed-tracking controller that generates accelerator pedal 

and brake pedal positions based on the difference of the drive cycle velocity and the actual 

velocity of the vehicle. These output pedal positions consider a few key dynamic factors of 

the vehicle such as the total mass of the vehicle, the effective tractive force the vehicle can 

produce, and the road-load equation coefficients for the characteristics of the vehicle [24]. 

The coast-down method will be utilized to calculate the road-load equation’s coefficients to 

be used in this model [25]. The coast-down data can be collected through actual 

experimental testing of a vehicle, or through simulation of vehicle’s plant model, as it is here. 

This model can also consider a varying grade parameter for simulating mountainous terrain, 
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but will be held at zero, giving an ideal driving environment. The last two parameters that 

can be inputted into this model are the driver response time and the preview distance. These 

parameters define the characteristics of the driver, not the vehicle itself. By changing these, 

the simulation can model how a safe driver or how an aggressive driver will behave driving 

this vehicle [24]. The Drive Cycle Selection subsystem will have three different drive cycles 

that will be utilized for this simulation as shown in Figure 13. 

 

Figure 13: Drive Cycle Selection Subsystem 

This Drive Cycle Selection subsystem will utilize a multiport switch that will change the drive 

cycle being used for the simulation. The drive cycles that will be used for these simulations 

will be the UDDS cycle, the HWFET cycle, and the FTP75 cycle. The drive cycle changes by 

changing the value of the parameter ‘CurrDriveCycle’ to a value of 1, 2, or 3. This will be 

used for easy access to change the drive cycle in automated scripts and for running individual 

simulations. 
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3.2 Plant System 

The Plant System is split into three main layers: the input layer, the application layer, and 

the output layer. The input layer will extract the needed signals from the System Signals bus 

to be fed into the application layer. The application layer will hold the vehicle models needed 

to model the vehicle and feed component and vehicle parameters to the output layer. The 

output layer takes the parameters from the application layer and uploads them onto the 

Plant Signals bus to be uploaded to the System Signals bus for other systems to use. The 

application layer will house all the models for each component as shown in Figure 14.  

 

Figure 14: Plant System Application Layer 

The Plant System application layer will house the models that are necessary to model the 

HEV that the WVU team has built. The vehicle model will consist of the ICE that will be 

swapped in along with the HEV4 battery pack and the eRAD unit. These components will 

then be fed into the Vehicle Dynamics model, where the ICE will be modeled on the front 

axle and the eRAD unit will be modeled on the rear axle. The Vehicle Dynamics model will 

then output the feedback data of each component’s velocity, along with the transmission 
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gear and vehicle velocity. Most component models that are being utilized are created by 

MathWorks. 

3.2.1 Engine Model 

The ICE that will be modeled for the simulations in the engine model will be the GM 2.5 LCV 

4-cylinder engine. This engine model is broken down into two parts: the Spark Ignition (SI) 

Engine Controller model and the Mapped SI Engine model. Both models are MathWorks 

created models and will start with the SI Engine Controller shown in Figure 15. 

 

Figure 15: SI Engine Controller Model 

The SI Engine Controller model calculates what the open-loop air, fuel, and spark actuator 

commands are for the driver demanded torque by using the driver requested torque and 

current engine velocity. This model calculates this by using two subsystems: a controller and 

an estimator. The estimator takes intake manifold gas pressure, intake manifold gas 
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temperature, engine velocity, and cam phasor positions to estimate the air mass flow, torque, 

and exhaust gas temperature. The controller determines the output torque based on the 

commanded torque, measured engine speed, and estimated cylinder air mass [26]. The 

torque command that is calculated from this model will then be sent to the Mapped SI Engine 

model as shown in Figure 16. 

 

Figure 16: Mapped SI Engine Model 

The Mapped SI Engine model takes in a damped torque command from the SI Engine 

Controller model and the engine speed from the Vehicle Dynamics model to run the 

calculations. Once these parameters have been taken in, this model will use a combination 

of the ICEs power, air mass flow, fuel flow, exhaust temperature, efficiency, and emission 

performance lookup tables to output the actual engine torque and engine speed being 

produced by the ICE and other information. This other information can be the fuel flow, BSFC, 

temperatures, and various emissions [27]. This data will be used to propel the vehicle 

forward and look at the efficiency of the vehicle itself by calculating the fuel economy and 

the emissions produced for each drive cycle.  
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3.2.2 Battery Model 

 

Figure 17: Battery Model 

The GM HEV4 battery pack is modeled using the Datasheet Battery model as shown in 

Figure 17. This model can implement various types of batteries, mainly focusing on the 

lithium-ion battery, that is defined by knowing the max rated energy capacity, the open 

circuit voltage and internal resistance characteristics, and how many cells are in series and 

in parallel. This model also allows the user to designate what the starting SOC will be for 

the start of each simulation. This model will take in the ambient temperature and the 

battery current needed to meet the torque demanded to the eRAD unit and calculate the 

current SOC, battery current, battery voltage, and battery power [28].  
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3.2.3 eRAD Unit Model 

 

Figure 18: eRAD Unit Model 

The Magna eRAD unit is modeled using the Mapped Motor model shown in Figure 18. This 

model can implement mapped motor and drive electronics operating in torque-control mode. 

This model achieves this by using a torque-speed envelope that will governor the torque 

output of the eRAD unit. This model achieves this by utilizing a torque vs speed data set 

that describes the electrical loss characteristics of the eRAD unit. These electrical losses can 

be calculated as a certain operating range, measured power loss, or measured efficiency 

[29]. This model will take this data, along with the battery voltage, the motor speed reported 

from the Vehicle Dynamic model, and the motor torque command from the Control System 

to output the motor torque produced and the battery current needed to produce this torque.  
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3.2.4 Vehicle Drivetrain Model 

The Vehicle Dynamics model is the most involved portion of the Plant System. This is where 

the torque of both the ICE and eRAD unit go to calculate the ICE transmission gear, both ICE 

and eRAD unit speeds, and the velocity of the vehicle as shown in Figure 19. 

 

Figure 19: Vehicle Dynamics Model 

This Vehicle Dynamics model contains the Transmission Controller that controls the Torque 

Converter Automatic Transmission model that connects to the ICE. This transmission is then 

connected to a Differential model that has a similar setup as the eRAD unit, where the 

Differential model connects to the Wheels and Brakes model. The Wheels and Brakes model 

will have an Electronic Braking Control Module (EBCM) that will dictate how much the friction 

brakes will be used. This is added because the competition does not allow any modification 

to the EBCM unless it has to do with CAV features. The outputs from the Wheels and Brakes 

model will connect to the Vehicle model to calculate the vehicle speed. 
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3.2.4.1 Transmission Controller 

The Transmission Controller subsystem is a stateflow subsystem that accepts vehicle speed 

and accelerator pedal position to calculate the gear command. This controller achieves this 

through two parallel stateflows: the Selection State and the Gear State shown in Figure 20. 

 

Figure 20: Transmission Controller Subsystem 

The Selection State determines how the transmission will shift based on upshift and 

downshift look-up tables. These tables are generated from GM data and will not be shown. 

These tables take in both accelerator pedal position and the current gear that the 

transmission is in to calculate the upshift and downshift threshold speed. These speed 

thresholds are then compared to the current speed of the vehicle to make the decision to 

shift. Once the Selection State has made its decision, it will then be sent to the Gear State. 

The Gear State takes this decision and will either upshift or downshift. The Transmission 

Controller subsystem will then output what the current gear is to the Torque Converter 

Automatic Transmission model and then calculate the current speed threshold.  
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3.2.4.2 Torque Converter Automatic Transmission Model 

The gear command from the Transmission Controller will be sent to the Torque Converter 

Automatic Transmission model. The Torque Converter Automatic Transmission model 

contains a torque converter block that is connected to an ideal fixed gear transmission block 

through a torsional compliance block as shown in Figure 21. The ideal fixed gear transmission 

block is then connected to the differential through another torsional compliance block. 

 

Figure 21: Torque Converter Automatic Transmission Subsystem 

The torque converter block models a three-part torque converter system. This torque 

converter system consists of an impeller, turbine, and stator that can specify the 

characteristics of the actual torque converter in the GM 9-speed M3D 9T50 transmission 

[30]. This torque converter block will calculate the impeller speed that will be used to 

represent the ICE speed for the model and will output the turbine speed that will connect to 

the transmission by a torsional compliance block. 

The torsional compliance block represents a parallel spring-damper system that couples two 

rotating driveshafts. This block uses the driveshaft angular velocities, torsional stiffness, and 

torsional damping to determine the torques. This block acts as a two-way connecter between 

two powertrain blocks that can take in angular velocity and output a torque that will be fed 

into their respective inputs, creating a pseudo feedback loop [31].  
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The ideal fixed gear transmission block implements an idealized fixed-gear transmission 

system that does not have a clutch or any synchronization [32]. This model is being used 

since these features that this block lacks are being implemented through the Transmission 

Controller and the torque converter block. This block takes in a monotonically increasing 

integer gear vector that has associated ratios, inertias, viscous damping, and efficiency 

factors. These efficiency factors are represented by a 3-D look-up table that is characterized 

by torque, speed, and temperature [32]. This block takes this information and the inputs 

from the transmission temperature, the gear command from the Transmission Controller, the 

turbine torque from the torque converter block and the pseudo feedback torque from the 

front axle differential to calculate the current gear, the ICE speed that gets fed back to the 

torque converter block, and the differential speed that gets sent to the front axle differential. 

3.2.4.3 Differential Model 

The differential speed that is outputted from the ideal fixed gear transmission block is sent 

through a torsional compliance block that gets converted to a torque. This torque is then 

inputted into the Differential model shown in Figure 22. Both the ICE and eRAD unit use the 

same Differential model for the front and rear axle, respectively, to translate their torque 

output to the Wheels and Brakes model. 

 

Figure 22: Differential Model 
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The Differential model consists of an open differential block that connects to the wheels 

through a torsional compliance block. The open differential block models the behavior of a 

planetary bevel gear train where the drive shaft bevel gear matches the crown bevel gear. 

This block uses information such as the carrier drive shaft ratio, the location of the crown 

wheel, and the axle and carrier viscous and damping coefficients. This information along with 

the differential torque from the Torque Converter Automatic Transmission model and the 

axle torques from the wheels, are used to calculate the pseudo feedback driveshaft speed 

and the axle speed [33]. The pseudo feedback driveshaft speed gets sent to the Torque 

Converter Automatic Transmission model while the axle speed gets sent through the 

torsional compliance block to be translated as a torque that is sent to the Wheels and Brakes 

model. 

3.2.4.4 Wheels and Brakes Model 

The Wheels and Brakes model is comprised of the EBCM that will dictate the friction brake 

command for the front and rear wheels. A look at EBCM can be shown in Figure 23. 

 

Figure 23: Electronic Braking Control Module 

The EBCM calculates the brake command by taking the multiplication of the brake pedal 

position as a decimal between 0 to 1 and the maximum brake pressure that the friction 

brakes can produce. This friction brake command is sent to the front and rear axle wheels 
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along with their respective axle torques from their Differential models to output the needed 

force to produce their axle torques to the Vehicle model shown in Figure 24. 

 

Figure 24: Front Axle Wheels Model 

Figure 24 only looks at the front axle wheels model since the rear axle wheels model are the 

same except for one key aspect, how much the brake command is sent to each axle’s wheels. 

The front axle wheels will receive 60% of the brake command while the rear axle wheels will 

receive 40%. The wheels are modeled by a longitudinal wheel block that utilizes the magic 

formula to characterize the longitudinal behavior. This magic formula takes in a 4-dimension 

coefficient matrix that accounts for the stiffness, shape, peak, and curvature of the tire. This 

model will also consider various parameters that account for the tires wheel dynamics, rolling 

resistance and braking [34]. The braking system used in the longitudinal block are disc 

brakes for the front and rear wheels. There will only be two longitudinal wheel blocks, each 

one will account for two wheels for each axle. The longitudinal wheel model takes the brake 

command, the axle torque from the differential, the pseudo feedback of the vehicle velocity 

and the pseudo feedback z-direction force from the Vehicle model to calculate the needed 

x-direction force to accelerate and decelerate the vehicle and the velocity of the wheels. The 
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x-direction force will be sent to the Vehicle model and the wheel velocity will be sent to the 

differential as a pseudo wheel torque. 

3.2.4.5 Vehicle Model 

The Vehicle model consists of a Vehicle Body 1DOF Longitudinal block. The block models a 

rigid two-axle vehicle body that has a constant mass that undergoes longitudinal motion 

shown in Figure 25.  

 

Figure 25: Vehicle Model 

This block models the vehicle by utilizing data such the body mass, aerodynamic drag, road 

incline, and force distribution between axles due to longitudinal acceleration. The block takes 

in the external values for the force being produced by the front and rear axles. Along with 

these values, grade of the road and the wind force are considered [35]. These values are 

held constant to give the ideal environment to run the simulation. This block takes this 

information to calculate the vehicle speed that will be used in other systems and models. It 
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will also calculate the front and rear axle z-direction force that will be fed back to the front 

and rear wheel models, respectively. 

3.3 Controller System 

The Controller System is split into three main layers: the input layer, the application layer, 

and the output layer. The input layer will extract the needed signals from the System Signals 

bus to be fed into the application layer. The application layer for the controller will have 

many operations that control the vehicle. These operations focus on how the controller 

determines how much torque is needed to accelerate and decelerate the vehicle and the 

energy management algorithm that will determine the torque command for the ICE and eRAD 

unit shown in Figure 26.  

 

Figure 26: Controller Application Layer 
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The other functions that this application layer will house are the algorithms that dictate the 

functionality of each component being interfaced, the CAVs interface for ACC, and the 

diagnostic system that defines when a fault has been set. These are important to the 

functionality of the WVU Blazer but are not important to model in this research since these 

operations do not dictate the overall functionality of the energy management algorithm. The 

output layer takes the parameters from the application layer and uploads them onto the 

Controller Signals bus to be uploaded to the System Signals bus for other systems to use. 

3.3.1 Wheel Torque Determination Algorithm 

The Wheel Torque Determination algorithm is where the wheel torque demand is calculated to 

accelerate or decelerate the vehicle. This wheel torque demand consists of two types of torque 

production: propulsive torque that propels the vehicle and over-the-top regenerative braking torque 

that will slow the vehicle down and charge the battery as shown in Figure 27. 

 

Figure 27: Wheel Torque Demand Algorithm 
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This algorithm calculates the propulsive torque based upon the combination of the max engine wheel 

torque and max motor wheel torque that can be produced at a certain vehicle speed and motor 

speed, respectively. This combined max wheel torque is then multiplied by the accelerator pedal 

position to give the driver demanded propulsive torque. The over-the-top regenerative braking 

torque is calculated by multiplying the possible amount of negative wheel torque the eRAD unit can 

produce at that speed and a look-up table that outputs a 0 to 1 value depending on the value of 

the brake pedal position. This threshold is set to be 0 at 5% pedal and 1 at 10%+. Both these wheel 

torque values are then added together to obtain the wheel torque demand that will be used in the 

Energy Management algorithm.  

3.3.2 Energy Management Algorithm 

The Energy Management algorithm will utilize an ECMS algorithm to calculate the torque 

split between the ICE and eRAD unit. This algorithm will take in parameters such as the 

wheel torque demand, the battery SOC and voltage, the transmission gear and temperature, 

the rotational speed of the eRAD unit, and the current vehicle velocity shown in Figure 28.  

 

Figure 28: Equivalent Consumption Minimization Strategy Algorithm 
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A modified version of this ECMS algorithm is currently being used in the WVU Blazer. This 

algorithm needs information from component characteristics from the differentials, 

transmission, engine, battery, and the eRAD unit. The algorithm then takes this information 

and will develop an algorithm around a certain HEV architecture, P4. It is up to the user to 

determine if the algorithm will have an adaptive or static equivalence factor, the equivalence 

factor value, the penalty factors and the SOC operation target and range [36]. An in depth 

look at the ECMS algorithm that will be utilized in this research can be shown in Figure 29.  

 

Figure 29: Root Layer of the ECMS Algorithm 

This layer of the ECMS algorithm has two different TSAs that are dependent upon the wheel 

torque demand. When the wheel torque demand is less than or equal to 0 Nm, the ECMS 

algorithm calculates the TSA in the Energy Management Off subsystem. Since the wheel 

torque demand is negative, there will be zero torque commanded to the ICE while all the 
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negative torque gets commanded to the eRAD unit. When the wheel torque demand is 

greater than 0 Nm, the ECMS algorithm calculates the TSA in the Energy Management On 

subsystem as shown in Figure 30. 

 

Figure 30: Energy Management On Subsystem 

The Energy Management On subsystem is split into three main subsystems: the Control 

Domain, the Powertrain Constraints, and the Hamiltonian Computation and Minimization. 

The Control Domain subsystem creates a vector of evenly spaced wheel torque commands 

for the eRAD unit that range from its maximum and minimum wheel torque. This vector of 

eRAD wheel torques will then be subtracted from the wheel torque demand to calculate the 

ICE wheel torque vector. These wheel torque vectors for the ICE and eRAD unit are the 

possible torque splits that the ECMS algorithm will use to find the best torque split at each 

time step. Once the wheel torque vectors have been found, they are then sent to the 

Powertrain Constraints subsystem as shown in Figure 31. 
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Figure 31: Powertrain Constraints Subsystem 

The Powertrain Constraints subsystem holds all the characteristics of the components that 

are being used in the HEV. These characteristics mainly involve the maximum and minimum 

limits for each component and their associated inefficiencies. These constraint subsystems 

convert both wheel torque command vectors for the ICE and eRAD unit into component level 

torque command vectors that will add their associated inefficiencies to each possible torque 

command. These component torque command vectors will then be limited by their maximum 

and minimum limits as shown in Figure 32. 
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Figure 32: Engine Constraints Subsystem 

Here in the Engine Constraints subsystem, the maximum and minimum component torques 

are calculated by using look-up tables based on rotational speed of the ICE. This maximum 

and minimum component torques will then limit the ICE component torque command vector. 

At the same time, there will be another operation that will be keeping track of which torque 

values from the ICE component torque command vector are achievable and not achievable 

by denoting them by 0 or a 1, respectively, known as the ICE infeasible flag. This operation 

is similar in the Motor Constraints subsystems where the eRAD unit component torque 

command vector gets limited by its maximum and minimum torques as shown in Figure 33. 
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Figure 33: Motor Constraints Subsystem 

The constrained eRAD unit component torque command vector is generated inside the 

Maximum Torque subsystem along with the eRAD unit infeasible flag. This vector is then 

used to calculate a mechanical power vector by multiplying this vector by the eRAD rotational 

speed. This mechanical power vector then gets its inefficiency added from the eRAD unit to 

generate an electrical power vector that will be used in the Battery Constraints subsystem 

as shown in Figure 34.  

 

Figure 34: Battery Constraints Subsystem 
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The Battery Constraints subsystem takes the electrical power vector from the Motor 

Constraints subsystem and divides it by the battery voltage to get an electrical current 

vector. The electrical current will then be limited by its maximum and minimum current to 

generate a constrained electrical current vector. Both the electrical current vector and the 

electrical power vector will be compared to their maximum and minimum values to generate 

the battery infeasible flag. These generated infeasible flags from each component constraint 

subsystem will be added together to determine the infeasible flag cost shown in Figure 35. 

 

Figure 35: Torque Split Determination 

There are a total of five costs that are considered for this ECMS algorithm, the first being 

the Infeasible cost. This cost determines if each component can produce the torque 

associated with each torque split that are among the possible torque splits. This cost has a 

large penalty associate with it, in values of 10,000 to 1,000,000, to outweigh the combined 

cost of the other cost functions. A similar cost is used in this ECMS algorithm called the 

traction power error cost shown in Figure 36. 
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Figure 36: Traction Power Cost 

The traction power cost combines the limited wheel torque command vectors from the ICE 

and eRAD unit and calculates the difference from the original wheel torque demand to find 

the error. This torque error is then multiplied by the rotational speed of the wheels to find 

the magnitude of the power error. When this power error has been calculated, it is then 

converted from watts to kilowatts and weighted by a factor to generate the final traction 

power cost. This cost is implemented as a second guard in preventing torque splits that do 

not meet the wheel torque demand from being chosen. The next cost function is called the 

ICE power delta cost shown in Figure 37. 

 

Figure 37: ICE Power Delta Cost 

This cost is generated by first converting the ICE component torque vector and the previously 

calculated ICE torque command into mechanical power vectors. These mechanical power 
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vectors are then subtracted from each other to find the magnitude of the mechanical power 

error for each potential ICE torque command. This cost is implemented to reduce the 

oscillation in the ICE torque command when there is a significant amount of torque splits. 

Doing this encourages the ICE to remain at the same torque command unless there is a more 

efficient torque value for the ICE to produce. The battery power cost is produced by 

multiplying an equivalence factor, the electrical battery power, and the SOC penalty function 

as shown in Figure 38. 

 

Figure 38: Battery Power Cost 

The battery power cost is derived from equation 2.8. The battery power vector used is 

generated by taking the limited electrical current vector from the battery constraints 

subsystem and multiplying it by the battery voltage. This cost is implemented since the 

battery pack is always in CS mode, not CD mode, since the battery pack needs a way to 

determine the best time to charge and discharge the battery to operate the eRAD unit. The 

last cost that is used is for the ICE. This cost determines what the fuel flow is based on the 

current ICE rotational speed and the limited component ICE torque command vector. This 

fuel flow vector is then multiplied by the LHV and converted to kilowatts to give the fuel 
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flow cost. All these costs are then added together and sent into the Minimum Cost Indexing 

function to determine the torque split as shown in Figure 39. 

 

Figure 39: Torque Split Determination 

The final cost vector called the Hamiltonian is taken into the Minimum Cost Indexing function 

that indexes the torque split that has the least cost given all five costs. This function will 

output the index value to then choose the torque split from the ICE and eRAD torque 

command vectors to be outputted to the vehicle. The ICE command is then sent to the ICE 

power delta cost to be used in its calculation. The eRAD unit command is delayed having a 

response time that is comparable to the ICE torque. This is done because the eRAD unit can 

produce torque almost instantaneously when compared to the ICE. 
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4 Methodology 

This section begins by validating the vehicle model that is going to be simulated. This will 

be done by matching the simulated fuel economy that the EPA has calculated for the 2019 

Chevy Blazer 2.5L FWD over several drive cycles in miles per gallon (MPG). This paper will 

then dive into optimizing the ECMS algorithm to improve full economy compared to the 

baseline results found for the WVU Chevy Blazer by Aaron Mull utilizing Dynamic 

Programming [18]. Lastly, this paper will explore how the ECMS algorithm affects the fuel 

economy and final SOC when modifying the eRAD unit in the WVU Chevy Blazer. All the drive 

cycles that will be used in this research will be presented in Appendix A. 

4.1 Simulation Validation 

The HEV model that has been created will be modified to represent the 2019 Chevy Blazer 

2.5L FWD. This will be done by using the collected data from technical specifications [37] 

and the engine and transmission data provided by GM. The data that was found from the 

technical specifications is listed in Table 1. 

Table 1: 2019 Chevy Blazer 2.5L FWD Data 

 

 

 

These parameters will be implemented into the Plant and Driver models in their respective 

places. The road load coefficients must be converted to a drag coefficient and a rolling 

resistance coefficient for them to be used in the Vehicle Body 1DOF Longitudinal block. This 

is done by looking at two different road load equations. Equation 4.1 represents the three-

Data Collected Values 

Vehicle Mass - 𝒎 1928 kg 

Frontal Area - 𝑨𝒇 2.78 𝑚2 

Road Load Coefficient - FA 118.55 N 

Road Load Coefficient - FB 3.53 N/(m/s) 

Road Load Coefficient - FC 0.55 N/(m/s)2 
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coefficient equation that uses the road load coefficients in Table 1. Equation 4.2 represents 

a different version of the road load equation that utilizes two-coefficients, the drag 

coefficient, and the rolling resistance coefficient. 

 
𝐹𝑟𝑜𝑎𝑑 𝑙𝑜𝑎𝑑[𝑁] = 𝐹𝐴[𝑁] + 𝐹𝐵 ∗ 𝑣[

𝑚

𝑠
] + 𝐹𝐶 ∗ 𝑣

2[
𝑚2

𝑠2
] 

4.1 

 

 
𝐹𝑟𝑜𝑎𝑑 𝑙𝑜𝑎𝑑[𝑁] = 0.5 ∗ 𝜌 ∗ 𝐶𝑑 ∗ 𝐴𝑓 ∗ 𝑣

2 [
𝑚2

𝑠2
] + 𝑚 ∗ 𝑔 ∗ 𝐶𝑟𝑟 

4.2 

 

The vehicle model does not need to know the rolling resistance but does need to know the 

proper drag coefficient needed to be implemented in the Vehicle Body 1DOF Longitudinal 

block. Both the three-coefficient and the two-coefficient equations will be plotted together 

to determine the best rolling resistance coefficient and drag coefficient that accurately 

represents the three-coefficient road load equation as shown in Figure 40. All the variables 

used to create the two-coefficient road load equation are shown in Table 2. 

 

Figure 40: Road Load Equation Comparison 
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Table 2: Parameters Used in Two-coefficient Road Load Equation 

 

 

 

 

Once the data has been implemented into the vehicle model, The vehicle drivetrain will need 

to be modified from being an AWD vehicle to a FWD vehicle. This is done by zeroing out 

any torque commands from the eRAD unit to the rear wheels so that there will only be 

braking torque on the rear wheels from the friction brakes. The controller will consist of a 

modified version of the Wheel Torque Determination algorithm that only consists of the 

propulsive engine torque. This algorithm will be represented by the equation 4.3. 

𝜏_𝐼𝐶𝐸𝐶𝑚𝑑[𝑁𝑚] = 𝜏_𝐼𝐶𝐸𝑀𝑎𝑥[𝑁𝑚] ∗ 𝐴𝑐𝑐𝑒𝑙𝑃𝑑𝑙[𝑑𝑒𝑐𝑖𝑚𝑎𝑙] 4.3 

 

There will be two drive cycles, FTP75 and HwFET, to compare the fuel economy produced 

from the simulation to the EPA calculated fuel economy from their simulations. The UDDS 

drive cycle shall be accessed as well since the bulk of the research relies on this and the 

HwFET drive cycle. These drive cycles fuel economy from the EPA test car data and their 

characteristics are listed in Table 3.  

Table 3: Drive Cycle Characteristics 

  

Variables Values 

 Vehicle Mass -  𝒎 1928 kg 

Frontal Area - 𝑨𝒇 2.78 𝑚2 

Drag Coefficient - 𝑪𝒅 0.357 

Rolling Resistance - 𝑪𝒓𝒓 0.0075 

Air Resistance – 𝝆 1.23 
𝑘𝑔

𝑚3 

Gravity –  𝒈 9.81 
𝑚

𝑠2
 

Drive Cycle Simulation 
Time 

Distance Average 
Speed 

Simulated 
Fuel Economy 

FTP75 2474 s 11.04 miles 21.20 mph 27.70 MPG 

HwFET 765 s 12.26 miles 48.30 mph 39.80 MPG 

UDDS 1369 s 7.45 miles 18.90 mph N/A 
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4.2 ECMS Algorithm Optimization 

This section looks to compare the fuel economy of the ECMS algorithm of the WVU Chevy 

Blazer to the results found by Aaron Mull utilizing Dynamic Programming [18]. The fuel 

economy found for the WVU Chevy Blazer are shown in Table 4. 

Table 4: Benchmark Fuel Economy for WVU Chevy Blazer 

 

 

 

 

These Dynamic Programming results were calculated to determine the best fuel economy for 

the WVU EcoCAR team’s Blazer Simulink vehicle model. The results from Dynamic 

Programming serve as a benchmark for future design work using the Simulink Blazer model. 

These benchmark values will be used to determine the functionality of the WVU Chevy Blazer. 

The goal is to find the optimal equivalence factor that has an ending SOC of 55% while 

maximizing fuel economy. The parameters that will be updated and changed in this section 

are presented in Table 5. 

Table 5: Parameters to Change 

 

 

 

 

The initial SOC shall be changed to see how the ECMS algorithm will react to the drive cycle 

to maintain SOC and maximize fuel economy. The initial SOC has a direct correlation to the 

electrical power cost that operates the ECMS algorithm, making it important to understand 

Drive Cycle Dynamic Programming 
Benchmark 

UDDS 30.74 MPG 

HwFET 32.95 MPG 

Parameter Values 

𝒎 2185 kg 

𝑪𝒅 0.36 

𝑺𝑶𝑪𝒊𝒏𝒕 [40% 55% 70%] 

𝒔 1:0.1:4 
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its behavior by changing this value. The same can be said about the equivalence factor and 

will be changed to find its optimal value for each drive cycle. Once the data has been 

collected for each simulation, the final SOC and the fuel economy shall be averaged for each 

equivalence factor. This averaged final SOC is then used to determine the equivalence factor 

for each drive cycle that will maintain the target SOC. These equivalence factors for both the 

UDDS cycle and HwFET cycle will then be averaged using the same method from Jared 

Diethorn’s thesis [19] to find the optimal equivalence factor. This equivalence factor will then 

be used to find the final SOC and fuel economy for each drive cycle to compare to the results 

from Dynamic Programming. 

4.3 eRAD Unit Modification and Optimization 

This section looks to see if there is a more optimal component configuration for this 

architecture by changing the size of the eRAD unit. This will be determined by changing the 

size of the eRAD unit and then running the same procedure as shown in section 4.2. This 

test procedure will change the following parameters in Table 6. 

Table 6: Parameters to Change for eRAD Unit Optimization 

 

 

 

The maximum torque curve and the efficiency table will be scaled since the peak power, peak 

torque, and peak speed of the eRAD units are known. The new base speed of the eRAD unit 

is first calculated using equation 4.3. This base speed is then used to scale the speed axis 

for both the maximum torque curve and the efficiency table represented by equation 4.4. 

Parameter Values 

𝑴𝒐𝒕𝑷𝒘𝒓𝒎𝒂𝒙 [25 kW 50 kW 75 kW 100 kW] 

𝑴𝒐𝒕𝑻𝒓𝒒𝒎𝒂𝒙 [150 Nm 200 Nm 250 Nm] 

𝑺𝑶𝑪𝒊𝒏𝒕 [40% 55% 70%] 

𝒔 2:0.1:4 



  

58 
 

This equation scales the old speed points by multiplying by a ratio of the base speeds below 

the base speed and scales the speed points above the base speed using interpolation. 

 

𝜔𝑏𝑎𝑠𝑒 =
𝑃𝑚𝑎𝑥,𝑛𝑒𝑤 ∗ 9.549[

𝑟𝑎𝑑
𝑠  𝑡𝑜 𝑅𝑃𝑀]

𝜏𝑚𝑎𝑥,𝑛𝑒𝑤
 

4.3 

𝜔_𝑣𝑒𝑐𝑛𝑒𝑤 =

{
 

 
𝜔𝑏𝑎𝑠𝑒,𝑛𝑒𝑤
𝜔𝑏𝑎𝑠𝑒,𝑜𝑙𝑑

∗ 𝜔_𝑣𝑒𝑐𝑜𝑙𝑑, 𝜔 < 𝜔𝑏𝑎𝑠𝑒

𝜔𝑝𝑒𝑎𝑘,𝑛𝑒𝑤 −𝜔𝑏𝑎𝑠𝑒,𝑛𝑒𝑤
𝜔𝑝𝑒𝑎𝑘,𝑜𝑙𝑑 −𝜔𝑏𝑎𝑠𝑒,𝑜𝑙𝑑

∗ (𝜔_𝑣𝑒𝑐𝑜𝑙𝑑 −𝜔𝑏𝑎𝑠𝑒,𝑜𝑙𝑑) + 𝜔𝑏𝑎𝑠𝑒,𝑛𝑒𝑤 , 𝜔 ≥ 𝜔𝑏𝑎𝑠𝑒

   4.4 

The maximum torque curve and the torque axis for the efficiency table are simpler to scale 

compared to the speed axis. The maximum torque curve is scaled using equation 4.5, where 

the maximum torque curve below the base speed is multiplied by a ratio of the old and new 

max torque. The maximum torque curve above the base speed is multiplied by the old speed 

vector and a ratio of the old and new maximum power. It is then multiplied by a conversion 

factor and divided by the new speed vector to acquire the new maximum torque curve.  

𝜏_𝑣𝑒𝑐𝑛𝑒𝑤 =

{
 
 

 
 

𝜏𝑚𝑎𝑥,𝑛𝑒𝑤

𝜏𝑚𝑎𝑥,𝑜𝑙𝑑
∗ 𝜏_𝑣𝑒𝑐𝑜𝑙𝑑, 𝜔 < 𝜔𝑏𝑎𝑠𝑒

(𝜔_𝑣𝑒𝑐𝑜𝑙𝑑 ∗ 𝜏_𝑣𝑒𝑐𝑜𝑙𝑑) ∗
𝑃𝑚𝑎𝑥,𝑛𝑒𝑤
𝑃𝑚𝑎𝑥,𝑜𝑙𝑑

∗ 9.549

𝜔_𝑣𝑒𝑐𝑛𝑒𝑤
, 𝜔 ≥ 𝜔𝑏𝑎𝑠𝑒

  4.5 

The torque axis for the efficiency table is the easiest to scale and is represented by equation 

4.6. The scaling of the torque axis is not dependent upon the base speed, allowing it to be 

scaled by multiplying the old torque axis by a ratio of the new and old maximum torques. 

The UDDS drive cycle and the HwFET drive cycle are conducted to analyze how the vehicle 

behaves for each eRAD unit being implemented into the vehicle. 

𝜏_𝑒𝑓𝑓𝑛𝑒𝑤 =
𝜏𝑚𝑎𝑥,𝑛𝑒𝑤
𝜏𝑚𝑎𝑥,𝑜𝑙𝑑

∗ 𝜏_𝑒𝑓𝑓𝑜𝑙𝑑 4.6 
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5 Results 

The results section will first discuss the results found simulating the 2019 Chevy Blazer 2.5L 

FWD. These results will be compared to the EPA reported fuel economy to validate the 

simulation. Once the model has been validated, the model will be modified into its hybrid 

configuration to run a comparative analysis between the fuel economy obtained through 

Dynamic Programming and the sensitivity analysis conducted on the ECMS algorithm to 

validate its functionality as an energy management strategy. This data will then be compared 

to other configurations of the eRAD unit by changing the maximum power rating and the 

maximum torque rating. The fuel economy, final SOC, and the optimal equivalence factor will 

be taken into consideration to determine the optimal eRAD unit for this HEV architecture. 

5.1 Simulation Validation Results 

The EPA dictates that all vehicle speed traces shall be within +- 2 mph of the reference 

vehicle speed [38]. The difference between the drive cycle and the actual speed of the vehicle 

for both the HwFET drive cycle and the FTP57 drive cycle are displayed in Figure 41. 

 

Figure 41: Speed Error for FTP57 and HwFET 
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One cycle was run for each drive cycle to validate the model. The speed traces that were 

generated were subtracted from the actual drive cycle to generate the speed error plots. The 

linear regression for both drive cycles is displayed in Figure 42. 

 

Figure 42: Linear Regression for FTP57 and HwFET 

The linear regression plots show that the slope of the drive cycle and the vehicle speed have 

a value that is close to one; with the FTP57 𝑅2 value being 0.9916 and the HwFET 𝑅2 value 

being 0.9965. Both the speed error plots, and the linear regression plots show that the 

model can meet the EPA standard of +- 2 mph and can be used as a suitable model for this 

research. Since this model can meet the speed trace requirement, the fuel economy that is 

simulated can be used to compare to the EPA fuel economy shown in Table 7. The simulated 

fuel economy of the vehicle is within 10% of the EPA fuel economy, validating the model. 

Table 7: EPA vs Simulation Fuel Economy 

  Drive Cycle EPA MPG Simulated 
MPG 

Error (%) 

FTP75 27.70 MPG 29.40 MPG 6.14 % 

HwFET 39.80 MPG 42.60 MPG 9.39 % 



  

61 
 

5.2 ECMS Algorithm Optimization Results 

This section will look at analyzing the ECMS algorithm by exploring how the algorithm 

behaves when the equivalence factor changes over several initial SOC. The values over this 

range can be displayed for the UDDS drive cycle in Figure 43. 

 

Figure 43: UDDS Drive Cycle Results 

For a vehicle like this to be fully operational in CS mode, the goal is to maintain the SOC at 

a target SOC. The ECMS algorithm shall maintain a target SOC of 55% so that battery has a 

lower chance of overcharging or over discharging to maximize battery life. To analyze the 

algorithm’s ability at maintain the target SOC, the vehicle will run each drive cycle with three 

different starting SOC; 40%, 55% and 70%. At first glance, it would seem regardless of the 
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initial battery SOC, the SOC drops to the minimum value for equivalence factors that are 2 

and below. The same can be observed when looking at the HwFET drive cycle in Figure 44.  

 

Figure 44: HwFET Drive Cycle Results 

The final SOC for each initial battery SOC shall be averaged to find an average final SOC for 

each equivalence factor. This averaged final SOC shall be used to figure out where the 

equivalence factor will optimize the ECMS algorithm. Along with averaging the final SOC, the 

fuel economy for each initial SOC shall be averaged to find an average fuel economy as 

shown in Figure 45. The optimal equivalence factor for each drive cycle and their associated 

average ending SOC and average fuel economy are presented in Table 9. 
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Figure 45: Average Fuel Economy and Final SOC 

 

Table 8: Optimal Equivalence Factors 

 

 

The equivalence factors have been found for both HwFET and UDDS, but the equivalence 

factors must be the same value to operate properly. The equivalence factor needs to be the 

same since this is a non-adaptive ECMS algorithm. To remedy this, the equivalence factors 

are averaged, and the simulations are rerun to calculate the new average ending SOC and 

average fuel economy for both UDDS and HwFET. The average fuel economy, average ending 

Drive Cycle Equivalence 
Factor 

Average 
Ending SOC 

Average Fuel 
Economy 

UDDS 3.10 58.55 % 32.81 MPG 

HwFET 2.60 56.75 % 41.45 MPG 
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SOC, and fuel economy values found from Dynamic Programming are presented in Table 9. 

Even though the equivalence factor is not the optimal equivalence factor to maintain the 

battery SOC at the target, the fuel economy is still improved compared to the values found 

from Dynamic Programming. 

Table 9: Optimal Equivalence Factor Comparison 

 

5.3 eRAD Unit Modification and Optimization Results 

This section will look at analyzing the ECMS algorithm when using each configuration of 

eRAD unit by splitting this section into five sections. The first four will look at how the 

algorithm behaves for each eRAD unit held at a certain max power rating while changing the 

max torque rating. The data shall be gathered from each section and then compared in the 

fifth section. The goal is to see how the equivalence factor behaves for each eRAD unit 

configuration to see how the average fuel economy and average ending SOC are affected.  

5.3.1 eRAD Unit Max Power 50 kW 

This section looks at how the ECMS algorithm behaves when changing the equivalence factor 

over several initial SOC when the eRAD unit has been modified. This modification begins 

with holding the max motor power at 50 kW and changing the max motor torque. The same 

method used in section 5.2 shall be used to calculate the optimal equivalence factor between 

these three eRAD units. The average ending SOC and the average fuel economy for each 

equivalence factor for the UDDS drive cycle are presented in Figure 46. 

Drive Cycle Equivalence 
Factor 

Average 
Ending 

SOC 

Average 
Fuel 

Economy 

Dynamic 
Programming 
Fuel Economy 

Percent 
Error 

UDDS 2.85 42.56 % 34.43 MPG 30.74 MPG + 12.00 % 

HwFET 2.85 63.20 % 40.74 MPG 32.95 MPG + 23.60 % 
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Figure 46: Average Values for Max Motor Power of 50 kW - UDDS 

The average ending SOC is consistent between the three eRAD units expect for the 250 Nm 

eRAD unit. This unit starts to diverge from the other two around 2.9 and has a tougher time 

recharging compared to the other two eRAD units. The 250 Nm still outperforms in fuel 

economy when compared to the other two units. This pattern tends to be consistent between 

the UDDS drive cycle but is not as consistent when compared to the HwFET drive cycle 

shown in Figure 47. 
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Figure 47: Average Values for Max Motor Power of 50 kW - HwFET 

The HwFET cycle does not have a clear pattern in fuel economy for each torque change 

compared to the UDDS cycle. The HwFET cycle data shows that there is not an overall best 

torque output looking at the fuel economy. The 150 Nm torque output and the 250 Nm 

torque output compete to have the best fuel economy as the equivalence factor changes. 

The 200 Nm torque output can outperform one eRAD unit, but not both. The equivalence 

factors that maintain the target SOC are presented in Table 10. 

Table 10: Max Motor Power – 50 kW Data 

 

 

 

eRAD Unit Drive Cycle Equivalence 
Factor 

Average 
Ending 

SOC 

Average Fuel 
Economy 

150 Nm 
UDDS 3.10 54.40 % 32.21 MPG 

HwFET 2.70 57.62 % 41.23 MPG 

200 Nm 
UDDS 3.10 58.55 % 32.81 MPG 

HwFET 2.60 56.75 % 41.45 MPG 

250 Nm 
UDDS 3.10 58.55 % 33.44 MPG 

HwFET 2.60 57.42 % 41.76 MPG 
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5.3.2 eRAD Unit Max Power 25 kW 

This section looks at the ECMS algorithm when the max motor power decreases to 25 kW. 

The eRAD unit will vary between the three max torque ratings and present the data for the 

average ending SOC and average fuel economy. The data from the UDDS cycle is presented 

in Figure 48. 

 

Figure 48: Average Values for Max Motor Power of 25 kW - UDDS 

A pattern starts to emerge with the UDDS cycle where the highest rated power eRAD unit 

has a better fuel economy, but has a lower or similar final SOC. The main difference between 

the 25 kW and 50 kW eRAD units is that the 250 Nm does not outperform in fuel economy 

at every equivalence factor. This is due to having a lower power rated eRAD unit for this 

architecture. The 150 Nm eRAD unit is the worst performer since it is barely being used to 

propel the vehicle, causing a lower fuel economy and a higher final SOC. The data from the 

HwFET cycle are presented in Figure 49. 
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Figure 49: Average Values for Max Motor Power of 25 kW - HwFET 

The data shows that with an eRAD unit with a 25 kW eRAD unit produces a lower fuel 

economy compared to a 50 kW eRAD units. This happens at lower equivalence factor values 

since this eRAD unit is not capable of producing as much torque as the 50 kW eRAD unit at 

higher speeds. As the equivalence factor increases, the fuel economy between the three units 

start to converge. The eRAD units optimal equivalence factors for each drive cycle and their 

associated average ending SOC and average fuel economy are presented in Table 11. 

Table 11: Max Motor Power – 25 kW Data 

 

 

 

 

eRAD Unit Drive Cycle Equivalence 
Factor 

Average 
Ending 

SOC 

Average Fuel 
Economy 

150 Nm 
UDDS 3.10 57.54 % 31.99 MPG 

HwFET 2.60 51.57 % 41.00 MPG 

200 Nm 
UDDS 3.10 52.14 % 32.74 MPG 

HwFET 2.40 52.39 % 41.03 MPG 

250 Nm 
UDDS 3.20 57.39 % 32.22 MPG 

HwFET 2.40 54.45 % 41.24 MPG 
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5.3.3 eRAD Unit Max Power 75 kW 

This section looks at the ECMS algorithm when the max motor power increases to 75 kW. 

The eRAD unit will vary between the three max torque ratings and present the data for the 

average ending SOC and average fuel economy. The data from the UDDS cycle are presented 

in Figure 50. 

 

Figure 50: Average Values for Max Motor Power of 75 kW - UDDS 

The pattern that has been observed in the UDDS cycle continues for the 75 kW rated eRAD 

unit. As the eRAD unit torque rating increases, the better the fuel economy is across all the 

possible equivalence factors. This happens because the unit can produce more torque at 

initial launches and can recapture the same amount or more than smaller torque rated eRAD 

units. The data from the HwFET cycle are presented in Figure 51. 
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Figure 51: Average Values for Max Motor Power of 75 kW - HwFET 

The 200 Nm eRAD unit tends to have the best fuel economy with a lower equivalence factor 

until the equivalence factor reaches 3. Equivalence factor values above 3 show that the 250 

Nm eRAD unit starts to outperform in fuel economy until 3.5, where the fuel economy for all 

three eRAD units start to converge to have comparable fuel economy and final SOC. The 

eRAD units optimal equivalence factors for these drive cycles and their associated average 

ending SOC and average fuel economy are presented in Table 12. 

Table 12: Max Motor Power – 75 kW Data 

 

 

 

eRAD Unit Drive Cycle Equivalence 
Factor 

Average 
Ending 

SOC 

Average Fuel 
Economy 

150 Nm 
UDDS 3.00 51.52 % 32.76 MPG 

HwFET 2.90 59.78 % 41.04 MPG 

200 Nm 
UDDS 3.10 52.41 % 33.41 MPG 

HwFET 2.90 49.73 % 42.42 MPG 

250 Nm 
UDDS 3.10 51.25 % 33.97 MPG 

HwFET 2.90 56.90 % 41.76 MPG 
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5.3.4 eRAD Unit Max Power 100 kW 

This section looks at the ECMS algorithm when the max motor power increases to 100 kW. 

The eRAD unit will vary between the three max torque ratings and present the data for the 

average ending SOC and average fuel economy. The data from the UDDS cycle are presented 

in Figure 52. 

 

Figure 52: Average Values for Max Motor Power of 100 kW - UDDS 

The 100 kW power rated eRAD units continue the general trend that the other power rated 

eRAD units follow; as the torque rating increases, the better the fuel economy for the vehicle. 

The eRAD units for 200 Nm and 250 Nm relatively have the same ending SOC curve, but 

the 250 Nm can outperform the 200 Nm unit. This happens because the unit can produce 

more torque at initial launches and can recapture the same amount or more when compared 

to the 200 Nm unit. The data from the HwFET cycle are presented in Figure 53. 
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Figure 53: Average Values for Max Motor Power of 100 kW - HwFET 

The 100 kW power rated eRAD unit has the least amount of fluctuations in the fuel economy 

compared to the other three power rated eRAD units. The main outlier from these eRAD 

units is the 150 Nm torque rating which deviates from the other two for equivalence factors 

between 2.8 to 3.4. The eRAD units optimal equivalence factors for these drive cycles and 

their associated average ending SOC and average fuel economy are presented in Table 13. 

Table 13: Max Motor Power – 100 kW Data 

eRAD Unit Drive Cycle Equivalence 
Factor 

Average 
Ending 

SOC 

Average Fuel 
Economy 

150 Nm 
UDDS 3.00 53.48 % 32.38 MPG 

HwFET 2.80 54.56 % 41.57 MPG 

200 Nm 
UDDS 3.10 53.61 % 33.12 MPG 

HwFET 3.00 54.14 % 41.78 MPG 

250 Nm 
UDDS 3.10 50.44 % 33.94 MPG 

HwFET 3.00 54.74 % 41.83 MPG 
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5.3.5 eRAD Unit Optimal Equivalence Factors 

This section will look at taking the optimal equivalence factor found from the UDDS and 

HwFET drive cycles and average them to generate the overall optimal equivalence factor for 

each eRAD unit. There was a trend that as the power rating increased, the optimal 

equivalence factor increased. The same trend can be seen when the torque rating increases. 

This is the case since the UDDS cycle equivalence factor stayed relatively the same while the 

HwFET cycle equivalence factor increased as the power and torque rating increased in value. 

The optimal equivalence factors for each motor configuration and their associated average 

ending SOC are shown in Table 14. 

Table 14: Optimal Equivalence Factor Data – Ending SOC 

 

The SOC error is found by finding the percent error relative to the target SOC. The analysis 

shows that as the eRAD unit power rating increases, the easier the ECMS algorithm is at 

keeping the battery at the target SOC. This tends to be the trend since the optimal 

Motor 
Power 

Motor 
Torque 

Equivalence 
Factor 

UDDS Cycle HwFET Cycle 

Average 
Ending 

SOC 

Ending SOC 
Error 

Average 
Ending SOC 

Ending SOC 
Error 

25 kW 

150 Nm 2.85 44.24 % - 19.56 % 67.71 % + 23.11 % 

200 Nm 2.75 40.40 % - 26.55 % 66.03 % + 20.05 % 

250 Nm 2.80 43.29 % - 21.29 % 70.87 % + 28.85 % 

50 kW 

150 Nm 2.90 45.03 % - 18.13 % 63.09 % + 14.71 % 

200 Nm 2.85 42.56 % - 22.62 % 63.20 % + 14.91 % 

250 Nm 2.85 42.45 % - 22.82 % 60.04 % + 9.16 % 

75 kW 

150 Nm 2.95 48.17 % - 12.42 % 59.88 % + 8.87 % 

200 Nm 3.00 46.86 % - 14.80 % 60.54 % + 10.07 % 

250 Nm 3.00 46.79 % - 14.93 % 59.34 % + 7.89 % 

100 kW 

150 Nm 2.90 45.67 % - 16.96 % 56.97 % + 3.58 % 

200 Nm 3.05 50.37 % - 8.42 % 56.02 % + 1.85 % 

250 Nm 3.05 48.70 % - 11.45 % 57.20 % + 4.00 % 
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equivalence factor for the HwFET cycle converges to the UDDS cycle optimal equivalence 

factor as the eRAD unit power rating and torque rating increases. A similar phenomenon can 

be seen in the fuel economy for each eRAD unit shown in Table 15. 

Table 15: Optimal Equivalence Factor Data – Fuel Economy 

 

The fuel economy error is calculated by taking the percent error with regards to the WVU 

Chevy Blazer results from Table 9. There is a clear trend that as the power rating increases, 

there is an improvement in fuel economy for the HwFET drive cycle. However, the same 

cannot be said about the fuel economy for the UDDS cycle. The data shows that as the eRAD 

units that are able to maintain optimal fuel economy or improve upon it fall under the 50 

kW power rating eRAD units. Even though the higher power rated eRAD units cannot 

improve upon the UDDS cycle fuel economy, they do tend to approach the optimal fuel 

economy as the torque rating increases.  

Motor 
Power 

Motor 
Torque 

Equivalence 
Factor 

UDDS Cycle HwFET Cycle 

Average 
Fuel 

Economy 

Fuel 
Economy 

Error 

Average 
Fuel 

Economy 

Fuel 
Economy 

Error 

25 kW 

150 Nm 2.85 33.27 MPG - 3.37 % 39.28 MPG - 3.58 % 

200 Nm 2.75 33.86 MPG - 1.66 % 39.58 MPG - 2.85 % 

250 Nm 2.80 33.61 MPG -2.38 % 39.17 MPG - 3.85 % 

50 kW 

150 Nm 2.90 33.60 MPG - 2.41 % 40.59 MPG - 0.37 % 

200 Nm 2.85 34.43 MPG 0.00 % 40.74 MPG 0.00 % 

250 Nm 2.85 34.66 MPG + 0.67 % 41.30 MPG + 1.37 % 

75 kW 

150 Nm 2.95 33.10 MPG - 3.86 % 41.07 MPG + 0.87 % 

200 Nm 3.00 34.00 MPG - 1.25 % 41.15 MPG + 0.996 % 

250 Nm 3.00 34.41 MPG - 0.06 % 41.49 MPG + 1.81 % 

100 kW 

150 Nm 2.90 33.12 MPG - 3.80 % 41.23 MPG + 1.2 % 

200 Nm 3.05 33.43 MPG - 2.90 % 41.57 MPG + 2.04 % 

250 Nm 3.05 34.12 MPG - 0.90 % 41.54 MPG + 1.96 % 
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6 Conclusion 

In conclusion, the objective of this work was to do a sensitivity analysis on the WVU Chevy 

Blazer to find the optimal equivalence factor that can maintain the target SOC and maximize 

the fuel economy of the vehicle. It then compares these results to the ones found from 

dynamic programming to validate the performance and improvement with the 

implementation of this ECMS algorithm. This sensitivity analysis showed that equivalence 

factor values between 1-2 cause the SOC to flatline to the minimum allowable SOC, taking 

these values out of consideration to be used. The UDDS drive cycle and HwFET drive cycle 

showed that an equivalence factor of 3.1 and 2.6, respectively, gave ending SOC values that 

were close to the target SOC, giving an average equivalence factor of 2.85. This equivalence 

factor does not maintain the target SOC but improves upon the fuel economy from the 

dynamic programming results.  

Once these values were confirmed, a sensitivity analysis was done changing the equivalence 

factor when different eRAD units were introduced into the architecture. The main reason is 

to see how the ECMS algorithm behaves with new components and see if there is a better 

configuration for the ICE and battery donated by GM. The sensitivity analysis showed that as 

the eRAD unit increased in power rating, the optimal equivalence factor for the HwFET cycle 

tend to converge to the optimal equivalence factor for the UDDS cycle. All six eRAD units 

that had power ratings above 50 kW were able to improve upon maintaining the target SOC 

compared to the original architecture. The 100 kW – 200 Nm rated eRAD unit performed 

the best at maintaining the target SOC within -8.42% and +1.85% for the UDDS drive cycle 

and HwFET drive cycle, respectively. The data showed that as the eRAD power rating 

increased, there is an improvement in fuel economy for the HwFET drive cycle but tends to 
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be below the optimal fuel economy for the UDDS drive cycle compared to the original 

architecture. The 100 kW – 200 Nm rated eRAD unit has the best improvement in fuel 

economy for the HwFET drive cycle with a 2.04% increase but has a 2.90% decrease in fuel 

economy for the UDDS drive cycle. Out of the 12 eRAD units, only the 50 kW – 250 Nm 

rated eRAD unit was able to improve on the fuel economy for both drive cycles with a 0.67% 

increase and a 1.37% increase in fuel economy for the UDDS drive cycle and HwFET drive 

cycle, respectively. The 50 kW power rated eRAD units were the best in overall fuel economy 

while the 100 kW power rated eRAD units were the best at maintaining the target SOC. 
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7 Future Work 

Future work that can be done on this subject is to see how the fuel economy and final SOC 

for these eRAD units are affected when the equivalence factor is adaptive. This adaptive 

equivalence factor could be based on speed or the target SOC. Doing this could allow the 

use of the optimal equivalence factors from both drive cycles to better maintain the target 

SOC and improve fuel economy.  

Other work can be done where other components can change such as the battery capacity 

to see how the algorithm reacts to a slower increase/decrease in SOC. There can be an 

analysis of a battery pack that can output the desired power to properly utilize the eRAD 

units that have a 75 kW and 100 kW power rating. There can also be an analysis to see how 

the fuel economy is affected when changing the max speed of the eRAD unit from 11,000 

RPM to some other value. The gear ratio could stay the same or change depending on the 

desired max wheel speed. 

Other areas could look at changing other parameters in the ECMS algorithm, mainly looking 

at changing the minimum SOC, target SOC, and maximum SOC that go into the SOC penalty 

function for the battery power cost. A sensitivity analysis can be conducted to see how the 

algorithm functions when weighting the cost functions. These weights could be kept static 

throughout the simulation or be changed dynamically based upon exterior conditions. There 

can also be an analysis on how the algorithm behaves by changing the minimum amount of 

torque splits that are considered in the calculation of the ECMS algorithm.  
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Appendix A: Validation Drive Cycles 
 

 

Figure 54: UDDS Drive Cycle 

 

Figure 55: HwFET Drive Cycle 



  

85 
 

 

Figure 56: FTP57 Drive Cycle 

  



  

86 
 

Appendix B: Simulation Code 
%% Sensitivity Analysis Main Script %% 
clear 
clc 
 
savPath = uigetdir('Select Save Folder Path'); 
 
% Grabs the data dictionary of the model to change parameters 
dictionary = Simulink.data.dictionary.open('ThesisModelDictionary.sldd'); 
dataSet = getSection(dictionary,'Design Data'); 
 
% Max motor power ratings that will be analyzed 
MaxPowerVector  = [25000 50000 75000 100000]; %watts 
MotPwr_Naming = ["Mot Pwr 25k" "Mot Pwr 50k" "Mot Pwr 75k" "Mot Pwr 100k"]; 
 
% Max motor torque ratings that will be analyzed 
MaxTorqueVector = [150 200 250]; %Nm 
MotTrq_Naming = ["Mot Trq 150Nm" "Mot Trq 200Nm" "Mot Trq 250Nm"]; 
 
% Equivalence factors that will be analyzed 
EF = 2:0.1:4; 
 
% Starting battery power that will be analyzed 
BattPw = [2 2.75 3.5]; 
BattPw_Naming = ["Low" "Mid" "High"]; 
 
n_tot = length(MaxPowerVector)*length(MaxTorqueVector)*length(EF)*length(BattPw); 
n_cur = 0; 
tic 
 
% For loop that generate folders to save data in 
for MotPower_Index = 1:1:length(MaxPowerVector) 
    MotPwrFolder = MotPwr_Naming(MotPower_Index); 
    [~,~] = mkdir(fullfile(savPath, MotPwrFolder)); 
 
    for MotTorque_Index = 1:1:length(MaxTorqueVector) 
        MotTrqFolder = MotTrq_Naming(MotTorque_Index); 
        [~,~] = mkdir(fullfile(savPath, MotPwrFolder, MotTrqFolder)); 
         
        % Sets the max rating values for the motor 
        MaxPowerScaled = MaxPowerVector(MotPower_Index); 
        MaxTorqueScaled = MaxTorqueVector(MotTorque_Index); 
        MaxSpeedScaled = 11000;  %RPM 
         
        % Converts the max torque curve and efficiency data based on new 
        % motor ratings 
        Motor_Data_Conversion 
         
        % Changes the max motor power in the control strategy in the 
        % battery constraints subsystem 
        maxmotpwr = getEntry(dataSet, 'MaxMotPwr'); 
        if MaxPowerScaled == 25000 
            setValue(maxmotpwr,25000); 
            elseif MaxPowerScaled == 50000 
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            setValue(maxmotpwr,50000);    
        end 
         
        % Updates the motor values in the model to run the model 
        maxtorquevalue = getEntry(dataSet, 'MaxTorqueValue'); 
        setValue(maxtorquevalue,MaxTorqueScaled); 
 
        EffTable = getEntry(dataSet, 'efficiency_table_PM_Scaled'); 
        setValue(EffTable,efficiency_table_PM_Scaled); 
         
        MotSpd_Curve = getEntry(dataSet, 'MotSpd_PM_Scaled'); 
        setValue(MotSpd_Curve,MotSpd_PM_Scaled); 
         
        MotTrq_Curve = getEntry(dataSet, 'MotTrq_PM_Scaled'); 
        setValue(MotTrq_Curve,MotTrq_PM_Scaled); 
         
        Eff_MotTrq = getEntry(dataSet, 'T_eff_PM_bp_Scaled'); 
        setValue(Eff_MotTrq,T_eff_PM_bp_Scaled); 
         
        Eff_MotSpd = getEntry(dataSet, 'w_eff_PM_bp_Scaled'); 
        setValue(Eff_MotSpd,w_eff_PM_bp_Scaled); 
         
        % Clears unneccesary data from the workspace 
        clear efficiency_table_PM efficiency_table_PM_Scaled fig MaxPowerPM ... 
            MaxPowerScaled MaxSpeedPm MaxSpeedScaled MaxTorquePM MaxTorqueScaled ... 
            MotPwr_PM MotPwr_PM_Scaled MotSpd_PM MotSpd_Scaled MotTrq_PM ... 
            MotTrq_PM_Scaled N_Base_Baseline N_Base_Scaled n_ticks PwrRatio ... 
            Spd_eff_gt_Base Spd_eff_lt_Base Spd_gt_Base Spd_lt_Base ... 
            T_eff_PM_bp T_eff_PM_bp_Scaled TrqRatio w_eff_PM_bp ... 
            w_eff_PM_bp_Scaled maxmotpwr 
         
        for BattPwr_Index = 1:1:length(BattPw) 
            BattFolder = sprintf('Batt %s SOC', BattPw_Naming(BattPwr_Index)); 
            [~,~] = mkdir(fullfile(savPath, MotPwrFolder, MotTrqFolder, BattFolder)); 
             
            % Changes the initial stored energy in the battery 
            battcapinit = getEntry(dataSet, 'BattCapInit'); 
            setValue(battcapinit,BattPw(BattPwr_Index)); 
             
            % Generates vectors to store data for each starting battery 
            % value 
            UDDS_MPG = zeros(1,length(EF)); 
            UDDS_SOC = zeros(1,length(EF)); 
            HwFET_MPG = zeros(1,length(EF)); 
            HwFET_SOC = zeros(1,length(EF)); 
             
            for l = 1:1:length(EF) 
                EFFolder = sprintf('EF %.0f', 10*EF(l)); 
                [~,~] = mkdir(fullfile(savPath, MotPwrFolder, MotTrqFolder,   
BattFolder, EFFolder)); 
                 
                % Sets the equivalence factor 
                s_equiv = getEntry(dataSet, 'S_equiv'); 
                setValue(s_equiv,EF(l)); 
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                t1 = toc; 
                 
                % Runs the model for each drive cycle 
                Run_UDDS_Mot 
                Run_HwFET_Mot 
                 
                % Saves the vectors in the designated folder 
                savName = 'EndingValues'; 
                save(fullfile(savPath, MotPwrFolder, MotTrqFolder, BattFolder, 
EFFolder, savName), ... 
                "HwFET_SOC","HwFET_MPG",... 
                "UDDS_SOC","UDDS_MPG"); 
                 
                % Keeps track of how many more iterations are left in the 
                % sensitivity analysis 
                n_cur = n_cur + 1; 
                t2 = toc; 
                t_ave = t2/n_cur; 
                t_est = seconds( t_ave *(n_tot - n_cur) ); 
                t_est.Format = 'hh:mm:ss'; 
             
                fprintf(['\nSingle Model Run:    %.0f s\n' ... 
                   'Average Model Run:   %.0f s\n' ... 
                   'Models Remaining:    %.0f\n in UDDS' ... 
                   'Estimated Time Left: %s in hh:mm:ss format'],... 
                   t2-t1, t_ave, n_tot-n_cur, t_est) 
            end 
        end 
    end 
end 
 
 
%% Motor_Data_Conversion %% 
 
% Original Motor Data that will be used to convert the old data into 
% new data to be used 
MotSpd_PM = [Data]; 
MotTrq_PM = [Data]; 
Efficiency_table_PM = [Data]; 
T_eff_PM_bp = [Data]; 
W_eff_PM_bp = [Data]; 
MaxPowerPM = Data; 
MaxTorquePM = Data; 
MaxSpdPM = Data; 
 
% Determine Base Speed of baseline motor which is the speed where the 
% torque limit delivers the max power 
N_Base_Baseline = MaxPowerPM ./ MaxTorquePM * (30/pi); 
 
%Determine Max Power of baseline motor in kW 
MotPwr_PM = MotSpd_PM .* MotTrq_PM / (30/pi*1000); 
N_Base_Scaled = MaxPowerScaled ./ MaxTorqueScaled * (30/pi); 
 
%Determine the power and torque ratio between the scaled and baseline motor 
PwrRatio = MaxPowerScaled/MaxPowerPM; 
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TrqRatio = MaxTorqueScaled/MaxTorquePM; 
 
%  ****** PERFORM SCALING ****** 
% Establish arrays for the scaled peak curves, and efficiency data 
MotSpd_PM_Scaled    = zeros(size(MotSpd_PM)); 
MotTrq_PM_Scaled    = zeros(size(MotTrq_PM)); 
T_eff_PM_bp_Scaled  = zeros(size(T_eff_PM_bp)); 
w_eff_PM_bp_Scaled  = zeros(size(w_eff_PM_bp)); 
 
%Find indicies that partition baseline torque vs speed data 
Spd_lt_Base = MotSpd_PM <= N_Base_Baseline;      
Spd_gt_Base = MotSpd_PM >  N_Base_Baseline;      
 
% -- Scale the peak toruqe curves -- 
MotSpd_PM_Scaled(Spd_lt_Base) = MotSpd_PM(Spd_lt_Base) .* 
N_Base_Scaled./N_Base_Baseline; 
%   Below base speed the torques are scale by the ratio of the scaled peak 
%   torque to the baseline peak torque 
MotTrq_PM_Scaled(Spd_lt_Base) = MotTrq_PM(Spd_lt_Base) *  
(MaxTorqueScaled/MaxTorquePM); 
 
 
%Scale the section of the torque map for the psuedo constant power region above base 
speed 
%   Above base speed, the speeds are scaled by a ratio of the max speed to 
%   base speed of the scaled motor to the basline motor 
MotSpd_PM_Scaled(Spd_gt_Base) = ((MaxSpeedScaled - N_Base_Scaled)/(MaxSpeedPM-
N_Base_Baseline)) .* ... 
                                (MotSpd_PM(Spd_gt_Base)-N_Base_Baseline) + 
N_Base_Scaled; 
%   Above base speed, the torque is scaled by scaling the power from the 
%   baseline machine to the power of the scaled machine, then dividing by 
%   the speed to convert the power back to a torque. 
MotTrq_PM_Scaled(Spd_gt_Base) = (MotPwr_PM(Spd_gt_Base) * PwrRatio) ./ 
MotSpd_PM_Scaled(MotSpd_PM>N_Base_Baseline) * 9550; 
 
 
%Determine Max Power of Scaled motor in kW based on the scaled speed and 
%the scaled torque 
MotPwr_PM_Scaled = MotSpd_PM_Scaled .* MotTrq_PM_Scaled / (30/pi*1000); 
 
 
% ---- Perform the same scaling on the efficiency table axes ---- 
Spd_eff_lt_Base = w_eff_PM_bp <= N_Base_Baseline; 
Spd_eff_gt_Base = w_eff_PM_bp >  N_Base_Baseline;   
 
%Scale the speed axis 
w_eff_PM_bp_Scaled(Spd_eff_lt_Base)= 
w_eff_PM_bp(Spd_eff_lt_Base).*N_Base_Scaled./N_Base_Baseline; 
 
w_eff_PM_bp_Scaled(Spd_eff_gt_Base) = ((MaxSpeedScaled - N_Base_Scaled)/(MaxSpeedPM-
N_Base_Baseline)) .* ... 
                                      (w_eff_PM_bp(Spd_eff_gt_Base)-N_Base_Baseline) 
+ N_Base_Scaled; 
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% Create a new torque axis for the scaled data.  This can be scaled based 
% on the peak torque scaling 
T_eff_PM_bp_Scaled = T_eff_PM_bp * (MaxTorqueScaled/MaxTorquePM); 
 
%Start with the efficiency table from the baseline table 
efficiency_table_PM_Scaled = efficiency_table_PM; 
 
 
%% Run_UDDS_Mot %% 
 
curdrivecycle = getEntry(dataSet, 'CurrDriveCycle'); 
setValue(curdrivecycle,1); 
 
simtime = getEntry(dataSet, 'SimTime'); 
setValue(simtime,1369); 
 
savName = 'Drive Cycle UDDS'; 
 
out = sim("MainModel_v2"); 
 
AccelPdl = out.AccelPdl; 
BrkPdl = out.BrkPdl; 
DriveCycle = out.DriveCycle; 
EngSpeed = out.EngSpeed; 
EngTrqAct = out.EngTrqAct; 
EngTrqCmd = out.EngTrqCmd; 
MPG = out.MPG; 
MotSpeed = out.MotSpeed; 
MotTrqAct = out.MotTrqAct; 
MotTrqCmd = out.MotTrqCmd; 
SOC = out.SOC; 
VehSpd = out.VehSpd; 
WhlTrqCmd = out.WhlTrqCmd; 
Pos_Energy = out.Pos_Energy; 
Neg_Energy = out.Neg_Energy; 
Net_Energy = out.Net_Energy; 
Eng_Energy = out.Eng_Energy; 
 
UDDS_MPG(1,l) = MPG.Data(end); 
UDDS_SOC(1,l) = SOC.Data(end); 
 
save(fullfile(savPath, MotPwrFolder, MotTrqFolder, BattFolder, EFFolder, savName), 
... 
    "AccelPdl", "BrkPdl","DriveCycle","EngSpeed","EngTrqAct","EngTrqCmd",... 
    "MPG","MotSpeed","MotTrqAct","MotTrqAct","MotTrqCmd","SOC","VehSpd", ... 
    "WhlTrqCmd", "Pos_Energy", "Neg_Energy", "Net_Energy", "Eng_Energy") 
 
clear AccelPdl BrkPdl DriveCycle EngSpeed EngTrqAct EngTrqCmd MPG MotSpeed ... 
    MotTrqAct MotTrqCmd SOC VehSpd WhlTrqCmd Pos_Energy Neg_Energy Net_Energy 
Eng_Energy 
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%% Run_HwFET_Mot %% 
 
CurDriveCycle = getEntry(dataSet, 'CurrDriveCycle'); 
setValue(CurDriveCycle,2); 
 
simtime = getEntry(dataSet, 'SimTime'); 
setValue(simtime,765); 
 
savName = 'Drive Cycle HwFETT'; 
 
out = sim("MainModel_v2"); 
 
AccelPdl = out.AccelPdl; 
BrkPdl = out.BrkPdl; 
DriveCycle = out.DriveCycle; 
EngSpeed = out.EngSpeed; 
EngTrqAct = out.EngTrqAct; 
EngTrqCmd = out.EngTrqCmd; 
MPG = out.MPG; 
MotSpeed = out.MotSpeed; 
MotTrqAct = out.MotTrqAct; 
MotTrqCmd = out.MotTrqCmd; 
SOC = out.SOC; 
VehSpd = out.VehSpd; 
WhlTrqCmd = out.WhlTrqCmd; 
Pos_Energy = out.Pos_Energy; 
Neg_Energy = out.Neg_Energy; 
Net_Energy = out.Net_Energy; 
Eng_Energy = out.Eng_Energy; 
 
HwFET_MPG(1,l) = MPG.Data(end); 
HwFET_SOC(1,l) = SOC.Data(end); 
 
save(fullfile(savPath, MotPwrFolder, MotTrqFolder, BattFolder, EFFolder, savName), 
... 
    "AccelPdl", "BrkPdl","DriveCycle","EngSpeed","EngTrqAct","EngTrqCmd",... 
    "MPG","MotSpeed","MotTrqAct","MotTrqAct","MotTrqCmd","SOC","VehSpd", ... 
    "WhlTrqCmd", "Pos_Energy", "Neg_Energy", "Net_Energy", "Eng_Energy") 
 
clear AccelPdl BrkPdl DriveCycle EngSpeed EngTrqAct EngTrqCmd MPG MotSpeed ... 
    MotTrqAct MotTrqCmd SOC VehSpd WhlTrqCmd Pos_Energy Neg_Energy Net_Energy 
Eng_Energy 
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