1,706 research outputs found

    Hybrid SOM+k-Means Clustering to Improve Planning, Operation and Management in Water Distribution Systems

    Full text link
    [EN] With the advance of new technologies and emergence of the concept of the smart city, there has been a dramatic increase in available information. Water distribution systems (WDSs) in which databases can be updated every few minutes are no exception. Suitable techniques to evaluate available information and produce optimized responses are necessary for planning, operation, and management. This can help identify critical characteristics, such as leakage patterns, pipes to be replaced, and other features. This paper presents a clustering method based on self-organizing maps coupled with k-means algorithms to achieve groups that can be easily labeled and used for WDS decision-making. Three case-studies are presented, namely a classification of Brazilian cities in terms of their water utilities; district metered area creation to improve pressure control; and transient pressure signal analysis to identify burst pipes. In the three cases, this hybrid technique produces excellent results. © 2018 Elsevier Ltd. All rights reserved.This work is partially supported by Capes and CNPq, Brazilian research agencies. The use of English was revised by John Rawlins.Brentan, BM.; Meirelles, G.; Luvizotto, E.; Izquierdo Sebastián, J. (2018). Hybrid SOM+k-Means Clustering to Improve Planning, Operation and Management in Water Distribution Systems. Environmental Modelling & Software. 106:77-88. https://doi.org/10.1016/j.envsoft.2018.02.013S778810

    Development of a R package to facilitate the learning of clustering techniques

    Get PDF
    This project explores the development of a tool, in the form of a R package, to ease the process of learning clustering techniques, how they work and what their pros and cons are. This tool should provide implementations for several different clustering techniques with explanations in order to allow the student to get familiar with the characteristics of each algorithm by testing them against several different datasets while deepening their understanding of them through the explanations. Additionally, these explanations should adapt to the input data, making the tool not only adept for self-regulated learning but for teaching too.Grado en Ingeniería Informátic

    Bag-Level Aggregation for Multiple Instance Active Learning in Instance Classification Problems

    Full text link
    A growing number of applications, e.g. video surveillance and medical image analysis, require training recognition systems from large amounts of weakly annotated data while some targeted interactions with a domain expert are allowed to improve the training process. In such cases, active learning (AL) can reduce labeling costs for training a classifier by querying the expert to provide the labels of most informative instances. This paper focuses on AL methods for instance classification problems in multiple instance learning (MIL), where data is arranged into sets, called bags, that are weakly labeled. Most AL methods focus on single instance learning problems. These methods are not suitable for MIL problems because they cannot account for the bag structure of data. In this paper, new methods for bag-level aggregation of instance informativeness are proposed for multiple instance active learning (MIAL). The \textit{aggregated informativeness} method identifies the most informative instances based on classifier uncertainty, and queries bags incorporating the most information. The other proposed method, called \textit{cluster-based aggregative sampling}, clusters data hierarchically in the instance space. The informativeness of instances is assessed by considering bag labels, inferred instance labels, and the proportion of labels that remain to be discovered in clusters. Both proposed methods significantly outperform reference methods in extensive experiments using benchmark data from several application domains. Results indicate that using an appropriate strategy to address MIAL problems yields a significant reduction in the number of queries needed to achieve the same level of performance as single instance AL methods

    No Pattern, No Recognition: a Survey about Reproducibility and Distortion Issues of Text Clustering and Topic Modeling

    Full text link
    Extracting knowledge from unlabeled texts using machine learning algorithms can be complex. Document categorization and information retrieval are two applications that may benefit from unsupervised learning (e.g., text clustering and topic modeling), including exploratory data analysis. However, the unsupervised learning paradigm poses reproducibility issues. The initialization can lead to variability depending on the machine learning algorithm. Furthermore, the distortions can be misleading when regarding cluster geometry. Amongst the causes, the presence of outliers and anomalies can be a determining factor. Despite the relevance of initialization and outlier issues for text clustering and topic modeling, the authors did not find an in-depth analysis of them. This survey provides a systematic literature review (2011-2022) of these subareas and proposes a common terminology since similar procedures have different terms. The authors describe research opportunities, trends, and open issues. The appendices summarize the theoretical background of the text vectorization, the factorization, and the clustering algorithms that are directly or indirectly related to the reviewed works

    Human-assisted self-supervised labeling of large data sets

    Get PDF
    There is a severe demand for, and shortage of, large accurately labeled datasets to train supervised computational intelligence (CI) algorithms in domains like unmanned aerial systems (UAS) and autonomous vehicles. This has hindered our ability to develop and deploy various computer vision algorithms in/across environments and niche domains for tasks like detection, localization, and tracking. Herein, I propose a new human-in-the-loop (HITL) based growing neural gas (GNG) algorithm to minimize human intervention during labeling large UAS data collections over a shared geospatial area. Specifically, I address human driven events like new class identification and mistake correction. I also address algorithm-centric operations like new pattern discovery and self-supervised labeling. Pattern discovery and identification through self-supervised labeling is made possible through open set recognition (OSR). Herein, I propose a classifier with the ability to say "I don't know" to identify outliers in the data and bootstrap deep learning (DL) models, specifically convolutional neural networks (CNNs), with the ability to classify on N+1 classes. The effectiveness of the algorithms are demonstrated using simulated realistic ray-traced low altitude UAS data from the Unreal Engine. The results show that it is possible to increase speed and reduce mental fatigue over hand labeling large image datasets.Includes bibliographical references
    corecore