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In several applications, scarcity of labeled data is a challenging problem that

hinders the predictive capabilities of machine learning algorithms. Additionally, the

distribution of the data changes over time, rendering models trained with older data

less capable of discovering useful structure from the newly available data. Transfer

learning is a convenient framework to overcome such problems where the learning

of a model specific to a domain can benefit the learning of other models in other

domains through either simultaneous training of domains or sequential transfer of

knowledge from one domain to the others. This thesis explores the opportunities of

knowledge transfer in the context of a few applications pertaining to object recog-

nition from images, text analysis, network modeling and recommender systems,

using probabilistic latent variable models as building blocks. Both simultaneous

and sequential knowledge transfer are achieved through the latent variables, either

by sharing these across multiple related domains (for simultaneous learning) or by

adapting their distributions to fit data from a new domain (for sequential learning).
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Chapter 1

Introduction

In several practical applications of machine learning, scarcity of labeled data

is a challenging problem that adversely affects the predictive capabilities. Addition-

ally, the distribution of the data changes over time, rendering models trained with

older data less capable of discovering useful structure from the newly available data.

Such problems can conveniently be addressed by a mechanism that can exploit the

labeled information from one domain, such as labeled images belonging to a given

object category, and use the same in analyzing other related domains, such as im-

ages consisting of visually similar objects. The learning of models specific to a

given domain can potentially benefit from other models from other related domains

through either simultaneous or sequential training. Such mechanism is defined

as “knowledge transfer” in this thesis. Simultaneous knowledge transfer is more

popularly known as multitask learning in the machine learning literature [Caruana,

1997; Pan and Yang, 2010]. In such a framework, labeled data from two or more

closely related domains are collected and the models corresponding to all these re-

lated domains are trained jointly, with the assumption that the labeled data from

these domains provide helpful inductive bias to one another. Sequential knowledge

transfer is more popularly known as transfer learning [Bollacker and Ghosh, 2000;

Pan and Yang, 2010] in the machine learning literature. In the premise of transfer
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learning, a model learnt from a “source” domain is adapted for a “target” domain,

and solving a supervised or unsupervised learning problem in a target domain is the

primary objective. Interestingly, Pan and Yang [2010] categorizes multitask learn-

ing as a type of “inductive” transfer learning and hence the distinction between

multitask learning and transfer learning is not so clear. However, herein, multitask

learning always refers to simultaneous knowledge transfer.

This thesis explores the effectiveness of knowledge transfer in the context

of the following applications pertaining to object recognition from images, text

analysis, network modeling and recommender systems, with probabilistic latent

variable models used as the building blocks.

• Recognizing objects from images is a challenging problem simply because of the

abundance of too many object categories in nature. Annotation by human experts

is time consuming and expensive, for which isolated training of models for each

individual object category is practically infeasible. However, the fact that many

different object categories are visually similar and share some set of features can

potentially be utilized for joint training of multiple models where the labeled data

from one object category can provide useful information for the learning of models

corresponding to other categories. For example, a model capable of identifying

donkeys can also be utilized to identify zebras as both these object categories share

some common set of features, such as four legs, two ears and a tail.

• Analysis and prediction of the category of text articles based on the contents only

is often a hard problem to solve when the number of training examples is limited.
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However, analogous to the application of object recognition from images, one may

use documents from multiple related categories and try to learn predictive models

for all these categories jointly. As an example, models to identify research papers

from conferences like International Conference on Machine Learning (ICML) and

Neural Information Processing Systems (NIPS) can be trained jointly, as the sets of

training documents are pretty similar and together they might enhance the models

learnt, of course in presence of other “negative” categories, such as papers from a

completely different domain like physical design and integrated circuits.

• For applications of object recognition from images and text analysis, often the hu-

man annotators can provide high-level semantic features for objects or documents

belonging to a given category. Such semantic features can potentially span multi-

ple categories, implying that they might describe some characteristics of multiple

related categories. When such high-level semantic features are included in the mod-

eling assumptions, one can potentially improve the performance of the predictive

models.

• Often, relational data, such as a graph of users in a social network, comes with

auxiliary side information, such as a list of books or movies rated. Being able to

learn and impute the graph better using the auxiliary information is yet another

example where models are learnt simultaneously, one for analyzing the graph and

the other for predicting the preference of the users for the movies or books.

• Relational data changes with time. For example, in a social network, users can

get acquainted with new users. Among a group of authors publishing scientific ar-

3



ticles, the pattern of collaboration can change. At each different time slice, there

might not be enough information available, in which case, one might benefit from

learning from the older interactions. Similarly, dyadic data, which records the inter-

action between two different sets of entities, also changes over time. Such temporal

evolution is very common in recommender systems where the pattern of interaction

between users and items adapt with time.

• For applications in e-commerce, the language models built from older data for

identifying product category often lose their utility with time, particularly because

of the natural changes in language that describes the product or the query that is

supposed to retrieve the product. Instead of retraining the models from scratch, a

process that is time consuming and expensive, one may adapt the old model to fit

new descriptions.

The first four problems: recognizing objects from images, identifying cat-

egory of a text document, incorporating high-level semantic features, and network

modeling using side information, benefit from simultaneous knowledge transfer.

The latent variable models proposed herein for solving these problems have a com-

mon theme. All of them use some low-dimensional representation of the original

features/observation that is shared across multiple domains. The key idea here is

to project data from two or more domains onto a common low-dimensional space,

so that the mapping from the original feature space to the low-dimensional space

is learnt better given data from all these domains. The mapping from this low-

dimensional space to the target variables can then be learnt much more efficiently
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given only a few labeled information associated with the target variables. To fur-

ther clarify the utility of a shared low-dimensional space, one can consider a “base-

line” scheme where data from different domains are projected onto disjoint low-

dimensional subspaces and the mapping to the target variables are learnt in an iso-

lated manner. In such a scheme, if some domain has less labeled information, the

mapping from the original feature space to the low-dimensional space is not learnt

well, which might result in poor predictive performance. Chapter 3 deals with

simultaneous knowledge transfer which, in Chapter 4, is further integrated with ac-

tive learning, another mechanism that lowers the computation cost of annotation by

querying for most useful information from annotators. Chapter 5 explores further

how human annotators can be engaged more to improve the performance of simulta-

neous knowledge transfer framework, by providing specific evidence for the labels

they provide. The application of simultaneous knowledge transfer in Chapter 6 is

little different from those proposed in Chapter 3, 4 and 5. In this chapter, observa-

tions from two different domains (a network of users and an auxiliary count matrix)

are projected onto a shared latent space which helps better imputation in both the

domains.

The last two problems mentioned in the list above avail of sequential knowl-

edge transfer. The common underlying theme here is the learning of the parameters

of the associated latent variable models with data from an older domain and care-

ful modification of these parameters for fitting the new distribution from the new

domain. In Chapter 7, several temporal models are proposed that can analyze the

evolution of count-valued vectors and matrices obtained from analysis of text doc-
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uments, networks, and dyadic data that change over time. Chapter 8 demonstrates

how the prediction from a model built from older data can be adapted, without re-

training the old model from scratch, to serve the need for modeling new data with

a slightly different distribution. To make the thesis self-contained, all the relevant

mathematical tools are presented in Chapter 2. Conclusion and future work are

listed further in Chapter 9.
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Chapter 2

Background

In this chapter, the background mathematical tools and some of the related

works are presented. For an easy perusal, whenever convenient, different sections

point to different chapters where the concerned tools, algorithms and models are

used. Vectors and matrices are denoted by bold-faced lowercase and capital letters,

respectively. Scalar variables are written in italic font, and sets are denoted by

calligraphic uppercase letters. Dir(), Gam(), Beta(), Pois(), and Mult() stand for

Dirichlet, Gamma, Beta, Poisson and multinomial distribution respectively.

2.1 Distributions

This section describes several distributions used throughout this thesis. Some

of the relevant lemmas are also listed which we use quite frequently in multiple

chapters.

2.1.1 SumLog Distribution

SumLog Distribution: m is defined to have a SumLog distribution with parame-

ters (l, p) when m =
l∑

t=1

ut, ut ∼ Log(p). u ∼ Log(p) is the logarithmic distribu-
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tion [Johnson et al., 2005] with PMF:

f(u = k) = −pk/(kln(1− p)).

The mean and variance of a logarithmic distribution are −1
ln(1−p)

p
1−p and−p p+ln(1−p)

(1−p)2 ln2(1−p)

respectively. For conciseness, we represent a SumLog distribution asm ∼
∑

Log(p).

2.1.2 Poisson Distribution

Poisson Distribution: A discrete random variable X is said to have a Poisson

distribution with parameter λ > 0, if for k = 0, 1, 2, · · · , the probability mass

function of X is given by:

f(k;λ) = Pr(X=k) =
λkexp(−λ)

k!
,

where k! is the factorial of k. For Poisson distribution: E[X] = Var[X] = λ.

2.1.3 Poisson Bernoulli Distribution

Poisson Bernoulli Distribution: When b = 1(n ≥ 1), n ∼ Pois(λ), the distribu-

tion of b given λ is called the Poisson Bernoulli distribution, with PMF

f(b|λ) = exp(−λ(1− b))(1− exp(−λ))b, b ∈ {0, 1}.

The conditional posterior of the latent count n is simply (n|b, λ) ∼ b · Pois+(λ),

where k ∼ Pois+(λ) is the truncated Poisson distribution with PMF:

f(k) =
1

1− exp(−λ)

λkexp(−λ)

k!
, k = 1, 2, · · · .

Thus if b = 0, then n = 0 almost surely (a.s.), and if b = 1, then n is drawn from a

truncated Poisson distribution.
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Sampling from Truncated Poisson distribution: To simulate the truncated Pois-

son random variable x ∼ Pois+(λ), we use rejection sampling: if λ ≥ 1, we draw

x ∼ Pois(λ) until x ≥ 1; if λ < 1, we draw y ∼ Pois(λ) and u ∼ Unif(0, 1),

and let x = y + 1 if u < 1/(y + 1). The acceptance rate is 1 − e−λ if λ ≥ 1 and

λ−1(1− e−λ) if λ < 1. Thus the minimum acceptance rate is 63.2% (when λ = 1).

2.1.4 Gamma Distribution

Gamma Distribution: A random variable X ∼ Gamma (a, b) has probability

density function f(X) = 1
Γ(a)ba

xa−1exp
(
−x
b

)
. This is the shape-scale parameteri-

zation of the Gamma distribution with shape a > 0 and scale b > 0. For Gamma

distribution, we have: E[X] = ab, Var[X] = ab2.

For computational convenience, many of the modeling assumptions are designed

using conjugate prior distributions. Some results are presented here in the form of

lemmas for ease of deriving the conditional posterior equations. The proofs of these

Lemmas follow from the definitions of the respective distributions.

Lemma 2.1.1. If λ ∼ Gam(r, 1/c), xi ∼ Poisson(miλ), then

λ|{xi} ∼ Gam (r +
∑

i xi, 1/(c+
∑

imi)).

Lemma 2.1.2. If ri ∼ Gam(ai, 1/b) ∀i ∈ {1, 2, · · · , K}, b ∼ Gam(c, 1/d), then

b|{ri} ∼ Gam

(
K∑
i=1

ai + c, 1/(
K∑
i=1

ri + d)

)
.

Lemma 2.1.3. If zi ∼ N(µi, σ
−1) ∀i ∈ {1, 2, · · · , K}, σ ∼ Gam(a, 1/b), then

σ|{zi} ∼ Gam

(
a+K/2, 1/(b+

K∑
i=1

(zi − µi)2/2

)
.
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Lemma 2.1.4. Let xk ∼ Pois(ζk) ∀k,X =
∑K

k=1 xk, ζ =
∑K

k=1 ζk. If (y1, · · · , yK) ∼

mult(X; ζ1/ζ, · · · , ζK/ζ), then the following holds:

p(x1, · · · , xK) = p(y1, · · · , yK ;X).

2.1.5 Dirichlet Distribution

Dirichlet Distribution: The Dirichlet distribution of order K ≥ 2 with param-

eters α = (α1, · · · , αK) > 0 has a probability density function with respect to

Lebesgue measure on the Euclidean space R(K−1) given by:

f (x1, · · · , xK−1;α) =
1

B(α)

K∏
k=1

xαk−1
k ,

on the open (K − 1)-dimensional simplex, which is defined by:

K∑
k=1

xk = 1.0, xk > 0 ∀k.

The normalizing constant is the multinomial Beta function, which can be expressed

in terms of the gamma function: B(α) =
∏K
k=1 Γ(αk)

Γ(
∑K
k=1 αk)

. Additionally, we have:

E[Xk] = αk
α0
,Var[Xk] = αk(α0−αk)

α2
0(α0+1)

, where α0 =
∑K

k=1 αk.

Relation with Gamma Distribution: For K independently distributed Gamma

distributions: Y1 ∼ Gam(α1, θ), · · · , YK ∼ Gam(αK , θ), one has the following:

V =
∑K

k=1 Yk ∼ Gam
(∑K

k=1 αk, θ
)

, X = (X1, · · · , XK) =
(
Y1
V
, · · · , YK

V

)
∼

Dir (α1, · · · , αK).
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2.1.6 Negative Binomial Distribution

Negative Binomial Distribution: The negative binomial (NB) distribution m ∼

NB(r, p) has probability mass function:

f(m) =
Γ(m+ r)

m!Γ(r)
pm(1− p)r for m ∈ Z.

NB variables can be constructed via augmentation into a gamma-Poisson construc-

tion as m ∼ Pois(λ), λ ∼ Gam(r, p/(1 − p)), where the gamma distribution is

parameterized by its shape r and scale p/(1− p).

This construction can be extended via the following lemma:

Lemma 2.1.5. If λ ∼ Gam(r, 1/c), xi ∼ Poisson(miλ), then x =
∑

i xi ∼

NB(r, p), where p =
∑
imi

c+
∑
imi

.

2.2 Random Processes

In this section, we introduce a few random processes which are used in

the nonparametric models proposed herein. We start with the formal definition of

a random process and then explain Gamma Process, Dirichlet Process, Chinese

Restaurant Process and Hierarchical Dirichlet Process in sequence.

2.2.1 Random Process

Random Process: Let (Ω,F, P ) be a probability space, and (E,E) a measurable

space. A random element with values in E is a function X : Ω → E which is

(F,E)-measurable. That is, a function X such that for any B ∈ E the pre-image
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of B lies in F : {ω : X(ω) ∈ B} ∈ F. Given a probability space (Ω,F, P ) and a

measurable space (E,E), anE−valued random process is a collection ofE−valued

random elements on Ω.

2.2.2 Gamma Process (GP)

Gamma Process: Following [Wolpert et al., 2011], for any ν+ ≥ 0 and any prob-

ability distribution π(dpdω) on the product space R × Ω, let K+ ∼ Pois(ν+) and

(pk, ωk)
iid∼ π(dpdω) for k = 1, · · · , K+. Defining 1A(ωk) as being one if ωk ∈ A

and zero otherwise, the random measure L(A) ≡
∑K+

k=1 1A(ωk)pk assigns indepen-

dent infinitely divisible random variables L(Ai) to disjoint Borel sets Ai ⊂ Ω, with

characteristic functions:

E
[
eitL(A)

]
= exp

(∫ ∫
R×A

(expitp − 1)ν(dpdω)

)
, (2.1)

where ν(dpdω) ≡ ν+π(dpdω). A random signed measure L satisfying the above

characteristic function is called a Lévy random measure. More generally, if the

Lévy measure ν(dpdω) satisfies
∫ ∫

R×S min{1, |p|}ν(dpdω) < ∞ for each com-

pact S ⊂ Ω, the Lévy random measure L is well defined, even if the Poisson

intensity ν+ is infinite. A nonnegative Lévy random measure L satisfying the in-

tegration condition is called a completely random measure [Kingman, 1967, 1993]

which was introduced to machine learning in [Jordan, 2010; Thibaux and Jordan,

2007]. The Gamma Process [Ferguson, 1973; Wolpert et al., 2011] G ∼ ΓP(c,H)

is a completely random measure defined on the product space R+ × Ω, with con-

centration parameter c and a finite and continuous base measure H over a complete
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separable metric space Ω, such that G(Ai) ∼ Gam(H(Ai), 1/c) are independent

gamma random variables for disjoint partition {Ai}i of Ω.

The Lévy measure of the Gamma Process can be expressed as ν(drdω) =

r−1e−crdrH(dω). Since the Poisson intensity ν+ = ν(R+×Ω) =∞ and the value

of
∫
R+×Ω

rν(drdω) is finite, a draw from the Gamma Process consists of countably

infinite atoms, which can be expressed as follows:

G =
∞∑
k=1

rkδωk , (rk, ωk)
iid∼ π(drdω), π(drdω)ν+ ≡ ν(drdω). (2.2)

A gamma process based model has an inherent shrinkage mechanism, as in the

prior the number of atoms with weights greater than τ ∈ R+ follows a Poisson

distribution with parameterH(Ω)
∫∞
τ
r−1exp(−cr)dr, the value of which decreases

as τ increases.

2.2.3 Dirichlet Process (DP)

Dirichlet Process: [Antoniak, 1974] Denote G̃ = G/G(Ω), whereG ∼ ΓP(c,G0),

then for any measurable disjoint partition A1, · · · ,AQ of Ω, we have

[G̃(A1), · · · , G̃(AQ)] ∼ Dir
(
γ0G̃0(A1), · · · , G̃0(AQ)

)
, (2.3)

where γ0 = G0(Ω) and G̃0 = G0/γ0. With a space invariant concentration pa-

rameter, the normalized gamma process G̃ = G/G(Ω) is a Dirichlet process with

concentration parameter γ0 and base probability measure G̃0, expressed as G̃ ∼

DP (γ0, G̃0).
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Chinese Restaurant Process (CRP): [Pitman, 2006] In a Dirichlet process G̃ ∼

DP(γ0, G̃0), if one assumes that Xi ∼ G̃, then {Xi}’s are independent given G̃

and hence exchangeable. The predictive distribution of a new data point X(m+1),

conditioned onX1, · · · ,Xm, with G̃ marginalized out, can be expressed as:

X(m+1) ∼ X1, · · · , Xm = E[G̃|X1, · · · ,Xm] =
K∑
k=1

nk
m+ γ0

δωk +
γ0

m+ γ0

G̃0, (2.4)

where {ωk}Kk=1 are discrete atoms in Ω observed inX1, · · · ,Xm. nk =
m∑
i=1

Xi(ωk)

is the number of data points associated with ωk. The stochastic process described in

Eq. (2.4) is known as the Chinese restaurant process. We now introduce a relevant

distribution.

Chinese Restaurant Table Distribution (CRT): Under the Chinese restaurant pro-

cess metaphor, the number of data points m is assumed to be known whereas the

number of distinct atoms K is treated as a random variable dependent on m and γ0.

Let s(m, l) be the Stirling number of the first kind. Then it is shown in [Antoniak,

1974] that the random number of distinct atoms K has the following PMF:

Pr(K = l|m, γ0) =
Γ(γ0)

Γ(m+ γ0)
|s(m, l)|γl0, l = 0, 1, · · · ,m. (2.5)

This distribution is referred to as the Chinese restaurant table (CRT) distribution

and denoted by l ∼ CRT(m, γ0), a CRT random variable.

We explained in Section 2.1.6 how the NB distribution can be augmented

using a Gamma-Poisson construction. Interestingly, it can also be augmented un-

der a compound Poisson representation [Zhou and Carin, 2012, 2015] as m =
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Figure 2.1: Gamma-Poisson Construction
of NB Distribution

Figure 2.2: Compound Poisson Construc-
tion of NB Distribution

∑l
t=1 ut, ut

iid∼ Log(p), l ∼ Pois(−rln(1 − p)), where u ∼ Log(p) is the loga-

rithmic distribution [Johnson et al., 2005]. These two different constructions are

shown graphically in Fig. 2.1 and Fig. 2.2, and together they lead to the following

lemma:

Lemma 2.2.1. [Zhou and Carin, 2012, 2015] Ifm ∼ NB(r, p) is represented under

its compound Poisson representation, then the conditional posterior of l given m

and r has PMF:

Pr(l = j|m, r) =
Γ(r)

Γ(m+ r)
|s(m, j)|rj, j = 0, 1, · · · ,m,

where |s(m, j)| are unsigned Stirling numbers of the first kind. The conditional

posterior as l|m, r ∼ CRT(m, r), a Chinese restaurant table (CRT) count random

variable, which can be generated via l =
∑m

n=1 zn, zn ∼ Bernoulli(r/(n− 1 + r)).

This lemma leads to the next lemma, which provides closed form sampling

of the gamma shape parameter via CRT data augmentation in the gamma-gamma-

Poisson framework. We explain this lemma more thoroughly in Section 7.1.1 as

this is the key to deriving closed form inference for the dynamic models introduced

in Chapter 7.
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Lemma 2.2.2. If r1 ∼ Gam(a, 1/b), r2 ∼ Gam(r1, 1/d), xi ∼ Poisson(mir2) ∀i,

then r1|{xi} ∼ Gam(a + `, 1/(b − log(1 − p))) where ` ∼ CRT(
∑
i

xi, r1), p =∑
i

mi/(d+
∑
i

mi) ∀i.

2.2.4 Hierarchical Dirichlet Process (HDP)

Hierarchical Dirichlet Process (HDP), a convenient tool for sharing clusters

among multiple related groups, follows the generative process mentioned below:

G0|γ0, H ∼ DP(γ0, H), Gj|α0, G0 ∼ DP(α0, G0) ∀j, (2.6)

where j indexes the group. There are multiple explanations available for HDP,

namely the Chinese restaurant franchise, infinite limit of a finite hierarchical mix-

ture model [Teh et al., 2006] and the stick breaking process [Sethuraman, 1994;

Teh et al., 2006]. A detailed discussion of HDP is beyond the scope of this thesis

and the interested readers can check [Teh et al., 2006] for a thorough understanding

of its theoretical properties. In Section 2.4.2, we describe HDP in the context of

non-parametric topic models in more details.

2.3 Matrix Factorization

Matrix factorization [Gopalan et al., 2014a; Koren et al., 2009; Salakhutdi-

nov and Mnih, 2007, 2008] has been widely applied for solving numerous problems

related to analysis of dyadic data, such as in topic modeling [Arora et al., 2012], rec-

ommender systems [Koren et al., 2009] and network analysis [Zhou, 2015]. Tensor

factorization [Ho et al., 2014a,b] is an extension of matrix factorization where the
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data is represented as a three dimensional array, signifying interactions among three

different sets of variables. Typically, matrix factorization is used to recover a low-

rank latent structure of a matrix by approximating it as a product of two low rank

matrices, whose elements are real numbers. A given matrix, such as a document-

by-word matrixX ∈RN×D, is usually decomposed into two low rank matricesU ∈

RN×K and V ∈ RD×K such that X ∼ UV †. Many specialized factorization mod-

els have further been proposed to deal with non-categorical variables. For example,

SVD++ uses neighborhood of a user for analysis of user-movie rating data [Koren,

2008], TimeSVD++ [Koren, 2009] and Bayesian Temporal collaborative filtering

with Bayesian probabilistic tensor factorization (BPTF) [Xiong et al., 2010] dis-

cretize time which is a continuous variable, and Factorizing Personalized Markov

Chains for Next-Basket Recommendation (FPMC) [Rendle et al., 2010] considers

the purchase history of users to recommend items. Numerous learning techniques

have also been proposed for factorization models which include SGD [Koren et al.,

2009], alternating least-squares [Zhou et al., 2008], variational Bayes [Kim and

Choi, 2014; Lim and Teh, 2007; Silva and Carin, 2012] and MCMC based infer-

ence [Salakhutdinov and Mnih, 2008].

In many practical applications, the negative values obtained in the factors

from the matrix factorization are difficult to interpret. Positive matrix factoriza-

tion [Paatero and Tapper, 1994], non-negative matrix factorization [Lee and Seung,

2001], and non-negative independent component analysis [Plumbley and Oja, 2004]

are techniques that perform factorization in positively constrained components. The

factors herein are interpretable as they represent the assignment score of certain en-
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tities to corresponding latent factors. Although these methods are fast and stable un-

der relatively mild assumptions, they lack clear probabilistic generative semantics.

Bayesian formulations of similar ideas have also been proposed [Højen-Sørensen

et al., 2002; Miskin, 2000] in which the positivity is imposed using rectified Gaus-

sian distribution [Socci et al., 1998], exponential distribution or a mixture of both

[Hoffman et al., 2010]. A large number of discrete latent variable models for count

matrix factorization can be united under Poisson factor analysis (PFA) [Zhou et al.,

2012], which factorizes a count matrix Y ∈ ZD×V under the Poisson likelihood

as Y ∼ Pois(ΦΘ), where Φ ∈ RD×K
+ is the factor loading matrix or dictionary,

Θ ∈ RK×V
+ is the factor score matrix and hence is an example of non-negative ma-

trix factorization. In Chapter 6 and 7, we will see many applications of PFA and

hence a brief discussion of the related works is presented below.

A wide variety of algorithms, although constructed with different motiva-

tions and for distinct problems, can all be viewed as PFA with different prior dis-

tributions imposed on Φ and Θ. For example, non-negative matrix factorization

[Cemgil, 2009; Lee and Seung, 2001], with the objective to minimize the Kullback-

Leibler divergence between N and its factorization ΦΘ, is essentially PFA solved

with maximum likelihood estimation. Latent Dirichlet Allocation (LDA) [Blei

et al., 2003] is equivalent to PFA, in terms of both block Gibbs sampling and vari-

ational inference, if Dirichlet distribution priors are imposed on both φk ∈ RD
+ , the

columns of Φ, and θk ∈ RV
+, the columns of Θ [Zhou et al., 2012]. The gamma-

Poisson model [Canny, 2004; Titsias, 2008] is PFA with gamma priors on Φ and

Θ. A family of negative binomial (NB) processes, such as the beta-NB [Broderick
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et al., 2013; Zhou et al., 2012] and gamma-NB processes [Zhou and Carin, 2012,

2015], impose different gamma priors on {θvk}, the marginalization of which leads

to differently parameterized NB distributions to explain the latent counts. For exam-

ple, the beta-NB process imposes θvk ∼ Gamma (rv, pk/(1− pk)), where {pk}1,∞

are the weights of the countably infinite atoms of the beta process [Hjort, 1990], and

the gamma-NB process imposes θvk ∼ Gamma (rk, pv/(1− pv)), where {rk}1,∞

are the weights of the countably infinite atoms of the gamma process. Both the

beta-NB and gamma-NB process PFAs are nonparametric Bayesian models that

allow K to grow without limits [Hjort, 1990].

2.4 Statistical Topic Models

In this section, we introduce statistical topic models which are used as the

building blocks for models used in Chapter 3, 4, and 5. We first introduce para-

metric topic model in Section 2.4.1, in which one needs to set the value of K, the

number of latent topics in advance. In Section 2.4.2, we describe generalizations of

parametric topic model that are able to handle potentially infinite number of latent

topics and can even infer the ideal number of latent topics from the data.

2.4.1 Parametric Topic Models

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] treats documents as a

mixture of topics, which in turn are defined by a distribution over a set of words.

The words in a document are assumed to be sampled from multiple topics. In its

original formulation, unsmoothened LDA can be viewed as a purely-unsupervised
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Figure 2.4: Smoothened LDA

form of dimensionality reduction and clustering of documents in the topic space.

On a high level, LDA can be thought of as performing a non-negative matrix factor-

ization [Buntine, 2002; Zhou et al., 2012]. The graphical model of LDA is shown

in Fig 2.3. The generative process of LDA is described below:

• For the nth document, sample a topic selection probability vector θn ∼ Dir(α),

where α is the parameter of a Dirichlet distribution of dimension K, which is the

total number of topics.

• For the mth word in the nth document, sample a topic znm ∼ multinomial(θn).

• Sample the word wnm ∼ multinomial(βznm), where βk is a multinomial distri-

bution over the vocabulary of words corresponding to the kth topic.

• For a smoothened LDA model, shown in Fig. 2.4, one additionally samples

βk ∼ Dir(η), where η is the parameter of a Dirichlet distribution of dimension V ,

which is the size of the vocabulary.
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2.4.2 Nonparametric Topic Models

Nonparametric topic models are built on HDP. As explained in Section

2.2.4, there are multiple explanations available for HDP, namely the Chinese restau-

rant franchise, infinite limit of a finite hierarchical mixture model [Teh et al., 2006]

and the stick breaking process [Sethuraman, 1994; Teh et al., 2006]. In what fol-

lows, we describe two different stick breaking constructions of HDP.

2.4.2.1 Traditional Stick Breaking Construction of HDP Topic Model

An explicit representation of a draw from a DP was given by Sethuraman

[1994], who showed that if G ∼ DP(α0;G0), then with probability one: G =
∞∑
k=1

βkδφk where the φk’s are independent random variables distributed according

to G0 and δφk is an atom at φk. The “stick-breaking weights” βk are random and

depend on the parameter α0. The representation above shows that draws from a DP

are discrete with probability one. This discrete nature of the DP makes it suitable for

the problem of placing priors on mixture components in mixture modeling where a

mixture component can be associated with each atom in G.

To force G0 to be discrete and yet have broad support, G0 itself is drawn

from a Dirichlet process DP(γ0, H). The atoms in φk are shared among the multiple

DPs, yielding the desired sharing of atoms among groups [Teh et al., 2006]. For

HDP topic model, the lower level measures correspond to each document. The

generative process for the first stage of HDP topic model goes as follows:

• ∀k ∈ {1, 2, · · · ,∞}, generate β′k ∼ Beta(1, γ0). Set βk = β′k
∏k−1

j=1(1− β′j).
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• Generate φk ∼ H , where H is some distribution.

• Create the base distribution G0 following the summation: G0 =
∞∑
k=1

βkδφk .

The generative process for the second stage is illustrated below:

• ∀t ∈ {1, 2, · · · ,∞}, generate π′nt ∼ Beta(α0βt, α0(1 −
∑t

l=1 βl)). Set πnt =

π′nt
∏t−1

l=1(1− π′nl).

• Create document specific distribution Gn =
∞∑
t=1

πntδφt . Note that here π′nt’s are

generated in a way so that there is some sharing of atom weights across the DPs

corresponding to different documents. This sharing of parameters is essential for

maintaining the hierarchical structure assumed in the parametric LDA model.

Any non-parametric topic model that uses this particular view of HDP uses either

Gibbs sampling [Teh et al., 2006] or collapsed variational inference [Teh et al.,

2007] for inference.

2.4.2.2 Modified Stick Breaking Construction of HDP Topic Model

Wang et al. [2011a] proposed the following modification to the second stage

of the stick breaking construction of HDP as shown below:

• ∀t ∈ {1, 2, · · · ,∞}, generate ψnt ∼ G0.

• ∀t ∈ {1, 2, · · · ,∞}, generate π′nt ∼ Beta(1, α0). Set πnt = π′nt
∏t−1

l=1(1− π′nl).

• Create data specific distribution: Gn =
∞∑
t=1

πntδψnt .
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Essentially, this sampling process avoids the complicated sharing of atom weights

in lower level measures and suggests a new method which is amenable for varia-

tional inference without compromising the hierarchical structure. Interested reader

can explore [Wang et al., 2011a; Wang and Carin, 2012] for a more comprehen-

sive discussion of this modification. We use this view of HDP in the nonparametric

models proposed in Section 3.3 and 4.3.

2.4.3 Inference in Topic Models

Inference of the latent variables in the topic models is usually solved using

two different techniques: variational approximation [Blei et al., 2003; Wang et al.,

2011a] and Gibbs sampling [Porteous et al., 2008]. We do not use Gibbs sampling

for LDA type models in this thesis. Therefore, we describe only the variational

methods for inference in LDA. The joint distribution over hidden and observed

variables in unsupervised (unsmoothened) LDA, shown in Fig. 2.3, can be written

as follows:

p(X,Z|κ) =
N∏
n=1

p(θn|α)
Mn∏
m=1

p(znm|θn)p(wnm|βznm). (2.7)

The exact inference using EM is intractable due to the coupling between β and

Z and hence variational EM is utilized. Here, the posterior distribution over the

hidden variables is approximated by a completely factorized one as given below:

q(Z|κv) =
N∏
n=1

q(θn|γn)
Mn∏
m=1

q(znm|φn), (2.8)

where κv is the set of free variational parameters.
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2.4.3.1 Batch Variational Inference in Topic Models

In batch variational inference for LDA, the following Evidence Lower Bound

(ELBO) on the log-likelihood of the observed data is maximized w.r.t the model pa-

rameters κ and the variational parameters κv:

L(κv,κ) = Eq[log p(X,Z|κ)]− Eq[log q(Z|κv)] ≤ log p(X|κ). (2.9)

Using the factorization structure of both p(.) and q(.), one can see that the ELBO

decomposes as follows:

L(κv,κ) =
N∑
n=1

Eq[log p(wn|zn,β)] + Eq[log p(θn|α)](2.10)

+Eq[log p(zn|θn)]− Eq[log q(θn|γn)]− Eq[log q(zn|φn)] =
N∑
n=1

`(κvn,κ).

Here `(κvn,κ) denotes the contribution in the ELBO by the nth document. L is op-

timized using coordinate ascent over each set of model and variational parameters.

In the E-step, ∀n ,`(κvn,κ) is maximized w.r.t γn and φn. In the M step, the ELBO

is maximized w.r.t the model parameters κ. The algorithm, presented in 1, has con-

stant memory requirements and empirically converges faster than batch collapsed

Gibbs sampling [Asuncion et al., 2009].

2.4.3.2 Incremental EM Algorithm

The EM algorithm proposed by Dempster et al. [1977] can be viewed as

a joint maximization problem over q(.), the conditional distribution of the hidden

variables Z given the model parameters κ and the observed variables X . The rele-
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Algorithm 1 Batch Variational Bayes for LDA
Input: X .
Output: κ.

Initialize {γn}Nn=1, {φn}Nn=1 randomly.
Until Convergence
E-Step
for n = 1 : N

for m = 1 : Mn

for k = 1 : K
φnmk ∝ βkwnmexp(Ψ(γnk)).

end
Normalize φnm.

γnk = αk +
Mn∑
m=1

φnmk.

end
end
M-Step
Update α using Newton-Raphson method.

βkv ∝
N∑
n=1

Mn∑
m=1

φnmkI{wnm=v}.

Normalize βk ∀k.

vant objective function is given as follows:

F (q,κ) = Eq[log(p(X,Z|κ))] +H(q), (2.11)

where H(q) is the entropy of the distribution q(.). Often, q(.) is restricted to a

family of distributions Q. It can be shown that if κ∗ is the maximizer of the above

objective F then it also maximizes the likelihood of the observed data. Therefore,

another representation of the tth step of the EM algorithm is as follows:

• E step: q(t) = argmax
q

F (q,κ(t−1)).
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• M step: κ(t) = argmax
κ

F (q(t),κ).

In most of the models used in practice, the joint distribution is assumed to factorize

over the instances implying that p(X,Z|κ) =
N∏
n=1

p(xn, zn|κ). One can further

restrict the family of distributions Q to maximize over in Eq. (2.11) to the factorized

form: q(Z) =
N∏
n=1

q(zn|xn) =
N∏
n=1

qn.

An incremental variant of the EM algorithm that exploits such separability

structure in both p(.) and q(.) was first proposed by Neal and Hinton [1999]. Under

such structure, the objective function in Eq. (2.11) decomposes over the observa-

tions F (q,θ) =
N∑
n=1

Fn(qn,κ), and the following incremental algorithm can instead

be used to maximize F :

• E step: Choose some observation n to be updated over, set q(t)
n′ = q

(t−1)
n′ for

n′ 6= n (no update) and set q(t)
n = argmax

qn

Fn(qn,κ
(t−1)).

• M step: κ(t) = argmax
κ

F (q(t),κ).

Such an incremental view of the EM algorithm is useful for updating parameters in

the proposed models in Section 4.2, 4.3 and 5.2 for active query selection.

2.5 Transfer Learning

Transfer learning [Pan and Yang, 2010] allows the learning of models spe-

cific to some domains to benefit from the learning of other models from other do-

mains through either simultaneous [Caruana, 1997] or sequential [Bollacker and
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Ghosh, 2000] training. Pan and Yang [2010] categorizes transfer learning into three

primary groups – 1. inductive transfer learning, 2. transductive transfer learning,

and 3. unsupervised transfer learning. In inductive transfer learning, the labels/tasks

are different for different domains and the knowledge from one domain is shared

with the learning problems in other related domains simultaneously or sequentially.

In multitask learning (MTL [Caruana, 1997]), a type of inductive transfer learning,

a single model is simultaneously trained to perform multiple related tasks. MTL

has emerged as a very promising research direction for various applications includ-

ing biomedical informatics [Bickel et al., 2008], marketing [Evgeniou et al., 2007],

natural language processing [Ando, 2006], and computer vision [Torralba et al.,

2007]. Many different MTL approaches have been proposed over the past 15 years

(e.g., see [Pan and Yang, 2010; Passos et al., 2012; Weinberger et al., 2009] and

references therein). These include different learning methods, such as empirical

risk minimization using group-sparse regularizers [Jenatton et al., 2011; Kim and

Xing, 2010], hierarchical Bayesian models [Low et al., 2011; Zhang et al., 2008]

and hidden conditional random fields [Quattoni et al., 2007]. Evgeniou et al. [2005]

proposed the regularized MTL which constrained the models of all tasks to be close

to each other. The task relatedness in MTL has also been modeled by constrain-

ing multiple tasks to share a common underlying structure [Argyriou et al., 2007;

Ben-David and Schuller, 2003; Caruana, 1997]. Ando and Zhang [2005] proposed

a structural learning formulation, which assumed multiple predictors for different

tasks shared a common structure on the underlying predictor space. In all of the

MTL formulations mentioned above, the basic assumption is that all tasks are re-

27



lated. In practical applications, these might not be the case and the tasks might

exhibit a more sophisticated group structure. Such structure is handled using clus-

tered multi-task learning (CMTL). In [Bakker and Heskes, 2003] CMTL is imple-

mented by considering a mixture of Gaussians instead of single Gaussian priors.

Xue et al. [2007] introduced the Dirichlet process prior that automatically identi-

fies subgroups of related tasks. In [Jacob et al., 2008], a clustered MTL framework

was proposed that simultaneously identified clusters and performed multi-task in-

ference. In Chapter 3, 4, 5, we explore the applications of multitask learning.

In another formulation of inductive transfer learning framework, models

learnt from a “source” domain are utilized in the “target” domain and improving

the learning capabilities in the target domain is the primary objective. This formu-

lation had traditionally been known as transfer learning before Pan and Yang [2010]

introduced a categorization of several existing transfer learning problems. In Chap-

ter 8, we explore an application of this type of transfer learning where model learnt

from a source domain is carefully adapted to fit the data from the new domain.

In unsupervised transfer learning framework, the domains involved do not

contain any labeled information at all. Rather, the unsupervised learning problems

in multiple domains are solved either sequentially or simultaneously. In Chapter

6 and 7 we explore applications of unsupervised transfer learning frameworks. In

Chapter 6, the observations from two different domains are utilized for individual

clustering of the data from these domains simultaneously. Chapter 7 deals with

time-series data, where the learning problems for the individual time instances (or

domains) affect the learning problems in other time instances (or domains) sequen-
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tially.

Due to the existing ambiguity regarding some of the terminologies in the

transfer learning literature, we adopt the term “knowledge transfer” to indicate the

diverse categories of learning algorithms proposed herein. Whenever the domains

are learnt simultaneously, we address such framework as “simultaneous knowledge

transfer” and when the domains are learnt in sequence, we address that framework

as “sequential knowledge transfer”. Chapter 3, 4, 5, and 6 are examples of simul-

taneous knowledge transfer frameworks. Chapter 7 and 8 illustrate how sequential

knowledge transfer can be utilized to solve real-world problems.

2.6 Active Learning via Expected Error Reduction

Active learning is a subfield of machine learning where the key hypothesis

is that if the learning algorithm is allowed to choose the data from which it learns,

it will perform better with less training [Settles, 2009]. This is especially pertinent

in supervised learning systems where labeled data is often expensive and/or hard to

come by. Active learning systems attempt to overcome this labeling bottleneck by

asking “informative” queries in the form of unlabeled instances to be labeled by an

oracle (e.g., a human annotator). Fig. 2.5 shows an illustration of an active learning

system.

Of the several measures for selecting labels in active learning algorithms, a

decision-theoretic approach called Expected Error Reduction [Roy and McCallum,

2001] has been used quite extensively in practice [Kovashka et al., 2011; Settles,

2009]. This approach aims to measure how much the generalization error of a
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Figure 2.5: Illustration of Active Learning [Settles, 2009]

model is likely to be reduced based on some labeled information y of an instance x

taken from the unlabeled pool U. The idea is to estimate the expected future error

of a model trained using L ∪ 〈x, y〉 on the remaining unlabeled instances in U, and

query the instance with minimal expected future error. Here L denotes the labeled

pool of data. One approach is to minimize the expected 0/1 loss:

x∗0/1 = argmax
x

∑
n

Pκ(yn|x)

(
U∑
u=1

1− Pκ+〈x,yn〉
(
ŷ,x(u)

))
. (2.12)

where κ+〈x,yn〉 refers to the new model after it has been re-trained with the training

set L∪ 〈x, yn〉. Note that we do not know the true label for each query instance, so

we approximate using expectation over all possible labels under the current model.

The objective is to reduce the expected number of incorrect predictions.
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Chapter 3

Multitask Learning using Both Supervised and
Shared Latent Topics

Humans can distinguish as many as 30,000 relevant object classes [Bie-

derman, 1987]. Training an isolated object detector for each of these different

classes would require millions of training examples in aggregate. Computer vision

researchers have proposed a more efficient learning mechanism in which object

categories are learned via shared attributes, abstract descriptors of object properties

such as “striped” or “has four legs” [Farhadi et al., 2009; Kovashka et al., 2011;

Lampert et al., 2009]. The attributes serve as an intermediate layer in a classifier

cascade. The classifier in the first stage is trained to predict the attributes from the

raw features and that in the second stage is trained to predict the categories from

the attributes. During testing, only the raw features are observed and the attributes

must be inferred. This approach is inspired by human perception and learning from

high-level object descriptions. For example, from the phrase “eight-sided red traf-

fic sign with white writing”, humans can detect stop signs [Lampert et al., 2009].

Similarly, from the description “large gray animals with long trunks”, human can

identify elephants. If the shared attributes transcend object class boundaries, such

a classifier cascade is beneficial for transfer learning [Pan and Yang, 2010] where

fewer labeled examples are available for some object categories compared to others
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[Lampert et al., 2009]. This representation is illustrated in Fig. 3.1.

Figure 3.1: MTL with Shared Attributes Figure 3.2: MTL with Multi-layer Perceptron

Multitask learning (MTL) is a form of transfer learning in which simultane-

ously learning multiple related “tasks” allows each one to benefit from the learning

of all of the others. If the tasks are related, training one task should provide helpful

“inductive bias” for learning the other tasks. To enable the reuse of training infor-

mation across multiple related tasks, all tasks might utilize the same latent shared

intermediate representation – for example, a shared hidden layer in a multi-layer

perceptron [Caruana, 1997] (as shown in Fig. 3.2). In this case, the training exam-

ples for all tasks provide good estimates of the weights connecting the input layer to

the hidden layer, and hence only a small number of examples per task is sufficient

to achieve high accuracy. This approach is in contrast to “isolated” training of tasks

where each task is learned independently using a separate classifier.

In this chapter, our objective is to combine these two approaches to build

an MTL framework that can use both attributes and class labels. The multiple

tasks in such setting correspond to different object categories (classes), and both

observable attributes and latent properties are shared across the tasks. We want

to emphasize that the proposed frameworks support general MTL; however, the

datasets we use happen to be multiclass, where each class is treated as a separate
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“task” (as typical in multi-class learning based on binary classifiers). But, in no way

are the frameworks restricted to multiclass MTL. Since attribute-based learning has

been shown to support effective transfer learning in computer vision, the tasks here

naturally correspond to object classes.

The rest of the chapter is organized as follows. We present related liter-

ature in Section 3.1, followed by the descriptions of DSLDA and NP-DSLDA,

two MTL frameworks in Section 3.2 and 3.3 respectively. Experimental results on

both multi-class image and document categorization are presented in Section 3.4,

demonstrating the value of integrating MTL, supervised topics and latent shared

topics. Finally, future directions and conclusions are presented in Section 3.5.

3.1 Background

In this section, a brief introduction to supervised topic models is provided

which are the building blocks for DSLDA and NP-DSLDA.
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Figure 3.3: LLDA

N
Mn

Y

r

θ

z

w

α

β
K

Figure 3.4: MedLDA

33



3.1.1 Labeled Latent Dirichlet Allocation (LLDA)

Several extensions of LDA have incorporated some sort of supervision.

Some approaches provide supervision by labeling each document with its set of

topics [Ramage et al., 2009; Rubin et al., 2011]. In particular, in Labeled LDA

(LLDA [Ramage et al., 2009]), the primary objective is to build a model of the

words that indicate the presence of certain topic labels. For example, when a user

explores a webpage based on certain tags, LLDA can be used to highlight interest-

ing portions of the page or build a summary of the text from multiple webpages that

share the same set of tags. The words in a given training document are assumed to

be sampled only from the supervised topics, which the document has been labeled

as covering. The graphical model of LLDA is shown in Fig. 3.3.

3.1.2 Maximum Entropy Discriminant Latent Dirichlet Allocation (MedLDA)

Some other researchers [Blei and Mcauliffe, 2007; Chang and Blei, 2009;

Zhu et al., 2009] assume that supervision is provided for a single response variable

to be predicted for a given document. The response variable might be real-valued

or categorical, and modeled by a normal, Poisson, Bernoulli, multinomial or other

distribution (see Chang and Blei [2009] for details). Some examples of documents

with response variables are essays with their grades, movie reviews with their nu-

merical ratings, web pages with their number of hits over a certain period of time,

and documents with category labels.

In Maximum Entropy Discriminative LDA (MedLDA) [Zhu et al., 2009],

the objective is to infer some low-dimensional (topic-based) representation of doc-
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uments which is predictive of the response variable. Essentially, MedLDA solves

two problems jointly – dimensionality reduction and max-margin classification us-

ing the features in the dimensionally-reduced space. In earlier versions of super-

vised topic models [Blei and Mcauliffe, 2007; Chang and Blei, 2009], categorical

response variables were difficult to model since the resulting inference equations

were complex. In particular, the use of Taylor’s approximations breaks the guar-

antee that the likelihood lower bound increases after each update. Compared to

earlier versions of supervised topic models [Blei and Mcauliffe, 2007; Chang and

Blei, 2009], MedLDA has simpler update equations and produces superior experi-

mental results.

In MedLDA, the generative process of the words in the documents are same

as the unsupervised LDA. However, the topic space representation of the documents

is treated as features for an SVM learning framework. In particular, for the nth doc-

ument, we generate Yn = arg maxy r
T
y E(z̄n) where Yn is the class label associated

with the nth document, z̄n =
Mn∑
m=1

znm/Mn. Here, znm is an indicator vector of di-

mension K. ry is a K-dimensional real vector corresponding to the yth class, and

it is assumed to have a prior distribution N(0, 1/C). Mn is the number of words in

the nth document. The maximization problem to generate Yn (or the classification

problem) is carried out using a max-margin principle – the exact formulation of

which will be discussed later using variational approximation. Since MedLDA in-

cludes discriminative modeling of the class labels, it is not possible to draw a plate

model. However, for the ease of understanding, in Fig. 3.4, we show a represen-

tative plate model with the discriminative part denoted by dotted lines. MedLDA
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has empirically shown very good performance, and is generally considered state

of the art for class prediction in supervised topic modeling. Further development

of MedLDA has led to the so-called Gibbs MedLDA [Zhu et al., 2013]. Gibbs

MedLDA employs a Gibbs sampling based inference framework on a completely

generative model instead of using variational approximations by using various ideas

from Gibbs-based classifiers. However, it does this at the cost of native multiclass

classification, requiring a one-versus-all framework to extend binary predictions to

the multiclass setting.

3.2 Doubly Supervised LDA (DSLDA)

Assume we are given a training corpus consisting of N documents belong-

ing to Y different classes (where each document belongs to exactly one class and

each class corresponds to a different task). Further assume that each of these train-

ing documents is also annotated with a set of K2 different topic “tags” (henceforth

referred to as “supervised topics”). For computer vision data, the supervised topics

correspond to the attributes provided by human experts. The objective is to train a

model using the words in a data, as well as the associated supervised topic tags and

class labels, and then use this model to classify completely unlabeled test data for

which no topic tags nor class labels are provided. The human-provided supervised

topics are presumed to provide abstract information that is helpful in predicting the

class labels of test documents.
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3.2.1 Model Description

In order to include both types of supervision (class and topic labels), a com-

bination of the approaches described at the beginning of this Chapter is proposed.

Note that LLDA uses only supervised topics and does not have any mechanism

for generating class labels. On the other hand, MedLDA has only latent topics but

learns a discriminative model for predicting classes from these topics. To the best of

our knowledge, ours is the first LDA approach to integrate both types of supervision

in a single framework. The generative process of DSLDA is described below.

• For the nth document, sample a topic selection probability vector θn ∼ Dir(αn),

where αn = Λnα and α is the parameter of a Dirichlet distribution of dimension

K, which is the total number of topics. The topics are assumed to be of two types

– latent and supervised, and there are K1 latent topics and K2 supervised topics.

Therefore, K = K1 + K2. Latent topics are never observed, while supervised

topics are observed in training but not in test data. Henceforth, in each vector or

matrix with K components, it is assumed that the first K1 components correspond

to the latent topics and the next K2 components to the supervised topics. Λn is

a diagonal binary matrix of dimension K × K. The kth diagonal entry is unity if

either 1 ≤ k ≤ K1 or K1 < k ≤ K and the nth document is tagged with the kth

topic. Also, α = (α1,α2) where α1 is a parameter of a Dirichlet distribution of

dimension K1 and α2 is a parameter of a Dirichlet distribution of dimension K2.

• For the mth word in the nth document, sample a topic znm ∼ Mult(θ′n), where

θ′n = (1 − ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1
. This implies that the supervised topics
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are weighted by ε and the latent topics are weighted by (1 − ε). Sample the word

wnm ∼ Mult(βznm), where βk is a multinomial distribution over the vocabulary of

words corresponding to the kth topic.

• For the nth document, generate Yn = arg maxy r
T
y E(z̄n) where Yn is the class la-

bel associated with the nth document, z̄n =
Mn∑
m=1

znm/Mn. Here, znm is an indicator

vector of dimension K. ry is a K-dimensional real vector corresponding to the yth

class, and it is assumed to have a prior distribution N(0, 1/C). Mn is the number

of words in the nth document. The maximization problem to generate Yn (or the

classification problem) is carried out using a max-margin principle.

Note that predicting each class is effectively treated as a separate task, and

that the shared topics are useful for generalizing the performance of the model

across classes. In particular, when all classes have few training examples, knowl-

edge transfer between classes can occur through the shared topics. So, the mapping

from the original feature space to the topic space is effectively learned using ex-

amples from all classes, and a few examples from each class are sufficient to learn

the mapping from the reduced topic space to the class labels. The corresponding

graphical model is shown in Fig. 3.5.

3.2.2 Inference and Learning

Let us denote the hidden variables by Z = {{znm}, {θn}}, the observed

variables by X = {wnm} and the model parameters by κ0. The joint distribution
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Figure 3.5: Graphical Model of DSLDA Figure 3.6: Illustration of DSLDA

of the hidden and observed variables is:

p(X,Z|κ0) =
N∏
n=1

p(θn|αn)
Mn∏
m=1

p(znm|θ′n)p(wnm|βznm). (3.1)

To avoid computational intractability, inference and estimation are performed us-

ing Variational EM. The factorized approximation to the posterior distribution on

hidden variables Z is given by:

q(Z|{κn}Nn=1) =
N∏
n=1

q(θn|γn)
Mn∏
m=1

q(znm|φnm), (3.2)

where θn ∼ Dir(γn) ∀n, znm ∼ Mult(φnm) ∀n,m, and κn = {γn, {φnm}},

which is the set of variational parameters corresponding to the nth instance. Further,

γn = (γnk)
K
k=1 ∀n, and φnm = (φnmk)

K
k=1 ∀n,m. With the use of the lower bound

obtained by the factorized approximation, followed by Jensen’s inequality, DSLDA

reduces to solving the following optimization problem1:

min
q,κ0,{ξn}

1

2
||r||2 − L(q(Z)) + C

N∑
n=1

ξn,

s.t. ∀n, y 6= Yn : E[rT∆fn(y)] ≥ 1− ξn; ξn ≥ 0. (3.3)

1Please see [Zhu et al., 2009] for further details.
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Here, ∆fn(y) = f(Yn, z̄n) − f(y, z̄n) and {ξn}Nn=1 are the slack variables, and

f(y, z̄n) is a feature vector whose components from (y − 1)K + 1 to yK are those

of the vector z̄n and all the others are 0. E[rT∆fn(y)] is the “expected margin”

over which the true label Yn is preferred over a prediction y. From this viewpoint,

DSLDA projects the documents onto a combined topic space and then uses a max-

margin approach to predict the class label. The parameter C penalizes the margin

violation of the training data.

φ∗nmk ∝ Λn,kkexp

[
ψ(γnk) + log(βkwnm) + log(ε′) + 1/Mn

∑
y 6=Yn

µn(y)E[rYnk − ryk]

]
∀n,m, k. (3.4)

γ∗nk = Λn,kk

[
αk +

Mn∑
m=1

φnmk

]
∀n, k. (3.5)

β∗kv ∝
N∑
n=1

Mn∑
m=1

φnmkI{wnm=v} ∀k, v. (3.6)

L[α1/α2] =

[
N∑
n=1

log(Γ(
K∑
k=1

αnk))−
N∑
n=1

K∑
k=1

log(Γ(αnk))

]
+

N∑
n=1

K∑
k=1

[
ψ(γnk)− ψ(

K∑
k=1

γnk)

]
(αnk − 1). (3.7)

Let Q be the set of all distributions having a fully factorized form as given in

(8.2). Let the distribution q∗ from the set Q optimize the objective in Eq. (3.3). The

optimal values of corresponding variational parameters are given in Eqs. (3) and

(3.5). In Eq. (3), ε′ = (1− ε) if k ≤ K1 and ε′ = ε otherwise. Since φnm is a multi-

nomial distribution, the updated values of the K components should be normalized

to unity. The optimal values of φnm depend on γn and vice-versa. Therefore, it-

erative optimization is adopted to maximize the lower bound until convergence is

achieved.
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During testing, one does not observe a document’s supervised topics and, in

principle, has to explore 2K2 possible combinations of supervised tags – an expen-

sive process. A simple approximate solution, as employed in LLDA [Ramage et al.,

2009], is to assume the absence of the variables {Λn} altogether in the test phase,

and just treat the problem as inference in MedLDA with K latent topics. One can

then threshold over the last K2 topics if the tags of a test document need to be in-

ferred. Equivalently, one can also assume Λn to be an identity matrix of dimension

K × K ∀n. This representation ensures that the expressions for update equations

(3) and (3.5) do not change in the test phase.

In the M step, the objective in Eq. (3.3) is maximized w.r.t κ0. The optimal

value of βkv is given in Eq. (3.6). Since βk is a multinomial distribution, the

updated values of the V components should be normalized. However, numerical

methods for optimization are required to update α1 or α2. The part of the objective

function that depends on α1 and α2 is given in Eq. (3.7). The update for the

parameter r is carried out using a multi-class SVM solver [Fan et al., 2008]. With

all other model and variational parameters held fixed (i.e. with L(q) held constant),

the objective in Eq. (3.3) is optimized w.r.t. r. A reader familiar with the updates

in unsupervised LDA can see the subtle (but non-trivial) changes in the update

equations for DSLDA.

3.3 Non-parametric DSLDA

We now propose a non-parametric extension of DSLDA (NP-DSLDA) that

solves the model selection problem and automatically determines the best number
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of latent topics for modeling the given data. A modified stick breaking construction

of Hierarchical Dirichlet Process (HDP) [Teh et al., 2006], recently introduced in

[Wang et al., 2011a] is used here which makes variational inference feasible. The

idea in such representation is to share the corpus level atoms across documents by

sampling atoms with replacement for each document and modifying the weights of

these samples according to some other GEM distribution [Teh et al., 2006] whose

parameter does not depend on the weights of the corpus-level atoms.

N
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Figure 3.7: Graphical Model of NP-DSLDA Figure 3.8: Illustration of NP-DSLDA

The combination of an infinite number of latent topics with a finite number

of supervised topics in a single framework is not trivial and ours is the first model

to accomplish this. One simpler solution is to introduce one extra binary hidden

variable for each word in each document which could select either the set of latent

topics or the set of supervised topics. Subsequently, a word in a document can be

sampled from either the supervised or the latent topics based on the value sampled

by the hidden “switching” variable. However, the introduction of such extra hidden

variables adversely affects model performance as explained in [Eisenstein et al.,

2011]. In NP-DSLDA, we are able to avoid such extra hidden variables by careful
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modeling of the HDP. This will be evident in the generative process of NP-DSLDA

presented below:

• Sample φk1 ∼ Dir(η1) ∀k1 ∈ {1, 2, · · · ,∞}, where η1 is the parameter of

Dirichlet distribution of dimension V .

• Sample φk2 ∼ Dir(η2) ∀k2 ∈ {1, 2, · · · , K2}, where η2 is the parameter of

Dirichlet distribution of dimension V .

• Sample β′k1 ∼ Beta(1, δ0) ∀k1 ∈ {1, 2, · · · ,∞}.

• For the nth document, sample π(2)
n ∼ Dir(Λnα2). α2 is the parameter of Dirich-

let of dimension K2. Λn is a diagonal binary matrix of dimension K2 × K2. The

kth diagonal entry is unity if the nth word is tagged with the kth supervised topic.

• ∀n,∀t ∈ {1, 2, · · · ,∞}, sample π′nt ∼ Beta(1, α0). Assume π(1)
n = (πnt)t where

πnt = π′nt
∏

l<t(1− π′nl).

• ∀n,∀t, sample cnt ∼ Mult(β) where βk1 = β′k1
∏

l<k1
(1 − β′l). π(1)

n represents

the probability of selecting the sampled atoms in cn. Due to sampling with re-

placement, cn can contain multiple atoms of the same index from the corpus level

DP.

• For the mth word in the nth document, sample znm ∼ Mult((1 − ε)π(1)
n , επ

(2)
n ).

This implies that w.p. ε, a topic is selected from the set of supervised topics and

w.p. (1 − ε), a topic is chosen from the set of (infinite number of) unsupervised

topics. Note that by weighting the π’s appropriately, the need for additional hidden

“switching” variable is avoided.
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• Sample wnm from a multinomial given by the following equation:

∞∏
k1=1

V∏
v=1

φ
I{wnm=v}I{cnznm=k1∈{1,··· ,∞}}
k1v

K2∏
k2=1

V∏
v=1

φ
I{wnm=v}I{znm=k2∈{1,··· ,K2}}
k2v

. (3.8)

The corresponding graphical model is shown in Fig. 3.7. The joint distribu-

tion of NP-DSLDA is given as follows:

p(X,Z|κ0) =
∞∏
k1=1

p(φk1|η1)p(β′k1|δ0)

K2∏
k2=1

p(φk2|η2)
N∏
n=1

p(π(2)
n |α2)

∞∏
t=1

p(π
′(1)
nt |α0)p(cnt|β′)

Mn∏
m=1

p(znm|π(1)
n ,π(2)

n , ε)p(wnm|φ, cnznm , znm). (3.9)

As an approximation to the posterior distribution over the hidden variables, we use

the following factorized distribution:

q(Z|κ) =

K1∏
k1=1

q(φk1|λk1)
K2∏
k2=1

q(φk2|λk2)
K1−1∏
k1=1

q(β′k1 |uk1 , vk1)

N∏
n=1

q(π(2)
n |γn)

T−1∏
t=1

q(π
′(1)
nt |ant, bnt)

T∏
t=1

q(cnt|ϕnt)
Mn∏
m=1

q(znm|ζnm). (3.10)

Here, κ0 and κ denote the sets of model and variational parameters, respectively.

K1 is the truncation limit of the corpus-level Dirichlet Process and T is the trun-

cation limit of the document-level Dirichlet Process. {λk} are the parameters of

Dirichlet each of dimension V . {uk1 , vk1} and {ant, bnt} are the parameters of vari-

ational Beta distribution corresponding to corpus level and document level sticks

respectively. {ϕnt} are Mult parameters of dimension K1 and {ζnm} are Mults of

dimension (T + K2). {γn}n are parameters of Dirichlet distribution of dimension

K2.
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The underlying optimization problem takes the same form as in Eq. (3.3).

The only difference lies in the calculation of ∆fn(y) = f(Yn, s̄n) − f(y, s̄n). The

first set of dimensions of s̄n (corresponding to the unsupervised topics) is given by

1/Mn

∑Mn

m=1 cnznm , where cnt is an indicator vector over the set of unsupervised

topics. The following K2 dimensions (corresponding to the supervised topics) are

given by 1/Mn

∑Mn

m=1 znm. After the variational approximation with K1 number

of corpus level sticks, s̄n turns out to be of dimension (K1 + K2) and the feature

vector f(y, s̄n) constitutes Y (K1+K2) elements. The components of f(y, s̄n) from

(y − 1)(K1 + K2) + 1 to y(K1 + K2) are those of the vector s̄n and all the others

are 0. Essentially, due to the variational approximation, NP-DSLDA projects each

document on to a combined topic space of dimension (K1 + K2) and learns the

mapping from this space to the classes.

ζ∗nmt ∝ exp

[
[ψ(ant)− ψ(ant + bnt)]I{t<T} +

t−1∑
t′=1

[ψ(bnt′)− ψ(ant′ + bnt′)]

+

K1∑
k1=1

ϕntk1

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]
+
∑
y 6=Yn

µn(y)

K1∑
k1=1

E[rYnk1 − ryk1 ]ϕntk1

]
,(3.11)

ζ∗nm(T+k2) ∝ Λnk2k2exp

[
ψ(γnk2)− ψ(

K2∑
k2=1

γnk2) + ψ(λ(K1+k2)wnm)

−ψ(
V∑
v=1

λ(K1+k2)v) + 1/Mn

∑
y 6=Yn

µn(y)E[rYn(K1+k2) − ry(K1+k2)]

]
, (3.12)
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ϕ∗ntk1 ∝ exp
[
[ψ(uk1)− ψ(uk1 + vk1)] I{k1<K1}

+

k1−1∑
k′=1

[ψ(vk′)− ψ(uk′ + vk′)] +
Mn∑
m=1

ζnmt

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]

+1/Mn

∑
y 6=Yn

µn(y)E[rYnk1 − ryk1 ]

(
Mn∑
m=1

ζnmt

)]
. (3.13)

Some of the update equations of NP-DSLDA are given in the above equa-

tions, where {ϕntk1} are the set of variational parameters that characterize the as-

signment of the documents to the global set of (K1 +K2) topics. One can see how

the effect of the class labels is included in the update equation of {ϕntk1} via the av-

erage value of the parameters {ζnmt}. This follows intuitively from the generative

assumption. update exists for the model parameters and hence numerical optimiza-

tion has to be used. Other updates are either similar to DSLDA or the model in

[Wang et al., 2011a] and are omitted due to space constraints. {ζnm}, correspond-

ing to supervised and unsupervised topics, should be individually normalized and

then scaled by ε and (1 − ε) respectively. Otherwise, the effect of the Dirichlet

prior on supervised topics will get compared to that of the GEM prior on the unsu-

pervised topics which does not follow the generative assumptions. The variational

parameters {λk} and {ϕnt} are also normalized.

Note that NP-DSLDA offers some flexibility with respect to the latent topics

that could be dominant for a specific task. One could therefore postulate that NP-

DSLDA can learn the clustering of tasks from the data itself by making a subset of

latent topics to be dominant for a set of tasks. Though we do not have supporting

experiments, NP-DSLDA is, in principle, capable of performing clustered multi-
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task learning without any prior assumption on the relatedness of the tasks.

3.4 Experimental Evaluation
3.4.1 Data Description

Our evaluation used two datasets, a text corpus and a multi-class image

database, as described below.

3.4.1.1 aYahoo Data

The first set of experiments was conducted with the aYahoo image dataset

from Farhadi et al. [2009] which has 12 classes – carriage, centaur, bag, building,

donkey, goat, jetski, monkey, mug, statue, wolf, and zebra.2 Each image is anno-

tated with relevant visual attributes such as “has head”, “has wheel”, “has torso”

and 61 others, which we use as the supervised topics. Using such intermediate “at-

tributes” to aid visual classification has become a popular approach in computer

vision [Kovashka et al., 2011; Lampert et al., 2009]. After extracting SIFT features

[Lowe, 2004] from the raw images, quantization into 250 clusters is performed,

defining the vocabulary for the bag of visual words [Gabriella et al., 2004]. Images

with less than two attributes were discarded. The resulting dataset of size 2275 was

equally split into training and test data.

2http://vision.cs.uiuc.edu/attributes/
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3.4.1.2 ACM Conference Data

The text corpus consists of conference chapter abstracts from two groups of

conferences. The first group has four conferences related to data mining – WWW,

SIGIR, KDD, and ICML, and the second group consists of two VLSI conferences

– ISPD and DAC. The classification task is to determine the conference at which

the abstract was published. As supervised topics, we use keywords provided by the

authors, which are presumably useful in determining the conference venue. Since

authors usually take great care in choosing keywords so that their chapter is re-

trieved by relevant searches, we believed that such keywords made a good choice

of supervised topics. Part of the data, crawled from ACM’s website, was used in

Wang et al. [2009]. A total of 2300 abstracts were collected each of which had

at least three keywords and an average of 78 (±33.5) words. After stop-word re-

moval, the vocabulary size for the assembled data is 13412 words. The final number

of supervised topics, after some standard pre-processing of keywords, is 55. The

resulting dataset was equally split into training and test data.

Figure 3.9: Illustration of MedLDA-OVA Figure 3.10: Illustration of MedLDA-MTL
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3.4.2 Methodology for Experiments with Multitask Learning

In order to demonstrate the contribution of each aspect of the overall model,

DSLDA and NP-DSLDA are compared against the following simplified models:

• MedLDA with one-vs-all classification (MedLDA-OVA) (shown in Fig. 3.9):

A separate model is trained for each class using a one-vs-all approach leaving no

possibility of transfer across classes.

• MedLDA with multitask learning (MedLDA-MTL) (shown in Fig. 3.10): A

single model is learned for all classes where the latent topics are shared across

classes.

• DSLDA with only shared supervised topics (DSLDA-OSST) (shown in Fig.

3.11): A model in which supervised topics are used and shared across classes but

there are no latent topics.

• DSLDA with no shared latent topics (DSLDA-NSLT) (shown in Fig. 3.12): A

model in which only supervised topics are shared across classes and a separate set

of latent topics is maintained for each class.

• Majority class method (MCM): A simple baseline which always picks the most

common class in the training data.

There could be one more baseline where LDA is learnt in an unsupervised way

and an SVM is trained with the topic level assignment used as the features. Since

MedLDA already outperforms this baseline, we did not plot the performances of
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such baseline. The plot of the majority class method is there only to highlight the

imbalance of the labeled data among the multiple categories.

Figure 3.11: Illustration of DSLDA-OSST Figure 3.12: Illustration of DSLDA-NSLT

These baselines are useful for demonstrating the utility of both supervised

and latent shared topics for multitask learning in DSLDA. MedLDA-OVA is a non-

transfer method, where a separate model is learned for each of the classes, i.e. one

of the many classes is considered as the positive class and the union of the re-

maining ones is treated as the negative class. Since the models for each class are

trained separately, there is no possibility of sharing inductive information across

classes. MedLDA-MTL trains on examples from all classes simultaneously, and

thus allows for sharing of inductive information only through a common set of la-

tent topics. In DSLDA-OSST, only supervised topics are maintained and knowl-

edge transfer can only take place via these supervised topics. DSLDA-NSLT uses

shared supervised topics but also includes latent topics which are not shared across

classes. This model provides for transfer only through shared supervised topics but

provides extra modeling capacity compared to DSLDA-OSST through the use of

latent topics that are not shared. DSLDA and NP-DSLDA are MTL frameworks
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where both supervised and latent topics are shared across all classes. Note that, all

of the baselines can be implemented using DSLDA with a proper choice of Λ and

ε. For example, DSLDA-OSST is just a special case of DSLDA with ε fixed at 1.

Figure 3.13: p1 = 0.5 (aYahoo)

In order to explore the effect of different amounts of both types of supervi-

sion, we varied the amount of both topic-level and class-level supervision. Specifi-

cally, we provided topic supervision for a fraction, p1, of the overall training set, and

then provided class supervision for only a further fraction p2 of this data. There-

fore, only p1 ∗ p2 of the overall training data has class supervision. By varying the

number of latent topics from 20 to 200 in steps of 10, we found that K1 = 100

generally worked the best for all the parametric models. Therefore, we show para-

metric results for 100 latent topics. For each combination of (p1, p2), 50 random

trials were performed with C = 10. To maintain equal representational capacity,

the total number of topics K is held the same across all parametric models (ex-
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Figure 3.14: p1 = 0.7 (aYahoo)

cept for DSLDA-OSST where the total number of topics is K2). For NP-DSLDA,

following the suggestion of [Wang et al., 2011a], we set K1 = 150 and T = 40,

which produced uniformly good results. When required, ε was chosen using 5-fold

internal cross-validation using the training data.

3.4.3 Multitask Learning Results

Figs. 3.15 and 3.16 present representative learning curves for the image

data, showing how classification accuracy improves as the amount of class super-

vision (p2) is increased. Results are shown for two different amounts of topic su-

pervision (p1 = 0.5 and p1 = 0.7). Figs. 4.3 and 4.4 present similar learning

curves for the text data. The error bars in the curves show standard deviations

across the 50 trials. The results demonstrate that DSLDA and NP-DSLDA quite

consistently outperform all of the baselines, clearly demonstrating the advantage of
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combining both types of topics. NP-DSLDA performs about as well as DSLDA,

for which the optimal number of latent topics has been chosen using an expensive

model-selection search. This demonstrates that NP-DSLDA is doing a good job of

automatically selecting an appropriate number of latent topics. Overall, DSLDA-

OSST and MedLDA-MTL perform about the same, showing that, individually, both

latent and supervised shared topics each support multitask learning about equally

well when used alone. However, combining both types of topics provides a clear

improvement.

Figure 3.15: p1 = 0.5 (Conference)

MedLDA-OVA performs quite poorly when there is only a small amount of

class supervision (note that this baseline uses only class labels). However, the per-

formance approaches the others as the amount of class supervision increases. This

is consistent with the intuition that multitask learning is most beneficial when each

task has limited supervision and therefore has more to gain by sharing information
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Figure 3.16: p1 = 0.7 (Conference)

LT1 function, label, graph, classification, database, propagation, algorithm, accuracy, minimization, transduction
LT2 performance, design, processor, layer, technology, device, bandwidth, architecture, stack, system
CAD design, optimization, mapping, pin, simulation, cache, programming, routing, biochip, electrode
VLSI design, physical, lithography, optimization, interdependence, global, robust, cells, layout, growth

IR algorithm, web, linear, query, precision, document, repair, site, search, semantics
Ranking integration, catalog, hierarchical, dragpushing, structure, source, sequence, alignment, transfer, flattened, speedup
Learning model, information, trajectory, bandit, mixture, autonomous, hierarchical, feedback, supervised, task

Table 3.1: Illustration of Latent and Supervised Topics

with other tasks. Shared supervised topics clearly increase classification accuracy

when class supervision is limited (i.e. small values of p2), as shown by the perfor-

mance of both DSLDA-NSLT and DSLDA-OSST. When p2 = 1 (equal amounts of

topic and class supervision), DSLDA-OSST, MedLDA-MTL and MedLDA-OVA

all perform similarly; however, by exploiting both types of supervision, DSLDA

and NP-DSLDA still maintain a performance advantage.

Topic Illustration: In Table 3.1, we show the most indicative words for several

topics discovered by DSLDA from the text data (with p1 = 0.8 and p2 = 1). LT1

54



and LT2 correspond to the most frequent latent topics assigned to documents in

the two broad categories of conferences (data mining and VLSI, respectively). The

other five topics are supervised ones. CAD and IR stand for Computer Aided De-

sign and Information Retrieval respectively. The illustrated topics are particularly

discriminative when classifying documents.

3.5 Conclusion

This chapter has introduced approaches that combine the following – gen-

erative and discriminative models, latent and supervised topics, and class and topic

level supervision, in a principled probabilistic manner. Different ablations of the

proposed models are also evaluated in order to understand the individual effects

of latent/supervised topics, active learning and multitask learning on the overall

model performance. The general idea of “double supervision” could be applied

to many other models, for example, in multi-layer perceptrons, latent SVMs [Yu

and Joachims, 2009] or in deep belief networks [Hinton and Osindero, 2006]. In

MTL, sharing tasks blindly is not always a good approach and further extension

with clustered MTL [Zhou et al., 2011] is possible.

We would like to emphasize that the use of variational approximations does

hurt the empirical performance of the proposed models, for which the models can-

not yet beat the performance of other discriminative alternatives for solving similar

problems [Farhadi et al., 2009; Lampert et al., 2009]. However, the interpretability

of the proposed models is also an added benefit which is not available from the dis-

criminative models. Further, sampling based algorithm could also be developed for

55



solving the inference, possibly leading to even better performance without any fac-

torized approximations. On the other hand, the MTL framework proposed herein

can be combined with active learning. In the next Chapter, we propose two such

models, Act-DSLDA and ACT-NPDSLDA, which are extensions of DSLDA and

NP-DSLDA with the flexibility of active learning incorporated.
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Chapter 4

Active Multitask Learning using Both Supervised and
Shared Latent Topics

In Chapter 3, we explored how MTL can leverage from sharing of infor-

mation across multiple tasks via a shared intermediate layer and can reduce the

requirement for labeled information. Another well-known approach to reducing

supervision is active learning, where a system can request labels for the most in-

formative training examples [Jain and Kapoor, 2009; Joshi et al., 2009; Kovashka

et al., 2011; Qi et al., 2008]. In this chapter, our objective is to combine these two

orthogonal approaches in order to leverage the benefits of both – learning from a

shared abstract feature space and making active queries. In particular, we build

on the approach proposed in [Acharya et al., 2013b] and also described in Chap-

ter 3 where multitask learning (MTL) [Caruana, 1997] is accomplished using both

shared supervised attributes and a shared latent (i.e. unsupervised) set of features.

The chapter is organized as follows. We present related work in Section

4.1, followed by the descriptions of two of our models Active Doubly Supervised

Latent Dirichlet Allocation (Act-DSLDA) and a non-parametric variation of the

same (Act-NPDSLDA) in Sections 4.2 and 4.3 respectively. Experimental results

on both multi-class image and document categorization are presented in Section
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4.4. Finally, future directions and conclusions are presented in Section 4.5.

4.1 Background
4.1.1 Active Knowledge Transfer

There has been some effort to integrate active and transfer learning in the

same framework. [Jun and Ghosh, 2008] utilized a maximum likelihood classifier to

learn parameters from the source domain and use these parameters to seed the EM

algorithm that explains the unlabeled data in the target domain. The example which

contributed to maximum expected KL divergence of the posterior distribution with

the prior distribution was selected in the active step. In [Rai et al., 2010], the source

data is first used to train a classifier, the parameters of which are later updated in

an online manner with new examples actively selected from the target domain. The

active selection criterion is based on uncertainty sampling [Settles, 2009]. Simi-

larly, in [Chan and Ng, 2007], a naı̈ve Bayes classifier is first trained with examples

from the source domain and then incrementally updated with data from the target

domain selected using uncertainty sampling. The method proposed in [Shi et al.,

2008] maintains a classifier trained on the source domain(s) and the prediction of

this classifier is trusted only when the likelihood of the data in the target domain is

sufficiently high. In case of lower likelihood, domain experts are asked to label the

example. Harpale and Yang [2010] proposed active multitask learning for adaptive

filtering [Robertson and Soboroff, 2002] where the underlying classifier is logistic

regression with Dirichlet process priors. Any feedback provided in the active selec-

tion phase improves both the task-specific and the global performance via a measure
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called utility gain [Harpale and Yang, 2010]. Saha et al. [2011] formulated an online

active multitask learning framework where the information provided for one task is

utilized for other tasks through a task correlation matrix. The updates are similar to

perceptron updates. For active selection, they use a margin based sampling scheme

which is a modified version of the sampling scheme used in [Cesa-Bianchi et al.,

2006].

In contrast to this previous work, our approach employs a topic-modeling

framework and uses expected error reduction for active selection. Such an active

selection mechanism necessitates fast incremental update of model parameters, and

hence the inference and estimation problems become challenging. This approach to

active selection is more immune to noisy observations compared to simpler methods

such as uncertainty sampling [Settles, 2009]. Additionally, our approach can query

both class labels and supervised topics (i.e. attributes), which has not previously

been explored in the context of MTL.

4.1.2 Online Support Vector Machines

The online SVM proposed by Bordes et al. [2005, 2007] has three distinct

modules that work in unison to provide a scalable learning mechanism. These mod-

ules are named “ProcessNew”, “ProcessOld” and “Optimize”. All of these modules

use a common operation called “SMOStep” and the memory footprint is limited to

the support vectors and associated gradient information. The module “Process-

New” operates on a pattern that is not a support pattern. In such an update, one of

the classes is chosen as the label of the support pattern and the other class is chosen
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such that it defines a feasible direction with the highest gradient. It then performs

an SMO step with the example and the selected classes. The module “ProcessOld”

randomly picks a support pattern and chooses two classes that define the feasible

direction with the highest gradient for that support pattern. “Optimize” resembles

“ProcessOld” but picks two classes among those that correspond to existing support

vectors.

4.2 Active Doubly Supervised Latent Dirichlet Allocation (Act-
DSLDA)

We will treat examples as “documents” which consist of a “bag of words”

for text or a “bag of visual words” for images. Assume we are given an initial

training corpus L with N documents belonging to Y different classes. Further

assume that each of these training documents is also annotated with a set of K2

different “supervised topics”. The objective is to train a model using the words in a

document, as well as the associated supervised topics and class labels, and then use

this model to classify completely unlabeled test documents for which no topics or

class labels are provided.

When the learning starts, L is assumed to have fully labeled documents.

However, as the learning progresses more documents are added to the pool L

with class and/or a subset of supervised topics labeled. Therefore, at any inter-

mediate point of the learning process, L can be assumed to contain several sets:

L = {T∪TC ∪TA1 ∪TA2 ∪ · · · ∪TAK2
}, where T contains fully labeled documents

(i.e. with class and all supervised topics labeled), TC are the documents that have
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class labels, and 1 ≤ k ≤ K2, TAk are the documents that have the kth supervised

topic labeled. Since, human-provided labels are expensive to obtain, we design

an active learning framework where the model can query over an unlabeled pool U

and request either class labels or a subset of the supervised topics. The Act-DSLDA

generative model is defined as follows. The generative process is very similar to the

generative process of DSLDA described in Section 3.2, but provided here in details

to make the notations easy to understand.

• For the nth document, sample a topic selection probability vector θn ∼ Dir(αn),

where αn = Λnα and α is the parameter of a Dirichlet distribution of dimension

K, the total number of topics. The topics are assumed to be of two types – latent

and supervised, and there are K1 latent topics and K2 supervised topics (K =

K1 + K2). Latent topics are never observed, while supervised topics are observed

in the training data but not in the test data. Henceforth, in each vector or matrix

with K components, it is assumed that the first K1 components correspond to the

latent topics and the next K2 components to the supervised topics. Λn is a diagonal

binary matrix of dimension K × K. The kth diagonal entry is unity if either 1 ≤
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k ≤ K1 or K1 < k ≤ K and the nth document is tagged with the kth topic. Also,

α = (α(1),α(2)) where α(1) is a parameter of a Dirichlet distribution of dimension

K1 and α(2) is a parameter of a Dirichlet distribution of dimension K2.

• In the test data, the supervised topics are not observed and one has to infer them

from either the parameters of the model or use some other auxiliary information.

Since one of our objectives is to query over the supervised topics as well as the

final category, we train a set of binary SVM classifiers that can predict the indi-

vidual attributes from the features of the data. We denote the parameters of such

classifiers by {r2k}1≤k≤K2 . This is important to get an uncertainty measure over the

supervised topics. To further clarify the issue, let us consider that only one super-

vised topic has to be labeled by the annotator for the nth document from the set of

supervised topics of size K2. To select the most uncertain topic, one needs to com-

pare the uncertainty of predicting the presence or absence of the individual topics.

This uncertainty is different from that calculated from the conditional distribution

calculated from the posterior over θn.

• For the mth word in the nth document, sample a topic znm ∼ Mult(θ′n), where

θ′n = (1 − ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1
. This implies that the supervised topics

are weighted by ε and the latent topics are weighted by (1 − ε). Sample the word

wnm ∼ Mult(βznm), where βk is a multinomial distribution over the vocabulary of

words corresponding to the kth topic.

• For the nth document, generate Yn = arg maxy r
T
1yE(z̄n) where Yn is the class

label associated with the nth document, z̄n =
Mn∑
m=1

znm/Mn. Here, znm is an indi-
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cator vector of dimension K. r1y is a K-dimensional real vector corresponding to

the yth class, and it is assumed to have a prior distribution N(0, 1/C). Mn is the

number of words in the nth document. The maximization problem to generate Yn

(i.e. the classification problem) is carried out using the max-margin principle and

we use online SVMs [Bordes et al., 2005, 2007] for such updates. Since the model

has to be updated incrementally in the active selection step, a batch SVM solver is

not applicable, while an online SVM allows one to update the learned weights in-

crementally given each new example. Note that predicting each class is treated as a

separate task, and that the shared topics are useful for generalizing the performance

of the model across classes.

4.2.1 Inference and Learning

Inference and parameter estimation have two phases – one for the batch

case when the model is trained with fully labeled data, and the other for the active

selection step where the model has to be incrementally updated to observe the effect

of any labeled information that is queried from the oracle.

4.2.1.1 Learning in Batch Mode

Let us denote the hidden variables by Z = {{znm}, {θn}}, the observed

variables by X = {wnm} and the model parameters by κ0. The joint distribution

of the hidden and observed variables is:

p(X,Z|κ0) =
N∏
n=1

p(θn|αn)
Mn∏
m=1

p(znm|θ′n)p(wnm|βznm). (4.1)
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To avoid computational intractability, inference and estimation are performed us-

ing variational EM. The factorized approximation of the posterior distribution with

hidden variables Z is given by:

q(Z|{κn}Nn=1) =
N∏
n=1

q(θn|γn)
Mn∏
m=1

q(znm|φnm), (4.2)

where θn ∼ Dir(γn), znm ∼ multinomial(φnm) ∀n ∈ {1, 2, · · · , N} and ∀m ∈

{1, 2, · · · ,Mn}, and κn = {γn, {φnm}}, which is the set of variational parame-

ters corresponding to the nth instance. Further, γn = (γnk)
K
k=1 ∀n, and φnm =

(φnmk)
K
k=1 ∀n,m. With the use of the lower bound obtained by the factorized ap-

proximation, followed by Jensen’s inequality, Act-DSLDA reduces to solving the

following optimization problem1:

min
q,κ0,{ξn}

1

2
||r1||2 − L(q(Z)) + C

N∑
n=1

ξnITC ,n,

s.t. ∀n ∈ TC , y 6= Yn : E[rT1 ∆fn(y)] ≥ 1− ξn; ξn ≥ 0. (4.3)

Here, ∆fn(y) = f(Yn, z̄n) − f(y, z̄n) and {ξn}Nn=1 are the slack variables, and

f(y, z̄n) is a feature vector whose components from (y − 1)K + 1 to yK are those

of the vector z̄n and all the others are 0. E[rT1 ∆fn(y)] is the “expected margin”

over which the true label Yn is preferred over a prediction y. From this viewpoint,

Act-DSLDA projects the documents onto a combined topic space and then uses

a max-margin approach to predict the class label. The parameter C penalizes the

margin violation of the training data. The indicator variable ITC ,n is unity if the nth

1Please see [Zhu et al., 2009] for further details.
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document has a class label (i.e. n ∈ TC) and 0 otherwise. This implies that only

the documents that have class labels are used to update the parameters of the online

SVM.

Let Q be the set of all distributions having a fully factorized form as given

in (8.2). Note that such a factorized approximation makes the use of incremental

variation of EM possible in the active selection step following the discussion in

Section 2.4.3.2. Let the distribution q∗ from the set Q optimize the objective in Eq.

(4.3). The optimal values of the corresponding variational parameters are same as

those of DSLDA [Acharya et al., 2013b]. The optimal values of φnm depend on γn

and vice-versa. Therefore, iterative optimization is adopted to maximize the lower

bound until convergence is achieved.

During testing, one does not observe a document’s supervised topics and in-

stead an approximate solution, as also used in [Acharya et al., 2013b; Ramage et al.,

2009], is employed where the variables {Λn} are assumed to be absent altogether

in the test phase, and the problem is treated as inference in MedLDA with K latent

topics. In the M step, the objective in Eq. (4.3) is maximized w.r.t κ0. The optimal

value of βkv is again similar to that of DSLDA [Acharya et al., 2013b]. However,

numerical methods for optimization are required to update α1 or α2. The update

for the parameters {r1y}Yy=1 is carried out using online SVM [Bordes et al., 2005,

2007] following Eq. (4.3).
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4.2.1.2 Incremental Learning in Active Selection

The method of Expected Entropy Reduction requires one to take an example

from the unlabeled pool and one of its possible labels, update the model, and ob-

serve the generalized error on the unlabeled pool. This process is computationally

expensive unless there is an efficient way to update the model incrementally. The

incremental view of EM and the online SVM framework are appropriate for such

updates.

Consider that a completely unlabeled or partially labeled document, indexed

by n′, is to be included in the labeled pool with one of the (K2 + 1) labels (one

for the class label and each different supervised topic), indexed by k′. In the E

step, variational parameters corresponding to all other documents except for the

n′th one are kept fixed and the variational parameters for only the n′th document

are updated. In the M-step, we keep the priors {α(1),α(2)} over the topics and

the SVM parameters r2 fixed as there is no easy way to update such parameters

incrementally. From the empirical point of view, these parameters do not change

much w.r.t. the variational parameters (or features in topic space representation) of a

single document. However, the update of the parameters {β, r1} is easier. Updating

β is accomplished by a simple update of the sufficient statistics. Updating r1 is done

using the “ProcessNew” operation of online SVM followed by a few iterations of

“ProcessOld”. The selection of the document-label pair is guided by the measure

given in Eq. (2.12). Note that since SVM uses hinge loss which, in turn, upper

bounds the 0–1 loss in classification, use of the measure from Eq. (2.12) for active

query selection is justified.
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From the modeling perspective, the difference between DSLDA [Acharya

et al., 2013b] and Act-DSLDA lies in maintaining attribute classifiers and ignor-

ing documents in the max-margin learning that do not have any class label. Online

SVM for max-margin learning is essential in the batch mode just to maintain the

support vectors and incrementally update them in the active selection step. One

could also use incremental EM for batch mode training. However, that is compu-

tationally more complex when the labeled dataset is large, as the E step for each

document is followed by an M-step in incremental EM.

4.3 Active Non-parametric DSLDA (Act-NPDSLDA)

A non-parametric extension of Act-DSLDA (Act-NPDSLDA) automatically

determines the best number of latent topics for modeling the given data. It uses a

modified stick breaking construction of Hierarchical Dirichlet Process (HDP), re-

cently introduced in [Wang et al., 2011a], to make variational inference feasible.

The Act-NPDSLDA generative model is presented below.

• Sampleφk1 ∼ Dir(η1) ∀k1 ∈ {1, 2, · · · ,∞}. Also, sample β′k1 ∼ Beta(1, δ0) ∀k1 ∈

{1, 2, · · · ,∞}. η1 is the parameters of Dirichlet distribution of dimension V .

• Sample φk2 ∼ Dir(η2) ∀k2 ∈ {1, 2, · · · , K2}. η2 is the parameters of Dirichlet

distribution of dimension V .

• For the nth document, sample π(2)
n ∼ Dir(Λnα

(2)). α(2) is the parameter of

Dirichlet of dimension K2. Λn is a diagonal binary matrix of dimension K2 ×K2.

The kth diagonal entry is unity if the nth word is tagged with the kth supervised
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topic. Similar to the case of Act-DSLDA, in the test data, the supervised topics are

not observed and the set of binary SVM classifiers, trained with document-attribute

pair data, are used to predict the individual attributes from the input features. The

parameters of such classifiers are denoted by {r2k}1≤k≤K2 .

• ∀n,∀t ∈ {1, 2, · · · ,∞}, sample π′nt ∼ Beta(1, α0). Assume π(1)
n = (πnt)t where

πnt = π′nt
∏

l<t(1−π′nl). ∀n,∀t, sample cnt ∼ Mult(β) where βk1 = β′k1
∏

l<k1
(1−

β′l). π(1)
n represents the probability of selecting the sampled atoms in cn.

• For the mth word in the nth document, sample znm ∼ Mult((1 − ε)π(1)
n , επ

(2)
n ).

This implies that with probability ε, a topic is selected from the set of supervised

topics and with probability (1 − ε), a topic is chosen from the set of unsupervised

topics. Sample wnm from a multinomial given by Eq. (3).

• For the nth document, generate Yn = arg maxy r
T
1yE(z̄n) where Yn is the class

label associated with the nth document, z̄n =
Mn∑
m=1

znm/Mn. The maximization

problem to generate Yn (i.e. the classification problem) is carried out using an

online support vector machine. The joint distribution of the hidden and observed

variables is given in Eq. (1).

4.3.1 Inference and Learning

4.3.1.1 Learning in Batch Mode

As an approximation to the posterior distribution over the hidden variables,

we use the factorized distribution given in Eq. (2). κ0 and κ denote the sets of

model and variational parameters, respectively. K̄1 is the truncation limit of the
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Figure 4.3: Graphical Model of Act-NPDSLDA Figure 4.4: Illustration of Act-NPDSLDA

Joint Distribution of Act-NPDSLDA
p(X,Z|κ0) =

∞∏
k1=1

p(φk1|η1)p(β′k1|δ0)

K2∏
k2=1

p(φk2|η2)
N∏
n=1

p(π(2)
n |α2)

∞∏
t=1

p(π
′(1)
nt |α0)p(cnt|β′)

Mn∏
m=1

p(znm|π(1)
n ,π(2)

n , ε)p(wnm|φ, cnznm , znm).(1)

Variational Distribution of Act-NPDSLDA
q(Z|κ) =

K̄1∏
k1=1

q(φk1|λk1)
K2∏
k2=1

q(φk2|λk2)
K̄1−1∏
k1=1

q(β′k1|uk1 , vk1)
N∏
n=1

q(π(2)
n |γn)

T−1∏
t=1

q(π
′(1)
nt |ant, bnt)

T∏
t=1

q(cnt|ϕnt)
Mn∏
m=1

q(znm|ζnm).(2)

Multinomial Distribution for Sampling Words in Act-NPDSLDA
∞∏
k1=1

V∏
v=1

φ
I{wnm=v}I{cnznm=k1∈{1,··· ,∞}}
k1v

K2∏
k2=1

V∏
v=1

φ
I{wnm=v}I{znm=k2∈{1,··· ,K2}}
k2v

.(3)

Table 4.1: Distributions in Act-NPDSLDA
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corpus-level Dirichlet Process and T is the truncation limit of the document-level

Dirichlet Process. {λk} are the parameters of the Dirichlet, each of dimension V .

{uk1 , vk1} and {ant, bnt} are the parameters of Beta distribution corresponding to

corpus level and document level sticks respectively. {ϕnt} are multinomial param-

eters of dimension K̄1 and {ζnm} are multinomials of dimension (T +K2). {γn}n

are parameters of the Dirichlet distribution of dimension K2.

The underlying optimization problem takes the same form as in Eq. (4.3).

The only difference lies in the calculation of ∆fn(y) = f(Yn, s̄n) − f(y, s̄n). The

first set of dimensions of s̄n (corresponding to the unsupervised topics) is given by

1/Mn

∑Mn

m=1 cnznm , where cnt is an indicator vector over the set of unsupervised

topics. The following K2 dimensions (corresponding to the supervised topics) are

given by 1/Mn

∑Mn

m=1 znm. After the variational approximation with K̄1 number

of corpus level sticks, s̄n turns out to be of dimension (K̄1 + K2) and the feature

vector f(y, s̄n) constitutes Y (K̄1+K2) elements. The components of f(y, s̄n) from

(y − 1)(K̄1 + K2) + 1 to y(K̄1 + K2) are those of the vector s̄n and all the others

are 0. The E-step update equations of Act-NPDSLDA are similar to NP-DSLDA

[Acharya et al., 2013b]. The M-step updates are similar to Act-DSLDA and are

omitted here due to space constraints.

4.3.1.2 Incremental Learning in Active Selection

Assume that a completely unlabeled or partially labeled document, indexed

by n′, is to be included in the labeled pool with the k′th label. In the E step, vari-

ational parameters corresponding to all other documents except for the n′th one is
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kept fixed and the variational parameters for only the n′th document are updated.

The incremental update of the “global” variational parameters {uk1 , vk1}K1
k1=1 is also

straightforward following the equations given in [Acharya et al., 2013b]. In the M-

step, we keep the priors {η1,η2,α
(2)} and the SVM parameters r2 fixed but the

parameters r1 are updated using online SVM.

4.4 Experimental Results
4.4.1 Methodology for Experiments with Active Multitask Learning

We evaluate Act-DSLDA and Act-NPDSDLA on two real world datasets,

aYahoo and ACM Conference, described in Section 3.4.1.1 and Section 3.4.1.2

respectively. Act-DSLDA and Act-NPDSLDA are compared against the following

simplified models:

• Active Learning in MedLDA with one-vs-all classification (Act-MedLDA-OVA)

(shown in Fig. 4.5): A separate MedLDA model is trained for each class using

a one-vs-all approach leaving no possibility of transfer across classes. Supervised

topics are not included in such modeling and the class labels are also obtained using

active learning.

• Active Learning in MedLDA with multitask learning (Act-MedLDA-MTL) (shown

in Fig. 4.6): A single MedLDA model is learned for all classes where the latent top-

ics are shared across classes. Again, supervised topics are not used and the class

labels are obtained using active learning. This baseline is intended to be stronger

than Act-MedLDA-OVA where the latent topics are not shared.
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• Act-DSLDA with only shared supervised topics (Act-DSLDA-OSST) (shown in

Fig. 4.7): A model in which supervised topics are used and shared across classes

but there are no latent topics. Both the supervised topics and the class labels are

queried using active selection strategy.

• Act-DSLDA with no shared latent topics (Act-DSLDA-NSLT) (shown in Fig.

4.8): A model in which only supervised topics are shared across classes and a

separate set of latent topics is maintained for each class. Both the supervised topics

and the class labels are queried using active selection strategy. This model has richer

representational capacity compared to Act-DSLDA-OSST which does not use any

latent topics at all.

• Random selection of only class labels (MedLDA-MTL-Random) (shown in Fig.

4.9): A MedLDA-MTL model where examples with only class labels are selected

at random but supervised topics are not used at all. Note that designing a DSLDA

based model where only class labels are selected at random is tricky as one needs

to balance the number of supervised topics queried and the number of class labels

selected at random. This baseline shows the utility of active selection of classes in

the MedLDA-MTL framework.

• Random selection of class and attribute labels (DSLDA-Random) (shown in Fig.

4.10): A DSLDA model where both queries for class and the supervised topics

are selected at random. This baseline is weaker than RSC since the supervised

topics are generally less informative compared to class labels. Both MedLDA-

MTL-Random and DSLDA-Random are used to exhibit the utility of active learning
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for both class and supervised topic selection.

Figure 4.5: Illustration of Act-MedLDA-OVA Figure 4.6: Illustration of Act-MedLDA-MTL

Figure 4.7: Illustration of Act-DSLDA-OSST Figure 4.8: Illustration of Act-DSLDA-NSLT

Figure 4.9: Illustration of MedLDA-MTL-
Random Figure 4.10: Illustration of DSLDA-Random

4.4.2 Active Multitask Learning Results

For the experiments with active multitask learning, we start with a com-

pletely labeled dataset L consisting of 300 documents. In every active iteration, we

query for 50 labels (class labels or supervised topics). Figs. 4.3 and 4.4 present

representative learning curves for the image and the text data respectively, show-
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ing how classification accuracy improves as the amount of supervision is increased.

The error bars in the curves show standard deviations across 20 trials.

Figure 4.11: aYahoo Learning Curves

Figure 4.12: ACM Conference Learning Curves

4.4.3 Discussion

DSLDA-NSLT only allows sharing of supervised topics and its implementa-

tion is not straightforward. Since MedLDA-OVA, MedLDA-MTL and DSLDA use
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K topics (latent or a combination of supervised and latent), to make the comparison

fair, it is necessary to maintain the same number of topics for DSLDA-NSLT. This

ensures that the models compared have the same representational capacity. There-

fore, for each class in DSLDA-NSLT, k2/Y latent topics are maintained. While

training DSLDA-NSLT with examples from the yth class, only a subset of the first

k1 topics (or a subset of the supervised ones based on which of them are present in

the training documents) and the next
( (y−1)k2

Y
+ 1
)th to

(
yk2
Y

)th topics are considered

to be “active” among the latent topics. The other latent topics are assumed to have

zero contribution, implying that the parameters associated with these topics are not

updated based on observations of documents belonging to class y. During testing,

however, one needs to project a document onto the entireK-dimensional space, and

the class label is predicted based on this representation and the parameters r.

Figure 4.13: aYahoo Query Distribution

Act-DSLDA and Act-NPDSLDA quite consistently outperform all of the

baselines, clearly demonstrating the advantage of combining both types of topics

and integrating active learning and transfer learning in the same framework. Act-

NPDSLDA performs about as well or better as Act-DSLDA, for which the optimal
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Figure 4.14: ACM Conference Query Distribution

number of latent topics has been chosen using an expensive model-selection search.

As to be expected, the active DSLDA methods’ advantage over their ran-

dom selection counterpart (RSC) is greatest at the lower end of the learning curve.

Act-MedLDA-OVA does a little better than RSCA showing that the active selec-

tion of class labels helps even if there is no transfer across classes. Act-MedLDA-

MTL consistently outperforms Act-MedLDA-OVA as well as RSC showing that

active transfer learning is beneficial for MedLDA-MTL. Act-DSLDA-OSST does

better than both Act-MedLDA-MTL and RSC towards the lower end of the learn-

ing curve but with more labeled information this model does not perform that well

since it does not use latent topics. Act-DSLDA-NSLT also performs better than

Act-DSLDA-OSST because the former utilizes latent topics.

Figs. 4.13 and 4.14 show the percentage (out of 50 queries) of class labels

and supervised topics queried by Act-DSLDA at each iteration step in the vision and

text data, respectively. Initially, the model queries for more class labels but towards
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Latent Topic 1 function, transduction, label, graph, algorithm, accuracy
Latent Topic 2 architecture, stack, performance, processor, layer, system

VLSI global, robust, design, physical, cells, layout, growth
IR repair, site, search, semantics, algorithm, web

SVD matrix, decomposition, rank, performance, completion
Clustering model, information, hierarchical, mixture, task

Table 4.2: Latent and Supervised Topics Discovered by Act-DSLDA

the end of the learning curve, more supervised topics are queried. By the 14th

iteration, the class labels of all the documents in the training set are queried. From

the 15th iteration onwards, only supervised topics are queried. This observation

is not that surprising since the class labels are more discriminative compared to

the supervised topics and hence are queried more. However, queries of supervised

topics are also helpful and allow continued improvement later in the learning curve.

Topic Illustration: In Table 4.2, we show the most indicative words for several

topics discovered by Act-DSLDA from the text data after all the class labels are

queried. We emphasize that such interpretability is one of the key artifacts of the

proposed models.

4.5 Conclusion

This paper has introduced two new models, Act-DSLDA and Act-NPDSDLA,

for active multitask learning. Experimental results comparing to six different ab-

lations of these models demonstrate the utility of integrating active and multitask

learning in one framework that also unifies latent and supervised shared topics. The

computational complexity of the proposed models largely depends on the active se-
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lection mechanism adopted. For large scale applications, one needs to use better ap-

proximation techniques for active selection as suggested in [Jain and Kapoor, 2009;

Vijayanarasimhan et al., 2014]. In the next Chapter, we discuss how one could ad-

ditionally actively query for rationales [Donahue and Grauman, 2011; Zaidan et al.,

2008] and further improve the predictive performance of Act-DSLDA.
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Chapter 5

Active Multitask Learning Using Annotators’
Rationale

In traditional supervised learning framework, a human annotator is typically

asked for labels, of classes or supervised topics. We have seen in the previous

chapters how these labels can be incorporated into a knowledge transfer framework

and queried over in a smarter way using active learning. Arguably, this is a rather

restricted form of engagement of the human annotators in a supervised learning

process as the annotators do not only have ideas about the labels, but also why

a given label is associated with a given image or text document. Hence, in this

chapter, our objective is to receive deeper cues from the annotators and include

them in the learning process. For example, if an annotator believes that a given

image belongs to a particular class or contains a particular supervised topic, then

he can also annotate part of the image that lead him to that belief [Donahue and

Grauman, 2011]. One can see Fig. 5.1) for examples of the annotation process

for images. We develop this annotation framework using Google app engine where

an image is presented with either the category label or one of its attributes and

the annotator draws a bounding box which might correspond to the specific label

provided. Likewise, if an annotator thinks that a document should belong to some

class, then he/she can highlight parts of the text or the set of words that influenced
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him/her to make that decision [Zaidan et al., 2008].

Figure 5.1: Illustration of Rationale for Images

The rest of the chapter is organized as follows. We present related work

in Section 5.1. The probabilistic model for active multitask learning with annota-

tors’ rationale is presented in Section 5.2. The experimental results are reported in

Section 5.3 which is then followed by conclusion in Section 5.4.

5.1 Related Work

Emergence of online services such as Mechanical Turk has facilitated an-

notations of large amount of images quickly and efficiently. However, to enhance

the quality of feedback and improve the learning of algorithms, researchers are ex-

ploring the impact of requesting deeper, more complete annotations. This includes

gathering fully segmented [Russell et al., 2008], pose-annotated [Bourdev and Ma-

lik, 2009], or attribute-labeled images [Acharya et al., 2013b; Farhadi et al., 2009;

Siddiquie et al., 2011]. Attribute labels increase the labeling cost, but often reveal
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useful mid-level cues [Acharya et al., 2013a, 2014b; Kumar et al., 2011], or en-

able novel tasks like zero-shot learning [Lampert et al., 2009]. Human describable

properties offer a new way for the annotator to communicate to the learning algo-

rithm, and better teach it to recognize a complex visual category. Interestingly, in

both language and vision, researchers have studied how to capture elements most

important to a human. The information can be explicitly gathered through classic

iterative relevance feedback [Chang et al., 2005]. However, more implicit measures

are also possible, such as by learning what people mention first in a natural scene

[Hwang and Grauman, 2012; Spain and Perona, 2008], or what they deem a fore-

ground object [Spain and Perona, 2008]. Whereas such methods use these cues to

predict important regions in novel images, our goal is to use what a human deems

influential so as to better predict the category label for novel images. Work in natu-

ral language processing explores whether humans can pick out words relevant for a

given document category as a form of human feature selection [Druck et al., 2009;

Raghavan et al., 2005]. In particular, the NLP method of [Zaidan et al., 2008] pro-

poses rationales to better predict sentiment in written movie reviews, and inspires

our approach; we adapt the authors’ basic idea to create two new forms of contrast

examples for the visual domain.

The basic framework proposed in [Donahue and Grauman, 2011; Zaidan

et al., 2008] for learning with rationales entails an SVM learner. For simple bi-

nary classification problems, a positive example is forced to maintain a gap with

a negative example as well as the example derived from masking features of the

positive example that an annotator found relevant for labeling the example positive.
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Formally, the SVM objective takes the following form:

1

2
||w||2 + C1

∑
n

ξn + C2

∑
n,m

ξnm, (5.1)

s.t. ∀n, yn〈w,xn〉 ≥ (1− ξn), ξn ≥ 0,

∀(n,m) ∈ χ, yn〈w, (xn − vnm)〉 ≥ µ(1− ξnm), ξnm ≥ 0.

where, xn is the nth example, yn ∈ {−1,+1} is the label of the nth example and

vnm is the example obtained from the positive example xn by removing features

found relevant for the example being positive by the mth annotator, conveniently

addressed as a “contrast example”. A collection of positive and associated contrast

examples is denoted by χ. ξn and ξnm are the slack variables corresponding to

the two different margin constraints, one of which is scaled by the parameter µ,

thereby allowing more flexibility in the modeling. C1 and C2 determine how the

margin violations would be penalized w.r.t the regularization term. The bias terms

are omitted above, but accounted for by appending a 1-element to each training

example.

5.2 Active Learning with Annotators’ Rationale in Doubly Su-
pervised Latent Dirichlet Allocation (Act-Rationale-DSLDA)

The existing formulation of learning with rationales has two major draw-

backs. Firstly, the formulation is valid only for binary classification problems and

cannot be readily extended to solve multi-class problems. Secondly, the annotation

is usually provided at the category level, and not for the supervised topics. Our

application involves a multi-class problem. Additionally, to exploit the annotators’
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knowledge more comprehensively, we require them to give feedback for selecting

both the class label and the supervised topics. Below, we propose a framework, built

on Act-DSLDA, which can accept annotators’ rationale and potentially improve the

predictive performance when labeled data is sparse.

Assume we are given an initial training corpus L with N documents be-

longing to Y different classes (where each document belongs to exactly one class

and each class corresponds to a different task). We overload the word “document”

to imply an image and the word “word” to indicate “visual words”, obtained from

a quantization of SIFT features, for image data. Further assume that each of these

training documents is also annotated with a set of K2 different “supervised top-

ics”. The objective here is to train a model using the words in a document, as

well as the associated supervised topics and class labels, and then use this model

to classify completely unlabeled test data for which no topic or class label is pro-

vided. When the learning starts, L is assumed to have fully labeled documents.

However, as the learning progresses more documents are added to the pool L

with class and/or a subset of supervised topics labeled. Therefore, at any inter-

mediate point of the learning process, L can be assumed to contain several sets:

L = {T ∪ TC ∪ TA1 ∪ · · · ∪ TAK2
}, where T contains fully labeled documents (i.e.

with both class and all of supervised topics labeled) and TC represents documents

that have class labels. For 1 ≤ k ≤ K2, TAk represents the documents that have the

kth supervised topic labeled. Since, human provided annotations and class labels

are expensive to obtain, we design an active learning framework where the model

can query over an unlabeled pool U and request either class labels or a subset of the
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supervised topics.

Let the nth document be annotated by Ln annotators. The lthn annotation

comes with an explanation of the form of highlighting a set of words {w′nln}ln which

the corresponding annotator found relevant for identifying the document’s class la-

bel or supervised topic. In case of an image, the annotator draws a bounding box

around certain relevant regions and the SIFT features, that appear in such regions

are considered relevant for the label, which in turn affect the bag-of-words repre-

sentation. For text data, this annotation is little more straightforward as one just

needs to highlight some set of words. Once these set of words {w′nl}ln is removed

from the document, it no longer belongs to the class that the annotator identified.

However, it does not also mean that the derived document can belong to some other

class. To avoid such ambiguity for such derived documents, we define one extra

class which we call a “negative” class, index it by (Y + 1), and assign the derived

documents to this particular class. In case of rationales for supervised topics, only

the set of words can be removed and the derived document is not assumed to be an-

notated by that supervised topic anymore. The corresponding attribute classifier can

also be retrained with this derived attribute as done in normal annotator rationale

work. The rest of the generative process goes as follows:

• For the nth document, sample a topic selection probability vector θn ∼ Dir(αn),

where αn = Λnα and α is the parameter of a Dirichlet distribution of dimension

K, which is the total number of topics. The topics are assumed to be of two types

– latent and supervised, and there are K1 latent topics and K2 supervised topics.
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Therefore, K = K1 + K2. Latent topics are never observed, while supervised

topics are observed in training but not in test data. Henceforth, in each vector or

matrix with K components, it is assumed that the first K1 components correspond

to the latent topics and the next K2 components to the supervised topics. Λn is

a diagonal binary matrix of dimension K × K. The kth diagonal entry is unity if

either 1 ≤ k ≤ K1 or K1 < k ≤ K and the nth document is tagged with the kth

topic. Also, α = (α1,α2) where α1 is a parameter of a Dirichlet distribution of

dimension K1 and α2 is a parameter of a Dirichlet distribution of dimension K2.

• For the mth word in the nth document, sample a topic znm ∼ multinomial(θ′n),

where θ′n = (1 − ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1
. This implies that the supervised

topics are weighted by ε and the latent topics are weighted by (1 − ε). Sample the

word wnm ∼ multinomial(βznm), where βk is a multinomial distribution over the

vocabulary of words corresponding to the kth topic.

• For the nth document, generate Yn = arg maxy r
T
y E(z̄n) where Yn is the class

label associated with the nth document, z̄n =
Mn∑
m=1

znm/Mn. Here, znm is an indi-

cator vector of dimension K. ry is a K-dimensional real vector corresponding to

the yth class, and it is assumed to have a prior distribution N(0, 1/C). Mn is the

number of words in the nth document. The maximization problem to generate Yn

(or the classification problem) is carried out using a max-margin principle similar

to MedLDA.

• For the lthn document derived by removing words from the nth document, the

generative process is same and limited to the set of words contained in that derived
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document. If the annotator’s feedback on this derived document is for the class

label, the derived document is included in the set Cn. Any document that belongs

to this set is assigned to the (Y + 1)th class during training.

5.2.1 Inference and Learning

Inference and parameter estimation have two phases – one for the batch

case when the model is trained with completely labeled data, and the other for the

active selection step where the model has to be incrementally updated to observe

the effect of label or rationale that is queried from the oracle. Conceptually, the

learning and inference are very similar to those of Act-DSLDA and Act-NPDSLDA

described in the previous Chapter. However, Act-DSLDA and Act-NPDSLDA do

not deal with rationales and hence, to make the description of learning and inference

unambiguous, in what follows, we explain them rather meticulously.

5.2.1.1 Learning in Batch Mode

Let us denote the hidden variables by Z = {{znm}, {θn}}, the observed

variables by X = {wnm} and the model parameters by κ0. The joint distribution

of the hidden and observed variables is:

p(X,Z|κ0) =
N∏
n=1

p(θn|αn)
Mn∏
m=1

p(znm|θ′n)p(wnm|βznm). (5.2)

To avoid computational intractability, inference and estimation are performed us-

ing variational EM. The factorized approximation of the posterior distribution with
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hidden variables Z is given by:

q(Z|{κn}Nn=1) =
N∏
n=1

q(θn|γn)
Mn∏
m=1

q(znm|φnm), (5.3)

where θn ∼ Dir(γn), znm ∼ multinomial(φnm) ∀n ∈ {1, 2, · · · , N} and ∀m ∈

{1, 2, · · · ,Mn}, and κn = {γn, {φnm}}, which is the set of variational parame-

ters corresponding to the nth instance. Further, γn = (γnk)
K
k=1 ∀n, and φnm =

(φnmk)
K
k=1 ∀n,m. With the use of the lower bound obtained by the factorized ap-

proximation, followed by Jensen’s inequality, Act-Rationale-DSLDA reduces to

solving the following optimization problem:

minζ

Y∑
y=1

1

2
||r1y||2 +

K2∑
k2=1

1

2
||r2k2||2 −

N∑
n=1

`(κn,κ) +
N∑
n=1

(C1ξ1n + C2ξ2n + C3ξ3n + C4ξ4n), (5.4)

∀y ∈ {1, 2, · · · , Y } \ {Yn},∀n ∈ {TC \ χC} : E[rT1y∆fn(y)] ≥ (1− ξ1n), ξ1n ≥ 0,

∀y ∈ {1, 2, · · · , Y } \ {Yn},∀ln ∈ χC : E[rT1y∆f
′
n(y)] ≥ µ(1− ξ2n), ξ2n ≥ 0,

∀k2 ∈ {1, 2, · · · , K2},∀n ∈ TAk2 \ χAk2 : ynk2〈r2k2 ,wn〉 ≥ (1− ξ3n), ξ3n ≥ 0,

∀k2 ∈ {1, 2, · · · , K2}, ∀n, ln ∈ χAk2 : ynk2〈r2k2 , (wn −w′ln)〉 ≥ µ(1− ξ4n), ξ4n ≥ 0.

where ζ = {{r1y}, {r2k2}, {κn},κ}, ∆fn(y) = f(Yn, z̄n)−f(y, z̄n), and ∆f ′n(y) =

f(Yn, z̄′n)−f(y, z̄′n). {ξ1n, ξ2n, ξ3n, ξ4n}Nn=1 are the slack variables, and f(y, z̄n) is

a feature vector whose components from (y−1)K+1 to yK are those of the vector

z̄n and all the others are 0. E[rT1y∆fn(y)] is the “expected margin” over which the

true label Yn is preferred over a prediction y. z̄′n is the feature vector obtained from

the variational approximation with {wln}Lnln=1 removed. The parameter µ adds some

flexibility in the modeling by maintaining separate margins for “negative” examples

and “contrast” examples. From this viewpoint, Act-Rationale-DSLDA projects the
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documents onto a combined topic space and then uses a max-margin approach to

predict the class label. The parameters C1, C2, C3, C4 penalize the margin violation

of the training data.

Let Q be the set of all distributions having a fully factorized form as given

in (8.2). Note that such a factorized approximation makes the use of incremental

variation of EM possible in the active selection step following the discussion in

Section 2.4.3.2. Let the distribution q∗ from the set Q optimize the objective in Eq.

(5.4). The optimal values of the corresponding variational parameters are same as

those of DSLDA [Acharya et al., 2013b]. The optimal values of φnm depend on γn

and vice-versa. Therefore, iterative optimization is adopted to maximize the lower

bound until convergence is achieved.

During testing, one does not observe a document’s supervised topics and in-

stead an approximate solution, as also used in [Acharya et al., 2013b; Ramage et al.,

2009], is employed where the variables {Λn} are assumed to be absent altogether

in the test phase, and the problem is treated as inference in MedLDA with K latent

topics. In the M step, the objective in Eq. (5.4) is maximized w.r.t κ0. The optimal

value of βkv is again similar to that of DSLDA [Acharya et al., 2013b]. However,

numerical methods for optimization are required to update α1 or α2. The update

for the parameters {r1y}Yy=1 is carried out using online SVM [Bordes et al., 2005,

2007] following Eq. (5.4).
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5.2.1.2 Incremental Learning in Active Selection

The method of Expected Entropy Reduction requires one to take an exam-

ple from the unlabeled pool and one of its possible labels, update the model, and

observe the generalized error on the unlabeled pool. This process is computation-

ally expensive unless there is an efficient way to update the model incrementally.

The incremental view of EM and the online SVM framework are appropriate for

such updates. Consider that a completely unlabeled or partially labeled document,

indexed by n′, is to be included in the labeled pool with one of the (K2 + 1) la-

bels (one for the class label and each different supervised topic) only, indexed by k′

or the label with its corresponding rationale. In the E-step, variational parameters

corresponding to all other documents except for the n′th one are kept fixed and the

variational parameters for only the n′th document are updated, based on the label or

the label with its rationale. In the M-step, we keep the priors {α(1),α(2)} over the

topics and the SVM parameters {r2k2} fixed as there is no easy way to update such

parameters incrementally. From the empirical point of view, these parameters do

not change much w.r.t. the variational parameters (or features in topic space repre-

sentation) of a single document. However, the update of the parameters {β, {r1y}}

is easier. Updating β is accomplished by a simple update of the sufficient statistics.

Updates of {r1y} are performed using the “ProcessNew” operation of online SVM

followed by a few iterations of “ProcessOld”. The selection of the document-label

pair is guided by the measure given in Eq. (2.12). Note that since SVM uses hinge

loss which, in turn, upper bounds the 0− 1 loss in classification, use of the measure

from Eq. (2.12) for active query selection is justified.
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5.3 Experimental Results
5.3.1 Datasets

We explore the utility of our approach with two different datasets. The first

one is the ACM conference abstract dataset, described in detail in Section 3.4.1.2,

and the second one is the aYahoo dataset, explained in detail in Section 3.4.1.1. For

both these datasets, we annotate the examples with their classes, supervised top-

ics and the associated rationales. From our experiments, we found out that there

is significant mismatch among the processes of identifying class labels, supervised

topics, and annotating rationale for class labels and supervised topics. This is il-

lustrated in Figs. 5.2 and 5.3. Note that annotating a rationale in a text document

usually takes longer time than annotating rationale in an image. This is primarily

due to the fact that selecting a part of an image is relatively easy and can be done

just by visual inspection. However, for text documents, one needs to look for the

representative set of words, a harder cognitive problem. For ACM conference data,

according to Fig. 5.2, we observe that the mean query time for rationale correspond-

ing to the class labels is approximately 4.0 times larger than that corresponding to

identifying the class labels or supervised topics. Similarly, the mean query time for

rationale of supervised topics is approximately 6.0 times larger than that of iden-

tifying the class labels or supervised topics. For aYahoo dataset, these factor are

approximately 1.6 and 3.0 respectively (see Fig. 5.3 for the distribution in query

times). The reason for the difference in query times for two types of annotations

is that the supervised topics are much more specific compared to the class labels.

Hence we had to spend extra time in finding the cues from the images and texts
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for the supervised topics. For large scale implementation, this difference in annota-

tion cost should be taken into account while designing the algorithm, otherwise one

could spend lot more time and money in retrieving annotations from online engines

like Mechanical Turk. Therefore, in our implementation, for querying for either the

class labels or supervised topics, we use unit cost. However, for annotation for class

labels we use a cost of 4.0 for the ACM conference dataset and 1.6 for the aYahoo

dataset. For annotation for supervised topics, these costs are 6.0 for the ACM con-

ference dataset and 3.0 for the aYahoo dataset. We incorporate these costs in Eq.

2.12 while making decision about which query to make. The information gain is

reduced by these costs when a label or a label with its rationale is included in the

training pool and the model is incrementally updated.

Figure 5.2: Distribution of query time
for rationales – ACM Conference

Figure 5.3: Distribution of query time
for rationales – aYahoo
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5.3.2 Methodology for Experiments

We evaluate the performance of Act-Rationale-DSLDA against the follow-

ing baselines:

• Act-DSLDA: This model is described in detail in Section 4.2. Act-DSLDA

queries only for class labels or supervised topics, but does not use any rationale at

all. We have seen in Chapter 4, that Act-DSLDA outperforms some of the relevant

baselines that do not use active learning or some other components of Act-DSLDA.

Hence, this is a strong baseline to beat.

• Act-Rationale-Class-DSLDA: This is Act-Rationale-DSLDA where the ratio-

nales for the supervised topics are not queried, but the rationales for the class labels

can be queried.

• Act-Rationale-Topics-DSLDA: This is Act-Rationale-DSLDA where the ratio-

nales for the class labels are not queried, but the rationales for the supervised topics

can be queried.

5.3.3 Results

For the experiments with active multitask learning, we start with a com-

pletely labeled dataset L consisting of 300 documents. In every active iteration, we

query for 50 labels (class labels or supervised topics). Figs. 5.4 and 5.5 present

representative learning curves for the ACM conference data and the aYahoo data

respectively, showing how classification accuracy improves as the amount of super-

92



Figure 5.4: ACM Conference Results Figure 5.5: aYahoo Results

vision is increased. The error bars in the curves show standard deviations across 20

trials.

Figs. 5.6 and 5.7 show the distribution of the class labels, supervised top-

ics and annotations queried by Act-Rationale-DSLDA at each iteration in the ACM

conference and aYahoo data, respectively. Note that a query for a class label or su-

pervised topic may or may not get augmented with the corresponding rationale. The

fact that a label can get augmented with its corresponding rationale when queried

for leads to four different types of answer for a query: only class labels, class la-

bels with rationale, only supervised topics, and supervised topics with rationale.

From Figs. 5.6 and 5.7, one can see that initially the model queries for more labels

along with their annotations, but towards the end of the learning curve, this trend

drops. To make the illustration more clear and interpretable, we present the distri-

bution of query types for every alternate active learning epoch. These plots clearly

demonstrate the utility of learning with rationales, of both class labels and super-

vised topics. The performances of two baselines Act-Rationale-Class-DSLDA and
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Figure 5.6: Distribution of query types – ACM Conference

Figure 5.7: Distribution of query types – aYahoo
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Act-Rationale-Topics-DSLDA are very similar, and both of them gain from the ex-

tra information provided by the rationales. However, the performance of these two

baselines is inferior compared to Act-Rationale-DSLDA which uses rationale for

both class labels and supervised topics. Act-DSLDA performs the worst among all

the models as it does not take information about rationales into account. Note that

we plot the learning curves till we incorporate all the class labels from the unla-

beled pool. Therefore, unlike in traditional active learning setup, we don’t get to

see a “banana” curve as one can still incorporate supervised topics and their ra-

tionales once the class labels are exhausted. Also, another reasonable comparison

among the proposed method and the baselines could be performed by using the cost

of annotation, instead of the number of labels queried, as the independent variable.

We leave that as an interesting future work.

5.4 Conclusion

This chapter has introduced Act-Rationale-DSLDA, a framework that uni-

fies active learning, multitask learning, latent topics, supervised topics, and learn-

ing with rationales. Extensive experiments with both text and vision datasets reveal

that the proposed method can exploit the rationales provided by the annotators ef-

ficiently to improve the predictive performance. In the next Chapter, we explore

a different type of simultaneous knowledge transfer for network imputation using

auxiliary information.
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Chapter 6

Gamma Process Poisson Factorization for Joint
Modeling of Network and Documents

In the last three chapters, we have seen the successful application of simul-

taneous knowledge transfer for object recognition from images and analysis of text

documents. In this chapter, we explore a different type of simultaneous knowledge

transfer in the context of social network analysis.

Social networks and other relational datasets often involve a large number

of nodes N with sparse connections between them. If the relationship is symmet-

ric, it can be represented compactly using a binary symmetric adjacency matrix

B ∈ {0, 1}N×N , where bij = bji = 1 if and only if nodes i and j are linked. Of-

ten, the nodes in such datasets are also associated with “side information,” such as

documents read or written, movies rated, or messages sent by these nodes. Integer-

valued side information are commonly observed and can be naturally represented by

a count matrix Y ∈ ZD×V , where Z = {0, 1, . . .}. For example, B may represent a

coauthor network and Y may correspond to a document-by-word count matrix rep-

resenting the documents written by all these authors. In another example, B may

represent a user-by-user social network and Y may represent a user-by-item rating

matrix that adds nuance and support to the network data. Incorporating such side
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information can result in better community identification and superior link predic-

tion performance as compared to modeling only the network adjacency matrix B,

especially for sparse networks.

Many of the popular network models [Airoldi et al., 2008; Gopalan et al.,

2012; Kemp et al., 2006; Miller et al., 2009; Palla et al., 2012] are demonstrated

to work well for small size networks. However, small networks are often dense,

while larger real-world networks tend to be much sparser and hence challenge ex-

isting modeling approaches. Incorporating auxiliary information associated with

the nodes has the potential to address such challenges, as it may help better identify

latent communities and predict missing links. A model that takes advantage of such

side information has the potential to outperform network-only models. However,

the side information may not necessarily suggest the same community structure as

the existing links. Thus a network latent factor model that allows separate factors

for side information and network interactions, but at the same time is equipped with

a mechanism to capture dependencies between the two types of factors, is desirable.

This chapter proposes Joint Gamma Process Poisson Factorization (J-GPPF)

to jointly factorize B and Y in a nonparametric Bayesian manner. The paper makes

the following contributions: 1) we present a fast and effective model that uses side

information to help discover latent network structures, 2) we perform nonparamet-

ric Bayesian modeling for discovering latent structures in both B and Y, and 3) our

model scales with the number of non-zero entries in the network SB as O (SBKB),

where KB is the number of network groups inferred from the data.

The remainder of the chapter is organized as follows. We present back-
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ground material and related work in Section 6.1. We introduce two new models,

N-GPPF (in Section 6.2) for network analysis and C-GPPF (in Section 6.3) for

analysis of count matrix, which are combined in an intuitive way in J-GPPF for

joint analysis of network and documents. J-GPPF and its inference algorithm are

explained in Section 6.4. Experimental results are reported in Section 6.5, followed

by conclusions in Section 6.6.

6.1 Related Work

The Infinite Relational Model (IRM) [Kemp et al., 2006] allows for multiple

types of relations between entities in a network and an infinite number of clusters,

but restricts these entities to belong to only one cluster. The Mixed Membership

Stochastic Blockmodel (MMSB) [Airoldi et al., 2008] assumes that each node in

the network can exhibit a mixture of communities. Though the MMSB has been

applied successfully to discover complex network structure in a variety of applica-

tions, the computational complexity of the underlying inference mechanism is in

the order of N2, which limits its use to small networks. Computation complexity is

also a problem with many other existing latent variable network models, such as the

latent feature relational model [Miller et al., 2009] and its max margin version [Zhu,

2012], and the infinite latent attribute model [Palla et al., 2012]. The Assortative

Mixed-Membership Stochastic Blockmodel (a-MMSB) [Gopalan et al., 2012] by-

passes the quadratic complexity of the MMSB by making certain assumptions about

the network structure that might not be true in general. The hierarchical Dirichlet

process relational model [Kim et al., 2013] allows mixed membership with an un-
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bounded number of latent communities; however, it is built on the a-MMSB whose

assumptions could be restrictive.

Some of the existing approaches handle sparsity in real-world networks by

using some auxiliary information [Leskovec and Julian, 2012; Menon and Elkan,

2011; Yoshida, 2013]. For example, in a protein-protein interaction network, the

features describing the biological properties of each protein can be used [Menon

and Elkan, 2011]. In an extremely sparse social network, information about each

user’s profile can be used to better recommend friends [Leskovec and Julian, 2012].

Recommender system and text mining researchers, in contrast, tend to take an or-

thogonal approach. In recommender systems [Chaney et al., 2013; Ma et al., 2008],

Y may represent a user-by-item rating matrix and the objective in this setting is to

predict the missing entries in Y, and the social network matrix B plays a secondary

role in providing auxiliary information to facilitate this task [Ma et al., 2008]. Sim-

ilarly, in the text mining community, many existing models [Balasubramanyan and

Cohen, 2011; McCallum et al., 2007; Nallapati et al., 2008; Wen and Lin, 2010]

use the network information or other forms of side information to improve the dis-

covery of “topics” from the document-by-word matrix Y. The matrix B can rep-

resent, for example, the interaction network of authors participating in writing the

documents. The Relational Topic Model [Chang and Blei, 2009] discovers links

between documents based on their topic distributions, obtained through unsuper-

vised exploration. The Author-Topic framework [Rosen-Zvi et al., 2004] and the

Author-Recipient-Topic model [McCallum et al., 2007] jointly model documents

along with the authors of the documents. Block-LDA [Balasubramanyan and Co-
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hen, 2011], on the other hand, provides a generative model for the links between

authors and recipients in addition to documents. The Nubbi model [Chang et al.,

2009] discovers entity relations from the text data by relying on words that appear

in the context of entities and entity pairs in the text. The Group-Topic model [Wang

et al., 2006] addresses the task of modeling events pertaining to pairs of entities

with textual attributes that annotate the event. Wen and Lin [2010] describe an ap-

proach that uses both content and network information to analyse enterprise data.

J-GPPF differs from these existing approaches in mathematical formulation, includ-

ing more effective modeling of both sparsity and the dependence between network

interactions and side information.

J-GPPF models both Y and B using Poisson factorization. As discussed

in [Acharya et al., 2015], Poisson factorization has several practical advantages

over other factorization methods that use Gaussian assumptions (e.g. in [Ma et al.,

2008]). First, zero-valued observations could be efficiently processed during in-

ference, so the model can readily accommodate large, sparse datasets. Second,

Poisson factorization is a natural representation of count data. Additionally, the

model allows mixed membership across an unbounded number of latent commu-

nities using the gamma Process as a prior. The authors in [Ball et al., 2011] also

use Poisson factorization to model a binary interaction matrix. However, this is a

parametric model and a KL-divergence based objective is optimized w.r.t. the latent

factors without using any prior information. To model the binary observations of

the network matrix B, J-GPPF additionally uses a novel Poisson-Bernoulli (PoBe)

link, discussed in detail in Section 6.4, that transforms the count values from the
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Poisson factorization to binary values. Similar transformation has also been used

in the BigCLAM model [Yang and Leskovec, 2013] which builds on the works of

[Ball et al., 2011]. This model was later extended to include non-network informa-

tion in the form of binary attributes [Yang et al., 2013]. Neither BigCLAM nor its

extension allows non-parametric modeling or imposing prior structure on the latent

factors, thereby limiting the flexibility of the models and making the obtained solu-

tions more sensitive to initialization. The collaborative topic Poisson factorization

(CTPF) framework proposed in [Gopalan et al., 2014b] solves a different problem

where the objective is to recommend articles to users of similar interest. CTPF is a

parametric model and variational approximation is adopted to solve the inference.

Joint matrix factorization is also addressed by Factorization machines (FM)

[Rendle, 2010], which combines high prediction quality of factorization models

with the flexibility of feature engineering. In challenging prediction problems,

where additional side-information is available and/or higher order features may be

needed, new challenges due to feature engineering needs arise. While interaction

terms are typically desired in such scenarios, the number of such terms grows very

quickly. This dilemma is cleverly addressed by the FM which represents data as

real-valued features like standard machine learning approaches, such as SVMs, and

uses interactions between each pair of variables. However, by restricting the in-

teraction to a latent space, the number of parameters needed to be determined is

kept manageable. Interestingly, the framework of FM subsumes many successful

factorization models like matrix factorization [Koren et al., 2009], SVD++ [Koren,

2008], TimeSVD++ [Koren, 2009], PITF [Rendle and Schmidt-Thieme, 2010] and
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FPMC [Rendle et al., 2010]. This generalization ability of FM is perhaps its main

drawback. The more popular learning algorithms for FM are stochastic gradient

descent (SGD) [Koren et al., 2009] and MCMC sampling [C. Freudenthaler, 2011]

both of which require lot of parameter tuning. Additionally, the data is still as-

sumed to be normally distributed, and hence, unlike in Poisson factorization (to be

discussed in detail later), the sparsity of the matrices is not utilized. Neither does

any of the proposed FM algorithms discover the ideal number of latent factors from

the data. We plan for a thorough empirical analysis with FM methods in future

though.

6.2 Gamma Process Poisson Factorization for Networks (N-GPPF)

Let there be a network of N users encoded as an N × N binary matrix B.

To model the latent factors in a network, a Gamma process G ∼ ΓP(c,G0) is main-

tained, a draw from which is expressed as G =
∑∞

k=1 rkδφk , where φk ∈ Ω is an

atom drawn from anN -dimensional base distribution asφk ∼
N∏
n=1

Gamma(e0, 1/cn)

and rk = G(φk) is the associated weight. Also, γ0 = G0(Ω) is defined as the mass

parameter corresponding to the base measure G0. The (n,m)th entry in the matrix

B is assumed to be derived from a latent count as:

bnm = I{xnm≥1}, xnm ∼ Pois (λnm) , λnm =
∑
k

λnmk, (6.1)

where λnmk = rkφnkφmk. This is called as the Poisson-Bernoulli (PoBe) link in

[Acharya et al., 2015; Zhou, 2015]. The distribution of bnm given λnm is named as

the Poisson-Bernoulli distribution, explained in Section 2.1.3. One may consider
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λnmk as the strength of mutual latent community membership between nodes n and

m in the network for latent community k, and λnm as the interaction strength ag-

gregating all possible community membership. For example, consider professional

and recreational interactions between people n,m, and m′ who all work together.

Person n has about the same level of professional interactions with both persons

m and m′. Yet if we add the condition that person n and m′ go fishing together

during the weekend, n and m′ will have membership in the “fishing together” la-

tent community while n and m will not. The strength of interactions between any

two persons could be considered as the aggregation of a possibly infinite kinds of

latent community memberships. Using Lemma 2.1.4, one may augment the above

representation as xnm =
∑

k xnmk, xnmk ∼ Pois (λnmk). Thus each interaction pat-

tern contributes a count and the total latent count aggregates the countably infinite

interaction patters.

Unlike the usual approach that links the binary observations to latent Gaus-

sian random variables with a logistic or probit function, the above approach links the

binary observations to Poisson random variables. Thus, this approach transforms

the problem of modeling binary network interaction into a count modeling problem,

providing several potential advantages. First, it is more interpretable because rk and

φk are non-negative and the aggregation of different interaction patterns increases

the probability of establishing a link between two nodes. Second, the computational

benefit is significant since the computational complexity is approximately linear in

the number of non-zeros S in the observed binary adjacency matrixB. This benefit

is especially pertinent in many real-word datasets where S is significantly smaller
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than N2. To complete the generative process, we put Gamma priors over c and cn

as:

c ∼ Gamma(c0, 1/d0), cn ∼ Gamma(f0, 1/g0). (6.2)

6.2.1 Gibbs Sampling for N-GPPF

Though N-GPPF supports countably infinite number of latent communities

for network modeling, in practice it is impossible to instantiate all of them. Instead

of marginalizing out the underlying stochastic process [Blackwell and MacQueen,

1973; Neal, 2000] or using slice sampling [Walker, 2007] for non-parametric mod-

eling, for simplicity, a finite approximation of the infinite model is considered by

truncating the number of graph communitiesK. Such an approximation approaches

the original infinite model as K approaches infinity. With such finite approxima-

tion, the generative process of N-GPPF is further summarized in Table 6.1.

bnm = I{xnm≥1}, xnm ∼ Pois

(∑
k

rkφnkφmk

)
,

rk ∼ Gamma(γk, 1/c), φnk ∼ Gamma(e0, 1/cn), cn ∼ Gamma(f0, 1/g0),
γk ∼ Gamma(a0, 1/b0), c ∼ Gamma(c0, 1/d0).

Table 6.1: Generative Process of N-GPPF

Sampling of xnmk : xnm’s are sampled only corresponding to the following entries:

(n,m) : n = {1, · · · , (N − 1)},m = {(n+ 1), · · · , N}.

For the above entries the sampling goes as follows:

xnm| ∼ bnmPois+

(
K∑
k=1

rkφnkφmk

)
, (6.3)
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where Pois+(.) is the truncated Poisson distribution, the sampling from which is

detailed in Section 2.1.3. Since, one can augment xnm ∼ Pois
(∑K

k=1 λnmk

)
as

xnm =
∑K

k=1 xnmk, where xnmk ∼ Pois (λnmk), equivalently, one obtains the fol-

lowing according to Lemma 2.1.4:

(xnmk)
K
k=1| ∼ Mult

(
(rkφnkφmk)

K
k=1 /

K∑
k=1

rkφnkφmk;xnm

)
. (6.4)

Sampling of φnk and rk : Sampling of these parameters follow from Lemma 2.1.1

and are given as follows:

φnk| ∼ Gamma

e0 +

(n−1)∑
m=1

xmnk +
N∑

m=(n+1)

xnmk, 1/

cn + rk

N∑
m=1
m6=n

φmk


 ,(6.5)

rk| ∼ Gamma

γk +

(N−1),N∑
n=1,n<m

xnmk, 1/

c+

(N−1),N∑
n=1,n<m

φnkφmk

 .(6.6)

Sampling of cn and c : Sampling of these parameters follow from Lemma 2.1.2

and are given as follows:

cn| ∼ Gamma

(
f0 +Ke0, 1/

(
g0 +

K∑
k=1

φnk

))
, (6.7)

c| ∼ Gamma

(
c0 +

K∑
k=1

γk, 1/

(
d0 +

K∑
k=1

rk

))
. (6.8)

Sampling of γk : Using Lemma 2.1.4, one can show that x..k ∼ Pois(rksk), where

x..k =
∑(N−1)

n=1

∑N
m=(n+1) xnmk, and sk =

∑(N−1)
n=1

∑N
m=(n+1) φnkφmk. Since rk ∼

Gam(γk, 1/c) and one can augment `k ∼ CRT(x..k, γk), following Lemma 2.2.2

one can sample:
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γk| ∼ Gamma (a0 + `k, 1/(b0 − log(1− pk))) , (6.9)

where pk = sk/(c+ sk).

6.2.2 Gibbs Sampling for N-GPPF with Missing Entries

Variables whose update get affected in presence of missing entries M are

φnk’s and rk’s. Sampling of these parameters follow from Lemma 2.1.1 and are

given as follows:

φnk| ∼ Gamma

e0 +

(n−1)∑
m=1

(m,n)6∈M

xmnk +
N∑

m=(n+1)
(n,m)6∈M

xnmk, 1/

cn + rk

N∑
m=1

m 6=n;(n,m)6∈M

φmk


 ,(6.10)

rk| ∼ Gamma

γk +

(N−1),N∑
n=1,n<m
(n,m) 6∈M

xnmk, 1/

c+

(N−1),N∑
n=1,n<m
(n,m)6∈M

φnkφmk


 . (6.11)

6.3 Gamma Process Poisson Factorization for Count Matrices
(C-GPPF)

Let there be a count matrix of Y of dimension D × V . We introduce a

Gamma processG ∼ ΓP(c,G0), a draw from which is expressed asG =
∑∞

k=1 rkδθk ,

where θk ∈ Ω is an atom drawn from a D-dimensional base distribution as θk ∼∏D
d=1 Gam(g0, 1/cd) and rk = G(φk) is the associated weight. Also, γ0 = G0(Ω)

is defined as the mass parameter corresponding to the base measure G0. Each atom

θk is marked with an atom βk, drawn from a V -dimensional base distribution as

βk ∼
∏V

w=1 Gam(h0, 1/sw). The (d, w)th entry in the matrixY is assumed to be de-

rived from a sum of latent counts as ydw ∼ Pois (
∑

k λdwk) where λdwk = rkθdkβwk.
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One may consider λdwk as the strength of the latent factor that dictates the relation

between the dth user and the wth item. Each latent factor contributes such a count

and the total count aggregates the countably infinite latent factors. Each of these

latent counts is composed of three parts. The parameter rk models the global pop-

ularity of the latent factor k, θdk models the affinity of the dth user to the kth latent

factor and βwk models the popularity of the wth word among the kth latent factor.

As described in Section 2.3, such modeling assumption is one instance of Poisson

factor analysis. To complete the generative process, we put Gamma priors over c,

cd and sw as:

c ∼ Gam(c0, 1/d0), cd ∼ Gam(e0, 1/f0), sw ∼ Gam(t0, 1/u0). (6.12)

ydw ∼ Pois

(
∞∑

kY =1

rkθdkβwk

)
, θk ∼

∏D
d=1 Gam(g0, 1/cd),

βk ∼
∏V

w=1 Gam(h0, 1/sw), cd ∼ Gam(e0, 1/f0), sw ∼ Gam(t0, 1/u0),
rk ∼ Gamma(γk, 1/c), γk ∼ Gamma(a0, 1/b0).

Table 6.2: Generative Process of C-GPPF

6.3.1 Gibbs Sampling for C-GPPF

A finite approximation of the infinite model is considered by truncating the

number of factors to K which approaches the original infinite model as K → ∞.

The sampling proceeds as follows:

Sampling of xdwk : This follows from the relation between Poisson and multino-

mial distribution, given in Lemma 2.1.4, and can be derived as:
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(xdwk)
K
k=1| ∼ mult

(
rkθdkβwk/

K∑
k=1

rkθdkβwk; ydw

)
. (6.13)

Sampling of rk, θdk and βwk : Sampling of these variables can be derived according

to Lemma 2.1.1 as:

rk| ∼ Gam (γk + x..k, 1/(c+ θ.kβ.k)) , (6.14)

θdk| ∼ Gam (g0 + xd.k, 1/ (cd + rkβ.k)) , (6.15)

βwk| ∼ Gam (h0 + x.wk, 1/ (sw + rkθ.k)) . (6.16)

Sampling of cd, sw and c : Sampling of these variables can be derived according to

Lemma 2.1.2 and are given as:

cd| ∼ Gam (e0 +Kg0, 1/ (f0 + θd.)) , (6.17)

sw| ∼ Gam (t0 +Kh0, 1/ (u0 + βw.)) , (6.18)

c| ∼ Gam

 K∑
k=1

γk +

(T−1)∑
t=0

rtk

+ c0, 1/

(
K∑
k=1

T∑
t=0

rtk + d0

) . (6.19)

Sampling of γk : Using Lemma 2.1.4, one can show that x..k ∼ Pois(rksk), where

x..k =
∑

d,w xdwk, and sk =
∑

d,w θdkβwk. Since rk ∼ Gam(γk, 1/c) and one can

augment `k ∼ CRT(x..k, γk), following Lemma 2.2.2 one can sample:

γk| ∼ Gamma (a0 + `k, 1/(b0 − log(1− pk))) , (6.20)

where pk = sk/(c+sk). A consequence of closed form updates for Gibbs sampling

is that the computation per iteration for CGPPF isO((S+D+V )K) where S is the

number of number of non-zero entries, which is a huge saving for sparse matrices

compared to Probabilistic matrix factorization (PMF) [Salakhutdinov and Mnih,
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2007] and Bayesian probabilistic matrix factorization (BPMF) [Salakhutdinov and

Mnih, 2008] whose computation cost per iteration isO(DVK2). This follows from

the underlying assumptions of Poisson distribution. When the observation is zero,

the corresponding latent counts {xdwk}Kk=1 are zero with probability 1, and hence

one needs to sample latent counts corresponding to non-zero entries only.

6.3.2 Gibbs Sampling for C-GPPF with Missing Entries

Variables whose update get affected in presence of missing values are rk’s

and θdk’s and βwk’s. Rest of the update equations are same as in the C-GPPF without

any missing value. Below, the updates are enlisted, where M denotes the set of

missing entries.

Sampling of rk, θdk and βwk : Sampling of rk, θdk and βwk follow from Lemma

2.1.1:

rk| ∼ Gam

γk +

D,V∑
d=1,w=1
(d,w) 6∈Mt

xdwk, 1/(c+

D,V∑
d=1,w=1
(d,w)6∈Mt

θdkβwk)

 , (6.21)

θdk| ∼ Gam

d0 +
V∑
w=1

(d,w)6∈Mt

xdwk, 1/(cd +
V∑
w=1

(d,w)6∈M

rkβwk)

 , (6.22)

βwk| ∼ Gam

h0 +
D∑
d=1

(d,w)6∈M

xdwk, 1/(sw +
D∑
d=1

(d,w)6∈M

rkθdk)

 . (6.23)
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6.4 Joint Gamma Process Poisson Factorization (J-GPPF)

Let there be a network of N users encoded in an N × N binary matrix

B. The users in the network participate in writing D documents summarized in

a D × V count matrix Y , where V is the size of the vocabulary. Additionally,

a binary matrix Z of dimension D × N can also be maintained, where the unity

entries in each column indicate the set of documents in which the corresponding

user contributes. In applications where B represents a user-by-user social network

and Y represents a user-by-item rating matrix, Z turns out to be an N -dimensional

identity matrix. However, in the following model description we consider the more

general document-author framework. Also, to make the notations more explicit, the

variables associated with the side information have Y as a subscript (e.g., GY ) and

those associated with the network make similar use of the subscriptB (e.g., GB).

We employ two separate Gamma Processes. The first one models the latent

factors in the network. A draw from this Gamma Process GB ∼ ΓP(cB, HB)

is expressed as GB =
∑∞

kB=1 ρkBδφkB , where φkB ∈ ΩB is an atom drawn

from an N -dimensional base distribution as φkB ∼
∏N

n=1 Gam(aB, 1/σn) and

ρkB = GB(φkB) is the associated weight. The second Gamma Process models

the latent groups of side information. A draw from this gamma process GY ∼

ΓP(cY , HY ) is expressed as GY =
∑∞

kY =1 rkY δβkY , where βkY ∈ ΩY is an atom

drawn from a V -dimensional base distribution as βkY ∼
∏V

w=1 Gam(ξY , 1/ζw) and

rkY = GY (βkY ) is the associated weight. Also, γB = HB(ΩB) is defined as the

mass parameter corresponding to the base measure HB and γY = HY (ΩY ) is de-

fined as the mass parameter corresponding to the base measure HY . The (n,m)th
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entry in the matrixB is assumed to be derived from a latent count as:

bnm = I{xnm≥1}, xnm ∼ Pois (λnm) , λnm =
∑
kB

λnmkB ,

where λnmkB = ρkBφnkBφmkB . This is called as the Poisson-Bernoulli (PoBe) link

in [Acharya et al., 2015; Zhou, 2015]. To model the matrix Y , its (d, w)th entry ydw

is generated as:

ydw ∼ Pois(ζdw), ζdw =

(∑
kY

ζY dwkY +
∑
kB

ζBdwkB

)
,

where ζY dwkY = rkY θdkY βwkY , Znd ∈ {0, 1} and Znd = 1 if and only if author n

is one of the authors of paper d and ζBdwkB = ερkB (
∑

n ZndφnkB)ψwkB . One can

consider ζdw as the affinity of document d for word w, This affinity is influenced by

two different components, one of which comes from the network modeling. With-

out the contribution from network modeling, the joint model reduces to a gamma

process Poisson matrix factorization model, in which the matrix Y is factorized in

such a way that ydw ∼ Pois
(∑

kY
rkY θdkY βwkY

)
. Here, Θ ∈ RD×∞

+ is the factor

score matrix, β ∈ RV×∞
+ is the factor loading matrix (or dictionary) and rkY signi-

fies the weight of the kth
Y factor. The number of latent factors, possibly smaller than

both D and V , would be inferred from the data.

In the proposed joint model, Y is also determined by the users participating

in writing the dth document. We assume that the distribution over word counts for a

document is a function of both its topic distribution as well as the characteristics of

the users associated with it. In the author-document framework, the authors employ

different writing styles and have expertise in different domains. In the user-rating
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framework, the entries inY are also believed to be influenced by the interaction net-

work of the users. Such influence of the authors is modeled by the interaction of the

authors in the latent communities via the latent factors φ ∈ RN×∞
+ and ψ ∈ RV×∞

+ ,

which encodes the writing style of the authors belonging to different latent commu-

nities. Since an infinite number of network communities is maintained, each entry

ydw is assumed to come from an infinite dimensional interaction. ρkB signifies the

interaction strength corresponding to the kth
B network community. The contribu-

tions of the interaction from all the authors participating in a given document are

accumulated to produce the total contribution from the networks in generating ydw.

Since B and Y might have different levels of sparsity and the range of integers in

Y can be quite large, a parameter ε is required to balance the contribution of the

network communities in dictating the structure of Y. A low value of ε forces dis-

joint modeling of B and Y, while a higher value implies joint modeling of B and Y

where information can flow both ways, from network discovery to topic discovery

and vice-versa. To complete the generative process, we put Gamma priors over cB,

cY , σn, ςd and ε as:

cB ∼ Gam(gB, 1/hB), cY ∼ Gam(gY , 1/hY ), ε ∼ Gam(g0, 1/f0),

σn ∼ Gam(αB, 1/εB), ςd ∼ Gam(αY , 1/εY ).

6.4.1 Inference via Gibbs Sampling

Though J-GPPF supports countably infinite number of latent communities

for network modeling and infinite number of latent factors for topic modeling, in

practice it is impossible to instantiate all of them. We consider a finite approxima-
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tion of the infinite model by truncating the number of graph communities and the

latent topics toKB andKY respectively, by letting ρkB ∼ Gam(γB/KB, 1/cB) and

rkY ∼ Gam(γY /KY , 1/cY ). Such approximation approaches the original infinite

model as both KB and KY approach infinity.

Sampling of (xnmkB)KBkB=1 : First, the total latent count corresponding to the non-

zero entries can be derived as:

(xnm|−) ∼ bnmPois+

(
KB∑
kB=1

λnmkB

)
. (6.24)

After which, following Lemma 2.1.4 one can derive:(
(xnmkB)KBkB=1 |−

)
∼ Mult

(
xnm,

(
λnmkB∑KB

kB=1 λnmkB

)KB
kB=1

)
. (6.25)

Sampling of (ydwk)k : Again, following Lemma 2.1.4, we have:(
(ydwkY )KYkY =1 , (ydnwkB)KBkB=1,n∈Zd |−

)
∼ (6.26)

Mult

(
ydw,

{ζdwkY }kY , {ζdnwkB}n∈Zd,kB∑
kY
ζdwkY +

∑
n∈Zd

∑
kB
ζdnwkB

)
.

Sampling of φnkB , ψwkB , ρkB , θdkY , βwkY , rkY and ε : Sampling of these pa-

rameters follow from Lemma 2.1.1 and are given in Table 6.3. The sampling of

parameters φnkB and ρkB exhibits how information from the count matrix Y in-

fluences the discovery of the latent network structure. The latent counts from Y

impact the shape parameters for both the posterior gamma distribution of φnkB and

ρkB , while Z influences the corresponding scale parameters.

Sampling of σn, ςd, ε, ζw, ηw, cB and cY : Sampling of these parameters follow

from Lemma 2.1.2 and are given in Table 6.3.
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(φnkB |−) ∼ Gam

aB +

(n−1)∑
m=1

xmnkB +
N∑

m=(n+1)

xnmkB + y.n.kB ,

σn + ρkB

 N∑
m=1
m 6=n

φmkB + ε
∑
d,w

ZndψwkB



−1 ,

(ψwkB |−) ∼ Gam

ξB + y··wkB ,
1

ζw+ερkB

∑
d,n

ZndφnkB

 , (θdkY |−) ∼ Gam
(
aY + yd·kY ,

1
ςd+rkY β.kY

)
,

(ρkB |−) ∼ Gam

 γB
KB

+
∑
(n,m)
n<m

xnmkB + y···kB ,

cB +
∑
(n,m)
n<m

φnkBφmkB + ε
∑
n,d,w

ZndφnkBψwkB


−1 ,

(rkY |−) ∼ Gam
(
γY
KY

+ y··kY ,
1

cY +θ.kY β.kY

)
, (βwkY |−) ∼ Gam

(
ξY + y·wkY ,

1
ηw+rkY θ.kY

)
,

(cB|−) ∼ Gam
(
gB + γB,

1
hB+

∑
kB

ρkB

)
, (cY |−) ∼ Gam

(
gY + γY ,

1
hY +

∑
kY

rkY

)
,

(ςd|−) ∼ Gam
(
αY +KY aY ,

1
εY +θd.

)
, (ε|−) ∼ Gam

f0 +

KB∑
k=1

y···k,

(
g0 +

KB∑
k=1

ρkB

N∑
n=1

|Zn|φnkB

)−1
 ,

(ζw|−) ∼ Gam
(
a0 +KBξB,

1
b0+ψw.

)
, (ηw|−) ∼ Gam

(
c0 +KY ξY ,

1
d0+βw.

)
.

Table 6.3: Gibbs sampling updates in J-GPPF

Sampling of γB : Using Lemma 2.1.4, one can show that x..kB ∼ Pois(ρkB).

Integrating ρkB and using Lemma 2.1.1, one can have x..kB ∼ NB(γB, pB), where

pB = 1/(cB + 1). Similarly, y..kB ∼ Pois(ρkB) and after integrating ρkB and using

Lemma 2.1.1, we have y..kB ∼ NB(γB, pB). We now augment lkB ∼ CRT(x..kB +

y..kB , γB) and then following Lemma 2.2.2 sample:

(γB|−) ∼ Gam

(
eB +

∑
kB

lkB , (fB − qB)−1

)
, (6.27)

where qB =
∑

kB
log
(
cB/(cB +

∑
n φnkBφ

−n
kB

)
)
/KB.

Sampling of γY : Using Lemma 2.1.4, one can show that y..(KB+kY ) ∼ Pois(rkY )

and after integrating rkY and using Lemma 2.1.1, we have y..(KB+kY ) ∼ NB(γY , pY ),

where pY = 1/(cY + 1). We now augment mkY ∼ CRT(y..(KB+kY ), γY ) and then

following Lemma 2.2.2 sample:
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(γY |−) ∼ Gam

(
eY +

∑
kY

mkY , (fY − qY )−1

)
, (6.28)

where qY =
∑

kY
log (cY /(cY + θ.kY )) /KY .

6.4.2 Gibbs Sampling for J-GPPF with Missing Entries

Parameters whose update get affected in presence of missing entires are ρkB ,

φnkB , ψwkB , rkY , θdkY , βwkY . Sampling of these parameters follow from Lemma

2.1.1 and are given in Table 6.4 and 6.5. Here MB and MY denote the set of missing

entries inB and Y respectively.

(φnkB |−) ∼ Gam

aB +

(n−1)∑
m=1

(n,m)6∈MB

xmnkB +
N∑

m=(n+1)
(n,m)6∈MB

xnmkB +
∑
d,w

(d,w)6∈MY

ydnwkB ,

σn + ρkB

 N∑
m=1

(n,m)6∈MB

φmkB + ε
∑
d,w

(d,w) 6∈MY

ZndψwkB



−1 ,

(ψwkB |−) ∼ Gam

ξB +
∑
d

(d,w)6∈MY

ydwkB ,

ηw + ερkB
∑
n,d

(d,w)6∈MY

ZndφnkB


−1,

(ρkB |−) ∼ Gam

 γB
KB

+

(N−1)∑
n=1,n<m
(n,m)6∈MB

xnmkB +
∑
n,d,w

(d,w) 6∈MY

ydnwkB ,

cB +

(N−1)∑
n=1,n<m
(n,m)6∈MB

φnkBφmkB + ε
∑
n,d,w

(d,w)6∈MY

ZndφnkBψwkB


−1 .

Table 6.4: Sampling of φnkB , ψwkB , ρkB in J-GPPF with missing entries

6.4.3 Special cases: Network Only GPPF (N-GPPF) and Corpus Only GPPF
(C-GPPF)

A special case of J-GPPF appears when only the binary matrixB is modeled

without the auxiliary matrix Y . The update equations of variables corresponding

to N-GPPF can be obtained with Z = 0. Another special case of J-GPPF appears

when only the count matrix Y is modeled without using the contribution from the
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(θdkY |−) ∼ Gam

aY +
∑
w

(d,w) 6∈MY

ydwkY ,

ςd + rkY
∑
w

(d,w)6∈MY

βwkY


−1,

(βwkY |−) ∼ Gam

ξY +
∑
d

(d,w)6∈MY

ydwkY ,

ηw + rkY
∑
d,n

(d,w)6∈MY

ZdnφnkY


−1,

(rkY |−) ∼ Gam

 γY
KY

+
∑
d,w

(d,w)6∈MY

ydwkY ,

cY +
∑
d,w

(d,w)6∈MY

θdkY βwkY


−1.

Table 6.5: Sampling of θdkY , βwkY , rkY in J-GPPF with missing entries

network matrixB.

6.4.4 Computation Complexity

The Gibbs sampling updates of J-GPPF can be calculated in O(KBSB +

(KB + KY )SY + NKB + DKY + V (KB + KY )) time, where SB is the num-

ber of non-zero entries in B and SY is the number of non-zero entries in Y . It

is obvious that for large matrices the computation is primarily of the order of

KBSB + (KB + KY )SY . Such complexity is a huge saving when compared

to other methods like MMSB [Airoldi et al., 2008], that only models B and in-

curs computation cost of O(N2KB); and standard matrix factorization approaches

[Salakhutdinov and Mnih, 2007] that work with the matrix Y and incurO(DVKY )

computation cost. In Fig. 6.1(a), we show the computation time for generating one

million samples from Gamma, Dirichlet (of dimension 50), multinomial (of dimen-

sion 50) and truncated Poisson distributions using the samplers available from GNU
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Scientific Library (GSL) on an Intel 2127U machine with 2 GB of RAM and 1.90

GHz of processor base frequency. To highlight the average complexity of sampling

from Dirichlet and multinomial distributions, we further display another plot where

the computation time is divided by 50 for these samplers only. One can see that to

draw one million samples, our implementation of the sampler for truncated Poisson

distribution takes the longest, though the difference from the Gamma sampler in

GSL is not that significant.

6.5 Experimental Results
6.5.1 Experiments with Synthetic Data

We generate a synthetic network of size 60 × 60 (B) and a count data ma-

trix of size 60 × 45 (Y). Each user in the network writes exactly one document

and a user and the corresponding document are indexed by the same row-index

in B and Y respectively. To evaluate the quality of reconstruction in presence of

side-information and less of network structure, we hold-out 50% of links and equal

number of non-links from B. This is shown in Fig. 6.1(b) where the links are

presented by brown, the non-links by green and the held-out data by deep blue.

Clearly, the network consists of two groups. Y ∈ {0, 5}60×45, shown in Fig 6.1(c),

is also assumed to consist of the same structure as B where the zeros are presented

by deep blue and the non-zeros are represented by brown. The performance of N-

GPPF is displayed in Fig. 6.2(a). Evidently, there is not much structure visible in

the discovered partition of B from N-GPPF and that is reflected in the poor value

of AUC in Fig. 6.3(a). The parameter ε, when fixed at a given value, plays an
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important role in determining the quality of reconstruction for J-GPPF. As ε → 0,

J-GPPF approaches the performance of N-GPPF on B and we observe as poor a

quality of reconstruction as in Fig. 6.2(a). When ε is increased and set to 1.0, J-

GPPF departs from N-GPPF and performs much better in terms of both structure

recovery and prediction on held-out data as shown in Fig. 6.2(e) and Fig. 6.3(b).

With ε = 10.0, perfect reconstruction and prediction are recorded as shown in Fig.

6.2(i) and Fig. 6.3(c) respectively. In this synthetic example, Y is purposefully

designed to reinforce the structure of B when most of its links and non-links are

held-out. However, in real applications, Y might not contain as much of informa-

tion and the Gibbs sampler needs to find a suitable value of ε that can carefully

glean information from Y.

(a) (b) (c)

Figure 6.1: (a) Time to generate a million of samples, (b) B with held-out data, (c)
Y

There are few more interesting observations from the experiment with syn-

thetic data that characterize the behavior of the model and match our intuitions. In

our experiment with synthetic data KB = KY = 20 is used. Fig. 6.2(b) demon-

strates the assignment of the users in the network communities and Fig. 6.2(d)

illustrates the assignment of the documents to the combined space of network com-

munities and the topics (with the network communities appearing before the topics
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in the plot). For ε = 0.001, we observe disjoint modeling of B and Y, with two

latent factors modeling Y and multiple latent factors modeling B without any clear

assignment. As we increase ε, we start observing joint modeling of B and Y. For

ε = 1.0, as Fig. 6.2(h) reveals, two of the network latent factors and two of the

factors for count data together model Y, the contribution from the network factors

being expectedly small. Fig. 6.2(f) shows how two of the exact same latent factors

model B as well. Fig. 6.2(j) and Fig. 6.2(l) show how two of the latent factors

corresponding to B dictate the modeling of both B and Y when ε = 10.0. This im-

plies that the discovery of latent groups in B is dictated mostly by the information

contained in Y. In all these cases, however, we observe perfect reconstruction of Y

as shown in Fig. 6.2(c), Fig. 6.2(g) and Fig. 6.2(k).

6.5.2 Experiments with Real World Data

To evaluate the performance of J-GPPF, we consider N-GPPF, the infinite

relational model (IRM) of [Kemp et al., 2006] and the Mixed Membership Stochas-

tic Block Model (MMSB) [Airoldi et al., 2008] as the baseline algorithms.

6.5.2.1 NIPS Authorship Network

This dataset contains a list of all papers and authors from NIPS 1988 to

2003. We took the 234 authors who had published with the most other people

and looked at their co-authorship information. After standard pre-processing and

removing words that appear less than 50 times in the over-all corpus corresponding
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.2: Performance of J-GPPF: ε = 10−3 (top row), ε = 1 (middle row),
ε = 10 (bottom row)

(a) (b) (c)

Figure 6.3: (a) AUC with ε = 0.001, (b) AUC with ε = 1.0, (c) AUC with ε = 10.0
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to these users, the number of users in the graph who write at least one document, is

225 and the total number of unique words is 1354. The total number of documents

is 1165.

6.5.2.2 GoodReads Data

Using the Goodreads API, we collect a base set of users with recent activity

on the website. For each user in the base set, the user’s friends as well as friends

of friends on the site are collected (two hops in the graph). This process is re-

peated over a 24−hour time period, with a new base set constructed each time (i.e.

friends are not polled recursively). By running for a full day, multiple time zones

are covered and the reviews are collected for all identified users, with a maximum

of 200 reviews per user. Each review consists of a book ID and a rating from 0

to 5. Similar dataset has also been used in [Chaney et al., 2013]. After standard

pre-processing and removing words that appear less than 10 times in the over-all

corpus, the number of users in the graph is 84 and the total number of unique words

is 189.

6.5.2.3 Twitter Data

The Twitter data that we use in the paper is a subset of the geo-tagged tweets

collected by the authors in [Roller et al., 2012]. A subset of users located in the San

Francisco city limits are extracted for our analysis. For each user in the San Fran-

cisco subset, we collect all of the accounts followed by that user with the Twitter

API, and discard accounts that are not in San Francisco. This process creates an
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undirected graph of users within the San Francisco subset. For side information,

word counts are collected from the aggregated tweets for each user in the graph.

After standard pre-processing and removing words that appear less than 25 times in

the over-all corpus, the number of users in the graph is 670 and the total number of

unique words is 538. All the tweets corresponding to one user are collapsed into a

single document and so each user is associated with exactly one document in this

dataset.

(a) (b)

Figure 6.4: (a) NIPS Data, (b) GoodReads Data

Figure 6.5: Twitter Data
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6.5.2.4 Experimental Setup and Results

In all the experiments, we initialize ε to 2 and let the sampler decide what

value works best for joint modeling. We use KB = KY = 50 and initialize all

the hyper-parameters to 1. In the first set of experiments, for each dataset, we hold

out data from B only and ran 20 different experiments and display the mean AUC

and one standard error. In this setup, we consider N-GPPF, the infinite relational

model (IRM) of [Kemp et al., 2006] and the Mixed Membership Stochastic Block

Model (MMSB) [Airoldi et al., 2008] as the baseline algorithms. Fig. 6.4 and

6.5 demonstrate the performances of the models in predicting the held-out data.

J-GPPF clearly has advantage over other network-only models when the network

is sparse enough and the auxiliary information is sufficiently strong. However, all

methods fail when the sparsity increases beyond a certain point. The performance

of J-GPPF also drops below the performances of network-only models in highly

sparse networks, as the sampler faces additional difficulty in extracting information

from both B and Y.

Figure 6.6: MAP NIPS Figure 6.7: MAP GoodReads

In the second set of experiments, we hold out data from Y only and run 20

different experiments and display the precision@top-20 for J-GPPF. This evaluation
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is structured along the lines of the work in [Gopalan et al., 2014a]. We calculate

the intersection of the top 20 predicted set of words (arranged in the decreasing

order of counts) and the top 20 words in a document and divide the number by 20

to get the precision for each document. We then calculate mean average precision

(MAP) by taking the average of the precision over all the documents. C-GPPF and

the hierarchical Poisson matrix factorization (HPMF) [Gopalan et al., 2013] are

considered as the baselines, both of which model only Y. Fig. 6.6 and 6.7 show

that B helps in boosting the predictive performance in J-GPPF over a wide range of

fractions of the data that is held out from Y.

6.6 Conclusion

We propose J-GPPF that jointly factorizes the network adjacency matrix and

the associated side information that can represented as a count matrix. The model

has the advantage of representing true sparsity in adjacency matrix, in latent group

membership, and in the side information. We derived an efficient MCMC inference

method, and compared our approach to several popular network algorithms that

model the network adjacency matrix. Experimental results confirm the efficiency

of the proposed approach in utilizing side information to improve the performance

of network models. In the next two chapters, we explore the implementations and

applications of sequential knowledge transfer only.
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Chapter 7

Nonparametric Dynamic Models

In the earlier chapters, we have seen how simultaneous knowledge transfer

can be used to solve problems related to object recognition from images, text classi-

fication, and joint network and topic modeling for better network imputation. This

chapter demonstrates how sequential knowledge transfer can be used effectively to

model data that changes with time. In Section 7.1, we develop models specific to

the analysis of count-valued and binary vectors that evolve with time. We invent

quite a few novel tricks to solve a difficult inference problem associated with the

proposed model. Interestingly, the same set of inference tricks can also be applied

to other models, described in Section 7.2 and 7.3, for the analysis of network data

and dyadic data respectively that change with time.

7.1 Nonparametric Bayesian Dynamic Count and Binary Ma-
trix Factorization

There has been growing interest in analyzing dynamic count and binary ma-

trices, whose columns are data vectors that are sequentially collected over time.

These data appear in many real world applications, such as text analysis, social

network modeling, audio and language processing, and recommendation systems.

The count data are discrete and nonnegative, have limited ranges, and often present
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overdispersion; the binary data only have two possible values: 0 and 1; and both

kinds of data commonly appear in big matrices that are extremely sparse. While

the classical matrix factorization method using the Frobenius norm is effective for

factorizing real matrices [Aharon et al., 2006; Candès et al., 2011; Gunasekar et al.,

2013; Koren et al., 2009; Lawrence and Urtasun, 2009; Salakhutdinov and Mnih,

2008; Srebro et al., 2003], its inherent Gaussian assumption is often overly restric-

tive for modeling count and binary matrices. To take advantage of existing well-

developed techniques for Gaussian data, one usually consider connecting a count

observation to a latent Gaussian random variable using the lognormal-Poisson link,

and connecting a binary observation using the probit or logit links. These gen-

eralized linear model [McCullagh and Nelder, 1989] based approaches, however,

might involve heavy computation. For example, for an extremely sparse but huge-

size count/binary matrix, linking each zero observation to a latent Gaussian random

variable would impose a substantial computational and memory burden. In addi-

tion, there is often lack of intuitive interpretation of the inferred factorization in the

latent Gaussian space.

Despite the disadvantages in both computation and interpretation, latent

Gaussian based approaches are commonly used to analyze count and binary data.

This is particularly true for dynamic modeling, since inference techniques for lin-

ear dynamic systems such as the Kalman filter are well developed, which can be

readily applied once the dynamic count/binary data are transformed into the latent

Gaussian space. For example, to analyze the temporal evolution of topics in a cor-

pus, the dynamic topic model draws the topic proportion at each time stamp from
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a logistic normal distribution, whose parameters are chained in a state space model

that evolves with Gaussian noise [Blei and Lafferty, 2006]. Although the dynamic

topic model is a discrete latent variable model, to model the topic proportion that

explains the number of words assigned to a topic in a document, which is a count,

it chooses to use the logistic normal link and imposes the temporal smoothness of

model parameters in the latent Gaussian space.

Rather than modeling the dynamic evolving of count and binary data in the

latent Gaussian space using a linear dynamic system, in this section, we consider

a fundamentally different approach: we directly chain the positive Poisson rates

of the count or binary data in a state space model that evolves with gamma noise.

More specifically, we build a gamma Markov chain that sends θt−1, a latent gamma

random variable at time t− 1, as the shape parameter of the latent gamma random

variable at time t as θt|θt−1 ∼ Gamma(θt−1, 1/c); at each time point, we use θt as

the Poisson rate for a count as nt ∼ Pois(θt); and the counts {nt}t are conditionally

independent given {θt}t. If the observation is binary, then we assume the Bernoulli

random variable is generated by thresholding a latent count as bt = 1(nt ≥ 1),

which means bt = 1 if nt ≥ 1 and bt = 0 if nt = 0. We call this novel count-binary

link function as the Poisson-Bernoulli link, under which the conditional posterior

of the latent count follows a truncated Poisson distribution.

To apply the gamma Markov chain to dynamic count and binary matrix fac-

torization, we extend it to a multivariate setting, which is integrated into a discrete

latent variable model called Poisson factor analysis [Zhou et al., 2012]. Specifi-

cally, we factorize the observed dynamic count (binary) matrix under the Poisson
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(Poisson-Bernoulli) likelihood, and chain the latent factor scores across time, where

a gamma distributed factor score is linked via a Poisson distribution to a latent count

that counts how many times the corresponding factor is used by the corresponding

observation. To avoid tuning the latent dimension of factorization, we also em-

ployes a gamma process to automatically infer the number of factors, which can be

potentially infinite as the number of observation grows. The key challenge for this

unconventional Markov chain is to infer the gamma shape parameters, for which

we discover a simple and effective solution.

This section makes the following contributions: 1) We construct a novel

gamma Markov chain to model dynamic count and binary data. 2) We provide

closed-form update equations to infer the parameters of the gamma Markov chain,

using novel data augmentation and marginalizing techniques. 3) We integrate the

gamma Markov chain into Poisson factor analysis to analyze dynamic count matri-

ces. 4) We factorize a dynamic binary matrix under the proposed Poisson-Bernoulli

likelihood, with extremely efficient computation for spare observations. 5) We ap-

ply the developed techniques to real world data analysis, with state-of-the-art re-

sults.

7.1.1 Gamma Process Dynamic Poisson Factor Analysis

In this paper, we first consider a dynamic count matrix N ∈ ZV×T , whose

T columns are V -dimensional count vectors sequentially observed. We consider a

modified version of PFA as

N ∼ Pois(ΦΛΘ),
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where Λ = diag(λ) and λ = (λ1, · · · , λ∞) is a vector representing the strengths

of the countably infinite latent factors. Note that under the regular setting where

different columns of Θ are independently modeled, this parameterization is not

a strict generalization of the beta-NB process PFA described in [Zhou and Carin,

2012; Zhou et al., 2012]. This is because if one follows the beta-NB process to

let θtk ∼ Gamma (rt, pk/(1− pk)), and λk is assumed to be independent from θtk,

then θ̃tk := λkθtk ∼ Gamma (rt, qk/(1− qk)), where qk = λkpk
1+(λk−1)pk

. Thus Λ are

redundant and can be absorbed into Θ as N ∼ Pois(ΦΘ̃). In this paper, with the

column index t corresponding to time, the modified representation would become

necessary to impose temporal smoothness for consecutive columns, which are no

longer assumed to be independent, as discussed below.

We consider a gamma process G ∼ GaP(c,G0), a draw from which is ex-

pressed as G =
∑∞

k=1 λkδφk , where φk is an atom drawn from a V -dimensional

base distribution as φk ∼ Dir(η, · · · , η) and λk = G(φk) is the associated weight.

We mark each atom φk with a constant θ(−1)k = 0.01, and then generate a gamma

Markov chain by letting:

θtk|θ(t−1)k ∼ Gamma(θ(t−1)k, 1/ct), t = 0, · · · , T.

We then integrate the weights of the gamma process {λk} and the infinite-dimensional

gamma Markov chain into a gamma process dynamic Poisson factor analysis (dPFA)
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model as:

nvt =
∞∑
k=1

nvtk, nvtk ∼ Pois(λkφvkθtk),

φk ∼ Dir(η1, · · · , ηV ), θtk ∼ Gamma(θ(t−1)k, 1/ct),

G ∼ GaP(c,G0), ct ∼ Gamma(e0, 1/f0). (7.1)

We further impose the gamma prior Gamma(e0, 1/f0) on both the concentration

parameter c and the mass parameter γ0 = G0(Ω). Below we discuss how to infer

the model parameters, in particular, how to solve the challenge of inferring each

θtk, which is the gamma shape parameter for θ(t+1)k.

Figure 7.1: Illustration of GP-DPFA

7.1.1.1 Inference via Gibbs Sampling

The proposed gamma process dPFA supports an countably infinite num-

ber of latent factors, but in practice it is impossible to instantiate all of them.
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One common approach for exact inference for a nonparametric Bayesian model

is to marginalize out the underlying stochastic process [Blackwell and MacQueen,

1973], and another common approach is to use slice sampling to adaptive truncate

the number of atoms [Walker, 2007]. For simplicity, in this paper, we consider a

finite approximation of the infinite model by truncating the number of factors to K,

by letting

λk ∼ Gamma(γ0/K, 1/c), (7.2)

which approaches the original infinite model as K → ∞. Despite the significant

challenge presented in inferring the gamma shape parameters, exploiting the data

augmentation and marginalization techniques unique to the negative binomial dis-

tribution [Zhou and Carin, 2012, 2015], we derive closed-form Gibbs sampling

update equations for all model parameters, as described below.

Exploiting the property that
∑V

v=1 φvk = 1 ∀k, the likelihood of the latent

counts, conditioned on (Φ,Θ,λ) can be expressed as

P ({(nvtk)Kk=1}|Φ,Θ,λ) =
J∏
j=1

V∏
v=1

K∏
k=1

(λkφvkθjk)
nvjk

nvjk!
e−λkφvkθjk

=

(
J∏
j=1

V∏
v=1

K∏
k=1

1

nvjk!

)
K∏
k=1

{(
V∏
v=1

φnv·kvk

)(
J∏
j=1

θ
n·jk
jk λn·tk

k e−λkθjk

)}
. (7.3)

Sample nvtk: Using the relationship between the Poisson and multinomial distribu-

tion, as in Lemma 4.1 of [Zhou et al., 2012], given the observed counts and latent

parameters, we have

(nvt1, · · · , nvtK |−) ∼ Mult
(
nvt,

λ1φv1θt1∑
k λkφvkθtk

, · · · , λKφvKθtK∑
k λkφvkθtk

)
(7.4)
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Sampleφk: Since in the likelihood we have (n1·k, · · · , nV ·k|n··k,φk) ∼ Mult(n··k,φk),

using the Dirichlet-multinomial conjugacy, the conditional posterior of φk can be

expressed as

(φk|−) ∼ Dir(η + n1·k, · · · , η + nV ·k). (7.5)

Sample λk: Since in the likelihood n·tk ∼ Pois(λkθtk), using the gamma-Poisson

conjugacy, the conditional posterior of λk can be expressed as

(λk|−) ∼ Gamma
(
n··k +

γ0

K
,

1

c+
∑

t θtk

)
. (7.6)

Sample θtk: Due to the Markovian construction, it is necessary to consider both

backward and forward information for the inference of θtk. Starting from the last

time point t = T , one has nTk ∼ Pois(λkθTk), θTk ∼ Gamma(θ(T−1)k, 1/cT ). The

marginalization of θTk leads to nTk ∼ NB(θ(T−1)k, pTk), where pTk := λk
cT+λk

and

p(T+1)k := 0. The NB distribution can further be augmented with an auxiliary count

variable as lTk ∼ CRT(nTk, θ(T−1)k), nTk ∼ NB(θ(T−1)k, pTk). Following Lemma

2.2.2, the joint distribution of lTk and nTk is a Poisson-logarithmic distribution that

can be represented as nTk ∼
∑lTk

t=1 Log(pTk), lTk ∼ Pois(−θ(T−1)k ln(1 − pTk)).

Thus lTk can be considered as the backward information from T to (T − 1). Given

l(t+1)k, the backward information from (t+ 1) to t, we then have

l(t+1)k ∼ Pois(−θtk ln(1− p(t+1)k)), ntk ∼ Pois(rkθtk).

The marginalization of θtk leads to

(ntk + l(t+1)k) ∼ NB(θ(t−1)k, ptk), ptk :=
λk − ln(1− p(t+1)k)

ct + λk − ln(1− p(t+1)k)
.
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Thus ltk, the backward information from t to (t− 1), can be calculated as:

ltk ∼ CRT(ntk + l(t+1)k, θ(t−1)k). (7.7)

With these information calculated backwards, for t = 0, · · · , T , one can sample θtk

forwards as:

(θtk|−) ∼ Gamma(θ(t−1)k + ntk + l(t+1)k, (1− ptk)/ct). (7.8)

where n0k := 0 and θ(−1)k := 0.01.

Sample ct, c and γ0. For t = 0, · · · , T , we sample ct as:

(ct|−) ∼ Gamma
(
e0 +

∑
k θ(t−1)k,

1
f0+

∑
k θtk

)
. (7.9)

We sample c as:

(c|−) ∼ Gamma
(
e0 + γ0,

1
f0+

∑
k λk

)
. (7.10)

Since n··k ∼ NB
(
γ0
K
,
∑
t θtk

c+
∑
t θtk

)
, we can sample γ0 using

(`k|−) ∼ CRT
(
n··k,

γ0

K

)
, (7.11)

(γ0|−) ∼ Gamma

e0 +
∑
k

`k,
1

f0 −
∑

k ln
(

1−
∑
t θtk

c+
∑
t θtk

)
 . (7.12)

7.1.1.2 Modeling Binary Observations

To model binary data, a novel data augmentation technique is introduced

here. Rather than following the usual approach to link a binary observation to a
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latent Gaussian random variable using the probit or logit links, a binary observation

is linked to a latent count as

b = 1(n ≥ 1), n ∼ Pois(λ),

which is named in this paper as the Poisson-Bernoulli (PoBe) link. We call the

distribution of b given λ as the Poisson Bernoulli distribution, with PMF fB(b|λ) =

e−λ(1−b)(1 − e−λ)b, b ∈ {0, 1}. The conditional posterior of the latent count n

is simply (n|b, λ) ∼ b · Pois+(λ), where k ∼ Pois+(λ) is the truncated Poisson

distribution with PMF fK(k) = 1
1−e−λ

λke−λ

k!
, k = 1, 2, · · · . Thus if b = 0, then

n = 0 almost surely (a.s.), and if b = 1, then n is drawn from a truncated Poisson

distribution. To simulate the truncated Poisson random variable x ∼ Pois+(λ), we

use rejection sampling: if λ ≥ 1, we draw x ∼ Pois(λ) until x ≥ 1; if λ < 1, we

draw y ∼ Pois(λ) and u ∼ Unif(0, 1), and let x = y + 1 if u < 1/(y + 1). The

acceptance rate is 1− e−λ if λ ≥ 1 and λ−1(1− e−λ) if λ < 1. Thus the minimum

acceptance rate is 63.2% (when λ = 1).

With the PoBe link to connect an observed dynamic binary matrix to a dy-

namic latent count matrix, we are ready to apply the gamma process dPFA to dy-

namic binary matrix factorization. The only additional step is to add the sampling

of the latent counts as

(nit|bit,Φ,Θ) ∼ bitPois+(
∑

k φktθkt). (7.13)

A clear advantage of the PoBe link over both the probit and logit links is that it is

extremely efficient in handling sparse binary matrices, since if an element of the
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binary matrix is zero, the corresponding latent count is zero a.s., for which there is

no need to perform sampling.

7.1.2 Experimental Results

In this section, experimental results are reported on a variety of synthetic

and real world datasets and GP-DPFA is compared with relevant baselines. The

synthetic and coal-mine disaster datasets provide a test-bed of GPAR, a special

case of GP-DPFA.

7.1.2.1 Results with Synthetic Datasets

As in [Adams et al., 2009], three one-dimensional data sets are used with

the following rate functions:

• A sum of an exponential and a Gaussian bump (SDS1): θ(t) = 2exp(−t/15) +

exp(−((t− 25)/10)2) on the interval t = [0 : 1 : 50].

• A sinusoid with increasing frequency (SDS2): θ(t) = 5sin(t2) + 6 on t = [0 :

0.2 : 5].

• θ is the piecewise linear function on the interval t = [0 : 1 : 100] and is given

by: θ(t) = (2 + t/30) if 0 ≤ t ≤ 30, θ(t) = (3 − (t − 30)/10) if 31 ≤ t ≤ 50,

θ(t) = (1 + 1.5 ∗ (t− 50)/25) if 51 ≤ t ≤ 75 and θ(t) = (2.5 + 0.5 ∗ (t− 75)/25)

if 76 ≤ t ≤ 100 (SDS3).

GPAR is compared with the sigmoidal Gaussian Cox process (SGCP) [Adams et al.,

2009], log-Gaussian Cox process (LGCP) [Møller et al.], and the classical kernel
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smoothing (KS) [Diggle, 1985]. These methods are considered as state-of-the-art

in various scenarios involving modeling of count time series. Edge-corrected ker-

nel smoothing is performed using a quartic kernel and a mean-square minimization

technique is used for bandwidth selection. The squared-exponential kernel is used

for both the SGCP and LGCP. Since the LGCP works with discretization, experi-

ments are performed with 10, 25 and 100 bins. The rate functions provide ground

truth and cumulative mean squared error (MSE) between the ground truth and the

estimated rate are measured for all the models. Additionally, for each of the above

series, the last five observations are withheld and MSE is measured between the

true rate and the estimated rate over these withheld observations. The results are

displayed in Table 2. “PMSE” stands for MSE in prediction for the last five years

of data. The best results are presented in bold.

(a) (b) (c)

Figure 7.2: (a) correlation across topics over time, (b) latent factors dominant over
time for GP-DPFA, (c) latent factors dominant over time for the baseline.
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7.1.2.2 Results with Real World Datasets

Coalmine Disaster Dataset: The British coal mine disaster dataset [Adams

et al., 2009] records the number of coalmine accidents arranged according to year

from 1851 to 1962. To illustrate the robustness of the inference framework, the un-

derlying rate is initialized to a large value 1000. Fig. 1(a) shows the estimated rate

and the sampled value of the underlying rate after the 1st iteration. Fig. 1(b) shows

the estimation of the underlying rate along with a “baseline” GP-DPFA model that

does not use any temporal correlation. A box plot of the sampled rate is presented

in Fig. 1(c) showing that the alogorithm converges to a good estimate even with

such a poor initialization. For these plots, 3000 iterations are used and the last 1000

samples are collected.

State-of-the-Union Dataset (STU): The STU dataset contains the tran-

scripts of 225 US State of the Union addresses, from 1790 to 2014. Each transcript

corresponding to each year is considered as one document. After removing stop

words and terms that occur fewer than 7 times in one document or less than 20

times overall, there are 2375 unique words.

Conference Abstract Dataset (Conf.): The Conf. dataset consists of the

abstracts of the papers appearing on DBLP for the second author of this paper from

2000 to 2013. For every year, a count vector of dimension V = 1771 is maintained

where the counts are the occurrences of the words appearing in all documents from
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(a) (b) (c)

(d) (e)

Figure 7.3: (a) correlation of the observed data across time, (b) correlation discov-
ered in the latent space, (c) correlation between the observation and latent counts,
(d) correlation between the ten most prominent latent factors for GP-DPFA, (e)
correlation between the ten most prominent latent factors in the baseline model.

the given year, chosen after standard pre-processing like stemming and stop-words

removal.

Table 3 displays the results from both STU and Conf. datasets. 20% of the

words are held-out for each of the first 224 years in the STU data and 10% of the

words are held-out for each of the first 13 years in the Conf. data, when training

three different models: i) GP-DPFA, ii) DRFM [Han et al., 2014], and iii) a baseline

model which is a simplified version of GP-DPFA that does not use temporal correla-

tion for the latent rates. Additionally, all the data from the last year for both of these

datasets are held-out. The underlying prediction problem is concerned with estimat-

ing the held-out words. For the prediction corresponding to each year, the words are

ranked according to the estimated count and then two quantities are calculated: i)
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precision@top-M which is given by the fraction of the top-M words, predicted by

the model, that matches the true ranking of the words; and ii) recall@top-M which

is given by the fraction of words from the held-out set that appear in the top−M

ranking. In the experiments reported, M = 50 is used. For the last year for which

entire data is held-out, calculation of recall@top−M is irrelevant. In Table 3, the

column MP and MR signify mean precision and mean recall respectively over all

the years that appear in the training set. The column PP signifies the predictive

precision for the final year, for which the entire dataset is held out. Such measure

is also adopted for the recommendation system in [Gopalan et al., 2014a] and is

perhaps the only reasonable measure when the likelihoods between two different

models like GP-DPFA and DRFM are not comparable. GP-DPFA almost always

outperforms DRFM and both of these dynamic models convincingly beat the base-

line model.

For the Conf. dataset, Fig. 4(a) shows the correlation discovered in the

latent space over time, and Figs. 4 (b) and (c) show the normalized strengths of

the latent factors (i.e. λkθtk/
∑

k λkθtk) discovered by GP-DPFA and the baseline

model, respectively. One can clearly see that the assignments to latent factors are

strongly correlated with time for GP-DPFA but the baseline model tends to choose

different latent factors for different years. In the experiments, K = 100 is used

and GP-DPFA infers that only a small subset of the 100 topics need to be active,

implying an automatic model selection. The number of active latent topics is found

to be around 14 on average. Examining some of the topics provides even more

insight about the data. For example, the top words of a topic that has large weights
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across all years include “network”, “graph-partition”, “algorithm”, “cluster” and

“outlier”, whereas the top words of a topic that is dominant over a certain period of

time include “Bregman”, “projection”, “clustering” and “ensemble”, revealing the

author’s publication trend.

Figure 7.4: Top Row: Correlation plots for JSB chorales, Middle Row: Correlation
plots for Piano.midi, Bottom Row: Correlation plots for Musedata. In each row,
figures from left to right are plots that are analogous to Figs. 5 (a)-(c).

Music Dataset: Four different polyphonic music sequences of piano are

used for experiments with GP-DPFA. Each of these datasets is a collection of binary

strings indicating which of the keys are “on” at each time [Boulanger-Lewandowski

et al., 2012; Poliner and Ellis, 2007]. “Nottingham” is a collection of 1200 folk

tunes, “Piano.midi” is a classical piano MIDI archive, “MuseData” is an electronic

library of orchestral and piano classical music, and “JSB chorales” refers to the

140



entire corpus of 382 four-part harmonized chorales by J. S. Bach. The polyphony

(number of simultaneous notes) varies from 0 to 15 and the average polyphony is

3.9. We use an input of 88 binary units that span the whole range of piano from A0

to C8. In Fig. 5, results are displayed for one of the 1200 tunes from Nottingham

data. Fig. 5(a) shows the correlation of the binary strings across time. Interestingly,

a similar but more prominent correlation structure is discovered in the latent factor

scores (i.e. across (λkθtk)
K
k=1’s), displayed in Fig. 5(b). Additionally, the correla-

tions between the original data and the estimated latent counts are presented in Fig.

5(c). One can see that this correlation plot perfectly imitates the correlation be-

tween the original data, implying that the original data are faithfully reconstructed

using GP-DPFA. Also, in Fig. 5(d) we display the correlation between the top ten

φk’s (ranked according to the magnitudes of the λk’s) discovered by GP-DPFA.

We compare this plot with Fig. 5(e), which shows the correlation between the top

ten φk’s discovered by the non-dynamic baseline model. One can clearly see that

GP-DPFA discovers comparatively less correlated latent factors.

The top, middle and bottom rows in Fig. 6 illustrate the correlation plots for

one of the tunes in the JSB chorales dataset, the Piano.midi data and the MuseData,

respectively. The left-most plot in each of the rows shows the correlation of the

observed data. The plots in the middle illustrate the correlation discovered in the

latent space and the plots in the last column shows the the correlation between the

observed data and estimated latent counts. It is shown that even when the corre-

lation structure is not clear in the original data, very clear correlation structure is

discovered in the latent space, without sacrificing the data reconstruction quality.

141



7.2 Nonparametric Dynamic Network Modeling

Many complex social and biological interactions can be naturally repre-

sented as graphs. Often these graphs evolve over time. For example, an individual

in a social network can get acquainted with a new person, an author can collab-

orate with a new author to write a research paper and proteins can change their

interactions to form new compounds. Consequently, a variety of statistical and

graph-theoretic approaches have been proposed for modeling both static and dy-

namic networks [Airoldi et al., 2008; Fu et al., 2009; Gopalan et al., 2012; Kemp

et al., 2006; Kim and Leskovec, 2013; Sarkar and Moore, 2005; Snijders et al.,

2010; Xu and Hero, 2014; Zhou, 2015].

Of particular interest in this work are scalable techniques that can identify

groups or communities and track their evolution. Existing non-parametric Bayesian

approaches for this task promise to solve the model selection problem of identifying

an appropriate number of groups, but are computationally intensive, and often do

not match the characteristics of real datasets. All such models assume that the data

comes from a latent space that has either discrete sets of configurations [Foulds

et al., 2011; Kim and Leskovec, 2013; Sarkar and Moore, 2005] or is modeled us-

ing Gaussian distribution [Fu et al., 2009; Ho et al., 2011; Xu and Hero, 2014].

Approaches that employ discrete latent states do not have closed-form inference

updates, mostly due to the presence of probit or logit links. On the other hand,

Gaussian assumption is often overly restrictive for modeling binary matrices. Since

the inference techniques for linear dynamical systems are well-developed, one usu-

ally is tempted to connect a binary observation to a latent Gaussian random variable
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using the probit or logit links. Such approaches, however, involve heavy computa-

tion and lack intuitive interpretation of the latent states.

This work attempts to address such inadequacies by introducing an efficient

and effective model for binary matrices that evolve over time. Its contributions

include:

• A novel non-parametric Gamma Process dynamic network model that predicts

the number of latent network communities from the data itself.

• A technique for allowing the weights of these latent communities to vary smoothly

over time using a Gamma-Markov chain, the inference of which is solved using

an augmentation trick associated with the Negative Binomial distribution together

with a forward-backward sampling algorithm, each step of which has closed-form

updates.

• Empirical results indicating clear superiority of the proposed dynamic network

model as compared to existing baselines for dynamic and static network modeling.

The rest of the section is organized as follows. Pertinent background and

related works are outlined in Section 7.2.1. A detailed description of the Dynamic

Gamma Process network model in Section 7.2.2. Empirical results for both syn-

thetic and real-world data are reported in Section 7.2.3.

7.2.1 Related Work

We mention select, most relevant approaches from a substantial literature on

this topic. Among static latent variable based models, the Infinite Relational Model
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(IRM [Kemp et al., 2006]) allows for multiple types of relations between entities

in a network and an infinite number of clusters, but restricts these entities to be-

long to only one cluster. The Mixed Membership Stochastic Blockmodel (MMSB

[Airoldi et al., 2008]) assumes that each node in the network can exhibit a mix-

ture of communities. Though the MMSB has been applied successfully to discover

complex network structure in a variety of applications, the computational complex-

ity of the underlying inference mechanism is in the order of N2, which limits its

use to small networks. Computation complexity is also a problem with many other

existing latent variable network models, such as the latent feature relational model

[Miller et al., 2009] and its max margin version [Zhu, 2012], and the infinite latent

attribute model [Palla et al., 2012]. Regardless, such models are adept at identi-

fying high-level clusters and perform particularly well for link prediction in small,

dense, static networks. The Assortative Mixed-Membership Stochastic Blockmodel

(a-MMSB [Gopalan et al., 2012]) bypasses the quadratic complexity of the MMSB

by making certain assumptions about the network structure that might not be true in

general, such as assuming the probability of linking distinct communities is small,

sub-sampling the network, and employing stochastic variational inference that uses

only a noisy estimate of the gradients. The hierarchical Dirichlet process relational

model [Kim et al., 2013] allows mixed membership with an unbounded number of

latent communities; however, it is built on the a-MMSB whose assumptions could

be restrictive.

There has been quite a bit of research with non-Bayesian [Hanneke et al.,

2010; Snijders et al., 2010] as well as Bayesian approaches [Ho et al., 2011; Ishig-
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uro et al., 2010; Sarkar and Moore, 2005; Xu and Hero, 2014] to study dynamic

networks. The Bayesian approaches differ among themselves due to the assump-

tions in structures of the latent space they make. For example, Euclidean space

models [Hoff et al., 2001; Sarkar and Moore, 2005] place nodes in a low dimen-

sional Euclidean space and the network evolution is then modeled as a regression

problem of future latent node location. On the other hand, certain models [Fu

et al., 2009; Ho et al., 2011; Ishiguro et al., 2010] assume that the latent variables

stochastically depend on the state at the previous time step. Some other models use

multi-memberships [Foulds et al., 2011; Heaukulani and Ghahramani, 2013; Kim

and Leskovec, 2013] wherein a node’s membership to one group does not limit its

membership to other groups. Compared to these approaches, D-NGPPF models the

latent factors using Gamma distribution and the shape parameter of the distribution

of the latent factor at time t is modeled by the latent factor at time (t − 1). The

network entries are generated from a Truncated Poisson distribution whose rate is

given by the underlying latent variables, some of which evolve over time and will

be described in more details later.

7.2.2 Dynamic Gamma Process Poisson Factorization for Networks (D-NGPPF)

Consider a tensor B ∈ ZN×N×T , whose T columns are sequentially ob-

served N × N -dimensional binary matrices, and are indexed by {Bt}Tt=1. Fur-

ther, consider a gamma process G ∼ ΓP(c,G0), a draw from which is expressed

as G =
∑∞

k=1 r0kδφk , where φk ∈ Ω is an atom drawn from an N -dimensional

base distribution φk ∼
∏N

n=1 Gamma(e0, 1/cn) and r0k = G(φk) is the associated
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weight. We mark each atom φk with an r1k and generate a gamma Markov chain

by letting:

rtk|r(t−1)k ∼ Gam(r(t−1)k, 1/c), t = {1, . . . , T}.

The (n,m)th entry at time t is assumed to be generated as follows:

btnm = Ixtnm≥1, xtnm ∼ Pois

(∑
k

rtkφnkφmk

)
.

Similar to NGPPF, to complete the generative process, we put Gamma priors over

c and cn as:

c ∼ Gamma(c0, 1/d0), cn ∼ Gamma(f0, 1/g0). (7.14)

Figure 7.5: Illustration of Dynamic Network Model

In the formulation above of the dynamic network model, we assume that the

weights of the latent factors evolve over time using a Gamma markov chain. At the

tth time instance, the proximity (or assignment) of the nth entity of the network to the
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kth latent factor is given by rtkφnk and hence the evolution of rtk alone can capture

the changes in characteristics of the nth network entity. In many applications, one

may also evolve φnk over time, but we leave that as an interesting future work.

7.2.2.1 Gibbs Sampling for D-NGPPF

Similar to the implementation for N-GPPF, a finite approximation of the

infinite model is considered by truncating the number of factors to K which ap-

proaches the original infinite model as K →∞.

Sampling of xtnm : xtnm’s are sampled only corresponding to the following entries:

(t, n,m) : t = {1, · · · , T}, n = {1, · · · , (N − 1)},m = {(n+ 1), · · · , N}.

For the above entries, the sampling goes as follows:

xtnm ∼ btnmPois+

(
K∑
k=1

rtkφnkφmk

)
. (7.15)

Since, one can augment xtnm ∼ Pois

(
K∑
k=1

rtkφnkφmk

)
as xtnm =

K∑
k=1

xtnmk,

where xtnmk ∼ Pois (rtkφnkφmk), equivalently, one obtains the following according

to Lemma 2.1.4:

(xtnmk)
K
k=1| ∼ mult

(
(rtkφnkφmk)

K
k=1 /

K∑
k=1

rtkφnkφmk;xtnm

)
. (7.16)

Sampling of rtk : The data augmentation and marginalization techniques specific

to the NB distribution [Acharya et al., 2015; Zhou and Carin, 2012] are utilized to

sample rtk. Despite the challenge present in inferring the gamma shape parameters,
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closed-form Gibbs sampling update equations can be derived for all the rtk’s. For

t = T , one can sample:

rTk| ∼ Gam
(
r(T−1)k + xT..k, 1/(c+ sk)

)
, xT..k =

(N−1)∑
n=1

N∑
m=(n+1)

xTnmk, sk =

(N−1)∑
n=1

N∑
m=(n+1)

φnkφmk. (7.17)

For t = (T − 1), one needs to augment `Tk ∼ CRT(xT..k, r(T−1)k), after which,

using Lemma 2.2.2 one obtains the following:

r(T−1)k| ∼ Gam
(
r(T−2)k + x(T−1)..k + `Tk, 1/(c+ sk − log(1− pTk))

)
, (7.18)

x(T−1)..k =

(N−1)∑
n=1

N∑
m=(n+1)

x(T−1)nmk, pTk =
sk

(c+ sk)
.

For 1 ≤ t ≤ (T−2), the augmentation and sampling trick is very similar. One needs

to augment `(t+1)k ∼ CRT(x(t+1)..k + `(t+2)k, rtk) and then sample rtk according to

Lemma 2.2.2:

rtk| ∼ Gam
(
r(t−1)k + xt..k + `(t+1)k, 1/(c+ sk − log(1− p(t+1)k))

)
, (7.19)

xt..k =

(N−1)∑
n=1

N∑
m=(n+1)

xtnmk, p(t+1)k =
sk − log(1− p(t+2)k)

(c+ sk − log(1− p(t+2)k))
.

For t = 0, augment `1k ∼ CRT(x1..k + `2k, r0k). Then sample

r0k| ∼ Gam(γk + `1k, 1/(c− log(1− p1k))), (7.20)

x1..k =

(N−1)∑
n=1

N∑
m=(n+1)

x1nmk, p1k =
sk − log(1− p2k)

(c+ sk − log(1− p2k))
.

Sampling of γk : Augment `0k ∼ CRT(`1k, γk). Then sample

γk| ∼ Gam (a0 + `0k, 1/ (b0 − log(1− p0k))) , p0k =
log(1− p1k)

(log(1− p1k)− c)
.
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Sampling of φnk : Sampling of these parameters follow from Lemma 2.1.1 and are

given as follows:

φnk| ∼ Gam

d0 +
T∑
t=1

(n−1)∑
m=1

xtmnk +
N∑

m=(n+1)

xtnmk

 , 1/

(
cn +

T∑
t=1

N∑
m=1,m 6=n

rtkφmk

) . (7.21)

Sampling of cn and c : Sampling of these parameters follow from Lemma 2.1.2

and are given as follows:

cn| ∼ Gam

(
f0 +Ke0, 1/

(
g0 +

K∑
k=1

φnk

))
, (7.22)

c| ∼ Gam

 K∑
k=1

γk +

(T−1)∑
t=0

rtk

+ c0, 1/

(
K∑
k=1

T∑
t=0

rtk + d0

) . (7.23)

7.2.2.2 Gibbs Sampling for D-NGPPF with Missing Entries

Variables whose update get affected in presence of missing values are rtk’s

and φnk’s. Rest of the update equations are same as in D-NGPPF without any

missing value. Below, the updates are enlisted where Mt denotes the set of missing

entries in the network at the tth time instance.

Sampling of rtk : For t = T ,

rTk| ∼ Gam
(
r(T−1)k + xT..k, 1/(c+ sTk)

)
, (7.24)

xT..k =

(N−1),N∑
n=1,m=(n+1)

(n,m) 6∈MT

xTnmk, sTk =

(N−1),N∑
n=1,m=(n+1)

(n,m)6∈MT

φnkφmk.

For t = (T − 1), augment `Tk ∼ CRT(xT..k, r(T−1)k) and then sample

r(T−1)k| ∼ Gam
(
r(T−2)k + x(T−1)..k + `Tk, 1/(c+ s(T−1)k − log(1− pTk))

)
,(7.25)
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x(T−1)..k =

(N−1),N∑
n=1,m=(n+1)
(n,m)6∈M(T−1)

x(T−1)nmk, s(T−1)k =

(N−1),N∑
n=1,m=(n+1)
(n,m)6∈M(T−1)

φnkφmk, pTk =
sTk

(c+ sTk)
.

For 1 ≤ t ≤ (T − 2), augment `(t+1)k ∼ CRT(x(t+1)..k + `(t+2)k, rtk) and then

sample rtk as:

rtk| ∼ Gam
(
r(t−1)k + xt..k + `(t+1)k, 1/(c+ stk − log(1− p(t+1)k))

)
, (7.26)

xt..k =

(N−1),N∑
n=1,m=(n+1)

(n,m)6∈Mt

xtnmk, stk =

(N−1),N∑
n=1,m=(n+1)

(n,m)6∈Mt

φnkφmk, p(t+1)k =
s(t+1)k − log(1− p(t+2)k)

(c+ s(t+1)k − log(1− p(t+2)k))
.

Sampling of φnk :

φnk| ∼ Gam

d0 +
T∑
t=1

 (n−1)∑
m=1

(m,n) 6∈Mt

xtmnk +
N∑

m=(n+1)
(n,m)6∈Mt

xtnmk

 , 1/

cn +
T∑
t=1

N∑
m=1,m6=n
(n,m)6∈Mt

rtkφmk


 . (7.27)

7.2.3 Experiments

In this section, experimental results are reported for a synthetic data and

three real world datasets. For all the experiments with synthetic and real world

data, the Gibbs sampler is run with 2000 burn-in and 2000 collection iterations, and

K = 50 is maintained.

7.2.3.1 Synthetic Data

We generate a set of synthetic networks of size 60× 60 with three different

groups that evolve over six different time stamps. These datasets are displayed in

column (a) in both Fig. 7.6 and 7.7. In practice, this may represent a group of

users in a social network whose friend circles change over time. The links in these

graphs are presented by brown and the non-links are illustrated by deep blue. The
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(a) (b) (c) (d)

Figure 7.6: Results from D-NGPPF
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(a) (b) (c) (d)

Figure 7.7: Results from N-GPPF
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performance of D-NGPPF is displayed in columns (b), (c), and (d) of Fig. 7.6.

Column (b) in Fig. 7.6 shows the groups discovered by D-NGPPF in the graph

over different time-stamps. Note that the discovery of groups at any time instance

is influenced by the groups present in other time instances. In column (c) of Fig.

7.6, the proximity of the users to the latent groups are displayed. The x-axis in each

of these plots imply different latent groups and the y-axis represents the proximity

of the nth user to the kth latent group at the tth time instance, which is calculated as

rtkφnk. In our experiments, 50 different latent groups are maintained (K = 50), but

the model assigns the users to only a few of the latent groups, a desired outcome.

This observation is also reinforced by the plots in column (c) of Fig. 7.6. These

plots denote the normalized weights of the different latent groups (rtk/
∑K

k=1 rtk)

at different time instances. In each time instance, only a few latent groups have

positive weight. Expectedly, as displayed in columns (c) and (d) of Fig. 7.6, the

latent factors that are dominant over different time instances vary smoothly with

time. In Fig. 7.7, results are displayed for a baseline model that uses only N-GPPF

for modeling the networks isolatedly at each different time slice. One can see that

N-GPPF reconstructs the groups perfectly at each time instance as the groups are

very clear-cut. However, different sets of latent groups dominate in modeling the

networks at different time slices, as revealed in plots of columns (c) and (d) of

Fig. 7.7. Unlike this toy example, most real world networks are sparse and groups

are less distinct at any given time. The performance of a static network model is

expected to be poorer in such settings, as it cannot link the solutions across time.

This is explained more clearly alongside the results reported in the next subsection.
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7.2.3.2 Real World Data

NIPS Authorship Network Data: The NIPS co-authorship network connects two

people if they appear on the same publication in the NIPS conference in a given

year. Network spans T = 17 years (1987 to 2003). Following [Heaukulani and

Ghahramani, 2013], only a subset of 110 authors, who are most connected over all

the time periods, are considered. For evaluating the predictive performance, 25%

of the links and equal number of non-links are held out from each of the 17 time

instances. The rest of the data is used as training. DSBM [Xu and Hero, 2014],

N-GPPF and MMSB [Airoldi et al., 2008] are considered as the baselines in the

prediction problem. For both N-GPPF and MMSB, the networks for the different

time instances are modeled isolatedly. We use the implementation from the authors

of DBSM for the corresponding set of experiments. Since both DBSM and MMSB

are parametric methods, we use K = 10 for all the experiments which, as the

literature reports, is found to produce best results for these set of models with these

datasets. The objective is to infer the labels of the held out links and non-links. The

quality of prediction is measured by AUC and the results are displayed in Table 7.1.

Dataset D-NGPPF DSBM N-GPPF MMSB
NIPS 0.797± 0.016 0.780± 0.010 0.766± 0.012 0.740± 0.009
DBLP 0.836± 0.013 0.810± 0.013 0.756± 0.020 0.749± 0.014

Infocom 0.907± 0.008 0.901± 0.006 0.856± 0.011 0.831± 0.006

Table 7.1: AUC Results on Real World Data

DBLP Data: The DBLP co-authorship network is obtained from 21 Computer
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Science conferences from 2000 to 2009 (T = 10) [Tang et al., 2008]. Only top 209

people are considered in this datasets by taking 7-core of the aggregated network

for the entire time. For each different time slice, 10% of the links and equal number

of non-links are held out. The results are displayed in Table 7.1.

(a) (b) (c) (d)

Figure 7.8: Infocom: Hour 5th to 8th

Infocom Data: The Infocom dataset represents the physical proximity interactions

between 78 students at the 2006 Infocom conference, recorded by wireless detec-

tor remotes given to each attendee [J.Scott et al., 2009]. As in [Heaukulani and

Ghahramani, 2013], the recordings are agglomerated into one hour-long time slices

and only the reciprocated sightings are maintained. Also, the slices with less than
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(a) (b) (c) (d)

Figure 7.9: Infocom: Hour 9th to 12th
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(a) (b) (c) (d)

Figure 7.10: Infocom: Hour 13th to 16th
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80 links (corresponding to late night and early morning hours), are removed, re-

sulting in only 50 time slices. For each different time slice, 10% of the links and

equal number of non-links are held out. The results are displayed in Table 7.1. One

can see that D-NGPPF outperforms DSBM, a strong baseline for dynamic network

modeling, and two other baselines for static network modeling.

To illustrate the effectiveness of D-NGPPF further in real world data, some

findings are presented in Fig. 7.8 to Fig. 7.10 for the Infocom dataset. One can

see the smooth transition of the dominant factors over time. Fig. 7.8, 7.9 and 7.10

present the results corresponding to the datasets at times T = 4 to T = 8, T = 9

to T = 12 and T = 13 to T = 16 respectively. Column (a) in each of these

figures present the original network with some of the entities held out (indicated

by green). Column (b) represents the cluster structures discovered by D-NGPPF,

while column (c) and (d) signify the assignment of the users in the latent space and

the weights of the latent factors respectively. Note that, for each time slice, very

few links are available (indicated by deep brown) and hence the performance of

N-GPPF for prediction of held-out links is poorer, as illustrated in Table 7.1.

7.3 Nonparametric Dynamic Count Matrix Factorization

Analysis of dyadic data, which represents relationship between two differ-

ent sets of entities such as users and items, has been a prolific domain of research

since the last decade, particularly due to their applications in recommendation sys-

tems [Christakopoulou and Banerjee, 2015; Deodhar and Ghosh, 2009; Koren et al.,

2009], e-commerce [Raghavan et al., 2012], topic modeling [Ahmed and Xing,
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2008; Blei et al., 2003; Du et al., 2015] and bio-informatics [Natarajan and Dhillon,

2014]. Successful as different techniques for such analysis are, a major limita-

tion of them is that they are static models and ignore the temporal correlation and

evolution of the relationships between entities, an attribute present in most real-

world dyadic data. Among the handful of techniques that deal with the temporal

correlation in recommendation systems, TimeSVD++ [Koren, 2009] and Bayesian

probabilistic tensor factorization (BPTF) [Xiong et al., 2010] are worth mention-

ing. Such algorithms assume that the latent factors are distributed according to a

normal distribution and an interaction of such latent factors generates the actual

observation, which is clearly restrictive for count-valued dyadic data. Since the in-

ference techniques for linear dynamical systems are well-developed, one usually is

tempted to connect a count-valued observation to a latent Gaussian random vari-

able, though such approaches incur heavy computation, fail to exploit the natural

sparsity of the data and lack interpretation of the latent states. On the other hand,

text mining researchers have developed numerous techniques for analyzing a corpus

that evolves over time which is modeled as sequence of document-by-word count

matrices. Some of these techniques are equipped with Kalman filtering based infer-

ence and a nonlinear transformation of the latent states to the discrete observations

[Wang et al., 2008], while some others use temporal Dirichlet process and make

arguably simplistic assumptions [Ahmed and Xing, 2008, 2010] to calculate an in-

tractable posterior for MCMC sampling. A detailed discussion of and comparison

with the existing works on dynamic topic model are beyond the scope of this paper

and we only present results corresponding to dynamic collaborative filtering. To be
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more specific, the contributions of this work include:

• A novel non-parametric Gamma Process dynamic count matrix factorization model

that predicts the number of latent factors from the data itself.

• A technique for allowing the weights of these latent factors to vary smoothly

over time using a Gamma-Markov chain, the inference of which is solved using

an augmentation trick associated with the Negative Binomial distribution together

with a forward-backward sampling algorithm, each step of which has closed-form

updates.

• Empirical results indicating clear superiority of the proposed dynamic matrix

factorization model as compared to existing baselines for dynamic and static count

matrix factorization models.

The rest of the section is organized as follows. Pertinent background and

related works are outlined in Section 7.3.1. A detailed description of the dynamic

Gamma Process count matrix factor modeling is provided in Section 7.3.2. Em-

pirical results for both synthetic and real-world data are reported in Section 7.3.3.

Finally, the conclusion and future works are listed in Section 7.4.

7.3.1 Background and Related Work

One of the notable contributions towards dynamic relational model is a sim-

ilarity based approach [Ding and Li, 2005] where similarity score is calculated by

reducing the importance of the older data. Sugiyama et al. [2004] proposes a per-

sonalized web search engine where they allow the profile of each user to evolve
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over time. TimeSVD++ [Koren, 2009] assumes that the latent features consist of

two parts, one that evolves over time and the other which does not and acts as bias.

This model can effectively capture local changes of user preferences, though the

performance depends on some of the regularization parameters, tuning of which is

prohibitively expensive for large datasets. On the other hand, BPTF captures the

global effect of time that are shared among all users and items and imposes prior

over some of the regularization parameter for which the performance is relatively

insensitive towards initialization of the corresponding hyper-parameters. However,

BPTF incurs a computation cost O(DVK2 + (D + V + T )K3), where K is the

dimension of the latent space, which is expensive for large matrices. Such com-

putation complexity is also a problem with other latent gaussian based approaches

that minimize squared error (such as TimeSVD++) as they model both zeros and

non-zeros, and the latent factors corresponding to both zeros and non-zeros need to

be sampled.

7.3.2 Dynamic Gamma Process Poisson Factorization for Count Matrices (D-
CGPPF)

Consider a tensor Y ∈ ZD×V×T , whose T columns are sequentially ob-

served D × V -dimensional count matrices, and are indexed by {Yt}Tt=1. Further,

consider a gamma process G ∼ ΓP(c,G0), a draw from which is expressed as

G =
∑∞

k=1 r0kδθk , where θk ∈ Ω is an atom drawn from a D-dimensional base

distribution θk ∼
∏D

d=1 Gam(g0, 1/cd) and r0k = G(θk) is the associated weight.

We mark each atom θk with an r1k and generate a gamma Markov chain by let-

ting: rtk|r(t−1)k ∼ Gam(r(t−1)k, 1/c), t = {1, . . . , T}. Additionally, each atom
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θk is marked with an atom βk, drawn from a V -dimensional base distribution as

βk ∼
∏V

w=1 Gam(h0, 1/sw). The (d, w)th entry at time t is assumed to be generated

from a sum of latent counts as: ytdw ∼ Pois (
∑

k λtdwk) where λtdwk = rtkθdkβwk.

One may consider λtdwk as the strength of the latent factor that dictates the relation

between the dth user and the wth item at time t. Each latent factor contributes such

a count and the total count aggregates the countably infinite latent factors. Each of

these latent counts is composed of three parts. The parameter rtk models the global

popularity of the latent factor k at time t, θdk models the affinity of the dth user to the

kth latent factor and βwk models the popularity of the wth word among the kth latent

factor. As described in Section 2.3, such modeling assumption is one instance of

Poisson factor analysis. To complete the generative process, we put Gamma priors

over c, cd and sw as:

c ∼ Gam(c0, 1/d0), cd ∼ Gam(e0, 1/f0), sw ∼ Gam(t0, 1/u0). (7.28)

In the formulation above of the dynamic count factorization, we assume that

the weights of the latent factors evolve over time using a Gamma markov chain. At

the tth time instance, the proximity (or assignment) of the dth document to the kth

latent factor is given by rtkθdk and hence the evolution of rtk alone can capture the

changes in characteristics of the dth document. Practical utility of such formulation

is that a rating depends not only on the similarity between a given user and a given

item, but also on how much these preferences match with the “global trend” preva-

lent at that point of time. For instance, if a user likes a horror movie but the overall

trend of the month is that few people are watching them or talking about them, then
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this user is probably not going to watch it neither. However, in many applications,

one may also evolve θdk over time, but we leave that as an interesting future work.

Also, the factors βk can adapt with time, for example, in applications like dynamic

topic modeling [Zhai and Boyd-graber, 2013] where the vocabulary changes with

time.

Figure 7.11: Illustration of D-CGPPF

7.3.2.1 Gibbs Sampling for Dynamic Poisson Matrix Factor Model

A finite approximation of the infinite model is considered by truncating the

number of factors to K which approaches the original infinite model as K → ∞.

The sampling proceeds as follows:

Sampling of xtdwk : This follows from the relation between Poisson and multino-

mial distribution, given in Lemma 2.1.4, and can be derived as:

(xtdwk)
K
k=1| ∼ mult

(
rtkθdkβwk/

K∑
k=1

rtkθdkβwk; ytdw

)
. (7.29)
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Sampling of rtk : For t = T , sample rTk according to Lemma 2.1.1 as:

rTk| ∼ Gam
(
r(T−1)k + xT..k, 1/(c+ θ.kβ.k)

)
, (7.30)

For t = (T − 1), first we integrate out rTk and according to Lemma 2.1.5, one

obtains xT..k ∼ NB(r(T−1)k, pTk), where pTk = θ.kβ.k
(c+θ.kβ.k)

. We then augment `Tk ∼

CRT(xT..k, r(T−1)k) and according to Lemma 2.2.2 sample:

r(T−1)k| ∼ Gam
(
r(T−2)k + x(T−1)..k + `Tk, 1/(c+ θ.kβ.k − log(1− pTk))

)
. (7.31)

For t = (T − 2) to t = 1, following a repeated application of Lemma 2.1.5 and

2.2.2 augment `(t+1)k ∼ CRT(x(t+1)..k + `(t+2)k, rtk) and then sample

rtk| ∼ Gam
(
r(t−1)k + xt..k + `(t+1)k, 1/(c+ θ.kβ.k − log(1− p(t+1)k))

)
, (7.32)

where p(t+1)k =
θ.kβ.k−log(1−p(t+2)k)

(c+θ.kβ.k−log(1−p(t+2)k))
. For t = 0, augment `1k ∼ CRT(x1..k +

`2k, r0k) and according to Lemma 2.1.5 and 2.2.2 sample:

r0k| ∼ Gam(γk + `1k, 1/(c− log(1− p1k))), p1k = θ.kβ.k−log(1−p2k)
(c+θ.kβ.k−log(1−p2k))

. (7.33)

Sampling of γk : Augment `0k ∼ CRT(`1k, γk) and according to Lemma 2.2.2,

sample:

γk| ∼ Gam (a0 + `0k, 1/ (b0 − log(1− p0k))) , p0k =
log(1− p1k)

(log(1− p1k)− c)
. (7.34)

Sampling of θdk and βwk : Sampling of these variables can be derived according to

Lemma 2.1.1 as:

θdk| ∼ Gam (g0 + x.d.k, 1/ (cd + r.kβ.k)) , (7.35)

βwk| ∼ Gam (h0 + x..wk, 1/ (sw + r.kθ.k)) . (7.36)
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Sampling of cd, sw and c : Sampling of these variables can be derived according to

Lemma 2.1.2 and are given as:

cd| ∼ Gam (e0 +Kg0, 1/ (f0 + θd.)) , (7.37)

sw| ∼ Gam (t0 +Kh0, 1/ (u0 + βw.)) , (7.38)

c| ∼ Gam

 K∑
k=1

γk +

(T−1)∑
t=0

rtk

+ c0, 1/

(
K∑
k=1

T∑
t=0

rtk + d0

) . (7.39)

A consequence of closed form updates for Gibbs sampling is that the computation

per iteration for D-CGPPF is O((S + D + V + T )K) where S is the number of

number of non-zero entries, which is a huge saving for sparse matrices compared to

BPTF whose computation cost per iteration is O(DVK2 + (D+ V + T )K3). This

follows from the underlying assumptions of Poisson distribution. When the obser-

vation is zero, the corresponding latent counts {xtdwk}Kk=1 are zero with probability

1, and hence one needs to sample latent counts corresponding to non-zero entries

only.

7.3.2.2 Gibbs Sampling for Dynamic Poisson Matrix Factor Model with Miss-
ing Entries

Variables whose update get affected in presence of missing values are rtk’s

and θdk’s and βwk’s. Rest of the update equations are same as in the dynamic Pois-

son matrix factor model without any missing value. Below, the updates are enlisted.

Mt denotes the set of missing entries in the matrix at the tth time instance.

Sampling of rtk : For t = T , sample

rTk| ∼ Gam
(
r(T−1)k + xT..k, 1/(c+ zTk)

)
, (7.40)
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where,

xT..k =

D,V∑
d=1,w=1
(d,w)6∈MT

xTdwk, zTk =

D,V∑
d=1,w=1
(d,w)6∈MT

θdkβwk. (7.41)

For t = (T − 1) augment `Tk ∼ CRT(xT..k, r(T−1)k). Then sample

r(T−1)k| ∼ Gam
(
r(T−2)k + x(T−1)..k + `Tk, 1/(c+ z(T−1)k − log(1− pTk))

)
, (7.42)

where,

x(T−1)..k =

D,V∑
d=1,w=1

(d,w)6∈M(T−1)

x(T−1)dwk, z(T−1)k =

D,V∑
d=1,w=1

(d,w)6∈M(T−1)

θdkβwk, pTk =
ztk

(c+ ztk)
. (7.43)

For t = (T − 2) to t = 1, augment `(t+1)k ∼ CRT(x(t+1)..k + `(t+2)k, rtk). Then

sample rtk as:

rtk| ∼ Gam
(
r(t−1)k + xt..k + `(t+1)k, 1/(c+ ztk − log(1− p(t+1)k))

)
, (7.44)

where,

xt..k =

D,V∑
d=1,w=1
(d,w)6∈Mt

xtdwk, ztk =

D,V∑
d=1,w=1
(d,w)6∈Mt

θdkβwk, p(t+1)k =
s(t+1)k − log(1− p(t+2)k)

(c+ s(t+1)k − log(1− p(t+2)k))
. (7.45)

Sampling of θdk :

θdk| ∼ Gam

d0 +
T∑
t=1

V∑
w=1

(d,w) 6∈Mt

xtdwk, 1/(cd +
T∑
t=1

V∑
w=1

(d,w)6∈Mt

rtkβwk)

 . (7.46)

Sampling of βwk :

βwk| ∼ Gam

h0 +
T∑
t=1

D∑
d=1

(d,w) 6∈Mt

xtdwk, 1/(sw +
T∑
t=1

D∑
d=1

(d,w)6∈Mt

rtkθdk)

 . (7.47)

166



Figure 7.12: Results from D-CGPPF

Figure 7.13: Results from C-GPPF
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7.3.3 Experiments

7.3.3.1 Synthetic Data

We generate a set of synthetic count matrices of size 60×72 with two differ-

ent groups that evolve over three different time stamps. These datasets are displayed

in column (a) in both Fig. 7.12 and 7.13. In practice, this may represent a collec-

tion of users and movies where the preference of the users for certain movies change

over time. The performance of D-CGPPF is displayed in columns (b), (c), and (d)

of Fig. 7.12. Column (b) in Fig. 7.12 shows the groups discovered by D-CGPPF

in the graph over different time-stamps. Note that the discovery of groups at any

time instance is influenced by the groups present in other time instances. In column

(c) of Fig. 7.12, the proximity of the users to the latent groups are displayed. The

x-axis in each of these plots imply different latent groups and the y-axis represents

the proximity of the nth user to the kth latent group at the tth time instance, which is

calculated as rtkθdk. In our experiments, 10 different latent groups are maintained

(K = 10), but the model assigns the users to only a few of the latent groups, a

desired outcome. This observation is also reinforced by the plots in column (c) of

Fig. 7.12. These plots denote the normalized weights of the different latent groups

(rtk/
∑K

k=1 rtk) at different time instances. In each time instance, only a few latent

groups have positive weight. Expectedly, as displayed in columns (c) and (d) of

Fig. 7.12, the latent factors that are dominant over different time instances vary

smoothly with time. In Fig. 7.13, results are displayed for a baseline model that

uses only N-GPPF for modeling the networks isolatedly at each different time slice.

One can see that N-GPPF reconstructs the groups perfectly at each time instance as
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the groups are very clear-cut. However, different sets of latent groups dominate in

modeling the count matrices at different time slices, as revealed in plots of columns

(c) and (d) of Fig. 7.13. Unlike this toy example, most real world dyadic datasets

are sparse and groups are less distinct at any given time. The performance of a

static count matrix factorization model is expected to be poorer in such settings, as

it cannot link the solutions across time. This is explained more clearly alongside

the results reported in the next subsection.

7.3.3.2 Real World Data

We now validate the performance of our model on three different movie

rating datasets1,2 popularly used in the recommender system literature.

• MovieLens100k: Movielens 100K is a movie rating dataset which contains 100k

ratings provided by users, with 943 users and 1682 movies. Rating ranges from 0

to 5-star scale. 943 1682 and 8 different time slices.

• MovieLens1M: Movielens 1M is a movie rating dataset which contains 1 million

ratings provided by users, with 6040 users and 3900 movies. Rating ranges from 0

to 5-star scale and over T = 35 different time slices, each corresponding to different

months.

• Netflix: Netflix also is a movie rating dataset which contains 100M ratings pro-

vided by users and is very skewed unlike the Movielens dataset, with 480189 users

1http://grouplens.org/datasets/movielens/
2 http://www.netflixprize.com/

169



and 17770 movies. Rating ranges from 0 to 5-star scale. Since this dataset is quite

large, we sample a subset of this dataset and create a new training set consisting of

around 3M ratings that belong to 93705 users, 3561 movies over 27 different time

slices, each of which corresponds to ratings from a month.

To evaluate accuracy, we consider the recommendation problem as a rank-

ing problem and use mean average precision (MAP) and Normalized Discounted

Cumulative Gain (NDCG) as the metrics [Gopalan et al., 2013, 2014a]. For all the

datasets, we measure the accuracy of prediction on a held out set consisting of 10%

data instances randomly selected. Training is done on the remaining 90% of the

data instances. During the training phase, the held out set is considered as miss-

ing data. We compare D-CGPPF with two strong baseline methods: BPTF [Xiong

et al., 2010] and C-GPPF.

Dataset D-CGPPF BPTF C-GPPF
Movielens100K 0.597± 0.023 0.512± 0.010 0.238± 0.047
Movielens1M 0.641± 0.010 0.632± 0.008 0.521± 0.019

Netflix 0.490± 0.008 0.418± 0.002 0.251± 0.039

Table 7.2: MAP Results on Real World Data

Dataset D-CGPPF BPTF C-GPPF
Movielens100K 0.714± 0.016 0.703± 0.010 0.455± 0.012
Movielens1M 0.721± 0.013 0.725± 0.013 0.585± 0.020

Netflix 0.613± 0.007 0.592± 0.011 0.451± 0.018

Table 7.3: NDCG Results on Real World Data

170



7.4 Conclusion

This Chapter introduces the Dynamic Gamma Process Poisson Factoriza-

tion framework for analyzing count and binary vectors and matrices that evolve

over time. Efficient inference technique has been developed for modeling the tem-

poral evolution of the latent components of the count matrix using a gamma Markov

chain. Superior empirical performance on both synthetic and real world datasets

makes the approach a promising candidate for modeling other count time-series

data; for example, time-evolving tensors that appear quite frequently in analysis of

electronic health records. In Section 9.1, we briefly describe how we can extend

D-CGPPF for modeling count tensors that evolve over time. In the next Chapter,

we will explore a different type of sequential knowledge transfer for a problem

motivated from practical applications.
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Chapter 8

Bayesian Combination of Classification and
Clustering Ensembles

In several data mining applications, one builds an initial classification model

that needs to be applied to unlabeled data acquired subsequently. Since the statis-

tics of the underlying phenomena being modeled changes with time, these clas-

sifiers may also need to be occasionally rebuilt if performance degrades beyond

an acceptable level. In such situations, it is desirable that the classifier functions

well with as little labeling of new data as possible, since labeling can be expensive

in terms of time and money, and a potentially error-prone process. Moreover, the

classifier should be able to adapt to changing statistics to some extent, given the

aforementioned constraints.

This chapter addresses the problem of combining multiple classifiers and

clusterers in a fairly general setting, that includes the scenario sketched above. An

ensemble of classifiers is first learnt on an initial labeled training dataset after which

the training data can be discarded. Subsequently, when new unlabeled target data is

encountered, a cluster ensemble is applied to it, thereby generating cluster labels for

the target data. The heart of our approach is a Bayesian framework that combines

both sources of information (class/cluster labels) to yield a consensus labeling of
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the target data.

The setting described above is, in principle, different from transductive

learning setups where both labeled and unlabeled data are available at the same time

for model building [Silver and Bennett, 2008], as well as online methods [Blum,

1998]. Additional differences from existing approaches are described in the section

on related works. For the moment we note that the underlying assumption is that

similar new objects in the target set are more likely to share the same class label.

Thus, the supplementary constraints provided by the cluster ensemble can be useful

for improving the generalization capability of the resulting classifier system. Also,

these supplementary constraints can be useful for designing learning methods that

help determining differences between training and target distributions, making the

overall system more robust against concept drift.

We also show that our approach can combine cluster and classifier ensem-

bles in a privacy-preserving setting. This approach can be useful in a variety of

applications. For example, the data sites can represent parties that are a group of

banks, with their own sets of customers, who would like to have a better insight into

the behavior of the entire customer population without compromising the privacy

of their individual customers.

The remainder of the chapter is organized as follows. The next section

addresses related work. The proposed Bayesian framework — named BC3E, from

Bayesian Combination of Classifiers and Clusterer Ensembles — is described in

Section 8.2. Issues with privacy preservation are discussed in Section 8.3 and the

experimental results are reported in Section 8.4. Finally, Section 8.5 concludes the
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chapter.

8.1 Related Work

The combination of multiple classifiers to generate an ensemble has been

proven to be more useful compared to the use of individual classifiers [Oza and

Tumer, 2008]. Analogously, several research efforts have shown that cluster en-

sembles can improve the quality of results as compared to a single clusterer — e.g.,

see [Wang et al., 2011b] and references therein. Most of the motivations for com-

bining ensembles of classifiers and clusterers are similar to those that hold for the

standalone use of either classifier or cluster ensembles. Additionally, unsupervised

models can provide supplementary constraints for classifying new data and thereby

improve the generalization capability of the resulting classifier. These successes

provide the motivation for designing effective ways of leveraging both classifier

and cluster ensembles to solve challenging prediction problems.

Specific mechanisms for combining classification and clustering models

however have been introduced only recently in the Bipartite Graph-based Consen-

sus Maximization (BGCM) algorithm [Gao et al., 2009], the Locally Weighted

Ensemble (LWE) algorithm [Gao et al., 2008] and, in the C3E algorithm [Acharya

et al., 2011a]. Both BGCM and C3E have parameters that control the relative im-

portance of classifiers and clusterers. In traditional semi-supervised settings, such

parameters can be optimized via cross-validation. However, if the training and the

target distributions are different, cross-validation is not possible. From this view-

point, our approach (BC3E) can be seen as an extension of C3E [Acharya et al.,
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2011a] that is capable of dealing with this issue in a more principled way. In addi-

tion, the algorithms in [Acharya et al., 2011a; Gao et al., 2008, 2009] do not deal

with privacy issues, whereas our probabilistic framework can combine class labels

with cluster labels under conditions where sharing of individual records across data

sites is not permitted. It uses a soft probabilistic notion of privacy, based on a quan-

tifiable information-theoretic formulation [Merugu and Ghosh, Nov, 2003]. Note

that existing works on Bayesian classifier ensembles — e.g., [Chipman et al., 2006;

Edakunni and Vijayakumar, 2009; Ghahramani and Kim, 2003] — do not deal with

privacy issues.

From the clustering side, the proposed model borrows ideas from the Bayesian

Cluster Ensemble [Wang et al., 2011b]. In [Acharya et al., 2011b], we introduced

some preliminary ideas that are further developed in our current chapter. In par-

ticular, the algorithm in [Acharya et al., 2011b] is not capable of automatically

estimating the importance that classifiers and clusterers should have. This property

is fundamental for applications where training and target distributions are differ-

ent. In addition, the Bayesian model presented here is considerably different and

requires more sophisticated inference and estimation procedures.

8.2 Probabilistic Model

We assume that a classifier ensemble has been (previously) induced from a

training set. At this point and assuming a non-transductive setting, the training data

can be discarded if so desired. Such a classifier ensemble is employed to generate

a number of class labels (one from each classifier) for every object in the target
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set. BC3E refines such classifier prediction with the help of a cluster ensemble.

Each base clustering algorithm that is part of the ensemble partitions the target set,

providing cluster labels for each of its objects. From this point of view, the cluster

ensemble provides supplementary constraints for classifying those objects, with the

rationale that similar objects — those that are likely to be clustered together across

(most of) the partitions that form the cluster ensemble — are more likely to share

the same class label.

Consider a target set X = {xn}Nn=1 formed by N unlabeled objects. A

classifier ensemble composed of r1 models has produced r1 class labels for every

object xn ∈ X. It is assumed that the target objects belong to k classes denoted

by C = {Ci}ki=1 and at least one object from each of these classes was observed

in the training phase (i.e. we do not consider “novel” classes in the target set).

Similarly, consider that a cluster ensemble comprised of r2 clustering algorithms

has generated cluster labels for every object in the target set. The number of clusters

need not be the same across different clustering algorithms. Also, it should be noted

that the cluster labeled as 1 in a given data partition may not align with the cluster

numbered 1 in another partition, and none of these clusters may correspond to class

1. Given the class and cluster labels, the objective is to come up with refined class

probability distributions {(P̂ (Ci|xn))ki=1 = yn}Nn=1 of the target set objects. This

framework is illustrated in Fig. 8.1.

The observed class and cluster labels are represented asW = {{w1nl}, {w2nm}}

where w1nl is the 1-of-k representation of class label of the nth object given by the

lth classifier, and w2nm is the 1-of-k(m) representation of cluster label assigned to
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Figure 8.1: Combining Classifiers and Clusterers.

N

r1 r2
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w2w1 β

δ2µ,σ2

r2 × k

Figure 8.2: Graphical Model for BC3E
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the nth object by the mth clusterer. A generative model is proposed to explain the

observationsW , where each object xn has an underlying mixed-membership to the

k different classes. Let f(yn) denote the latent mixed-membership vector for xn,

where f(x) = exp(xi)∑
i=1 exp(xi)

is the softmax function. yn is sampled from a normal

distribution N(µ,Σ). Also, corresponding to the ith class and mth base clustering,

we assume a multinomial distribution βmi over the cluster labels of the mth base

clustering. Therefore, βmi is of dimension k(m) and
∑k(m)

j=1 βmij = 1 if the mth base

clustering has k(m) clusters. The data generative process, whose corresponding

graphical model is shown in 8.2, can be summarized as follows.

For each xn ∈ X:

1. Choose yn ∼ N(µ,Σ), where µ ∈ Rk is the mean and Σ ∈ Rk×k is the

covariance.

2. Choose θn ∼ N(yn, δ
2Ik), where δ2 ≥ 0 is the scaling factor of the covari-

ance of the normal distribution centered at yn, and Ik is the identity k × k

matrix.

3. ∀l ∈ {1, 2, · · · , r1}, choose w1nl ∼ f(yn).

4. ∀m ∈ {1, 2, · · · , r2}:

(a) Choose znm ∼ f(θn), where znm is a k-dimensional vector with 1-of-k

representation.

(b) Choose w2nm ∼ multinomial(βrznm).
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The observed class labels {w1nl} are assumed to be sampled from the latent

mixed-membership vector f(yn). If the nth object is sampled from the ith class in

the mth base clustering (implying znmi = 1), then its cluster label will be sampled

from the multinomial distribution βmi. This particular generative process is anal-

ogous to the one used by the Bayesian Cluster Ensemble in [Wang et al., 2011b].

The fact that θn is sampled from N(yn, δ
2Ik) needs further clarification. In practice,

the observed class labels and cluster labels carry different intrinsic weights. If the

observations from the classifiers are assigned too much weight compared to those

from clustering, there is little hope for the clustering to enhance classification. Sim-

ilarly, if the observations from the clustering are given too much of importance, the

classification performance might deteriorate. Ideally, the unsupervised information

is only expected to enhance the classification accuracy.

Aimed at building a “safe” model that can intelligently utilize or reject the

unsupervised information, θn is sampled from N(yn, δ
2Ik) where the parameter δ

decides how much the observations from the clusterings can be trusted. If δ2 is

a large positive number, yn does not have to explain the posterior of θn. From

the generative model perspective, this means that the sampled value of θn is not

governed by yn anymore as the distribution has very large variance. On the other

hand, if δ2 is a small positive number, yn has to explain the posterior of θn and

hence the observations from the clustering. Therefore, the posteriors of {yn} are

expected to get more accurate compared to the case if they only had to explain the

classification results. A concrete quantitative argument for this intuitive statement

will be presented later.
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To address the log-likelihood function of BC3E, let us denote the set of

hidden variables by Z = {{yn, {θn}, {znm}}. The model parameters can conve-

niently be represented by ζ0 = {µ,Σ, δ2, {βmi}}. The joint distribution of the

hidden and observed variables can be written as:

p(X,Z|ζ0) =
∏N

n=1 p(yn|µ,Σ)p(θn|yn, δ2Ik)
∏r1

l=1 p(w1nl|f(yn))
∏r2

m=1 p(znm|f(θn))p(w2nm|β, znm). (8.1)

The inference and estimation is performed using Variational Expectation-Maximization

(VEM) to avoid computational intractability due to the coupling between θ and β.

8.2.1 Approximate Inference and Estimation:

8.2.1.1 Inference:

To obtain a tractable lower bound on the observed log-likelihood, we spec-

ify a fully factorized distribution to approximate the true posterior of the hidden

variables:

q(Z|{ζn}Nn=1) =
N∏
n=1

q(yn|µn,Σn)q(θn|εn,∆n)

r2∏
m=1

q(znm|φnm), (8.2)

where yn ∼ N(µn,Σn), θn ∼ N(εn,∆n) , znm ∼ Mult(φnm).

ζn = {µn,Σn, εn,∆n), {φnm}} is the set of variational parameters cor-

responding to the nth object. Further, µn, εn ∈ Rk, Σn,∆n ∈ Rk×k ∀n and

φnm = (φnmi)
k
i=1 ∀n,m; where the components of the corresponding vectors are

made explicit. To work with less parameters, all the covariance matrices are as-

sumed to be diagonal. Therefore, Σ = diag
(
(σi)

k
i=1

)
, Σn = diag

(
(σni)

k
i=1

)
, and

∆n = diag
(
(δni)

k
i=1

)
. Using Jensen’s inequality, a lower bound on the observed
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log-likelihood can be derived as:

log[p(X|ζ0)] ≥ Eq(Z) [log[p(X,Z|ζ0)]] +H(q(Z)) = L(q(Z)) (8.3)

where H(q(Z)) = −Eq(Z)[log[q(Z)]] is the entropy of the variational distribution

q(Z), and Eq(Z)[.] is the expectation w.r.t q(Z).

Let Q be the set of all distributions having a fully factorized form as given

in (8.2). The optimal distribution that produces the tightest possible lower bound L

is given by:

q∗ = arg min
q∈Q

KL(p(Z|X, ζ0)||q(Z)). (8.4)

In equations (3), (5), (7), (9), (11), (12) and (13) in Table 8.1, the optimal

values of the variational parameters that satisfy (8.4) are presented. Since the logis-

tic normal distribution is not conjugate to multinomial, the update equations of all

the parameters cannot be obtained in closed form. For the parameters that do not

have a closed form solution for the update, we just present the part of the objective

function that depends on the concerned parameter and some numeric optimization

method has to be used for optimizing the lower bound. Since φnm is a multinomial

distribution, the updated values of the k components should be normalized to unity.

Note that the optimal value of one of the variational parameters depends on the oth-

ers and, therefore, an iterative optimization is adopted to minimize the lower bound

till convergence is achieved.

4!
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Equations (5) and (7) present updates for two new parameters. These param-

eters come from Eq(log p(w1nl|f(yn))) and Eq(log p(znm|f(θn))) respectively. Both

of these integrations do not have analytic solution and hence a first order Taylor ap-

proximation is utilized as also done in [Blei and Lafferty, 2007]. A closer inspection

of (11) reveals that δ2 appears in the denominator of the term
k∑
i=1

(µni − εni)2/δ2 in

the objective. Hence, larger values of δ2 will nullify any effect from εn which, in

turn, is affected by the observations {w2nm} (as is obvious from (13)). On the other

hand, if δ2 is small enough, εn can strongly impact the values of µn.

8.2.1.2 Estimation:

For estimation, we maximize the optimized lower bound obtained from the

variational inference w.r.t the free model parameters ζ0 (by keeping the variational

parameters fixed). The optimal values of the model parameters are presented in

equations (4), (6) and (8). Since βmi is a multinomial distribution, the updated

values of k(m) components should be normalized to unity. However, no closed form

of update exists for σ2, and a numeric optimization method has to be resorted to.

The part of the objective function that depends on σ2 is provided in Eq. (10). Once

the optimization in M-step is done, E-step starts and the iterative update is continued

till convergence. The variational parameters {µn}Nn=1 are then investigated which

serve as proxy for the refined posterior estimates of {yn}Nn=1. The main steps of

inference and estimation are concisely presented in Algorithm 2.
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Algorithm 2 Learning BC3E
Input: W .
Output: θm, {µn}Nn=1.

Initialize θm, {ζn}Nn=1.
Until Convergence
E-Step
Until Convergence
1. Update κn using Eq. (5) ∀n ∈ {1, 2, · · · , N}.
2. Update ξn using Eq. (7) ∀n ∈ {1, 2, · · · , N}.
3. Update φnmi using Eq. (3) ∀n,m, i. Normalize φnm.
4. Maximize (11) w.r.t. µn ∀n.
5. Maximize (12) w.r.t. σ2

n ∀n s.t. σ2
n ≥ 0.

6. Maximize (13) w.r.t. εn ∀n.
7. Maximize (9) w.r.t. δ2n ∀n s.t. δ2n ≥ 0.
M-Step
8. Update µ using Eq. (4).
9. Update δ2 using Eq. (8).
10. Update βmij using Eq. (6) ∀m, i, j. Normalize θmi.
11. Maximize (10) w.r.t. σ2 s.t. σ2 ≥ 0.

8.3 Privacy Preserving Learning

Most of the privacy-aware distributed data mining techniques developed

so far have focused on classification or on association rules [Agrawal and Ag-

garwal, 2001; Evfimievski et al., 2002]. There has also been some work on dis-

tributed clustering for vertically partitioned data (different sites contain differ-

ent attributes/features of a common set of records/objects) [Johnson and Kargupta,

1999], and on parallelizing clustering algorithms for horizontally partitioned data

(i.e. the objects are distributed amongst the sites, which record the same set of fea-

tures for each object) [Dhillon and Modha, 1999]. These techniques, however, do

not specifically address privacy issues, other than through encryption [Vaidya and

Clifton, 2003].
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This is also true of earlier, data-parallel methods [Dhillon and Modha, 1999]

that are susceptible to privacy breaches, and also need a central planner that dictates

what algorithm runs on each site. Finally, recent works on distributed differential

privacy focus on query processing rather than data mining [Chen et al., 2012].

In the sequel, we show that the inference and estimation in BC3E using

VEM allows solving the cluster ensemble problem in a way that preserves privacy.

Depending on how the objects with their cluster/class labels are distributed in dif-

ferent “data sites”, we can have three scenarios – i) Row Distributed Ensemble, ii)

Column Distributed Ensemble, and iii) Arbitrarily Distributed Ensemble.

8.3.1 Row Distributed Ensemble:

In the row distributed ensemble learning framework, the test set X is parti-

tioned into D parts and different parts are assumed to be at different locations. The

objects from partition d are denoted by Xd so that X = ∪Dd=1Xd. Now, a careful

look at the E-step equations reveal that the update of variational parameters corre-

sponding to each object in a given iteration is independent of those of other objects.

Therefore, we can maintain a client-server based framework where the server only

updates the model parameters (in the M-step) and the clients (there should be as

many number of clients as there are distributed data sites) update the variational

parameters.

For instance, consider a situation where a dataset is partitioned into two

subsets X1 and X2 and these two subsets are located in two different data sites. Data

site 1 has access to X1 and a set of clustering and classification results pertaining
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to objects belonging to X1. Similarly, data site 2 has access to X2 and a set of

clustering and classification results corresponding to X2. Further assume that a set

of distributed classification (clustering) algorithms were used to generate the class

(cluster) labels of the objects belonging to each set. Now, data site 1 can update

the variational parameters ζn, ∀xn ∈ X1. Similarly, data site 2 can update the

variational parameters for all objects xn ∈ X2. Once the variational parameters are

updated in the E-step, the server gathers information from two sites and updates the

model parameters. Now, a closer inspection of the M-step update equations reveals

that each of them contains a summation over the objects. Therefore, individual data

sites can send only some collective information to the server without transgressing

privacy. For example, consider the update equation for βmij . Eq. (6) can be broken

as follows:

βmij
∗ ∝

∑
xn∈X1

φnliw2nli +
∑
xn∈X2

φnliw2nli (8.14)

The first and second terms can be calculated in data sites 1 and 2 separately and

sent to the server where the two terms can be added and βmij can get updated

∀m, i, j. Similarly, the other M-step update equations (performed by the server in

an analogous way) also do not reveal any information about class or cluster labels

of objects belonging to different data sites.

8.3.2 Column Distributed Ensemble:

In the column distributed framework, different data sites share the same set

of objects but only a subset of base clusterings or classification results are available

to each data site. For example, consider that we have two data sites and four sets
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of class and cluster labels and each data site has access to only two sets of clas-

sification or clustering results. Assume that data site 1 has access to the 1st and

2nd classification and clustering results and data site 2 has access to the rest of the

results. As in the earlier case, a single server and two clients (corresponding to

two different data sites) are maintained. Since each data site has access to all the

objects, it is necessary to share the variational parameters corresponding to these

objects. Therefore, {κn, ξn,µn,σn, εn, δn}Nn=1 are all updated in the server (which

is accessible from each client).

The site (and object) specific variational parameters {φnmi}, however, can-

not be shared and should be updated in individual sites. This means that the updates

(5), (7), (11), (13), (9) and (12) should be performed in the server. On the other

hand, the update for {φnmi}∀n, i and m ∈ {1, 2} (corresponding to the 1nd and 2nd

clustering or classification results) should be performed in data site 1. Similarly, the

update for {φnmi} ∀n, i and m ∈ {3, 4} has to be performed in data site 2. How-

ever, while updating {µn}, the calculation of the term
r1∑
l=1

k∑
i=1

w1nliµni has to be

performed without revealing the class labels {w1nl} to the server. To that end, it

can be rewritten as:

r1∑
l=1

k∑
i=1

w1nliµni =
2∑
l=1

k∑
i=1

w1nliµni +
4∑
l=3

k∑
i=1

w1nliµni, (8.15)

where the first term can be computed in data site 1 and the second term can be

computed by data site 2 and then can be added in the server. It can be seen that

{w1nl} can never be recovered by the server and hence privacy is ensured in the

updates of the E-step. Except for {βmij}, all other model parameters can be updated
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in the server in the M-step. However, the parameters {βmij} have to be updated

separately inside the clients. Since {βmij} do not appear in any update equation

performed in the server, there is no need to send these parameters to the server

either. Therefore, in essence, the clients update the parameters {φnmi} and {βmij}

in E-step and M-step respectively, and the server updates the remaining parameters.

8.3.3 Arbitrarily Distributed Ensemble:

In an arbitrarily distributed ensemble, each data site has access to only a

subset of the data points or a subset of the classification and clustering results. Fig.

8.3 shows a situation with arbitrarily distributed ensemble with six data sites.

We now refer to Fig. 8.4 and explain the privacy preserved EM update for

this setting. As before, corresponding to each different data site, a client node is

created. Clients that share a subset of the objects should have access to the vari-

ational parameters corresponding to common objects. To highlight the sharing of

objects by clients, the test set X is partitioned into four subsets — X1,X2,X3 andX4

as shown in Fig. 8.3. Similarly, the columns are also partitioned into three subsets:

G1, G2, and G3.

Now, corresponding to each row partition, an “Auxiliary Server”(AS) node

is created. Each AS updates the variational parameters corresponding to a set of

shared objects. For example, in Fig. 8.4, AS1 updates the variational parameters

corresponding to X1 (using equations (7), (5), (11), (12), (13), and (9)). However,

any variational parameter that is specific to both an object and a column is up-

dated separately inside the corresponding client (and hence it is connected with C1
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and C2). Therefore, {φnmi : n ∈ X1,m ∈ G1} are updated inside client 1 and

{φnmi : n ∈ X1,m ∈ G2 ∪ G3} are updated inside client 2 (using Eq. (3)). Once

all variational parameters are updated in the E-step, M-step starts. Corresponding

to each column partition, an “Auxiliary Client” (AC) node is created. This node

updates the model parameters βmij (using Eq. (6)) which are specific to columns

belonging to G1. Since C1, C3, and C5 share the columns from the subset G1, AC1

is connected with these three nodes in Fig. 8.4. The remaining model parameters

are, however, updated in a “Server” (using equations (4), (8), (10)).

X4

X3

X2

X1

G1 G2 G3

Figure 8.3: Arbitrarily Distributed Ensemble
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Figure 8.4: Parameter Update for Arbitrarily Distributed Ensemble

In Fig. 8.4, the bidirectional edges indicate that messages are sent to and

from the connecting nodes. We have avoided separate arrows for each direction

only to keep the figure uncluttered. The edges are also numbered near to their ori-

gin. For a comprehensive understanding of the privacy preservation, the messages

transfered through each edge have also been enlisted in the supplementary mate-

rial. The messages sent from the auxiliary servers to the main server are of the form

given in Eq. (8.14) and are denoted as “partial sums”. Expectedly, messages sent

out from a client node are “masked” in such a way that no other node can decode

the cluster labels or class labels of points belonging to that client. This approach is
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completely general and will work for any arbitrarily partitioned ensemble given that

each partition contains at least two sets of classification results. Note that the ACs

and ASs are only helpful in conceptual understanding of the parameter update and

sharing. In practice, there is no real need for these extra storage devices/locations.

Client nodes can themselves take the place of ASs and ACs and even the main

server as long as the updates are performed in proper sequence1.

8.4 Experiments

In this section, two different sets of experiments are reported. The first set

is for transfer learning with a text classification data from eBay Inc. The other

set is for non-transductive semisupervised learning where some publicly available

datasets are used to simulate the working environment of BC3E.

8.4.1 Transfer Learning:

To show the capability of BC3E in solving transfer learning problems, we

use a large scale text classification dataset from eBay Inc. The training data con-

sists of 83 million items sold over a three month period of time and the test set

contains several millions of items sold a few days after the training period. More

details about the dataset can be found in [Shen et al., 2012]. eBay organizes items

into a six-level category structure where there are 39 top level nodes called meta

categories and 20K+ bottom level nodes called leaf categories. The dataset is gen-

1Note that such framework allows running the updates of the same stage in parallel in different
sites, thereby saving the computation time in large scale implementations.
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erated when users provide the titles of items they intend to sell on eBay. Each title

is limited to 50 characters, based on which the user gets recommendation of some

leaf categories the item should belong to. Such categorization of the item helps a

seller list an item in the correct branch of the product list, thereby allowing a buyer

more easily search through a list of few million items sold via eBay every single

day. A carefully designed k-Nearest Neighbor (k-NN) classifier (with the help of

improved search engine algorithms) categorizes each of the items in less than 100

ms [Shen et al., 2012]. However, due to the large number of categories (20K), items

belonging to similar types of categories often get misclassified.

To avoid such confusion, larger categories are formed by aggregating exam-

ples from categories which are relatively difficult to separate. Such aggregation is

easy once the confusion matrix of the classification, obtained from a development

dataset, is partitioned and strongly connected vertices (each vertex representing one

of 20K leaf categories) are identified from the confusion graph, thereby forming a

set of cliques which represent the large categories. Note that the large categories so

discovered might not at all follow the internal hierarchy that is maintained. Next,

clustering is performed with examples belonging to each of the large categories and

the clustering results, along with the predictions from k-NN classification, are fed

to BC3E (and also to its competitors i.e. C3E, BGCM, and LWE). The idea here

is to first reduce the classification space and then use unsupervised information to

refine the predictions from k-NN on a smaller number of categories. The number

of leaf categories belonging to such large categories usually varies between 4-10.

However, the dataset is very dynamic and, typically over a span of three
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months, 20% of new words are added to the existing vocabulary. One can retrain

the existing k-NN classifier every three months, but the training process requires

collecting new labeled data which is time consuming and expensive. One can addi-

tionally design classifiers to segregate examples belonging to each of the large cate-

gories. However, such approach might not improve much upon the performance of

the initial k-NN classifier if the data changes so frequently. Therefore, we require

a system that can adaptively predict newer examples without retraining the existing

classifier or employing another set of classification algorithms. BC3E is useful in

such settings. The parameter δ can adjust the weights of prediction from classi-

fiers and unsupervised information. As the results reported in Table 8.2 reveal, as

long as the classification performance is not that poor, BC3E can improve on the

performance of k-NN using the clustering ensemble.

The column “Group ID” denotes anonymized groups representing different

large categories. |X| shows the number of examples in the test data. The column

“C3E-Ideal” shows the performance of C3E if the correct tuning parameter for C3E

were known. For a transfer learning problem, estimating such tuning parameter

requires some labeled data from the target set which is not available in our setting.

If the tuning parameter is chosen from cross-validation on the training data, the fi-

nal prediction on target set can get affected adversely if the underlying distribution

changes (and in fact it does in our experiments). Therefore, we need to adopt a

fail-safe approach where we can do at least as good as the k-NN prediction. The re-

sults reveal that BC3E significantly outperforms BGCM and LWE, and sometimes

achieves as good a performance as C3E-Ideal (i.e. when correct tuning parameter
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of C3E is known). The performance of C3E-Ideal can essentially be considered as

the best accuracy one could achieve from the given inputs (i.e. class and cluster

labels) using other existing algorithms — BGCM, LWE, C3E — that work on the

same design space. Though BGCM has a tuning parameter, its variation did not

affect performance much and we just report results corresponding to unity value of

this parameter.

8.4.2 Semi-supervised Learning:

Six datasets are used in our experiments for semi-supervised learning: Half-

Moon (a synthetic dataset with two half circles representing two classes), Circles

(another synthetic dataset that has two-dimensional instances that form two concen-

tric circles — one for each class), and four datasets from the Library for Support

Vector Machines — Pima Indians Diabetes, Heart, German Numer, and Wine. In

order to simulate semi-supervised settings where there is a very limited amount of

labeled instances, small percentages (see the values reported in Table 8.3) of the

instances are randomly selected for training, whereas the remaining instances are

used for testing (target set). We perform 20 trials for every dataset. For running

experiments with BGCM, and C3E, the parameters reported in [Gao et al., 2009]

and [Acharya et al., 2014a] are used respectively. The parameters of BC3E are ini-

tialized randomly and approximately 10 EM iterations are enough to get the results

reported in Table 8.3. The classifier ensemble consists of decision tree (C4.5), linear

discriminant, and generalized logistic regression. Cluster ensembles are generated

by means of multiple runs of k-means [Acharya et al., 2014a]. LWE [Gao et al.,
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2008] is better suited for transfer learning applications and hence has been left out

from comparison. The column “Best” in Table 8.3 refers to the performance of the

best classifier in the ensemble. Note that BC3E has superior performance for the

most difficult problems, where one has an incentive to use a more complex mech-

anism. Most importantly, BC3E has the privacy preserving property not present in

any of its counterparts.

8.5 Conclusion

The BC3E model proposed in this chapter has been shown to be useful for

difficult non-transductive semisupervised and transfer learning problems. A good

trade-off between accuracy and privacy has also been established empirically – a

property absent in any of BC3E’s competitors. With minor modification, BC3E

can also handle soft outputs from classification and clustering ensembles which can

further improve the results.
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Chapter 9

Future Work

Some of the specific future works are already listed in the corresponding

chapters. Below, we present two other works which are potential extensions of the

nonparametric Gamma-Poisson factorization framework.

9.1 Dynamic Count Tensor Factorization

Automatic analysis of electronic health records (EHRs) has ushered in the

era of data-driven approaches for improved clinical research, prognosis, and pa-

tient management. Unfortunately, EHR data do not always reliably represent some

medical concepts that the clinical researchers are familiar with. Some recent stud-

ies have focused on EHR-derived phenotyping [Ho et al., 2014a,b], which aim at

mapping the EHR data to specific medical concepts without human supervision. In

particular, these works represent the interaction among the patients, diagnosis and

medications in the form of a count tensor and discover the phenotypes using a low

rank decomposition of this count tensors where the factors are sufficiently sparse

for human experts to interpret. Often, such tensors evolve over time, representing

changes in patients’ medical condition. The generative process of a potential model

that can track the changes in patients’ medical condition in a latent space is provided

below: ytd1d2d3 ∼ Pois(
∑

k θtd1kφd2kβd3k), where θtd1k ∼ Gam(θ(t−1)d1k, 1/c) and
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ytd1d2d3 is the interaction of the dth
1 patient, dth

2 medication and dth
3 diagnosis at time

t. We assume φd2k ∼ Gam(ad2 , 1/bk) and βd3k ∼ Gam(ed3 , 1/fk). Here, θtd1 repre-

sents the phenotype of the dth
1 patient at time t, while φd2 represents the phenotype

of the dth
2 medication and βd3 represents the phenotype of the dth

3 diagnosis. One

can additionally impose Gamma priors on the scale and shape parameters of these

Gamma distributions. Inference in such model is straightforward based on Lemma

2.1.1, 2.1.2, and 2.2.2.

9.2 Distributed Count Matrix Factorization

Another important implication of Lemma 2.2.2 is that one can share some

of the latent factors across multiple groups in a hierarchical fashion and can still

perform closed form Gibbs sampling. This is useful when there is a need for

hierarchical modeling in an application of distributed matrix factorization. Con-

sider multiple sites denoted by S1, · · · , SM each of which contains a set of doc-

uments, conveniently represented as a set of count matrices {Ym}Mm=1. For dis-

tributed Poisson matrix factorization, one can maintain a global set of rk’s, which

represent the overall strength of the kth topic, and βwk’s which are the global set

of topics. Corresponding to the site Sm, one can generate rmk ∼ Gam(rk, 1/cm)

and βmwk ∼ Gam(βwk, 1/em). The (d, w)th entry in the site Sm can be gener-

ated as: ymdw ∼ Pois(
∑

k rmkθdkβmwk), where thetadk ∼ Gam(ad, 1/bm). We

can put Gamma priors over rk and βwk as: rk ∼ Gam(γ0/K, 1/c) and βwk ∼

Gam(fw, 1/gk). One can also impose Gamma priors on the parameters of these

Gamma distributions.
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Annals of Statistics, 1973.

D. M. Blei and J. D. Lafferty. Dynamic topic models. In Proc. of ICML, 2006.

D. M. Blei and J. D. Mcauliffe. Supervised topic models. In Proc. of NIPS, 2007.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet Allocation. JMLR, 3:
993–1022, 2003.

D.M. Blei and J.D. Lafferty. A correlated topic model of science. Annals of Applied
Statistics, 1(1):17–35, 2007.

A. Blum. On-line algorithms in machine learning. In Fiat and Woeginger, editors,
Online Algorithms: The State of the Art. LNCS Vol.1442, Springer, 1998.

K. D. Bollacker and J. Ghosh. Knowledge transfer mechanisms for characteriz-
ing image datasets. In Soft Computing and Image Processing. Physica-Verlag,
Heidelberg, 2000.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online
and active learning. JMLR, 6:1579–1619, December 2005.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector
machines with larank. In Proc. of ICML, pages 89–96, 2007.

202



N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal depen-
dencies in high-dimensional sequences: Application to polyphonic music gener-
ation and transcription. In Proc. of ICML, 2012.

L.D. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human
pose annotations. In Proc. of ICCV, pages 1365–1372, 2009.

T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and
the beta negative binomial process. arXiv:1111.1802v5, 2013.

W. L. Buntine. Variational extensions to EM and Multinomial PCA. In Proc. of
ECML, pages 23–34, 2002.

S. Rendle C. Freudenthaler, L. Schmidt-Thieme. Bayesian factorization machines.
In Proc. of NIPS Workshop on Sparse Representation and Low-rank Approxima-
tion, 2011.

E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis.
Journal of the ACM, 2011.

J. Canny. Gap: a factor model for discrete data. In Proc. of SIGIR, 2004.

R. Caruana. Multitask learning. Machine Learning, 28:41–75, July 1997.

A. T. Cemgil. Bayesian inference for nonnegative matrix factorisation models. In-
tell. Neuroscience, 2009:4:1–4:17, January 2009.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case analysis of selective
sampling for linear classification. JMLR, 7:1205–1230, 2006.

Y. S. Chan and H. T. Ng. Domain adaptation with active learning for word sense
disambiguation. In Proc. of ACL, pages 49–56, 2007.

A.J.B. Chaney, P. Gopalan, and D.M. Blei. Poisson trust factorization for incorpo-
rating social networks into personalized item recommendation. In NIPS Work-
shop: What Difference Does Personalization Make?, 2013.

E. Chang, S. Tong, K. Goh, and C. Chang. Support Vector Machine Concept-
Dependent Active Learning For Image Retrieval. IEEE Transactions on Multi-
media, 2005.

203



J. Chang and D. Blei. Relational topic models for document networks. In Proc. of
AISTATS, 2009.

J. Chang, J. B. Graber, and D. M. Blei. Connections between the lines: augmenting
social networks with text. In Proc. of KDD, pages 169–178, 2009.

R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards statistical queries
over distributed private user data. In Proc. of the 9th USENIX conference on
Networked Systems Design and Implementation, 2012.

H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian ensemble learning.
In Proc. of NIPS, pages 265–272, 2006.

K. Christakopoulou and A. Banerjee. Collaborative ranking with a push at the top.
In Proc. of WWW, pages 205–215, 2015.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the EM algorithm. J. Royal Statistical Society. Series B (Method-
ological), 39(1):1–38, 1977.

M. Deodhar and J. Ghosh. Mining for most certain predictions from dyadic data.
In Proc. of KDD, 2009.

I. S. Dhillon and D. S. Modha. A data-clustering algorithm on distributed memory
multiprocessors. In Proc. Large-scale Parallel Knowledge Discovery and Data
Mining Systems Workshop, ACM SIGKnowledge Discovery and Data Mining,
August 1999.

P. Diggle. A kernel method for smoothing point process data. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 34:138–147, 1985.

Y. Ding and X. Li. Time weight collaborative filtering. In Proc. of CIKM, pages
485–492, 2005.

J. Donahue and K. Grauman. Annotator rationales for visual recognition. In Proc.
of ICCV, pages 1395–1402, 2011.

G. Druck, B. Settles, and A. McCallum. Active learning by labeling features. In
Proc. of EMNLP, pages 81–90, 2009.

204



N. Du, M. Farajtabar, A. Ahmed, A.J. Smola, and L. Song. Dirichlet-hawkes pro-
cesses with applications to clustering continuous-time document streams. In
Proc. of KDD (to appear), 2015.

N. U. Edakunni and S. Vijayakumar. Efficient online classification using an ensem-
ble of bayesian linear logistic regressors. In 8th Int. Workshop on MCS, pages
102–111, 2009.

J. Eisenstein, A. Ahmed, and E. P. Xing. Sparse additive generative models of text.
In Proc. of ICML, pages 1041–1048, 2011.

A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining
of association rules. In Proc. of KDD, 2002.

T. Evgeniou, C.A. Micchelli, and M. Pontil. Learning multiple tasks with kernel
methods. JMLR, 6:615–637, 2005.

T. Evgeniou, M. Pontil, and O. Toubia. A convex optimization approach to mod-
eling consumer heterogeneity in conjoint estimation. Marketing Science, 26(6):
805–818, November 2007.

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large
linear classification. JMLR, 9:1871–1874, June 2008.

A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their at-
tributes. In Proc. of CVPR, pages 1778–1785, 2009.

T. S. Ferguson. A Bayesian analysis of some nonparametric problems. Ann. Statist.,
1973.

J. R. Foulds, C. Dubois, A. U. Asuncion, C. T. Butts, and P. Smyth. A dynamic
relational infinite feature model for longitudinal social networks. In Proc. of
AISTATS, volume 15, pages 287–295, 2011.

W. Fu, L. Song, and E. P. Xing. Dynamic mixed membership blockmodel for
evolving networks. In Proc. of ICML, pages 329–336, 2009.

C. Gabriella, R.D. Christopher, F. Lixin, W. Jutta, and B. Cédric. Visual categoriza-
tion with bags of keypoints. In Workshop on Statistical Learning in Computer
Vision, ECCV, pages 1–22, 2004.

205



J. Gao, W. Fan, J. Jiang, and J. Han. Knowledge transfer via multiple model local
structure mapping. In Proc. of KDD, pages 283–291, 2008.

J. Gao, F. Liang, W. Fan, Y. Sun, and J. Han. Graph-based consensus maximization
among multiple supervised and unsupervised models. In Proc. of NIPS, pages
1–9, 2009.

Z. Ghahramani and H. Kim. Bayesian classifier combination. Technical report,
2003. URL http://learning.eng.cam.ac.uk/zoubin/papers/
GhaKim03.pdf.

P. Gopalan, D. M. Mimno, S. Gerrish, M. J. Freedman, and D. M. Blei. Scalable
inference of overlapping communities. In Proc. of NIPS, pages 2258–2266, 2012.

P. Gopalan, J.M. Hofman, and D.M. Blei. Scalable recommendation with poisson
factorization. CoRR, abs/1311.1704, 2013. URL http://arxiv.org/abs/
1311.1704.

P. Gopalan, F. Ruiz, R. Ranganath, and D. Blei. Bayesian nonparametric poisson
factorization for recommendation systems. In Proc. of AISTATS, 2014a.

P.K. Gopalan, L. Charlin, and D. Blei. Content-based recommendations with pois-
son factorization. In Proc. of NIPS, pages 3176–3184. 2014b.

S. Gunasekar, A. Acharya, N. Gaur, and J. Ghosh. Noisy matrix completion using
alternating minimization. In Proc. of ECML PKDD, Part II, LNAI 8189, pages
194–209, 2013.

S. Han, L. Du, E. Salazar, and L. Carin. Dynamic rank factor model for text streams.
In Proc. of NIPS, 2014.

S. Hanneke, W. Fu, and E.P. Xing. Discrete temporal models of social networks.
Electronic Journal of Statistics, 4:585–605, 2010.

A. Harpale and Y. Yang. Active learning for multi-task adaptive filtering. In Proc.
of ICML, pages 431–438. Omnipress, 2010.

C. Heaukulani and Z. Ghahramani. Dynamic probabilistic models for latent feature
propagation in social networks. In Proc. of ICML, pages 275–283, 2013.

206

http://learning.eng.cam.ac.uk/zoubin/papers/GhaKim03.pdf
http://learning.eng.cam.ac.uk/zoubin/papers/GhaKim03.pdf
http://arxiv.org/abs/1311.1704
http://arxiv.org/abs/1311.1704


G. E. Hinton and S. Osindero. A fast learning algorithm for deep belief nets. Neural
Computation, 18:2006, 2006.

N. L. Hjort. Nonparametric Bayes estimators based on beta processes in models for
life history data. Ann. Statist., 1990.

J. C. Ho, J. Ghosh, S. R. Steinhubl, W. F. Stewart, J. C. Denny, B. A. Malin, and
J. Sun. Limestone: High-throughput candidate phenotype generation via tensor
factorization. Journal of Biomedical Informatics, 52:199–211, 2014a.

J.C. Ho, J. Ghosh, and J. Sun. Marble: High-throughput phenotyping from elec-
tronic health records via sparse nonnegative tensor factorization. In Proc. of
KDD, pages 115–124, 2014b.

Q. Ho, L. Song, and E.P. Xing. Evolving cluster mixed-membership blockmodel
for time-varying networks. In Proc. of AISTATS. 2011.

P.D. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social
network analysis. Journal Of The American Statistical Association, 97:1090–
1098, 2001.

M. D. Hoffman, D. M. Blei, and P. R. Cook. Bayesian nonparametric matrix fac-
torization for recorded music. In Proc. of ICML, pages 439–446, 2010.

P. A. D. F. R. Højen-Sørensen, O. Winther, and L. K. Hansen. Mean-field ap-
proaches to independent component analysis. Neural Comput., 14:889–918,
2002.

S.J. Hwang and K. Grauman. Reading between the lines: Object localization using
implicit cues from image tags. IEEE Trans. Pattern Anal. Mach. Intell., 34(6):
1145–1158, June 2012.

K. Ishiguro, T. Iwata, N. Ueda, and J. B. Tenenbaum. Dynamic infinite relational
model for time-varying relational data analysis. In Proc. of NIPS, pages 919–927.
2010.

L. Jacob, F. Bach, and J. Vert. Clustered multi-task learning: A convex formulation.
CoRR, abs/0809.2085, 2008.

207



P. Jain and A. Kapoor. Active learning for large multi-class problems. In Proc. of
CVPR, pages 762–769, 2009.

R. Jenatton, J. Audibert, and F. Bach. Structured variable selection with sparsity-
inducing norms. JMLR, 12:2777–2824, nov 2011.

E. Johnson and H. Kargupta. Collective, hierarchical clustering from distributed,
heterogeneous data. In Large-Scale Parallel Knowledge Discovery and Data
Mining Systems, volume 1759 of LNCScience, pages 221–244, 1999.

N. L. Johnson, A. W. Kemp, and S. Kotz. Univariate Discrete Distributions. John
Wiley & Sons, 2005.

M. I. Jordan. Hierarchical models, nested models, and completely random mea-
sures. In Frontiers of Statistical Decision Making and Bayesian Analysis: In
Honor of James O. Berger, pages 207–217. Springer, 2010.

A.J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for
image classification. In Proc. of CVPR, pages 2372–2379, 2009.

J.Scott, R.Gass, J.Crowcroft, P.Hui, C.Diot, and A.Chaintreau. CRAW-
DAD data set dartmouth/campus (v. 2009-05-29). Downloaded from
http://crawdad.org/dartmouth/campus/, May 2009.

G. Jun and J. Ghosh. An efficient active learning algorithm with knowledge transfer
for hyperspectral remote sensing data. In Proc. of International Geosci. and Sens.
Symposium, volume 1, pages I–52–I–55, 2008.

C. Kemp, J.B. Tenenbaum, T.L. Griffiths, T. Yamada, and N. Ueda. Learning sys-
tems of concepts with an infinite relational model. In Proc. of AAAI, pages 381–
388, 2006.

D. Il Kim, P. Gopalan, D. M. Blei, and E. B. Sudderth. Efficient online inference
for bayesian nonparametric relational models. In Proc. of NIPS, pages 962–970,
2013.

M. Kim and J. Leskovec. Nonparametric multi-group membership model for dy-
namic networks. In Proc. of NIPS, pages 1385–1393. 2013.

208



S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with
structured sparsity. In Proc. of ICML, pages 543–550, 2010.

Y. Kim and S. Choi. Scalable variational bayesian matrix factorization with side
information. In Proc. of AISTATS, pages 493–502, 2014.

J. F. C. Kingman. Completely random measures. Pacific Journal of Mathematics,
21(1):59–78, 1967.

J.F.C. Kingman. Poisson Processes. Oxford University Press, 1993.

Y. Koren. Factorization meets the neighborhood: A multifaceted collaborative fil-
tering model. In Proc. of KDD, pages 426–434, 2008.

Y. Koren. Collaborative filtering with temporal dynamics. In Proc. of KDD, pages
447–456, 2009.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. IEEE Computer, 2009.

A. Kovashka, S. Vijayanarasimhan, and K. Grauman. Actively selecting annota-
tions among objects and attributes. In Proc. of ICCV, pages 1403–1410, 2011.

N. Kumar, A.C. Berg, P.N. Belhumeur, and S.K. Nayar. Describable visual at-
tributes for face verification and image search. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), volume 33, pages 1962–1977, Octo-
ber 2011.

C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object
classes by betweenclass attribute transfer. In Proc. of CVPR, pages 951–958,
2009.

N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian
processes. In Proc. of ICML, pages 601–608, 2009.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In
Proc. of NIPS, 2001.

J. Leskovec and J.M. Julian. Learning to discover social circles in ego networks. In
Proc. of NIPS, pages 539–547. 2012.

209



Y.J. Lim and Y.W. Teh. Variational bayesian approach to movie rating prediction.
In Proc. of KDDCup, 2007.

Y. Low, D. Agarwal, and A. J. Smola. Multiple domain user personalization. In
Proc. of KDD, pages 123–131, 2011.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, November 2004.

H. Ma, H. Yang, M. R. Lyu, and I. King. Sorec: Social recommendation using
probabilistic matrix factorization. In Proc. of CIKM, pages 931–940, 2008.

A. McCallum, X. Wang, and A. Corrada-Emmanuel. Topic and role discovery in
social networks with experiments on enron and academic email. J. Artif. Int. Res.,
30(1):249–272, October 2007.

P. McCullagh and J. A. Nelder. Generalized linear models. Chapman & Hall, 2nd
edition, 1989.

A. Menon and C. Elkan. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases, volume 6912 of Lecture Notes
in Computer Science, pages 437–452. Springer Berlin / Heidelberg, 2011.

S. Merugu and J. Ghosh. Privacy perserving distributed clustering using generative
models. In Proc. of ICDM, pages 211–218, Nov, 2003.

K. T. Miller, T. L. Griffiths, and M. I. Jordan. Nonparametric latent feature models
for link prediction. In Proc. of NIPS, pages 1276–1284, 2009.

J. W. Miskin. Ensemble learning for independent component analysis. Technical
report, in Advances in Independent Component Analysis, 2000.

J. Møller, A. R. Syversveen, and R. P. Waagepetersen. Log gaussian cox processes.
Scandinavian Journal of Statistics, 25:451–482.

R.M. Nallapati, A. Ahmed, E.P. Xing, and W.W. Cohen. Joint latent topic models
for text and citations. In Proc. of KDD, pages 542–550, 2008.

N. Natarajan and I.S. Dhillon. Inductive matrix completion for predicting gene-
disease associations. Bioinformatics, 30(12):60–68, 2014.

210



R. M. Neal. Markov chain sampling methods for Dirichlet process mixture models.
Journal of computational and graphical statistics, 2000.

R. M. Neal and G. E. Hinton. A view of the EM algorithm that justifies incremental,
sparse, and other variants, 1999.

N. C. Oza and K. Tumer. Classifier ensembles: Select real-world applications. Inf.
Fusion, 9:4–20, January 2008.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model
with optimal utilization of error estimates of data values. Environmetrics, 5(2):
111–126, 1994.

K. Palla, Z. Ghahramani, and D. A. Knowles. An infinite latent attribute model for
network data. In Proc. of ICML, pages 1607–1614, 2012.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowl-
edge and Data Engineering, 22:1345–1359, 2010.

A. Passos, P. Rai, J. Wainer, and H. Daumé III. Flexible modeling of latent task
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