19 research outputs found

    Combining Classification and Clustering for Tweet Sentiment Analysis

    Full text link
    The goal of sentiment analysis is to determine opinions, emotions, and attitudes presented in source material. In tweet sentiment analysis, opinions in messages can be typically categorized as positive or negative. To classify them, researchers have been using traditional classifiers like Naive Bayes, Maximum Entropy, and Support Vector Machines (SVM). In this paper, we show that a SVM classifier combined with a cluster ensemble can offer better classification accuracies than a stand-alone SVM. In our study, we employed an algorithm, named 'C POT.3'E-SL, capable to combine classifier and cluster ensembles. This algorithm can refine tweet classifications from additional information provided by clusterers, assuming that similar instances from the same clusters are more likely to share the same class label. The resulting classifier has shown to be competitive with the best results found so far in the literature, thereby suggesting that the studied approach is promising for tweet sentiment classification.Capes (Proc. DS-7253238/D)CNPq (Proc. 303348/2013-5)FAPESP (Proc. 2013/07375-0 and 2010/20830-0

    Hybrid Automated Machine Learning System for Big Data

    Get PDF
    A lot of machine learning (ML) models and algorithms exist and in designing classification systems, it is often a challenge looking for and selecting the best performing ML algorithm(s) to use for a dataset in a short period of time. Often, one must learn thor-oughly about the data set structure and content, decide whether to use a supervised, semi-supervised or an unsupervised learning strategy, and then investigate, select or design via trial and error a classification or clustering algorithm that would work most accurately for that specific dataset. This can be quite a time consuming and tedious process. Additionally, a classification algorithm may not perform very well with a dataset as compared to using a clustering algorithm. Meta-learning (learning to learn) and automatic ML (autoML) are data mining-based formalisms for modelling evolving conventional ML functions and toolkit systems. The concept of modelling a decision tree-based combination of both formalisms as a Hybrid-AutoML toolkit extends that of traditional complex autoML systems. In hybrid-autoML, single or multiple predictive models are built by combining a three-layered decision learning architecture for automatic learning mode and model selection, by engaging formal-isms for selecting from a variety of supervised or unsupervised ML algorithms and generic meta information obtained from varying multi-datasets. The work presented in this thesis aims to study, conceptualize, design and develop this hybrid-autoML toolkit. By extending in the simplest form, some existing methodologies for the model training aspect of autoML systems. The theoretical and experimental development focuses on the extension of autoWeka and use of existing meta-learning, algorithm selection and deci-sion tree concepts. It addresses the issue of efficient ML mode (supervised or unsupervised) and model selection for varying multi-datasets, learning methods representations of practical alternative use cases and structuring of layered decision ML un-folding, and algorithms for constructing the unfolding. The im-plementation aims to develop tools for hybrid-autoML based model visualization or evaluation, use case simulations and analysis on single or multi varying datasets. An open source tool called hybrid-autoML has been developed to support these functionali-ties. Hybrid-autoML provides a user-friendly graphical interface that facilitates single or multi varying datasets entry, sup-ports automatic learning mode or strategy selection, automatic model selection on single or multi-varying datasets, supports predictive testing, and allows the automatic visualization and use of a set of analytical tools for model evaluation. It is highly extensible and saves a lot of time

    Semi-supervised learning using multiple clusterings with limited labeled data

    Get PDF
    Supervised classification consists in learning a predictive model using a set of labeled samples. It is accepted that predictive models accuracy usually increases as more labeled samples are available. Labeled samples are generally difficult to obtain as the labeling step if often performed manually. On the contrary, unlabeled samples are easily available. As the labeling task is tedious and time consuming, users generally provide a very limited number of labeled objects. However, designing approaches able to work efficiently with a very limited number of labeled samples is highly challenging. In this context, semi-supervised approaches have been proposed to leverage from both labeled and unlabeled data. In this paper, we focus on cases where the number of labeled samples is very limited. We review and formalize eight semi-supervised learning algorithms and introduce a new method that combine supervised and unsupervised learning in order to use both labeled and unlabeled data. The main idea of this method is to produce new features derived from a first step of data clustering. These features are then used to enrich the description of the input data leading to a better use of the data distribution. The efficiency of all the methods is compared on various artificial, UCI datasets, and on the classification of a very high resolution remote sensing image. The experiments reveal that our method shows good results, especially when the number of labeled sample is very limited. It also confirms that combining labeled and unlabeled data is very useful in pattern recognition

    Heterogeneous information fusion: combination of multiple supervised and unsupervised classification methods based on belief functions

    Get PDF
    International audienceIn real-life machine learning applications, a common problem is that raw data (e.g. remote sensing data) is sometimes inaccessible due to confidentiality and privacy constrains of corporations, making classification methods arduous to work in the supervised context. Moreover, even though raw data is accessible, limited labeled samples can also seriously affect supervised methods. Recently, supervised and unsupervised classification (clustering) results related to specific applications are published by more and more organizations. Therefore, combination of supervised classification and clustering results has gained increasing attention to improve the accuracy of supervised predictions. Incorporating clustering results with supervised classifications at the output level can help to lessen the recline on information at the raw data level, so that is pertinent to improve the accuracy for the applications when raw data is inaccessible or training samples are limited. We focus on the combination of multiple supervised classification and clustering results at the output level based on belief functions for three purposes: (1) to improve the accuracy of classification when raw data is inaccessible or training samples are highly limited; (2) to reduce uncertain and imprecise information in the supervised results; and (3) to study how supervised classification and clustering results affect the combination at the output level. Our contributions consist of a transformation method to transfer heterogeneous information into the same frame, and an iterative fusion strategy to retain most of the trustful information in multiple supervised classification and clustering results

    Tree-based Density Estimation: Algorithms and Applications

    Get PDF
    Data Mining can be seen as an extension to statistics. It comprises the preparation of data and the process of gathering new knowledge from it. The extraction of new knowledge is supported by various machine learning methods. Many of the algorithms are based on probabilistic principles or use density estimations for their computations. Density estimation has been practised in the field of statistics for several centuries. In the simplest case, a histogram estimator, like the simple equalwidth histogram, can be used for this task and has been shown to be a practical tool to represent the distribution of data visually and for computation. Like other nonparametric approaches, it can provide a flexible solution. However, flexibility in existing approaches is generally restricted because the size of the bins is fixed either the width of the bins or the number of values in them. Attempts have been made to generate histograms with a variable bin width and a variable number of values per interval, but the computational approaches in these methods have proven too difficult and too slow even with modern computer technology. In this thesis new flexible histogram estimation methods are developed and tested as part of various machine learning tasks, namely discretization, naive Bayes classification, clustering and multiple-instance learning. Not only are the new density estimation methods applied to machine learning tasks, they also borrow design principles from algorithms that are ubiquitous in artificial intelligence: divide-andconquer methods are a well known way to tackle large problems by dividing them into small subproblems. Decision trees, used for machine learning classification, successfully apply this approach. This thesis presents algorithms that build density estimators using a binary split tree to cut a range of values into subranges of varying length. No class values are required for this splitting process, making it an unsupervised method. The result is a histogram estimator that adapts well even to complex density functions a novel density estimation method with flexible density estimation ability and good computational behaviour. Algorithms are presented for both univariate and multivariate data. The univariate histogram estimator is applied to discretization for density estimation and also used as density estimator inside a naive Bayes classifier. The multivariate histogram, used as the basis for a clustering method, is applied to improve the runtime behaviour of a well-known algorithm for multiple-instance classification. Performance in these applications is evaluated by comparing the new approaches with existing methods
    corecore