

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Department of Computer Science

Hamilton, New Zealand

Tree-based Density Estimation:

Algorithms and Applications

by

Gabi Schmidberger

This thesis is submitted in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy in Computer Science

at The University of Waikato

February 2009

c© 2009 Gabi Schmidberger

Abstract

Data Mining can be seen as an extension to statistics. It comprises the preparation

of data and the process of gathering new knowledge from it. The extraction of

new knowledge is supported by various machine learning methods. Many of the

algorithms are based on probabilistic principles or use density estimations for their

computations. Density estimation has been practised in the field of statistics for

several centuries. In the simplest case, a histogram estimator, like the simple equal-

width histogram, can be used for this task and has been shown to be a practical

tool to represent the distribution of data visually and for computation. Like other

nonparametric approaches, it can provide a flexible solution. However, flexibility

in existing approaches is generally restricted because the size of the bins is fixed—

either the width of the bins or the number of values in them. Attempts have been

made to generate histograms with a variable bin width and a variable number of

values per interval, but the computational approaches in these methods have proven

too difficult and too slow even with modern computer technology.

In this thesis new flexible histogram estimation methods are developed and tested

as part of various machine learning tasks, namely discretization, naive Bayes clas-

sification, clustering and multiple-instance learning. Not only are the new den-

sity estimation methods applied to machine learning tasks, they also borrow design

principles from algorithms that are ubiquitous in artificial intelligence: divide-and-

conquer methods are a well known way to tackle large problems by dividing them

into small subproblems. Decision trees, used for machine learning classification,

successfully apply this approach. This thesis presents algorithms that build den-

sity estimators using a binary split tree to cut a range of values into subranges of

varying length. No class values are required for this splitting process, making it an

unsupervised method. The result is a histogram estimator that adapts well even to

complex density functions—a novel density estimation method with flexible density

estimation ability and good computational behaviour.

Algorithms are presented for both univariate and multivariate data. The uni-

variate histogram estimator is applied to discretization for density estimation and

also used as density estimator inside a naive Bayes classifier. The multivariate his-

togram, used as the basis for a clustering method, is applied to improve the runtime

behaviour of a well-known algorithm for multiple-instance classification. Perfor-

mance in these applications is evaluated by comparing the new approaches with

existing methods.

ii

Acknowledgments

Sincerest thanks and appreciation to my supervisors, Eibe Frank, Geoff Holmes

and Mark Hall for their support and guidance throughout my work on this

thesis.

I would also like to thank Grant, Sven and Claire for the occasional discus-

sion of one or the other point of research and Peter for his continuous readiness

to help out with whatever technical problem had arisen.

Further thanks to Christine and Wolfgang for their wise advice on organi-

sational matters, my friends from grrlcamp and now/here for their invaluable

moral support and all fellow graduate students for being my friends at Waikato

University despite our large age difference.

Most of all thanks to my husband Bernhard and children Boris and Barbara

for enduring a long string of ‘20-minute’ or take-away meals and my children

especially for never forgetting to ask: ”...and when will you be finished with

your thesis, Gabi?”

iii

iv

Contents

Abstract i

Acknowledgments iii

List of Tables xi

List of Figures xv

1 Introduction 1

1.1 Density Estimation . 4

1.2 Basic Concepts . 5

1.3 Motivation . 7

1.4 Thesis Structure . 8

2 Density Estimation and Tree Construction 11

2.1 Density Estimation . 12

2.1.1 Parametric and Nonparametric Estimation 12

2.1.2 Density Estimation in High-dimensional Spaces 13

2.1.3 Histograms . 13

2.1.4 Discontinuity of Histograms 15

2.1.5 Evaluating Histograms 15

2.1.6 Histograms as a Visualization Tool 18

2.2 Tree Building Algorithms . 18

2.2.1 Divide-and-conquer Methods 19

2.2.2 Searching in the Solution Space 20

2.2.3 Decision Trees . 20

2.2.4 Evaluating Decision Trees 22

2.2.5 Controlling the Size of the Tree 23

2.2.6 Discontinuity of Tree Structures 24

2.2.7 Interpretability of Tree Structures 24

v

2.3 Related Work . 25

2.3.1 Fayyad & Irani’s Tree-based Supervised Discretization

Method . 25

2.3.2 The Density-based Clustering Method STING 26

2.3.3 The Density Based Clustering Method CLIQUE 27

2.4 Summary . 27

3 Univariate Density Estimation Trees 29

3.1 Tree-based Unsupervised Bin Estimation 30

3.2 Evaluation of a Binning . 32

3.2.1 Adapting for Empty Bins 33

3.3 Finding the Split Point . 33

3.3.1 Examples of Split Point Selection 34

3.4 Where to Set the Cut Point for the Split 37

3.4.1 Example: Cutting Around an Empty Space 37

3.4.2 Placing the Actual Cut 38

3.5 Building the Density Estimation Tree 39

3.6 Stopping Criteria . 41

3.6.1 Local Stopping Criterion: Penalty Rule 42

3.6.2 Global Stopping Criterion: Cross-validation 43

3.7 Example: Tree Generation using TUBE 43

3.8 The Problem of Narrow Cuts 46

3.8.1 Heuristic I - Based on Dataset Size 47

3.8.2 Heuristic II - Based on EW-Cross-validated 47

3.9 Comparing TUBE with Standard Binning Methods 48

3.10 Empirical Evaluation Using Naive Bayes 48

3.11 Summary . 48

4 Applications of Univariate Density Estimation Trees 51

4.1 Application: Discretization for Histogram Estimation 53

4.1.1 Related Work . 55

4.1.2 Interpretable Intervals 57

4.1.3 Empirical Evaluation of TUBE Discretization 58

4.1.4 Visual Evaluation of TUBE Discretization 65

4.1.5 Experiments with Varying Cut Distance 74

4.1.6 Summary of Application to Discretization 74

4.2 Application: Naive Bayes . 78

4.2.1 The Classification Algorithm Naive Bayes 79

vi

4.2.2 Related Work . 80

4.2.3 Applying Univariate TUBE in Naive Bayes 80

4.2.4 Evaluation . 81

4.2.5 Summary Naive Bayes 88

4.3 Summary . 91

5 Multivariate Density Estimation Trees 93

5.1 Evaluating a Multidimensional Binning 94

5.2 Splitting a Range and Setting the Cut Point 95

5.3 Building the Density Estimation Tree for Multidimensional Data 96

5.3.1 Selecting the Next Attribute to Cut 98

5.3.2 The Stopping Criteria 100

5.3.3 The Problem of Narrow Cuts 100

5.4 Additional Functionality in Multi-TUBE 100

5.4.1 Mixing Two Binnings . 101

5.4.2 Clustering Using the Multi-TUBE Binning 109

5.5 Presentation Methods for

Multidimensional Bins . 109

5.5.1 Ordering the Bins . 110

5.5.2 The Bin List: A Simplified Histogram 110

5.5.3 Bin Lists For Two-Class Problems 113

5.5.4 Bin Position Overview 114

5.5.5 Examples of Data Exploration 115

5.5.6 Future Work: Graphical User Interface Support 120

5.6 Empirical Evaluation Using Multiple Instance Learning 121

5.7 Summary . 121

6 Applications of Multivariate Density Estimation Trees 123

6.1 Application: Clustering . 125

6.1.1 The Multidimensional TUBE Clusterer 126

6.1.2 Discussion of the Algorithm 132

6.1.3 Clusterers with Similarities to the TUBE Clusterer . . . 138

6.1.4 Evaluation of the TUBE Clusterer 139

6.1.5 Summary for Application Clustering 150

6.2 Application: Multiple-Instance Learning 153

6.2.1 Multiple-Instance Learning 154

6.2.2 Existing Multiple-Instance Learning Methods 155

6.2.3 Models for the Positive Concept 159

vii

6.2.4 Using TUBE to Define the Positive Concept Area 160

6.2.5 Datasets . 162

6.2.6 Using TUBE Clusters for MI Classification 162

6.2.7 Improving the Efficiency of the Diverse Density Algorithm164

6.2.8 Elucidating the Results Using Data Exploration 166

6.2.9 Summary Application Multiple-Instance Learning 170

6.3 Summary . 172

7 Conclusions 175

7.1 Summary . 176

7.2 Main Contributions . 179

7.3 Repeatability . 180

7.4 Conclusions . 180

7.5 Future Work . 181

A Bin Lists 183

A.1 The eastwest Dataset . 183

A.2 The musk1 Dataset . 187

A.3 The musk2 Dataset . 189

B Command Line Program Calls 197

C Program Calls Used in Application Discretization 199

C.1 Drawing Histograms . 199

C.2 Discretizing . 200

D Program Calls Used in Application Naive Bayes 203

E Program Calls Used for Presentation Methods 205

E.1 Bin Lists . 205

E.2 Bin Lists for Two-Class Problems 205

E.3 Bin Position Overview . 205

F Program Calls Used in Application Clustering 207

F.1 Generating the Example Datasets 207

F.2 Clustering with TUBE Clusterer 209

G Program Calls Used in Application Multiple-Instance Learn-

ing 211

G.1 Using TUBE Clusters for MI Classification 211

viii

G.2 Improving the Efficiency of the Diverse Density Algorithm . . . 212

Bibliography 214

ix

x

List of Tables

4.1 464 numeric attributes from UCI datasets and their levels

of uniqueness. 61

4.2 Comparison of the density estimation results. Result of paired

t-test based on cross-validated log-likelihood. 63

4.3 Comparison of the number of bins. 64

4.4 Comparing the fit of the density estimates generated by TUBE

cross-validated (TUBE), EW cross-validated (EW-cv), EW with

ten bins (EW-10), EF with ten bins (EF-10), and EM cross-

validated (EM-cv), using the difference area size (see Equa-

tion 4.2). An asterisk (∗) marks the smallest difference area

for each dataset. 71

4.5 Parameters of generated Gaussians compared to those found by

EM-cv. 71

4.6 Results for TUBE evaluation with different values for the pa-

rameter eps. The values with an asterisk (*) show significant

improvement based on the corrected t-test compared to the left-

most value in the same row. 75

4.7 Naive Bayes with Gaussian density (Gauss) compared with TUBE

cross-validated (TUBE-CV), EW cross-validated (EW-CV) and

ZeroR (v significant win, * loss against Gauss). 83

4.8 Comparing naive Bayes using TUBE density estimation with

various parameter settings for the TUBE estimator: cross-validated

(TUBE-CV); cross-validated and 0.2 minimal bin width (TUBE-

02); cross-validated, 0.2 minimal bin width and a maximum of

15 bins (TUBE-15); and minimal bin width and maximal num-

ber of bins set with EW (TUBE-EW) (v significant win, * loss

against TUBE-CV). 84

xi

4.9 Comparing naive Bayes using equal-width density with vari-

ous parameter settings for the equal-width estimator: cross-

validated (EW-CV); 30 bins (EW-30); and 15 bins (EW-15) (v

significant win, * loss against EW-CV). 85

4.10 Naive Bayes with Gaussian density compared with best of TUBE

and best of equal-width estimator: cross-validated and 0.2 min-

imal bin width (TUBE-02); EW with fifteen bins (EW-15); and

ZeroR (v significant win, * loss against Gauss). 86

4.11 TUBE with the minimal bin width set to 0.2 (TUBE-02) com-

pared with EW using fifteen bins (EW-15), EW cross-validated

(EW-CV), and naive Bayes with Gaussian densities(Gauss) (v

significant win, * loss against TUBE-EW). 87

4.12 This table repeats the results for the four datasets with the best

accuracy for the binning algorithms and adds the average num-

ber of modes found: Classification results for Naive Bayes with

Gaussian (Gauss), TUBE cross-validated and 0.2 minimal bin

width (TUBE-02) and EW with fifteen bins (EW-15); average

number of modes found with TUBE cross-validated, 0.2 min-

imal bin width and maximally fifteen bins (mode-TUBE) and

the average number of modes found with EW with fifteen bins

(mode-EW). 89

4.13 This table repeats the results for the four datasets with the

worst accuracy for the binning algorithms and adds the average

number of modes found: Classification results for Naive Bayes

with Gaussian (Gauss), TUBE cross-validated and 0.2 minimal

bin width (TUBE-02) and EW with fifteen bins (EW-15); av-

erage number of modes found with TUBE cross-validated, 0.2

minimally bin width and maximal fifteen bins (mode-TUBE)

and the average number of modes found with EW with fifteen

bins (mode-EW). 89

6.1 Han and Kamber’s requirements for clustering algorithms 137

6.2 Example 1: Instructions for the data generator 142

6.3 Example 1: Results overview . 142

6.4 Example 2: Results overview . 142

6.5 Example 3: Instructions for the data generator 144

6.6 Example 3: Results overview . 144

xii

6.7 Example 4: Instructions for the data generator 144

6.8 Example 4: Second dataset - Instructions for the data generator 146

6.9 Example 4: Results overview . 146

6.10 Example 5: Instructions for the data generator 146

6.11 Example 5: Results overview . 147

6.12 Example 6: Instructions for the data generator 148

6.13 Example 6: Results overview . 148

6.14 UCI datasets: Results overview with number of classes (Clas),

number of clusters found equal to by TUBE (T-c), achieved

accuracy using TUBE’s clusters for classification (TUBE), and

with clusters assigned to classes according to the majority class

(TU-X), number of clusters found by EM (E-c), achieved ac-

curacy using EM’s clusters for classification (EM-CV);EM with

fixed number of clusters to the number of clusters found by

TUBE (EM-TU), and with clusters assigned to classes accord-

ing to the majority class (EM-X). 151

6.15 UCI datasets: Number of clusters found 152

6.16 Basic statistics of the datasets used. 162

6.17 Multiple-instance Diverse Density classification (MIDD) com-

pared with TUBE-MIC with the thresholds set to 90 (TMIC-

90), 70 (TMIC-70) and 60 (TMIC-60) respectively (v significant

win, * loss against DD). 163

6.18 Multiple-instance Diverse Density classification (DD); accuracy

compared with TUBE-augmented method with five bins (TUBE-

5), ten bins (TUBE-10) and ten bins with the starting instances

selected randomly (TUBE-10-rand) (v significant win, * loss

against DD). 165

6.19 CPU time comparison: Diverse Density method (DD), TUBE

augmented method with five bins (TUBE-5), ten bins (TUBE-

10) and ten bins with the starting instances selected randomly

(TUBE-10-rand) (v significantly faster, * significantly slower

than DD). 166

xiii

xiv

List of Figures

1.1 Example of splitting an unknown distribution. 5

3.1 Example dataset split with equal-width binning (Fifteen bins). . 30

3.2 Example dataset split with TUBE. 31

3.3 Splitting a one-step uniform distribution. 35

3.4 Splitting a multi-step uniform distribution. 35

3.5 Splitting a Gaussian distribution. 36

3.6 Splitting at an empty subrange. 36

3.7 The log-likelihood is minimized between instances. 38

3.8 TUBE chooses five bins of varying length. 44

3.9 Tree after the first cut. 44

3.10 Tree after the second cut. 45

3.11 Finalized tree. 45

3.12 Distorted histogram due to small cuts. 47

3.13 Small cuts eliminated with heuristic. 47

4.1 TUBE discretization for the age attribute in diabetes data.

TUBE finds ten intervals. 58

4.2 TUBE discretization of age attribute with three subintervals. . . 59

4.3 TUBE finds the low density areas. 59

4.4 TUBE discretization, zoomed in on the low values. 60

4.5 TUBE discretization: two uniform areas with an empty range. . 66

4.6 EW with ten bins and EF with ten bins: two uniform areas with

an empty range. 66

4.7 EW cross-validated: two uniform areas with an empty range. . . 67

4.8 TUBE discretization: five uniform areas. 68

4.9 EW cross-validated: five uniform areas. 68

4.10 TUBE and EF ten bins discretization: two Gaussians. 69

4.11 EW cross-validated discretization: two Gaussians. 70

xv

4.12 TUBE discretization of an attribute with discrete values. Cut

distance is set to default 1.0E − 4. 71

4.13 TUBE discretization of an attribute with discrete values. Cut

distance is set to 0.1, larger than default. 72

4.14 TUBE discretization of an attribute with spikes based on few

values only. Cut distance is set to default 1.0E − 4. 73

4.15 TUBE discretization of an attribute with spikes based on few

values only. Cut distance is set to 0.1. The spikes have disap-

peared. 73

4.16 Two lists of instances per bin for the class per attribute sub-

datasets of the dataset anneal. The distributions show at least

two significant modes. 88

4.17 Two lists of instances per bin for the class per attribute sub-

datasets of the dataset iris. Each distribution shows only one

significant mode. 88

5.1 Two-dimensional dataset with possible cut points before first cut. 97

5.2 Left bin after first cut, with two new cut points for a1 and a2. . 98

5.3 Two univariate distributions: dataset with ‘negative’ instances

and dataset with ‘positive’ instances. 102

5.4 Two univariate distributions and their difference distribution

Ddiff . 103

5.5 Two-dimensional dataset with class A instances and two splits. . 104

5.6 Two-dimensional dataset with class B instances and two splits. . 105

5.7 Dataset with class A and class B instances and mixing of bin-

nings performed. 105

5.8 The first mixed cut is cutting an attribute (X1) that has not

been cut yet and therefore cuts all existing bins. 107

5.9 A sample bin list of ten bins; Bin 0 is empty. 111

5.10 Values below 0.1%. 111

5.11 Matrix plot of the example dataset. 112

5.12 Bin list with information about class distribution. 113

5.13 Positions of Bin 5 and Bin 6. 114

5.14 Eastwest dataset: fifteen bins bin list; two-class problem. 116

5.15 Bin 3: bin position overview; eastwest dataset. 116

5.16 Bin 14: bin position overview; eastwest dataset. 117

xvi

5.17 Eastwest dataset: mixing of binnings bin list (started with 5

bins). 118

5.18 Elephant dataset: fifteen bins bin list; two-class problem. 118

5.19 Elephant dataset: mixing of binnings bin list (started with 5

bins). 119

6.1 TUBE clusterer found two clusters. 127

6.2 Bin has three neighbours in the first attribute X. 127

6.3 TUBE finds two cluster. Cluster1 is plotted with crosses, Cluster2

with circles. 128

6.4 Small ridge that splits a cluster. 137

6.5 Cutting around dense area cuts areas of similar densities apart. 137

6.6 Three tube-shaped clusters. 143

6.7 Three two-dimensional clusters. 145

6.8 Four two-dimensional clusters. 145

6.9 Non-convex shaped cluster. 147

6.10 The first cut does not define the clusters yet. 149

6.11 Bin list of the eastwest datasets. Nine clusters found. 167

6.12 Bin list of the musk1 datasets. Only one cluster found. 168

6.13 Bin list of the musk2 datasets. Two clusters found. 169

xvii

xviii

Chapter 1

Introduction

Machine learning has grown into a mature field of research. In the research

literature and at conferences a great number of machine learning methods

and algorithms have been developed and discussed. The “Machine Learning”

journal [42] was first published in March 1986. This is now more than 20 years

ago. Also the “International Conference on Machine Learning (ICML)” just

recently celebrated its 25th anniversary.

Machine learning’s goal is to find a way to make computers gain ‘knowl-

edge’ or improve their performance from experience [45]. Tom Mitchell calls

machine learning a natural outgrowth of the intersection of computer science

and statistics [45]. Statistics, a much older discipline, also aims at inferring

facts from data. The first statistical techniques were developed hundreds of

years ago and statistics has been widely practised in the pre-computer age.

Nowadays, both computer scientists and statisticians work in the field of ma-

chine learning. The book “Elements of Statistical Learning” [26], published

in 2001, summarizes machine learning methods from the statisticians’ point of

view.

Artificial intelligence (AI) is an area of research that aims to mimic func-

tions of human intelligence using computers. Machine learning is a subfield

that has its roots in artificial intelligence. Its objective is to enable a computer,

or more general a machine, to learn [45]. Other prominent topics in artificial

intelligence are planning and knowledge representation to name a couple. AI

topics provided the incentive to develop a range of algorithms, e.g. search

algorithms. The size of AI tasks often makes it necessary to develop the algo-

rithms in a way that uses computation time wisely. Tom Mitchell points out

that the field machine learning always had to take into consideration what is

computationally feasible [45].

1

Outside the research communities the technical term data mining is per-

haps better known than the term machine learning. Data mining generally

refers to the process of gaining knowledge from data in a commercial envi-

ronment and addresses the full knowledge extraction process, starting from

preparing the data, to exploring the data and finally gaining knowledge from

it using machine learning methods. Data mining mostly involves working with

large volumes of data. This itself makes the efficiency of algorithms very im-

portant. Note that prominent researchers (Han & Kamber [24]) believe that

data mining is actually not the best name for the task. Like it is not the sand

that is mined but the gold, it is not data that is mined but the knowledge from

the data.

Some of the main machine learning tasks are: classification, which aims

to build a model to use for prediction of the label (i.e. class value) of later

unseen data instances; regression, which does the same as classification but for

a numeric target value instead of a categorical class value; clustering, which

aims to identify areas of high density in the data that can potentially be used

to define labels for the instances; and association rule mining, which searches

for rare but important patterns in the data.

These machine learning tasks have been supported with various different

techniques, some of them using density estimation to find a good model. There

is a strong connection between density estimation, clustering and classification.

Clustering is looking for dense areas surrounded by less dense areas. Density

estimation can help finding these dense areas. Classification also selects areas

where specific class values are predominately found, i.e. where the density of

examples with these values is high. In both applications it is important to

find good thresholds to decide where the area of a cluster or the area per-

taining to one class begins and where it ends. Density models which build a

density function by setting thresholds are binning methods like the simple his-

togram and are also called discretization methods. In this thesis new binning

algorithms for density estimation are developed and applied to some of the

above-mentioned machine learning tasks.

Density estimation originates in statistics. The so-called statistical fre-

quentists are the followers of Fisher [3], who—among other things—pioneered

parametric density estimation. Parametric density estimation requires the as-

sumption of a distribution family (e.g. Gaussian) and then the given dataset

is used to estimate the parameters of the distribution. In contrast, nonpara-

metric approaches like Parzen’s [48] do not assume a specific functional form

2

of the distribution. The major difference of nonparametric density estimation

is that for each value of the estimated density function only instances within a

certain distance from the query point are taken into account. The width of this

‘window’ is crucial for accurate estimation. Nonparametric density estimation

is able to model more complex density functions than standard parametric

methods [55].

A first step in data analysis is ‘looking at the data’ that equates to the data

exploration step of the modern data mining process. The data exploration step

was inspired by Tukey [27] who developed exploratory data analysis as part

of a movement away from frequentist statistical thinking. In this approach

the expert inspects the data using data visualization tools. One of the most

prominent data visualization tools, namely the histogram, was in fact, invented

some hundred years ago. A histogram can not only be used to explore the data,

but, if used as a model for classification or clustering, can also provide an easily

understandable model of the data.

One of the earliest successful classification techniques is decision tree clas-

sification [9][50]. These classifiers analyze a given data sample, consisting of

a set of instances which are each described by a fixed set of attributes (or

features), and build a tree-based model. At each node of this tree the clas-

sifier decides on branching further down the tree depending on the values of

one of the attributes of the instances concerned. As soon as a leaf node is

reached, the class is defined, using the majority class of training instances in

this leaf. Decision tree classifiers can be constructed in an efficient way using

a so-called ‘greedy’ algorithm to build the tree recursively from the root node

down. This way, a partition on the example data is defined using a locally best

solution—without testing all possible partitions—but this still generally results

in a reasonably good partition. In most cases testing all possible solutions is

not computationally feasible.

In this thesis, tree-based algorithms for density estimation are developed.

The algorithms use a tree-based method to split ranges of univariate and mul-

tivariate data into subranges such that the subranges represent uniform distri-

butions. As in tree learning for classification, a greedy method is used for the

selection of split points. Then, on the basis of the resulting non-overlapping

subranges, a density histogram can be formed. These histogram estimators are

applied to various machine learning tasks and evaluated in the context of these

tasks. Visualizing tools—like histograms for univariate data and multivariate

summarization tools for multivariate data—developed in this thesis, help to

3

explain the results. Experimented evaluation was done using the WEKA ma-

chine learning tool set [68].

The next subsections provide a brief introduction to the basic concepts

used throughout this thesis. Section 1.1 explains the main principles of den-

sity estimation. A second basic concepts section, Section 1.2, establishes the

machine learning terms used in this thesis. Both these sections prepare for

the motivation for this thesis presented in Section 1.3. Finally, Section 1.4

explains the overall thesis structure.

1.1 Density Estimation

The work in this thesis is on density estimation for numeric data. Density

estimation is the process of constructing an estimate of the density function

underlying the given example (or sample) data. Following standard machine

learning terminology, the example data is also called the training data for the

density model.

Density estimation has been practised in statistics and probability theory

before data mining was even known. At the beginning of the 20th century,

Fisher introduced his parametric methods of density estimation [3] which are

still widely practised. These methods require the statistician to choose a model

from a possible set of distributions of the data (e.g Gaussian) and use the ex-

ample dataset to adapt the parameters of this model, thus forming an estimate

of the true unknown distribution.

In contrast, nonparametric methods for density estimation are a more re-

cent approach and partly rival the parametric methods. A much older method,

the density histogram is also a nonparametric density estimator. The simplest

type of density histogram is built by splitting the range of values into inter-

vals of equal length. The number of intervals (i.e. bins) is given by the user.

It is quite common to explore new data by visualizing it with equal-width

histograms and varying the number of bins.

In histograms, the number of bins fulfils the role of the so-called smoothing

factor, which in some form plays a role in most nonparametric density estima-

tion techniques. If a small number of bins is chosen, it results in most cases in

a smoother distribution function estimate when compared to a larger number

of bins. A histogram that does not show enough details of the data distribu-

tion is called over-smoothed. A histogram that shows too much detail is called

under-smoothed. Figure 1.1 gives an example of two histograms of data from

4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

-3 -2 -1 0 1 2 3

de
ns

ity

value

EW 30 bins
EW 10 bins

Figure 1.1: Example of splitting an unknown distribution.

a simple unknown distribution function, two equal-width histograms with 10

and 30 bins respectively. In the second histogram—the histogram with the

higher number of bins—two maxima (i.e. modes) are visible. A question

that arises is whether the second histogram is under-smoothed or the first one

over-smoothed.

For data from a simple Gaussian distribution, Scott [55] developed a for-

mula to compute an appropriate number of bins for a histogram estimator. A

more general method to find this number is to cross-validate for the number of

intervals. The cross-validation method tests a model using the example data

as training and test data. It averages a test criterion between n versions of

the model. To build these n models the sample data is split into n parts and,

for each test, n − 1 parts are taken as training data to build the model and

one part is taken as test data. Cross-validation is explained in more detail in

Chapter 2.

1.2 Basic Concepts

Most of the experiments in this thesis work with the standard data format that

is commonly used in machine learning. The data is organized in a dataset: a set

of instances where each instance corresponds to an example (i.e. observation)

5

from a real-world or artificial data source. Each instance consists of a fixed-

length attribute vector. Each attribute (or feature) of an instance describes

an aspect of the example. Some machine learning algorithms assume one of

the attributes to be special and assume it gives the label or class of the ex-

ample. Methods using a class attribute are supervised methods. Unsupervised

methods do not use a class attribute.

The most common attribute types are the categorical and the numeric

attribute type. Numeric attributes have continuous (i.e. real) or discrete values

(e.g. integer values). Categorical attributes have a set of labels as possible

values. ‘Wellington’, ‘Auckland’, ‘Christchurch’, ‘Hamilton’ and ‘Dunedin’ are

examples of labels of a categorical attribute containing the names of towns in

New Zealand. Categorical data types are normally unordered like this, but

can also be ordered. For example the attribute ‘fever’ could have the ordered

values ‘below normal temperature’, ‘normal temperature’, ‘light fever’, ‘high

fever’.

There can be slight differences in the definition of attribute types depending

on the tool used. In the WEKA mining tool set [68], numeric attributes can

be both discrete and continuous. Like most machine learning tools it can also

represent values as missing. Note that the algorithms developed in this thesis

assume numeric data without missing values.

A more complex data structure are multiple-instance datasets where exam-

ples contain multiple instances rather than one. The multiple-instance data

format is used in an application of the multivariate algorithm developed in this

thesis and is explained in detail in Section 6.2.

The basic machine learning tasks relevant to this thesis are classification

and clustering. Classifiers are tools for the prediction of a categorical class

value. This means they use the class value for the construction of a model

and therefore are supervised. A classification method takes training data—

which in this case is data with known class values—and builds an algorithm-

specific model to predict the class attribute of further, so far unseen instances.

Classifiers are induction methods because they conclude from the specific to

the general. The model of the classifier can be seen as a function. The input

parameters of this function are the attribute values and the output value is

the class value of the instance.

Clustering looks for instances with high similarities that form a group dis-

tinct from all other instances in the dataset. Clustering starts with data that

does not have a label yet, which means it is an unsupervised method. Clus-

6

tering is done to find new patterns and can also be used for data exploration

to gain insight into the structure of the data. It looks for multidimensional

modes, i.e. areas of high density which are surrounded by areas of lower den-

sity. These areas are the clusters and define the model. The resulting clusters

can be used to define new concepts, i.e. classes, on the data.

In classification and clustering the model building step is also called train-

ing. As in statistics, machine learning tries to infer new facts from the given

data, under certain modelling assumptions. It is important to remember that

these modelling assumptions place a bias on the results. This bias can be

strong, as in parametric methods, or weak, as in nonparametric ones.

Classifiers are evaluated by measuring their prediction accuracy. For test-

ing, the training dataset or a different evaluation dataset (i.e test dataset) is

taken, and the class values of the examples in this set are predicted using the

model and then the real class values are compared with the predicted ones.

The percentage of correctly predicted instances is called the accuracy of the

classifier. Note that the evaluation using the training data, with which the

model was also built, generally gives a very optimistic estimate of accuracy.

In contrast to classifiers, clustering results are in general difficult to eval-

uate because it is rare that a test dataset is provided with correct cluster

assignments.

Further, more specific background information about methods used in this

thesis, e.g. tree-based algorithms, is given in Chapter 2.

1.3 Motivation

Density estimation is a frequently used tool in machine learning, as it is for

instance used in clustering and in probability-based classification. Histogram

estimators are nonparametric density estimators and are able to represent com-

plex density functions. However, existing methods which are in common use

are restricted by either a fixed bin width or a fixed number of instances per

bin. The number of bins is commonly given by the user. Existing methods for

histograms with varying bins (width or number of instances) are too compu-

tationally intensive to be of practical use [56]. Moreover, existing techniques,

which are in common use, are only univariate.

Ideally, histogram techniques should produce an estimator that is simple,

yet represents the distribution well. This thesis develops new algorithms that

generate histogram estimates with variable bins for numeric univariate and

7

multivariate data. The evaluation of these algorithms aims to answer the

following questions (sections with corresponding empirical results are given in

brackets):

- Can greedy algorithms for tree-based density estimation represent the

structure of the distribution function well, by adapting to all significant

changes in the density function, and also abrupt changes and areas of

(effectively) zero density? (4.1) For instance, can tree-based density es-

timation be used to find clusters in multidimensional data? (6.1)

- Can the algorithms employ cross-validation to determine an appropriate

number of bins based on the input data alone? (4.1)

- Can the induced nonparametric density estimators support density es-

timation tasks in machine learning applications, such as single-instance

and multiple-instance classification, so that the performance in the tar-

get application is improved when the new estimator is used to augment

an existing approach or used in place of standard histogram estimators?

(4.2, 6.2)

- Can tree-based density estimators generate density models based on com-

putational requirements that render them useful in practical applica-

tions? (4.1, 4.2, 6.1, 6.2)

The thesis also investigates—albeit in a less formal manner—whether in-

terpreting data using visualization based on the histograms produced can po-

tentially aid exploratory analysis. However, the focus is on the quantitative

evaluation of algorithms for tree-based density estimation.

1.4 Thesis Structure

The content of this thesis is organized in seven chapters, including this intro-

duction, which provides context and motivation, and the conclusion chapter,

which summarizes the contributions.

Chapter 2 introduces the underlying concepts necessary for constructing

tree-based density estimators in more detail. It is split into two parts: the

first part explains density estimation and corresponding techniques developed

in statistics; the second part covers tree construction, a topic stemming pri-

marily from machine learning. The discussion of density estimation is focused

8

on histogram estimators. Tree construction has been widely used for deci-

sion tree classification in machine learning and is a classic divide-and-conquer

algorithm—a technique often used in search problems.

The next two chapters, Chapters 3 and 4, cover the univariate version

of the tree-based density estimation method developed in this thesis. Chap-

ter 3 explains in detail the algorithm for the first tree-based density estimation

method introduced in this thesis, called TUBE. TUBE stands for Tree-Based

Unsupervised Bin Estimator. A major part of the algorithm involves finding

the split points between the bins and deciding where to cut exactly. The splits

are selected in a greedy fashion and the process is repeated recursively on the

subranges produced. In addition to the splitting criterion, which decides where

to split, a stopping criterion is defined to decide when to stop splitting and

thus implicitly select an appropriate number of bins.

Chapter 4 investigates two applications of univariate density estimation

trees. In the machine learning context, the process of splitting a numeric at-

tribute into subranges is called discretization. In the first application, TUBE’s

univariate discretization is evaluated as a density estimator using the log-

likelihood criterion. In the second application, TUBE discretization is used

inside the classification algorithm naive Bayes and is compared with other

univariate methods for nonparametric density estimation in this context. For

the second application, the evaluation criterion is classification accuracy.

Chapters 5 and 6 cover the multivariate version of the tree-based density

estimation method developed in this thesis. Chapter 5 contains the implemen-

tation details of the multivariate version of the algorithm, called Multi-TUBE.

Most parts of Chapter 3, which introduces the univariate version of the al-

gorithm, are also relevant for the multivariate case because Multi-TUBE can

be seen as a generalization of the univariate density estimation algorithm. In

Multi-TUBE, splits are performed on any of the attributes in the data, in-

stead of a single attribute as in the univariate case. Obviously visualization

of multivariate histograms with more than three attributes is not possible in

a standard fashion. Chapter 5 also introduces some simple methods to list a

histogram’s bins in a user-friendly way, to give some insight into the structure

of a multidimensional histogram.

Chapter 6 covers two applications of multivariate density estimation trees.

The first application investigates the possibilities of using the multivariate

tree-based density estimation tool for clustering. The second application uses

the clustered bins of the multivariate histograms for classification of multiple-

9

instance problems. These problems exhibit the multiple-instance data format,

where an example consists of a bag of unlabelled feature vectors and the class

value is assigned to this bag of instances.

As already indicated above, the major contributions of this thesis are listed

in Chapter 7, which also summarises the results of this thesis and suggests

future work.

10

Chapter 2

Density Estimation and Tree

Construction

The density estimation methods developed in this thesis use a binary tree to

construct a density estimation function. They are adaptations of an algorithm

widely used in machine learning to the statistical task of density estimation.

This chapter discusses the two main underlying concepts, density estimation

and tree construction. Further content in this chapter covers related work,

such as similar algorithmic approaches to density estimation.

Density estimation is the task of estimating the underlying density function

of data on the basis of a sample from this data. Density estimation techniques

are often split into two groups: parametric density estimation techniques and

nonparametric ones. Parametric methods assume a known distribution and the

sample data is used to compute the parameters for this distribution. Nonpara-

metric methods do not assume a particular underlying distribution function.

For example, histograms are considered to be a nonparametric density estima-

tion method. The density estimation methods in this thesis do not assume an

underlying distribution and generate histograms—one-dimensional and multi-

dimensional ones. Hence, like the standard histogram method, they can be

seen as nonparametric methods. Note that another nonparametric approach

is Kernel density estimation [30][48], which has grown into a very large re-

search area in the last few years. This thesis does not cover kernel estimation

methods.

In this thesis ‘constructing density estimation trees’ means using a tree

building algorithm to construct a histogram. The subranges of the histogram

bins are found in a divide-and-conquer fashion by recursively splitting the

range and building a binary split tree.

11

The content of this chapter is organized in the following way. Section 2.1

gives an overview of density estimation with a detailed explanation of existing

histogram techniques. Section 2.2 explains the principles of tree construction

as it is used in other areas of machine learning. Section 2.3 introduces further

related methods.

2.1 Density Estimation

For the statistical concept known as probability density function the values of

a dataset are considered to be of a random variable X. The density function f

describes the distribution of this variable X. It provides probabilities for the

values of the dataset based on the following relationship (see also [60]):

P (a < X < b) =
∫ b

a
f(x)dx for all a < b (2.1)

Density estimation estimates this probability density function using a sam-

ple of data points from the domain (i.e. data source). It is assumed that

the sample represents the underlying target domain sufficiently well. Density

estimation techniques differ in their tolerance to flawed data.

2.1.1 Parametric and Nonparametric Estimation

As stated above, density estimation methods can be classified as parametric

or nonparametric methods. For parametric methods, a type of function, for

instance the Gaussian density function, is assumed, and the density estimation

method finds the parameters of this distribution function to fit the given sample

data. The estimation of these parameters can be computationally expensive.

The more dimensions the dataset has, the more parameters are involved and

thus have to be computed. Another significant problem is that the data may

not follow the chosen type of distribution and it is generally impossible to know

the type of distribution for a high-dimensional dataset.

There is some disagreement as to when an estimator is nonparametric. In

fact, Scott [56] states that it is difficult to define exactly what distinguishes

a nonparametric estimator from a parametric one. He mentions that there

is a notion to define a nonparametric estimator by the fact that the number

of its parameters depends on the size of the sample or even is infinite. A

more intuitive definition of nonparametric estimation is given in Terrell and

Scott [63]. This work defines a nonparametric estimator as asymptotically

12

local. Local means that only local instances have influence on the point density

estimate f(x) (the density value at a point x). Parametric density estimators

are not local.

Because they are locally defined, nonparametric methods can adapt better

to complex distributions and therefore they are more flexible. Of course, if

they are extremely local, like for example a histogram with maximal bin width

smaller than the minimal distance between instances, they become ineffective.

2.1.2 Density Estimation in High-dimensional Spaces

Density Estimation in high-dimensional space poses several problems. If the

dataset has a large number of attributes, it is quite likely that several of them

are irrelevant and some are highly correlated with each other. A few techniques

have been developed to extract such attributes from a dataset before starting

the density estimation process [23][36][38]. Methods to select the relevant

attributes in order to discard the irrelevant ones are called attribute selection

or feature selection methods.

Moreover, high-dimensional data has some unexpected properties. With

some of the attributes being irrelevant, distances between instances measured

by standard distance measurements like the Euclidean distance become very

similar. Every instance has almost equal distance to every other instance.

Most of a high-dimensional instance space is in fact empty. This is called

the curse of dimensionality. It can be best explained with an example. Assume

the task is to fill out an instance space, in which every dimension has been

cut into ten subranges, with uniformly distributed data, so that each resulting

multidimensional bin has at least ten instances. In the one-dimensional case,

a dataset with one hundred equally distributed values would suffice. If the

dimension of the dataset is only as high as four, already the dataset fulfilling

this requirement would require a very large dataset of at least ten thousand

instances.

2.1.3 Histograms

The histogram is a well-known tool for representing data distributions. Pearson

is considered [56] to be the first to use the name ‘histogram’ in a publication

in 1894. However, there is evidence that representation techniques like the

histogram have been used for several centuries before Pearson named it. A

histogram is built by splitting the sample range into non-overlapping intervals

13

also called bins. In the density histogram, the density for each bin is computed

from the bin width wi of bini, the number of bins k, the total number of training

instances N and the training instances themselves x1, .., xj, .., xN . With this

and the indicator function I the density function f(x) is defined by:

f(x) =
k∑
i

I(x ∈ bini)
N∑
j

I(xj ∈ bini)×
1

wi ×N
(2.2)

In this thesis only the density histogram is discussed. The frequency his-

togram differs from the density histogram in that the height of a bin of the

frequency histogram is simply one unit per example that falls into the interval

of the bin and does not depend on the bin width.

An important parameter of all density estimation techniques is the smooth-

ing factor. The most common and simplest way of making histograms is the

equal-width method. The range is divided into subranges or bins of equal-

width. In the equal-width diagram the bin width is the smoothing factor. If

the bin width is small, more irregularities can be seen and the density function

is less smooth. The larger the bin width, the fewer irregularities can be seen,

but some important features of the underlying distribution maybe hidden. In

the method developed in this thesis, the bin widths (and with that the smooth-

ing factor) are adapted automatically to the changes of local density and so

vary over the range of values.

The smoothing factor also controls the bias-variance trade-off. If the bin

width is large, the variance in the estimator is generally smaller, because the

estimate is based on more data, but the bias is large. Reducing the bin width

reduces the bias but increases the variance [16].

Equal-width Histograms The equal-width histogram can also be called

the standard histogram technique. Equal-width histograms divide the range

of the attribute into a fixed number of intervals of equal length. The user

normally specifies the number of intervals as a parameter, but cross-validation

can be used instead (see discussion in Section 2.1.5 below).

Equal-frequency Histograms Another basic histogram method is the equal-

frequency method. Equal-frequency histograms have a fixed number of inter-

vals and the bin width varies over the range because each bin contains the

same number of data points. The number of intervals is again determined by

the user.

14

2.1.4 Discontinuity of Histograms

A histogram represents a piece-wise constant density function. This means

the function is not continuous. As long as the discontinuity of the density

function is not a problem for the application at hand—this would be the case

if derivatives of the density function were needed—the histogram is a potential

candidate technique for the estimation of the density.

2.1.5 Evaluating Histograms

The evaluation of a histogram focuses on the quality of fit of the model to

the real underlying distribution. The model is the histogram. A standard

statistical evaluation criterion for probability modelling is the likelihood of

the model. In this thesis the cross-validated likelihood is used for evaluating

density histograms, discussed below. Another common evaluation method is

the penalized likelihood and it is also briefly discussed below. However, this

method is problematic in the context of histograms because histograms are

not differentiable.

Likelihood

The likelihood is a commonly used measurement to evaluate density estima-

tors [60]. It measures how likely the model is, given the data. (X1, ..., Xn are

the test instances; g is the density estimator.)

L(g/X1, ..., Xn) =
n∏
i

g(Xi) (2.3)

Instead of the likelihood, the log-likelihood is often used, which gives nu-

merical advantages because the product is transformed into a sum of terms.

L(g/X1, ..., Xn) =
n∑
i

log g(Xi) (2.4)

To get an unbiased estimate of the likelihood, test data that is independent

of the training data has to be used. For a histogram that has ni training

instances in bini, let nitest be the number of instances of the test set that fall

into this bin, wi be the bin width, and Ntrain be the total number of training

instances. Then the log-likelihood L on the test data is:

L =
∑

i

nitest × log
ni

wi ×Ntrain

(2.5)

15

Penalized Likelihood

If one of the bins’ width becomes very small, the likelihood value of the his-

togram can grow arbitrarily large for this bin, which fact causes a problem

when comparing histograms using the likelihood. The penalized likelihood

tries to avoid this by putting a penalty on roughness. A density estimate is

‘rough’ when there are large changes in density between neighbouring areas.

Silverman [60] adds a positive smoothing parameter α and with it defines the

penalized likelihood as:

Lα(g) =
n∑
i

log g(Xi)− αR(g) (2.6)

The roughness penalty R is a function of the density function g and is

often defined using a derivative of g. For the discontinuous histogram, a

different measure for the roughness value would have to be defined, or the

cross-validated likelihood can be used instead.

Cross-validation

The dataset that is used to build a model is called the training or construc-

tion dataset. Testing the model on the data that it was built from is called

re-substitution testing. If the model is fit very closely to this construction

dataset, some peculiarities of this sample will be represented in the model.

The re-substitution test will classify the model as good but it will not show

the characteristics of the real distribution clearly. This problem is also called

overfitting. A method that fits the data too closely can be particularly im-

practical if the data contains errors.

For comparison of models, it is better to use a test dataset that is indepen-

dent of the dataset used for construction, but comes from the same distribution.

If only one dataset is available, hold-out methods are applied. ‘Holding out’

means setting a part of the training data aside to be later used for testing.

Several hold-out methods have been developed. Sometimes only a restricted

amount of data is given and no data can be spared for training. The cross-

validation procedure uses all data for training and for testing in the following

way. It splits the dataset into n equal-sized folds and repeats the training

process n times using n − 1 folds for training and the remainder for testing.

The evaluation criterion, the so called score function is averaged over the

repetitions.

16

This way the cross-validation procedure uses all instances n − 1 times for

training and once for testing. In statistics, cross-validation is commonly used

to evaluate the fit of a model to the real distribution, and it is widely used in

machine learning to evaluate models for classification, regression and also for

clustering [61]. For the evaluation of density estimation models, the likelihood

can be used as the score function.

When looking for a well-fitted model it is useful to build several models,

maybe with increasing complexity, and compare them. Cross-validation can

be used to decide between models and with this on the complexity of a model

(i.e. as a model selection method).

The larger the value n is chosen (i.e. the more folds are used) the smaller

the bias of the resulting estimate, but the larger the variance [62]. 10-fold

cross-validation repeated 10 times (10×10 cross-validation) is commonly used

to evaluate machine learning models.

Leave-one-out Cross-validation Leave-one-out cross-validation builds the

model while leaving just one instance out of the training dataset. This one

instance is used for testing the model. If the dataset has N instances, it is

split into N folds, therefore this method is also called N-fold cross-validation.

Leave-one-out cross-validation results in bias-less estimates [53][57]. For leave-

one-out cross-validation, the training and testing is repeated N times, which

means that the cost of it is high.

Cross-validated Equal-width Histograms

For histograms, the complexity can be measured by their number of bins. A

variant of the equal-width histogram method selects the number of intervals—

and with it a best fitting model—by using the cross-validated log-likelihood.

For equal-width histograms it is not only important to select the number of

intervals but also the origin of the bins [60]. The origin is found by shifting

the grid by a part of the actual bin width (e.g. one tenth of it), and selecting

the best one of these shifts.

For equal-width histograms leave-one-out cross-validation can be applied

with no increase in cost. For each fold of the evaluation of an equal-width

histogram the bins stay fixed and the log-likelihood on each test instance can

easily be computed.

17

2.1.6 Histograms as a Visualization Tool

A common application of histograms is visualization. Nonparametric methods

have been traditionally used as exploratory data analysis methods. Scott says

in [56]: “A scatterplot has too much ink” and calls a histogram a scatterplot

smoother. The scatterplot is a popular visualization tool. Each instance in

the sample is represented as a dot. If the dataset represented is very large,

entire areas can be blackened out and the information about the density of

areas concealed. The histogram methods developed in this thesis can be used

as visualization tools just like any other histogram method.

2.2 Tree Building Algorithms

The methods in this thesis generate histograms by constructing tree-based

density functions using tree building algorithms. Tree building algorithms

generate a model from data that is supported by a tree structure. These algo-

rithms have been used for classification and regression tasks in statistics [9][26]

and machine learning [46] .

To build the model, the algorithm splits the dataset recursively. Tree con-

struction starts from the root node. Each inner node contains a split condition

and corresponding to the condition the instances follow one of the outgoing

branches of the node. These branches lead either to other nodes where the

dataset is split again or to a leaf node. Each leaf node represents the sub-

dataset for which all conditions from the root down to this node apply.

Most methods that can be found in the literature have simple split condi-

tions splitting on one of the attributes only. For categorical data a split usually

has as many branches as the attribute that is split on, has values. One value

is assigned to each branch. Numeric data is mostly split in an axis-parallel

fashion, and if the dataset is completely numeric the leaves represent rectan-

gular subranges of the instance space. Each subrange is defined by the tests

that lead from the root node to the corresponding leaf node. This set of tests

can also be represented as a rule. In fact, Quinlan’s system C4.5 [50] contains

a function to extract rules from a given decision tree and simplifies them.

At each leaf node a simple prediction model is applied. If used for classifi-

cation, this can be a single value of a categorical class attribute. For numeric

classes it can be a constant or a simple function. The sum of these functions

across all leaf nodes estimates a discrete or numeric function modelling the

18

response variable.

One of the main questions in tree construction is when to stop splitting

and growing the tree [9][20][46]. The point when the algorithm cannot split

a node further is when only one instance is in the node. Thus the process

has to stop as soon as each leaf has only one instance. However, most of the

time, splitting down to the level of individual instances results in overfitting.

If the model fits the training data perfectly it is possible that it models some

peculiarities of this data that do not truly reflect the underlying domain: The

model is overfitted. There are other reasons for a bias towards a smaller,

simpler model, like interpretability. To avoid a tree that is too complex, tree

building algorithms implement more sophisticated termination criteria or use

pruning techniques after training a complete tree.

Tree building algorithms stem from the much older divide-and-conquer

principle, which is discussed in Section 2.2.1. In artificial intelligence, prob-

lem solving is seen as a search in the solution space. Section 2.2.2 gives a brief

overview of existing search approaches in artificial intelligence. The basic prin-

ciples of decision trees as far as they are relevant for this thesis are explained

in Section 2.2.3. Section 2.2.4 explains how to decide between decision tree

models. Section 2.2.5 discusses further details of tree pruning methods. Sec-

tions 2.2.6 and 2.2.7 discuss discontinuity and interpretability of tree structures

respectively.

2.2.1 Divide-and-conquer Methods

A tree building algorithm belongs to the category of divide-and-conquer al-

gorithms: The goal of the task at hand is tackled by reaching a subgoal first

then splitting the dataset and applying the problem solving algorithm locally

on the subsets and continuing these steps in a recursive fashion. This can be

compared to ancient war tactics, when the troops of the enemy were split, to be

overwhelmed more easily. In computer science, divide-and-conquer algorithms

were designed with the hope of achieving low computational time complexity.

The construction of a binary tree structure can achieve a complexity of the or-

der n× log2(n), which is often a much smaller complexity than the complexity

that can be achieved without using a tree-based algorithm—depending on the

application. The success of this tactic depends mostly on how well the task

can be split into subproblems of the same size.

19

2.2.2 Searching in the Solution Space

The field of artificial intelligence defines problem solving as a search in a state

space for a solution state [52]. Sometimes not all solutions are equal but a

good or even an optimal solution is searched for. It is also often the case that

there are too many possible solutions and the option of finding all solutions

to compare them with each other is not feasible. Often the states can be

pictured as the nodes in a tree and the operations as the branches in the tree:

in the inner nodes subgoals have been reached and in the leaf nodes the goal.

The search is done by performing operations that transfer from one state to

another, starting from the root of the tree.

Search methods can be differentiated based on whether they build the tree

breadth-first or depth-first. Simple breadth-first search and simple depth-first

search are uninformed search methods. It is often more efficient to use a

heuristic and perform an informed search with it.

As mentioned before, in most cases the solution space is too large to be

searched exhaustively. Many tree-based algorithms are greedy because they

start with an initial state, represent it as the root node and continue recur-

sively based on locally optimal choices. Greedy methods mostly find locally

optimal but not globally optimal solutions. A globally optimal solution can

be found if the algorithm can fall back on earlier solutions (i.e. take back a

subgoal) and explore other options from there. Taking back subgoals is called

backtracking. However, if a greedy divide-and-conquer method without back-

tracking gives reasonable results, it can still be useful because of the efficiency

of the algorithm.

2.2.3 Decision Trees

Probably the most prominent application of the divide-and-conquer method

in the field machine learning is decision tree learning. Decision trees have

been developed in parallel in statistics (Breiman et al.’s CART system [9])

and machine learning (Quinlan’s ID3 and C4.5 systems [50]). Decision trees

are widely used for classification tasks. In classification tasks the aim is to

build a model for a given dataset that can be used for future prediction of the

class labels of so far unseen and unlabelled instances. As the class value is

categorical, this can also be seen as finding an approximation for a function

with a discrete response variable.

Although many variants of decision trees have been developed [28] and

20

applied to different types of datasets, this section only discusses aspects that

are relevant to the work in this thesis. For instance, missing values are excluded

from consideration in this thesis.

Standard decision trees are built by splitting the instances of the training

dataset into groups that exhibit purity with respect to their labels. Splits

are done on one attribute at a time and each split corresponds to an inner

node in the decision tree. Splits can vary mainly depending on the type of

the attribute tested. In Quinlan’s decision tree algorithm ID3 [50] splits on

categorical attributes have one outward branch from the node for each attribute

value. ID3’s splits on numeric attributes are simple two-way splits based on

inequalities comparing to a constant, where the split value is stored at the node.

Instances with a value smaller than the constant concerned follow down the

left branch of the node and all others instances follow down the right branch.

The leaves contain all instances to which the corresponding conjunction of

tests applies.

Tree building algorithms automatically ignore attributes that are not rel-

evant to the classification. This makes this method very suitable for high-

dimensional datasets. In fact, a decision tree can be used for attribute selection

before performing classification.

Split Selection

An important question in decision tree construction is how to select splits

for the inner nodes of the tree in order to get a concise and predictive tree.

The aim is to reach pure nodes as quickly as possible. Quinlan’s decision

tree algorithm ID3 [50] uses information gain to decide which attribute to

take for the next split. The information gain measure is based on the entropy

value. Entropy has been defined in information theory and is a measure for

the expected encoding length if the information is represented in bits. A bit is

an item that can be in a binary set of states, for instance can have 0 or 1 as its

values. The entropy of a collection of instances C depends on the proportion

of instances of each class pi. The total number of classes is c. The entropy is

defined as:

Entropy(C) =
c∑

i=1

−pi log2 pi (2.7)

The information gain is a difference of entropies. For the decision tree

building process it is of interest how much the entropy decreases after per-

21

forming a split on the attribute A. The information gain shows how much

purer the subsets get after the split compared to the dataset before the split.

Therefore the information gain (IG) at an inner node depends on the collec-

tion of instances C and the attribute A that the split is performed on. It is

given by:

IG(C, A) = Entropy(C)− EntropyafterSplit(C, A) (2.8)

The entropy after the split is the sum of the entropies of the subsets, with

each of these subset entropies weighted by the number of instances in the

subset. Let v be the number of values of the attribute (or two if the split is

numeric), and Ci be one of the subsets of instances after the split. Then the

expected entropy after splitting is given by:

EntropyafterSplit(C, A) =
v∑

i=1

−|Ci|
|C|

Entropy(Ci) (2.9)

The next question is when to stop expanding the tree. This rule is often

called the stopping rule. A very simple stopping rule is to enforce a certain

minimum number of instances at each leaf node.

In general, the search through all possible split combinations is computa-

tional infeasible and this is why greedy methods are applied for the search.

Since a greedy method is used, the resulting tree is often not optimal. There-

fore, various methods have been developed to improve the tree after it has

been built. This can involve pruning the tree or performing a more drastic re-

structuring. Tree pruning is important to avoid overfitting. It is explained in

more detail in Section 2.2.5. The next section first explains a way to evaluate

and compare tree models, which can be used for pruning.

2.2.4 Evaluating Decision Trees

For classification algorithms, one of the criteria used to decide between mod-

els is classification accuracy [46][53]. Accuracy is a measure that tells the

scientist how well the classifier’s model can predict class labels of instances

correctly [24]. A prediction is counted as correct when the predicted class is

the same as the actual class value in the test dataset that is used to estimate

accuracy. Let n be the number of instances in the test dataset, X1, ..., Xn be

the attribute vectors of the test instances, c1, ..., cn be their actual class values,

ĝ be the classification model, and I be the indicator function. Then accuracy

22

is defined as follows:

Accuracy =
n∑

i=1

I(ci, ĝ(Xi)) (2.10)

Sometimes, instead of accuracy the error rate is used, which is the opposite

of accuracy:

ErrorRate = 1− Accuracy

Cross-validation of Decision Trees

The accuracy measured using the training data (re-substitution accuracy) does

not give a reliable estimate of accuracy on future data (see also the discussion

in Section 2.1.5). In statistics and machine learning, cross-validation is widely

used to evaluate models. 10-fold cross-validation (repeated ten times) is com-

monly used to evaluate machine learning models. For classification methods,

accuracy is a popular score function.

2.2.5 Controlling the Size of the Tree

Large trees are often inferior models because they are more likely to overfit

the training data. Overfitting means that the model is under-smoothed. It

increases variance in the estimate and can reduce predictive performance.

To avoid overfitting, constructing complex large structures should be avoided.

The bias towards simpler models follows the principle of Occam’s razor (see

the subsection below). Large trees can be avoided when tree construction is

stopped at a certain tree size. The tree can also be fully expanded first and

then pruned back in size. Pruning generally means to cut off branches of a

tree. Sometimes the tree is also restructured more profoundly. This section

only discusses the basic methods of pruning, which are represented by the two

main approaches post-pruning and pre-pruning.

Post-pruning Reduced error pruning [20] is an example of a post pruning

method. The decision tree is first built to its full size. During training, a

subset of the training dataset is set aside as a validation set. At pruning time,

each node is then tested to see whether removing it would increase accuracy

on the validation set. Nodes are removed from the tree until accuracy stops

improving.

23

Pre-pruning Strictly speaking, pre-pruning [20] does not perform pruning.

It means to stop building the tree instead of removing nodes after building

the tree. A simple pre-pruning technique uses a threshold for the information

gain. If the information gain from splitting at a node is below this threshold,

then the node stays as a leaf node and is not split further.

Occam’s Razor

Explaining it in a simplified way, Occam’s Razor stands for preferring simple

models over more complicated ones and is often applied as a rule of the thumb.

It got its name from the logician William of Occam, who lived in the 14th

century. Occam’s razor was not invented by him as such. The term was used

later in the 19th century for methods that favour simpler theories over more

complex ones. In the case of decision trees, applying Occam’s razor means to

prefer smaller trees over larger ones, as long as they are a sufficiently accurate

model for the distribution of the data. Thus, pruning is an implementation of

Occam’s Razor.

2.2.6 Discontinuity of Tree Structures

Tree structures or the functions represented by them are generally not continu-

ous but mostly piecewise constant. Although this is not discussed in this thesis,

there are ways to make them smooth. These methods could be adapted for

the methods presented in this thesis but this is left as future work. Smoothing

methods generally reduce interpretability.

2.2.7 Interpretability of Tree Structures

For a one, two and even a three-dimensional dataset, the resulting partitioning

of the tree construction process can easily be presented in a graphical way. If

the dataset is of higher dimensionality, this is not as easily possible.

Fortunately, every decision tree is essentially a set of rules. Rules are

considered to be a human-interpretable model. One rule corresponds to one

leaf, where the tests that are in the nodes on the way from the root node down

to the leaf node form the conditions of the rule.

24

Moreover, the splitting values of numeric variables that occur in the tree

provide definite numeric values that help with interpretation and these values

could be taken as splits between ‘low’ and ‘high’ values (or between ‘low’,

‘medium’ and ‘high’ values, etc.).

2.3 Related Work

First discussed below is Fayyad & Irani’s discretization algorithm [18] for con-

tinuous attributes. The method of splitting a range into subranges, as a pre-

processing method for classification tasks, is generally called discretization.

Two subsequent sections discuss two density-based clustering algorithms.

2.3.1 Fayyad & Irani’s Tree-based Supervised Discretiza-

tion Method

Fayyad & Irani invented a discretization method [18], that was developed to

deal better with numeric attributes in decision trees. It can also be used to

prepare the attributes before tree building starts. Discretization transforms

a continuous attribute into an ordered categorical one by splitting the range

of the values into subranges. When building a decision tree, a continuous

attribute is split by identifying pure subsets of data with respect to the class

attribute.

Like ID3 [50], Fayyad & Irani’s method applies the splits recursively, start-

ing from the complete datasets. For each split the entropy is measured between

each of the possible partitions and for each of the attributes. The split with

the best information gain is selected in a greedy fashion for the next split. In-

formation gain is computed as the difference of the class entropy of the dataset

before and after the split.

A criterion based on the minimum description length principle [39] [51] [64]

is used to decide when to stop splitting (i.e. for pre-pruning). It defines the

problem of deciding, whether a cut improves a partition or not, as a coding

problem. The cost of sending the uncut partition is compared with the cost

of sending the split partition. The cost of sending the uncut partition consists

of the cost of sending all N class labels, which, depending on the entropy in

the set, have an average code length of l. Additionally a code book has to be

25

transmitted with one code for each of the k different classes. Cost CUNCUT is

therefore:

CUNCUT = (l ×N) + (l × k)

After the cut the dataset is split into two subsets in which the number of

examples is NL and NR. Further information about the split is the cut value

of the split which can be encoded with log2(N − 1) bits. With this, CCUT , the

cost of transmitting the split data is:

CCUT = (l ×NL) + (l ×NR) + log2(N − 1)

This way of selecting the number of splits can be classified as pre-pruning

method which is based solely on the attribute concerned and the class at-

tribute. In a more recent work, Jin and Breitbart [32] defined a more gener-

alized entropy for discretization and also implemented it with a new dynamic

programming algorithm.

2.3.2 The Density-based Clustering Method STING

Clustering is a form of unsupervised learning, where the aim is to find clusters

in the data. Density-based clustering methods define clusters as areas of high

density and apply density estimation to find these in the distribution of the

data.

The density-based clustering method STING [66] (STING stands for STa-

tistical Information Grid) partitions the instance range into equal-sized mul-

tidimensional boxes similar to an equal-width histogram. In the clustering

literature, this is also called a grid-based method. The grid is on several levels

and the upper-level boxes are cut into lower-level ones. This way one upper-

level box is always connected to its lower boxes like the nodes in a decision

tree but with the areas cut in all dimensions. Each box stores statistical in-

formation like the mean and the standard deviations of the values falling into

the box. The corresponding statistical values of the upper-level boxes are effi-

ciently computed from the lower-level boxes they contain. This computation

is independent between boxes at the same level and so can be done in paral-

lel. STING was designed primarily for accelerating data base access for query

answering.

26

2.3.3 The Density Based Clustering Method CLIQUE

The density based clustering method CLIQUE [2] is, like STING, also a grid-

based clustering method, but specifically designed for high-dimensional data.

Again, the instance range is split into equal-size boxes similar to an equal-width

histogram, but CLIQUE starts from a one-dimensional partition. Highly-dense

areas in this one-dimensional partition are marked for exploration in further

dimensions. Dimensions are only added if they result in a division into high-

density areas and low-density areas. In this way, irrelevant attributes are

filtered out. Methods like CLIQUE are also called subspace clustering methods.

2.4 Summary

The work in this thesis is on building density estimation trees. The basic

concepts for this work are density estimation and tree building algorithms.

Density estimation has a long history in statistics. Tree building algorithms

were developed, in parallel, in statistics and machine learning. The algorithms

developed in this thesis result in a one- or multidimensional histogram and

can be classified as nonparametric density estimation methods. Nonparamet-

ric density estimation methods model complex distributions well but, for most

existing methods, density estimation in high-dimensional spaces causes prob-

lems.

Tree building algorithms are popular for their positive computational be-

haviour. A binary tree structure built in a greedy fashion can reduce the

computational cost of building and of the usage of the model (e.g. prediction

for classification). The tree building process selects only relevant attributes

and is therefore well suited for high-dimensional datasets.

Histograms and tree models in general have the property of good inter-

pretability. A drawback is sometimes the discontinuity of their resulting esti-

mated function.

Cross-validation, which will be used extensively in parts of this thesis, is a

commonly-used technique to evaluate the predictive accuracy of classification

algorithms in machine learning [46][53] and can also be used to evaluate the fit

of a statistical model. Moreover, it can be employed to choose between models

and to select the complexity of a model.

The next chapter explains the technical details of the TUBE algorithm for

the univariate case. In the machine learning field, the splitting of a range

27

into subranges is often referred to as discretization. Univariate TUBE will,

as a first application, be evaluated as a discretization technique and secondly

will be applied to a known classification task as a discretization technique for

density estimation.

28

Chapter 3

Univariate Density Estimation

Trees

The methods developed in this thesis build a tree structure as a model for the

density distribution of the data. This chapter discusses the density estimation

method proposed for the simple univariate case. For this purpose data was

used with only one numeric attribute. The algorithm that is presented is

called TUBE (Tree-based Unsupervised Bin Estimator) [54]. The name TUBE

is further explained in Section 3.1. The algorithm was also adapted to the

multidimensional case, this algorithm is discussed in Chapter 5.

TUBE’s model for the density distribution is a histogram. Histograms as a

technique are about 400 years old [56]. A classical histogram is a very simple

method for density estimation. With a given set of sample values the range

of the sample is cut into non-overlapping subranges, also called bins, of equal

length. Over each subrange, a rectangle is drawn whose height specifies the

number of instances falling into the bin. For each instance, one unit of height

is added. This type of histogram is still used as a frequency histogram. The

method presented here produces subranges of various lengths, therefore the

density histogram method is applied. For the density histogram method, the

height of each bin represents the density associated with the bin. The height

hi of each bini is computed using the bin width wi, the number of instances

ni falling into bini, and the total number of instances N in the dataset. With

this, the height hi of bini is (Equation 2.2 from Section 2.1.3 repeated; note

height hi is equal density di):

hi =
ni

wi ×N

29

Figure 3.1: Example dataset split with equal-width binning (Fifteen bins).

Having intervals of varying length makes it possible for the TUBE algorithm

to adapt the bin width to the change in local density. TUBE has the goal of

cutting the range and splitting the dataset in such a way that intervals are

defined which exhibit uniform density. Of course, in practical problems the

true underlying density will not really be uniform in any subrange, but the

most significant changes in density should be picked up and should result in

separate intervals.

The algorithm uses a tree-based algorithm to determine the cut points.

More specifically, it builds a density estimation tree in a top-down fashion.

Each node defines one cut point between two subranges or bins. At the leaves,

Equation 2.2 for the density estimation function is applied. The sum of leaves

defines the density estimate and can be drawn as a density histogram, which

graphically represents the density function.

3.1 Tree-based Unsupervised Bin Estimation

In contrast to the classical equal-width histogram, TUBE divides the range

of an attribute into intervals of varying length that are adapted to the local

30

Figure 3.2: Example dataset split with TUBE.

density. Figure 3.1 shows an equal-width estimator (with fifteen bins) for

a simple artificial dataset and Figure 3.2 the TUBE binning for the same

dataset. In both figures the ‘true’ density (the density function that was used

to generate the data) is plotted with a dotted line. For the model building

process, the sample data can be called training data—as it is for classification

models in machine learning.

TUBE uses a top-down tree-based algorithm to find the cut points which

cut the range into bins. This means it first cuts the full range into two sub-

ranges and then repeats this process recursively. Every value in the sample

data represents a point on the real line. Between every two adjacent points

a cut (at a cut point) is attempted. The best of these cut points is taken

to perform the division into subranges. How the best pair of points (i.e. in-

stances) are found is explained in Section 3.3. Where exactly to cut the range

in the empty space between these two points is discussed in Section 3.4. The

full recursive algorithm is discussed in Section 3.5. Section 3.6 explains how

TUBE controls the size of the tree.

Every discretization method needs to sort the values before starting with

the binning. TUBE sorts the attributes using a quicksort function.

31

TUBE is an unsupervised method. Supervised methods use class labels for

their computations. Fayyad & Irani’s supervised discretization method [18],

discussed in Section 2.3.1, splits the range of a numeric attribute into sub-

ranges in preparation for classification tree building. The method is super-

vised because it takes the values of the categorical class attribute into account.

TUBE is also a tree-based discretization method similar to Fayyad & Irani’s

discretization method, but is unsupervised and does not use the class of the

instances—only the values of the attribute—to determine the subranges.

3.2 Evaluation of a Binning

When building a density estimation tree, the algorithm has to repeatedly de-

cide between different alternatives. It has to decide where to split the dataset,

at which value to cut exactly, and when to stop cutting. To perform these

decisions, an evaluation technique is needed.

In this thesis the likelihood and the cross-validated log-likelihood criterion

are used to evaluate the TUBE binning and to estimate parameters for the

density model. This principle for estimation is called maximum likelihood es-

timation [26]. The aim is to maximise the likelihood of the parameters for the

estimator considering the sample dataset. As mentioned in Section 2.1.5, the

likelihood L depends on the test values (instances) X1, ..., Xn and the density

function g(x). For numerical reasons the log-likelihood is used instead of the

likelihood. As stated before, the log-likelihood LL(X1, ..., Xn) is defined as:

LL(X1, ..Xn) =
n∑

i=1

log g(Xi)

For histograms, g(x) is the height of the bin that contains the value x (see

also Equation 2.2). Therefore, for a density histogram with k bins, with nitest

being the number of test instances falling into bini, ni being the number of

training instances in bini, and wi being the width of bini, the log-likelihood

LL of the test instances using the histogram as density estimator is:

LL =
k∑

i=1

nitest × log
ni

wi ×N
(3.1)

The log-likelihood is sometimes also referred to as cross-entropy [26].

32

3.2.1 Adapting for Empty Bins

The log-likelihood evaluation function in Equation 3.1 cannot be evaluated in

cases when a test instance falls into a bin that remains empty during training:

ni = 0 means that ni

wi×N
equals zero and the logarithmic function for the value

is undefined. To solve this problem, a single hypothetical instance is spread

over the whole range of the data by adding a part of the instance to each bin

that is equivalent to the relative width of the bin. Let W be the total length

of the range, then the above equation becomes:

L =
∑

i

ni−test × log
ni + wi

W

wi × (N + 1)
(3.2)

3.3 Finding the Split Point

The algorithm starts by splitting the full range of values once and then recur-

sively continues by splitting the subranges. As preparation for the search for

the best split point, the values are sorted. With the first split, the range is

divided into a simple two-bin histogram and the quality of the split measured

with the likelihood. This process is repeated recursively.

The main question is how to choose the split point. This decision is based

on the likelihood criterion, evaluated on the training data. With nleft and

nright being the number of instances in the left and right halves, and wleft and

wright being the widths of the two halves, the log-likelihood LL of a split is

then:

LL = nleft × log
nleft

wleft ×N
+ nright × log

nright

wright ×N
(3.3)

The question that still remains is where exactly between two points should

the cut be set. This is discussed in detail in the next section (Section 3.4). It

explains why TUBE actually considers two cuts in each empty space between

each of two neighbouring points, and also a cut to the ‘left’ of the smallest

value and a cut to the ‘right’ of the largest value if there is empty space at

the ends of the range. This means that TUBE actually computes the log-

likelihood of 2× (N − 1) + 2 possible splits before finding the best split point

for N instances.

33

3.3.1 Examples of Split Point Selection

This section gives some examples of how TUBE finds the first split point in

a range of values. For these examples, four univariate datasets have been

generated. On each of them, a split into two bins is performed. Each diagram

shows the distribution of the data as it was generated as a dotted line (the

‘real’ distribution), the resulting two-bin histogram (after the first split), and a

plot of all log-likelihood values computed. The irregularity in the log-likelihood

curves stems from the locally irregular distributions of the data and from the

fact that each empty space between two successive points was attempted to be

cut twice, once setting the cut point close to the left point and once close to

the right point. The log-likelihood value for each of these splitting attempts

was evaluated and plotted.

Split ‘Step’ in Distribution The first example dataset has a distribution

that consists of two ranges with different uniform densities. Figure 3.3 shows

the step-like distribution function with which the data was generated as a

dotted line. The log-likelihood data is plotted along the range of the values

and shows a peak where the step is in the distribution. The split is selected

where the log-likelihood is maximal and the resulting two-bin histogram is also

shown in the diagram. Note that the ‘real’ distribution and the resulting 2-bin

histogram generated with TUBE are very similar.

Split on Several ‘Steps’ The example dataset in the diagram in Fig-

ure 3.4 has a ‘step’-wise uniform distribution with five points where the density

changes abruptly. The steps are of equal height. The log-likelihood curve and

the resulting two-bin histogram show that the TUBE algorithm selected the

middle step for splitting.

Split on Gaussian Data Figure 3.5 shows data that corresponds to a Gaus-

sian distribution. The log-likelihood curve shows a maximum at the left lower

bend of the curve and the cut is performed there.

Split to Cut Out Empty Range The dataset for this example (Figure 3.6)

has an empty subrange between two equally and uniformly distributed areas.

The log-likelihood curve has two peaks at the ‘edges’ of the empty space.

One of them is slightly higher since all data values are randomly generated

34

Figure 3.3: Splitting a one-step uniform distribution.

Figure 3.4: Splitting a multi-step uniform distribution.

35

-1950

-1900

-1850

-1800

-1750

-1700

-1650

-1600

-1550

-1500

-4 -3 -2 -1 0 1 2 3

lo
g-

lik
el

ih
oo

d

value

log-likelihood
two-bin histogram

real distribution

Figure 3.5: Splitting a Gaussian distribution.

Figure 3.6: Splitting at an empty subrange.

36

and therefore the two sides are not completely identical. The histogram in

Figure 3.6 shows that the right edge is chosen for splitting.

3.4 Where to Set the Cut Point for the Split

The previous section (Section 3.3) explains the basic method for finding a

split point. However, the question is not only between which two successive

points to split but also where in the empty space between the two points the

cut should best be made. When comparing TUBE’s method of splitting with

the splitting of a numeric attribute for decision tree building (see discussion

in previous chapter, Section 2.3.1) it can be seen that in Fayyad & Irani’s

method [18] the value of the splitting criterion does not vary over the empty

range between points. This is because in decision tree learning the splitting

of a numeric attribute depends only on the class values of the instances to the

left and to the right of the cut. These values do not depend on where exactly

in the empty space between the two points the cut is performed. In contrast,

TUBE’s unsupervised split criterion depends on the total number of instances

to the left and to the right of the split and also on the width of the resulting

subranges.

It can be shown that the likelihood is always lower when splitting mid-

way between two consecutive instances than when splitting closer to these or

at the points. If the range to be split consists of two uniformly distributed

subranges s1 and s2 with densities d1 < d2 and the instances of subrange s1,

ordered by their values, are x1, x2, ..., xi and the instances of subrange s2 are

xj, ..., xN−1, xN then the difference between the densities—and therefore also

the log-likelihood of the cut— is always larger with a cut closer to xj because

it makes the density d2 even larger. If the densities d1 and d2 are in fact the

same, then a cut closer to either xi or xj makes the densities different which

as well increases the likelihood of the cut.

3.4.1 Example: Cutting Around an Empty Space

The dataset for this example was generated with three subranges: The areas

to the left and right of the empty space have equal width and an equal number

of instances and therefore exhibit equal density. Figure 3.7 plots the log-

likelihood at the two instances that correspond to the left and right end points

of the empty space (circles) and the log-likelihood at nine points between the

37

-2870
-2860
-2850
-2840
-2830
-2820
-2810
-2800
-2790
-2780
-2770
-2760

 2 2.5 3 3.5 4

LL
K

 o
f C

ut

Attribute

Figure 3.7: The log-likelihood is minimized between instances.

values (crosses). As can be seen, the log-likelihood varies over the range. It

has a maximum at the end points of the empty space and a minimum in the

middle of the empty range.

3.4.2 Placing the Actual Cut

Based on the above example it can be seen that every training instance defines

two potential maximum likelihood cut points because the log-likelihood of a

division into two bins is maximised at the end points of the empty range and

actually has a local minimum between the two adjacent points. This means

that the cut be at one of the instances—and not between instances as in the

case of decision trees for classification—and set the bounds of the resulting

bins to include the corresponding instance in either (a) the left or (b) the right

subset.

However, cutting at the actual values can lead to problems in datasets

where several instances have the same value. It is not possible to have a bin

of width zero because the bin would have infinite (actually undefined) height.

Therefore, the actual cut is performed close to the point concerned and not

exactly at the point. To implement this, a fixed cut distance to the points is set

and the algorithm considers cutting twice in each empty range, namely before

and after each value, and also at the beginning and end of the full range—if

the empty space at the end is larger than the fixed cut distance. However, if

the distance between two instances is below the cut distance, the cut is set in

the middle between these values.

In the implementation of TUBE, which is used for the experiments pre-

38

sented later, the cut distance has the default value 10−5, but can be set as

a user parameter. The default value was used in most experiments that are

presented in subsequent chapters.

3.5 Building the Density Estimation Tree

This section explains how TUBE finds a set of k split points which form a

good histogram. Such a histogram is a valuable density estimator. TUBE’s

tree building method first divides the whole range into two bins and continues

recursively on the subranges of the newly formed bins. The previous sections

discuss in detail the subtask of finding the best cut point in a subrange. Two

more questions are left to be answered: In which order are the subranges

divided and how does TUBE control the size of the tree? Or, to summarise

these two questions, how is the tree structure built?

The selection of k cut points can be seen as a problem for which a solution

is found by searching through a solution space. A partially or fully built tree

is a state in the solution space. Each binning with k cuts is a possible solution.

In how many ways can a range be divided recursively into k + 1 bins with k

cuts, when it has n possible cut values? To cut a range into k + 1 bins TUBE

builds a tree with k inner nodes. For this, it selects k different values of the n

possible cut points in the range. For each selection of k cut points TUBE again

can build several different trees depending on the order these k cut points are

applied. How many different trees can TUBE build from k cut points? This

number is expressed with the Catalan numbers [35]. The kth number of the

Catalan series is defined as:

Ck =
(2k)!

(k + 1)!k!
(3.4)

The Catalan numbers do not count trees with identical structure, which is

what applies to TUBE’s trees as TUBE always has the smaller values on the

left of an outgoing branch, building ordered trees. The Catalan series shows

that for a binning with ten cuts the number of possible trees is 16796. The

numbers increase very quickly with increasing k. The 20th number in the series

is already larger than 6× 109.

Hence, even ignoring selection of the cut points, it is clear that in most

cases the set of all possible trees is too large to be built and evaluated. A

search method must be applied to find a good solution with reasonable effort.

39

Expanding a node by performing a cut is an operation to change from one

state to another in search of a good solution.

Tree-based search algorithms vary in the order in which they expand nodes

and grow the tree. Standard ordering strategies are the breadth-first strategy,

which means expanding all nodes of one level before expanding further chil-

dren, and the depth-first strategy, which means expanding children recursively

(usually from left-to-right) before expansion of further nodes on the same level.

Both these methods are uninformed ways of expansion [24]. In contrast, TUBE

implements best-first expansion of nodes. A best-first search is an informed

search method [24]. The log-likelihood values of the splits represent the in-

formation used in the informed search and help the algorithm to find a good

solution more efficiently than an uninformed search.

TUBE selects the next best node to be expanded using the log-likelihood

criterion. As soon as a split is performed, the new subranges are examined

for their best local split. These locally optimal splits are not immediately

performed but evaluated according to their log-likelihood improvement and

stored in an ordered priority queue. When a new split is to be performed

(i.e. a node is to be expanded) the first element is popped off the queue and

that split is performed. The pseudo code of the TUBE algorithm is shown in

Algorithm 1.

The selection of the next node to expand is a heuristic approach. The

overall algorithm is a greedy search that does not find the globally optimal

k-way division. But it is preferable over the full search of the state space for a

solution, because it finds a division that is a computationally inexpensive es-

timate when a full search is computationally infeasible. As mentioned above,

greedy search methods are well know in supervised learning e.g. for building

decision tree models. TUBE applies greedy search to unsupervised discretiza-

tion. TUBE’s tree building algorithm is a greedy method that takes the best

solution found at the current point in the construction process and does not

look back to see whether a better one could be found after the next step. This

means it does not perform backtracking.

With the steps explained above, the TUBE algorithm does not stop growing

the tree until all subranges contain a single value (i.e. it overfits). To avoid

overfitting, tree growth must be controlled using a stopping criterion. The

simplest stopping criterion is based on setting the maximal number of cut

points per user parameter. This would be a global stopping criterion. TUBE

implements a further global and also a local stopping criterion. Both are

40

Algorithm 1 Pseudo code for the basic binning algorithm.

maxNumBins⇐ CV-ForOptimalNumberOfBins();

numSplits⇐ 0; {counts current number of splits}
splitPriorityQueue⇐ empty; {priority queue stores next possible splits}

firstBin⇐ new Bin; {bin which contains the whole attribute range}
binList.add(firstBin); {list to gather all bins}
split⇐ bin.findBestSplit(); {find the best split in the range of the bin}
splitPriorityQueue.add(split);

while numSplits + 1 < maxNumBins do
nextBestSplit⇐ splitPriorityQueue.top(); {best split in queue}

{perform the split on the bin}
{and replace the bin in the bin list with two new bins}

newBinLeft, newBinRight⇐ nextBestSplit.performSplit(binList);
numSplits + +; {one more split done}

{finds the best possible split in the range of the new left bin ..}
split⇐ newBinLeft.findBestSplit();
splitPriorityQueue.add(split); {adds it to the priority queue}
{.. and in the range of the new right bin}

split⇐ newBinRight.findBestSplit();
splitPriorityQueue.add(split); {adds it to the priority queue}

end while
return binList

explained in the next section.

3.6 Stopping Criteria

Stopping criteria for tree building algorithms differ in the way they are ap-

plied, locally or globally. A local criterion is applied at every node and stops

splitting a node as soon as the criterion is met. If a global criterion is applied,

it is evaluated on the whole binning after every cut. In TUBE, both types of

methods are implemented and the user can choose per user parameter between

them. TUBE’s local criterion evaluates a penalty value. If the improvement

in log-likelihood for the current node is not over a certain threshold, the split-

ting is not performed. As a global criterion, TUBE uses cross-validation to

determine the number of bins for which the cross-validated log-likelihood does

not increase further.

41

The method using the local criterion is a prepruning approach. It decides

to stop expanding instead of pruning back after expanding. The global method

investigates binnings with up to N − 1 split points (when N is the number of

instances in the dataset) before deciding on the best number of bins. It is a

postpruning method.

3.6.1 Local Stopping Criterion: Penalty Rule

By proceeding solely based on maximising the likelihood of the training data,

the algorithm would not stop cutting until all subranges contain a single value

because the likelihood of the binning improves for each cut, and only stays the

same in the rare and not realistic case of totally uniformly distributed data.

To find a non-overfitting density estimate Fisher [60] introduces the maximum

penalized likelihood (see also Section 2.1.5), which subtracts a penalty from the

log-likelihood of an estimated density function. The penalty value is relative

in its magnitude to the roughness of the density estimate. To measure the

roughness, the derivatives of the density function are often used. As histograms

represent density functions, that are piecewise constant, a derivative cannot

be formed.

Fayyad & Irani [18] have developed a local stopping criterion which is based

on the Minimum Description Length (MDL) principle. TUBE implements a

stopping criterion following this example. A split is only accepted as the

best one in a subrange if the improvement in log-likelihood is larger than a

threshold. The MDL threshold is based on coding theory and given by the

minimal possible encoding of the classifier. TUBE’s MDL penalty is given by

the minimal encoding of the split based on the local number of instances n and

the value 2 for encoding the cut value. Fayyad & Irani also add the ‘codebook’,

which in the supervised case depends on the number of classes. However, since

the method considered here is unsupervised, the number of classes is irrelevant.

With this penalty the threshold P at a node is:

P = −log(n)− log(2) (3.5)

The penalty is applied each time a minimum in a subrange is found. If

the improvement in log-likelihood resulting from the split being considered is

below the threshold, the split is not performed and the splitting stops.

42

3.6.2 Global Stopping Criterion: Cross-validation

A global stopping criterion is a measure computed from properties of the whole

binning. TUBE uses the 10-fold cross-validated likelihood as the global stop-

ping criterion. The log-likelihood is evaluated based on each of the ten test

sets in the 10-fold cross-validation. The tree building algorithm is applied to

the corresponding training data. This is first done with the uncut dataset so

the algorithm can also recognize if no cut at all should be performed. Then

the maximal number of cut points is increased in increments of one. This can

be implemented efficiently: to find k cut points, one can use the division into

k − 1 cut points and add one more. By default, the algorithm iterates up

to N − 1 as the maximal number of cut points (i.e. the cross-validated log-

likelihood is computed for all trees with 1 up to N − 1 cut points, when N is

the maximum number of training instances in the ten training sets). For each

of the N−1 iterations, the algorithm computes the average log-likelihood over

the test folds and from this the number of splits that exhibits the maximum

average value is chosen.

Note that this method involves growing a density estimation tree eleven

times: once for each of the ten training folds, and finally for the full dataset

based on the chosen number of cut points. Nevertheless, the time complexity of

the binning algorithm remains O(NlogN) because cross-validation introduces

a constant factor only.

As mentioned above, the algorithm decides which node to split next using

best-first node expansion. If the stopping criterion is global, as it is in the

cross-validation-based criterion, the order of node expansion is important and

the best nodes need to be expanded first. That is why best-first node expansion

is used.

3.7 Example: Tree Generation using TUBE

This section presents an example of the construction process using the dataset

shown in Figure 3.8, where the real distribution of the generated data is plotted

as a dotted line and the histogram constructed by TUBE as a full line. For this

example, the simple way of cutting at the actual end points of an empty range,

instead of twice in a fixed distance from these points, is used (see discussion

in Section 3.4).

First, the best cut point is found in the whole range and two new bins are

43

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 1 2 3 4 5 6 7 8 9 10

D
en

sit
y

Attribute

Figure 3.8: TUBE chooses five bins of varying length.

10.01.0

[1.0 10.0]4.0) [4.0

44.6

4.0

38.5

2.0 8.0

Figure 3.9: Tree after the first cut.

formed. Within the two subranges, two new locally optimal cut points are

searched for. Both splits are evaluated and the improvement in log-likelihood

for the division into the resulting three bins is computed for both possible

splits. Figure 3.9 shows the tree corresponding to this situation. The root

node represents the first cut and the two leaf nodes represent the next two

possible cuts. (All values are rounded.)

The root node represents the whole range, and all nodes further down the

tree a subrange. The values given in the left and right part of the rectangle

corresponding to a node represent the minimum and maximum of the subrange.

The overall minimum and maximum of this example dataset are 1.0 and 10.0

respectively. Each leaf node represents a bin and the given range exhibits a

“[” if the minimum value itself is part of the bin and a “(” if it is part of the

next bin. The notation for the maximum is analogous. The variable written

in the middle of the node represents the cut point.

The whole range is first cut at the value 4.0. The next possible cut points

44

10.0

[1.0

(8.0 10.0]

9.5

8.0]

100.3

4.0

10.08.04.0)

[4.0

4.0

1.0

38.5

2.0

5.5 9.9

Figure 3.10: Tree after the second cut.

1.0 10.04.0

1.0 10.02.0

4.0)[1.0 (2.0

4.04.0 8.0

4.0 5.5 [8.08.0 10.0]

(5.5 8.0)5.5][4.0

2.0]

Figure 3.11: Finalized tree.

are 2.0 and 8.0. These would split the dataset into the subranges [1.0:2.0]

[2.0:4.0] [4.0:10.0] and [1.0:4.0] [4.0:8.0] [8.0:10.0] respectively. The gain in log-

likelihood for each of the two possible divisions is written in the half-circle over

the not-yet-exercised cuts. The cut at 2.0 results in a log-likelihood gain of

38.5 computed based on Equation 3.2, the cut at 8.0 has a log-likelihood gain

of 44.6. The state of the priority queue is:

Priority Queue:

1. [4.0 10.0] cut at 8.0 log-likelihood gain = 44.6

2. [1.0 4.0) cut at 2.0 log-likelihood gain = 38.5

Among the possible cuts the one with the largest gain in log-likelihood

is selected, which in this case is the cut at 8.0, and the split is performed.

Figure 3.10 shows the state of the discretization tree after two cuts. With the

45

cut at 8.0, two new bins are generated, and in each of them a new possible cut

is searched for. These cuts are 5.5 and 9.9, with log-likelihood gains of 100.3

and 9.5 respectively. So, for the third cut, there is a choice between three cuts

(including the cut at 2.0). The state of the priority queue is as follows, with

the possible cut at 5.5 at the top of the queue.

Priority Queue:

1. [4.0 8.0] cut at 5.5 log-likelihood gain = 100.3

2. [1.0 4.0) cut at 2.0 log-likelihood gain = 38.5

3. (8.0 10.0] cut at 9.9 log-likelihood gain = 9.5

Based on this, 5.5 is chosen as the next cut point. After four cuts the tree

learning algorithm decides to stop based on using cross-validated likelihood

as the stopping criterion. Note that for this criterion, ten fully-grown auxil-

liary trees are constructed.The cross-validated log-likelihood curve attains the

maximum at four cut points and therefore four cuts are performed and the

algorithm does not add any further nodes.

Figure 3.11 shows the final tree. The resulting histogram is shown in Fig-

ure 3.8. In the final tree each leaf node represents a bin of the histogram. Each

internal node represents a cut.

3.8 The Problem of Narrow Cuts

On some datasets the split into a subrange can show the problematic result

of a very narrow cut. This happens when instances at one end of a range to

be split lie very closely together. The log-likelihood criterion is unstable at

the ends of a range and the algorithm has the tendency to cut off these few

points. The number of instances in the resulting bin can be very small, perhaps

containing only two points. If these cuts happen, it results in an estimate that

does not reflect the true underlying density function and this also distorts the

histogram (see Figure 3.12).

To avoid these narrow cuts, TUBE uses a heuristic approach. Two heuris-

tics have been developed: I. Disallowing cuts that are very small and have very

few instances relative to the dataset size and the range’s width; II. Setting a

minimal bin width that is derived from a cross-validated equal-width binning

performed on the same sample.

46

 0

 100

 200

 300

 400

 500

 600

-4 -2 0 2 4 6 8 10 12 14

D
en

sit
y

Attribute

Figure 3.12: Distorted histogram
due to small cuts.

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

-4 -2 0 2 4 6 8 10 12 14

D
en

sit
y

Attribute

Figure 3.13: Small cuts eliminated
with heuristic.

3.8.1 Heuristic I - Based on Dataset Size

The first heuristic is based on the training dataset size and the width of the

total range. More specifically, the heuristic disallows cuts that are smaller

than 0.1 percent of the whole range of the data and sets the minimum num-

ber of instances to
√

0.1×N where N is the total number of instances in

the dataset. This value was chosen according to a similar heuristic used in

the equal-frequency discretization method PKID [70] where the number of in-

stances per bin is set to
√

0.1×N . For a more detailed explanation of PKID

see Section 4.2.2.

Figure 3.12 shows a strongly distorted histogram estimate of a normal

density that is due to two small cuts that have very high density. This was

created by the tree learning algorithm without using the heuristic. The same

dataset is used in Figure 3.13, where the small cuts have been avoided using

the heuristic and the resulting density estimate has the desired shape.

3.8.2 Heuristic II - Based on EW-Cross-validated

In experiments with the method of estimating densities using cross-validated

equal-width histograms, it was observed that the resulting histogram can very

precisely model large changes in the underlying density, but does not react to

‘spikes’ in the data’s distribution in the same way as TUBE does. To combine

the best properties of both approaches, TUBE’s second heuristic for avoiding

narrow cuts is based on taking half of the bin width from the cross-validated

equal-width histogram estimate as minimal bin width.

47

3.9 Comparing TUBE with Standard Binning

Methods

TUBE’s binning can be compared with the standard histogram estimate ob-

tained using equal-width and equal-frequency binning. This comparison will

be done in detail in the next chapter (Chapter 4) with the application of TUBE

to discretization.

TUBE, as well as the equal-width and equal-frequency methods, can be

used as a discretization method. Discretization is a preprocessing method in

machine learning that is used to change a continuous attribute into a categor-

ical attribute. It is frequently used whenever a method cannot work with a

continuous variable but only with a categorical one.

TUBE’s potential advantage in this context is that it can find strong dis-

continuities like empty spaces and ‘spikes’ in the data, where many instances

have very similar values, and that it shows these discontinuities clearly in the

resulting histogram. It will be important to see how TUBE can compete with

these very simple methods concerning runtime.

3.10 Empirical Evaluation Using Naive Bayes

To extend the empirical evaluation of TUBE, the method is also applied to

naive Bayes classification. The next chapter (Chapter 4) will discuss the ap-

plication of the univariate TUBE method in both areas, discretization and

naive Bayes classification. In the discretization case, TUBE will be compared

with other discretization methods using the likelihood of the binning as the

evaluation criterion. For the second application, TUBE is used as a density

estimator inside naive Bayes. It is compared with naive Bayes combined with

other, standard density estimation methods. For this evaluation, a standard

criterion for evaluating classification methods, namely the classification accu-

racy is used.

3.11 Summary

This chapter has explained the technical details of the univariate TUBE bin-

ning method. TUBE’s binning results in a histogram. One challenge when

designing tree-based algorithms is to have a good heuristic for choosing the

48

next cut. This was solved in TUBE by using the log-likelihood gain as crite-

rion. A greedy algorithm is applied to choose the next node to be expanded.

The split in a subrange is also selected using the log-likelihood criterion. To

avoid problems with real-world data, cut points are always set a fixed distance

from the actual data values. This fixed distance can be changed to a different

value via user parameter.

Ten-fold cross-validation is used to implement a stopping criterion for the

splitting process, again using the log-likelihood of the binning as score function.

A second local stopping criterion is also implemented, which uses the MDL

principle to decide if a range is continued to be split.

The construction of a density estimation tree can be compared to the con-

struction of a decision tree. Breiman et al. [9] list three elements that comprise

the tree construction process for the classification case: 1.“The selection of the

splits”, 2. “The decision when to declare a node terminal or to continue split-

ting it”, 3. “The assignment of each terminal node to a class”. This is aligned

well with the parts of TUBE’s tree construction process for density estimation.

For 1., the TUBE algorithm decides where to split a subrange so as to adapt

the histogram well to the distribution of the sample data. For 2., TUBE uses

two pruning methods for the control of the tree size: a local method which

continues splitting if the log-likelihood improvement is larger than a certain

threshold, and a global method using cross-validated log-likelihood. For 3.,

TUBE is an unsupervised method but can be applied to density estimation

when a density value is assigned to each bin.

Empty bins are problematic when the method is applied to test data to

compute an estimated log-likelihood. To overcome the problem with empty

bins, the TUBE estimator notionally spreads one instance over the entire range

of the histogram. Another difficult problem concerns the case where very few

instances lie very close together and the split criterion decides to cut them off.

TUBE uses heuristics to avoid the distortion of the density estimate due to

these narrow cuts.

In the next chapter, the univariate TUBE method will be applied in two

areas. As discretization method, it will be compared to other discretization

methods using the log-likelihood. The comparison will also demonstrate fur-

ther properties of the method. It will also be applied as density estimator in

the naive Bayes classification method, and compared with naive Bayes used

in conjunction with other density estimation methods. The two applications

provide an empirical evaluation of the quality of the histograms generated by

49

the univariate TUBE algorithm.

The TUBE method can also be extended for the multivariate case. Two

later chapters in this thesis (Chapters 5 and 6) explain the implementation

details of the multivariate TUBE binning process and provide applications of

it.

50

Chapter 4

Applications of Univariate

Density Estimation Trees

This chapter discusses the evaluation of the univariate TUBE method in two

applications. First, as a discretization method, which is compared to other

unsupervised discretization methods, based on the quality of the density esti-

mate that they generate. The target application in this case is the generation

of high-quality histograms. The second application also uses TUBE as a dis-

cretization method but applies it to density estimation within the classification

algorithm naive Bayes.

TUBE’s univariate binning provides the thresholds for discretization. Us-

ing these thresholds, continuous data can be transformed into discrete data.

This data preprocessing step is necessary whenever a machine learning method

can only handle discrete input data or the transformation from continuous to

discrete data gives an improvement for the methods applied to it. However,

it can also be used to build a density estimation model with the thresholds

defining the bins of the histogram.

Most discretization methods have been designed for application in classi-

fication methods. As a result, several supervised discretization methods have

been developed but only few unsupervised ones. TUBE discretization is an un-

supervised method, it does not take the class value into account when selecting

the subranges.

Both applications of univariate TUBE discussed in this chapter apply the

discretization generated by TUBE to density estimation. There exists a direct

connection between density estimation using binning and discretization. If

the discretization is defined by hard boundaries, one can build a histogram—

which is a standard density estimator—from this discretization by taking each

51

subinterval that was formed and taking the density as the height of the corre-

sponding bin. Vice versa, binning density estimators define bins with hard or

soft boundaries and these boundaries can be used as thresholds for discretiza-

tion. Hence these methods can be viewed as discretization methods as well as

density estimation methods.

In the first application, TUBE discretization is compared to other unsu-

pervised discretization methods used as histograms. For the evaluation of

the techniques in this comparison the cross-validated log-likelihood criterion

is used. The second application evaluates TUBE’s discretization for density

estimation inside the classification method naive Bayes. Here, performance is

measured using standard classification error estimates.

52

4.1 Application: Discretization for Histogram

Estimation

Discretization means the range of a numeric attribute is divided into mutually

exclusive intervals. Univariate TUBE does exactly this and therefore TUBE

can directly be applied as a discretization method. The boundaries of TUBE’s

resulting bins are the thresholds for discretization. Like most discretization

algorithms, TUBE performs univariate discretization. Multivariate discretiza-

tion considers the values of more than one attribute when splitting the range.

The reasons why discretization is performed on data are various. For some

machine learning algorithms the runtime is correlated with the number of

different values of the attribute. Continuous data can often have many different

values. To reduce the number of these values, the range can be discretized

into subintervals and all values falling into a subinterval are substituted by the

mean or the median of this interval. This transformation does not change the

attribute’s type and it stays numeric.

A machine learning algorithm that cannot handle continuous data requires

a preprocessing step to transform numeric attributes into categorical ones.

The range of each attribute is discretized into subintervals and all attributes’

values are substituted by an identifier, also called a label, for each interval. The

resulting attribute has an order defined on its labels. The ordered categorical

data type is also referred to as ordinal [21]. Frank & Witten [21] point out

that a numeric attribute simplified to an ordered attribute can have the effect

that a classification model built from the transformed data is less complicated

and overfitting is avoided.

Discretization methods differ in the way they select the thresholds between

subintervals. Equal-width discretization splits the area into subintervals of

equal length. Equal-frequency discretization chooses the subintervals so that

approximately the same number of values falls into each interval. On the other

hand, TUBE discretization utilizes the log-likelihood criterion to find the next

split point. It tries to find subintervals that represent areas of uniform density

in the density function.

The decision determining how many intervals are formed for a range either

has to be made by the user or is automatically computed by the algorithm. In

contrast to the other two basic methods, TUBE finds the number of intervals

automatically based on the cross-validated log-likelihood.

There are different ways to interpret the thresholds. Apart from the stan-

53

dard ‘hard’ thresholds, they can also be defined as ‘soft’, with an area around

the boundaries of two adjacent subintervals where the values can be part of

both the left and the right interval. ‘Soft’ boundaries can be defined using

probability functions [59]. Like the other two discretization methods men-

tioned above, TUBE is a discretization method with ‘hard’ thresholds.

In the literature, discretization is mostly discussed in the context of classi-

fication methods and there are several supervised discretization methods that

successfully improve prediction performance. Supervised methods take the

class attribute of the instances into account when discretizing a continuous

attribute.

In contrast, TUBE discretization is an unsupervised method. For evalua-

tion of the method in the context of histogram estimation, TUBE will be com-

pared to other univariate, unsupervised discretization methods. Section 4.1.3

contains the list of methods that are used for comparison.

Most discretization methods are splitting or top-down algorithms [24][40]

and only a few are merging or bottom-up algorithms. TUBE’s top-down algo-

rithm for generating histograms is explained in Chapter 3.

Splitting of a numeric range can also be a useful transformation of data

when the goal is to improve the ability to gain knowledge from the data [24].

For instance, the values ‘high’, ‘medium’ and ‘low’ can potentially be more

easily interpretable than the numeric values themselves. TUBE’s discretization

selects its subintervals by looking for areas of near uniform density, which is not

always an effective criterion for finding good sub-concept areas. Section 4.1.2

gives a few examples and discusses aspects of interpretability.

To summarise the structure of this section: Section 4.1.1 introduces several

well-known discretization methods that constitute related work and discusses

their main aspects. The topic of discretization for interpretability is briefly

discussed in Section 4.1.2. Section 4.1.3 contains the details of the empirical

evaluation of TUBE discretization, where it is compared to other unsupervised

univariate methods. This evaluation is followed up by a section (Section 4.1.4)

about a visual evaluation and comparison of the TUBE histograms using a

selection of examples. Section 4.1.5 discusses a short experiment with varying

cut distance on some of the same datasets. Findings from the application of

TUBE to discretization is summarised in Section 4.1.6.

54

4.1.1 Related Work

Liu et al. [40] give an overview of discretization methods and define a typology

that splits them into supervised and unsupervised, dynamic and static, and

splitting and merging methods.

The difference between supervised and unsupervised discretization was ex-

plained above. Dynamic and static methods so far only exist as properties of

supervised algorithms. Dynamic discretization is interwoven with classification

activities like the building of a classification tree. Static methods finish with

the discretization before the classification is started. TUBE is applied as a

static discretization method. Further definitions used are local and global dis-

cretization (e.g. by Dougherty [15]). This is similar to the distinction between

dynamic and static methods.

TUBE is a top-down algorithm like most existing discretization methods.

The ChiMerge algorithm [34] is a bottom-up algorithms developed for super-

vised discretization.

A further typological characteristic is whether the algorithm performs uni-

variate or multivariate discretization. Multivariate discretization considers

more than one attribute when splitting. The TUBE algorithm as applied

in this chapter performs univariate discretization.

Unsupervised Discretization

TUBE is unsupervised and is compared in this thesis to equal-width and equal-

frequency discretization, which are also unsupervised (see also Section 4.1.3 for

the list of methods TUBE is compared to). Both methods normally require

the number of bins to be set by the user. However, Yang & Webb [69] improve

unsupervised equal-frequency discretization in the context of using it for the

naive Bayes classifier by computing the number of intervals from the given

number of training instances by setting the number of intervals to
√

N . The

number of instances in each interval is thus approximately
√

N . Hence their

method like TUBE, does not need user input for this parameter.

Supervised Discretization

In the machine learning literature, discretization is mainly discussed as a pre-

processing step for classification tasks. For this task, supervised methods gen-

erally produce better results than unsupervised ones.

55

Holte [29] developed 1RD (i.e. one rule discretizer), a simple discretizer for

his 1R (i.e. one rule) decision tree classifier. The bins are formed by cutting

with the aim of having instances of one class only in each bin. To avoid too

many small bins, a minimal number of instances in a bin is set.

In the decision tree classifier 1RD [29], numeric attributes are dynamically

discretized. At each selection of a new tree node, all continuous attributes are

sorted anew and between each two consecutive values a possible split value

is computed. Later algorithms tried to simplify and improve this algorithm.

Catlett developed the supervised method D-2 [10], which cuts an attribute

independently of the other attributes by increasing the information gain on

the classification criterion. It works in a static fashion and saves computation

time since the attribute is not resorted in each node as it is done in 1RD.

Pfahringer [49] uses the MDL principle to decide which cut points to use. The

cut points are first generated with D-2. His global splitting procedure allows

a decision tree algorithm to perform multi-way splits on attributes.

Fayyad & Irani’s [18] discretization method is entropy based and also static.

It is already explained in a previous chapter (see Chapter 2, Section 2.3.1).

Kohavi & Sahami [37] compare error-based and entropy-based discretization

and find that entropy-based discretization prior to decision tree construction

results in more accurate models than error-based discretization.

Kerber’s ChiMerge discretization method [34] starts with each value in one

interval and merges intervals in a bottom-up fashion using the statistical χ2

test. The stopping criterion depends on a user parameter α, which sets the

threshold at a selected significance level.

Multivariate Discretization

Univariate discretization only considers the attribute to be discretized, not

the values of other attributes. Multivariate discretization takes more than one

attribute into account for selecting the intervals. Univariate discretization can

not detect XOR-like patterns in the data.

Bay [7] implements multivariate discretization as an application for set

mining. Set mining is aimed at finding new insightful patterns in data. His

Multivariate Discretization (MVD) algorithm splits each attribute in a fine-

grained fashion and then combines neighbouring bins of similar density.

Although this thesis only evaluates TUBE in the context of univariate dis-

cretization, the multivariate TUBE algorithm Multi-TUBE (see Chapter 5)

could be used for multivariate discretization. Multi-TUBE finds multidimen-

56

sional rectangular areas of similar density, which could be used as input for

Bay’s MVD algorithm.

4.1.2 Interpretable Intervals

This subsection explores TUBE’s ability to form interpretable intervals based

on two examples. Note that what makes an interval interpretable is not easy

to define. Hence, this aspect of discretization is not fully explored. This

subsection will only provide a brief inspection of the problem.

Example: Attribute with Age Values

In the first example, an attribute containing the age of a group of people is

split into subintervals. The attribute used is the age attribute of the well-

known diabetes dataset (diabetes-8) from the UCI dataset collection [6]. The

people in this dataset are of age 21 and older, with the oldest person in the

sample being 81 years old. Figure 4.1 shows the histogram built by TUBE

when selecting the number of bins automatically using cross-validation. The

algorithm chooses ten intervals, which seems too many for age data to suit as

an easily interpretable partition.

Intuitive partitioning would perhaps select a smaller number of bins. The

intuitive partitioning procedure introduced in [24] (as the 3-4-5 rule) splits the

range of values into three to five intervals of equal-width. In accordance with

this rule, another histogram can be built with TUBE by setting the number

of intervals to three via TUBE’s user parameter. Note that, as usual, TUBE

selects bins of varying width.

Figure 4.2 shows the resulting histogram. The interval boundaries for this

3-bin histogram are 28.5 and 46.5. A more natural partitioning would require

the thresholds to have round values like 30.0 and 50.0. However, because

TUBE cuts a range, between two values of the corresponding ordered training

set, the thresholds rarely are ‘round’ numbers. Nevertheless, the split into

these three subintervals— ‘young’, ‘middle age’ and ‘old’—seems reasonable.

However, it is possible that a more intuitive discretization for the domain ex-

pert exists that depends on other attributes of the datasets (like blood pressure,

heart rate etc.). This kind of discretization cannot be found using univariate

TUBE, which only considers the attribute itself.

57

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 20 30 40 50 60 70 80 90

De
ns

ity

Age

TUBE CV

Figure 4.1: TUBE discretization for the age attribute in diabetes data. TUBE
finds ten intervals.

Example: Extracting Areas with Outliers Only

As a further example, consider a discretization obtained from 500 values, which

exhibit a Gaussian distribution with some additional noise. The intuitive split-

ting, as mentioned before, selects intervals of equal-width and therefore outliers

can destroy the value of the partitioning. In this case TUBE can be used in a

preprocessing step to find low density areas corresponding to outliers.

Figure 4.3 shows how TUBE discretization splits the range into nine inter-

vals and finds several areas with low density. To show these areas more clearly,

Figure 4.4 zooms into the lower density values. Depending on the application

concerned, these bins may contain outliers and noise only. Using a user-given

threshold, e.g. 0.01, for the minimal density value, these areas can be excluded

before intuitive splitting is applied on the remaining range.

4.1.3 Empirical Evaluation of TUBE Discretization

The experiments performed in this subsection evaluate how well TUBE dis-

cretization estimates the true density. The density estimates that are generated

are evaluated using 10× 10-fold cross-validation, measuring the log-likelihood

on the test data. TUBE is compared to several other unsupervised discretiza-

58

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 20 30 40 50 60 70 80 90

De
ns

ity

Age

TUBE 3 bins

Figure 4.2: TUBE discretization of age attribute with three subintervals.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 30 35 40 45 50 55 60 65 70

De
ns

ity

X0

TUBE CV

Figure 4.3: TUBE finds the low density areas.

59

 0

 0.005

 0.01

 0.015

 0.02

 30 35 40 45 50 55 60 65 70

De
ns

ity

X0

TUBE CV

Figure 4.4: TUBE discretization, zoomed in on the low values.

tion techniques. Cross-validation is a standard evaluation method used in

machine learning. Chapter 2, Section 2.1.5 discusses cross-validation in detail.

Criterion for Empirical Evaluation

The log-likelihood is a commonly used measure to evaluate density estima-

tors [60] and is a measure for how likely the model is, given the data. The

log-likelihood criterion is already discussed in previous chapters: Section 2.1.5

covers evaluation of density estimation in general, and Section 3.2 explains

the way TUBE itself decides between models using the log-likelihood. The

experiments presented here use the same log-likelihood measure to compare

TUBE discretization with other discretization methods. In the case of TUBE,

an ‘inner’ cross-validation is applied on each training fold of the ‘outer’ cross-

validation to obtain an appropriate number of intervals.

Repeated here for convenience, Equation 4.1 shows the log-likelihood com-

puted from a test dataset that tests the model built from the corresponding

training dataset. Let ni be the number of training instances in bin i, nitest

be the number of instances of the test set that fall into this bin, wi be the

bin width, and N be the total number of training instances. Then the log-

likelihood L on the test data is:

60

Table 4.1: 464 numeric attributes from UCI datasets and their levels
of uniqueness.

Dataset [0-20) [20-40) [40-60) [60-80) [80-100] num inst
anneal 6 - - - - 898
arrythmia 182 7 14 3 - 452
autos 13 - - 1 1 205
balance-scale 4 - - - - 625
winsconsin-breast-cancer 9 - - - - 699
horse-colic 7 - - - - 368
german-credit 6 - - - 1 1000
ecoli 7 - - - - 336
glass 3 3 2 1 - 214
heart-statlog 12 1 - - - 270
hepatitis 4 1 1 - - 155
hypothyroid 7 - - - - 3772
ionosphere 2 - 2 31 - 351
iris 4 - - - - 150
labor 8 - - - - 57
lymphography 3 - - - - 148
segment 14 3 - 2 - 2310
sick 7 - - - - 3772
sonar - 7 4 - 46 208
vehicle 17 1 5 - 846
vowel - - 4 8 - 990
Sum 315 23 27 51 48
In percent 68 5 6 11 10

L =
∑

i

nitest × log
ni

wi ×N
(4.1)

In the case of cross-validated equal-width discretization, which is one of the

benchmark methods TUBE is compared to, leave-one-out cross-validation can

be applied as the ‘inner’ cross-validation because the log-likelihood for each

test instance can be easily computed due to the fact that the bins stay fixed.

In TUBE discretization the location of each cut point can change with one

instance removed, making the leave-one-out method too expensive. Therefore

10-fold cross-validation is used instead.

Datasets Used for Evaluation

The TUBE discretization method is evaluated using numeric attributes from

21 UCI datasets [6]. The algorithm works on univariate numeric data, and thus

the numeric attributes of the UCI datasets have been extracted and converted

into 464 one-attribute datasets.

A surprising finding was that many of these numeric attributes have a

61

low uniqueness in their values. Low uniqueness means that they have many

instances with the same value. Table 4.1 lists the number of attributes sorted

into columns according to their level of uniqueness (e.g. ‘[0− 20)’) means that

the percentage of unique values is between 0 and 20). The table also shows

the UCI datasets the attributes have been extracted from and the number of

instances.

The low uniqueness values can be explained by the high percentage of

discrete attributes in the data. More than 50 percent of the attributes have

integer values only and several others have only few different values because

of low precision measurements. The attributes from the ionosphere dataset

represent a special case of low uniqueness because the values are radar returns.

The nature of the radar results in many values at 0.0, 1.0 and −1.0, but

continuous data between these values.

Discretization Methods Compared to TUBE

TUBE discretization is compared to equal-width and equal-frequency dis-

cretization, methods, which are explained in detail in Chapter 2 as equal-width

and equal-frequency histogram respectively.

TUBE is compared against equal-width discretization with ten bins (EW-

10), equal-width discretization with cross-validation for the number of bins

(EWcvB), equal-width discretization with cross-validation for the origin of

the bins and the number of bins (EWcvBO), and equal-frequency discretiza-

tion with ten bins (EF-10). Note that the equal-frequency method could not

produce useful models for attributes with uniqueness lower than 20 and has

therefore been left out of the comparison for those cases. TUBE, EWcvB and

EWcvBO were all run with the maximum bin number set to 100. All methods

were implemented in the WEKA machine learning software [68].

Experiments

Table 4.2 provides a summary of the comparison. Each value in the table is

the percentage of all attributes in that uniqueness category for which TUBE

was significantly better, equal or worse respectively, based on the corrected

resampled t-test [47]. In almost all cases TUBE is at least as good as the other

methods and produces especially good results in cases with low uniqueness and

some cases of high uniqueness. An analysis of the corresponding attributes

shows that TUBE is generally better when attributes exhibit discontinuities

62

Table 4.2: Comparison of the density estimation results. Result of paired t-test
based on cross-validated log-likelihood.

EW-10 EWcvB EWcvBO EF-10
(0-20)
TUBE significantly better 99 100 100 -
TUBE equal 1 0 0 -
TUBE significantly worse 0 0 0 -
[20-40)
TUBE significantly better 48 43 43 48
TUBE equal 52 57 57 52
TUBE significantly worse 0 0 0 0
[40-60)
TUBE significantly better 8 8 8 37
TUBE equal 92 92 92 63
TUBE significantly worse 0 0 0 0
[60-80)
TUBE significantly better 53 56 56 67
TUBE equal 44 40 42 30
TUBE significantly worse 3 3 2 3
[80-100]
TUBE significantly better 13 17 15 13
TUBE equal 85 81 81 85
TUBE significantly worse 2 2 4 2
Total
TUBE significantly better 76 77 77 43
TUBE equal 23 22 22 55
TUBE significantly worse 1 1 1 2

63

Table 4.3: Comparison of the number of bins.

EW-10 EWcvB EWcvBO EF-10
(0-20)
TUBE significantly fewer 14 62 62 -
TUBE equal 2 8 7 -
TUBE significantly more 84 30 31 -
[20-40)
TUBE significantly fewer 31 13 26 31
TUBE equal 4 30 17 4
TUBE significantly more 65 57 57 65
[40-60)
TUBE significantly fewer 29 46 54 29
TUBE equal 38 42 38 38
TUBE significantly more 33 12 8 33
[60-80)
TUBE significantly fewer 44 94 97 44
TUBE equal 14 6 3 14
TUBE significantly more 42 0 0 42
[80-100]
TUBE significantly fewer 96 85 92 96
TUBE equal 2 15 8 2
TUBE significantly more 2 0 0 2
Total
TUBE significantly fewer 29 65 68 56
TUBE equal 5 12 9 12
TUBE significantly more 66 23 23 32

in their distributions.

It is difficult to split the datasets precisely into attributes with continuous

distributions and attributes with discontinuous distributions. Datasets below

20 percent uniqueness can be considered discontinuous but there are some

datasets in the higher uniqueness category that showed strong discontinuities.

Attributes with low uniqueness exhibit discontinuous distributions of dif-

ferent kinds. Some of the attributes are very discrete and have only integer

values (e.g. vehicle-9) or a low precision (e.g. iris-4), some have irregularly

distributed data spikes (e.g. segment-7) and some have data spikes in regular

intervals (e.g. balance-scale-1). In the category of (0-20) uniqueness TUBE

outperforms all other methods on almost all of the datasets.

In the category [60-80) half of the attributes have a distribution that is a

mixture between continuous data and discrete data (most of the ionosphere

attributes in this category have a mixed distribution). TUBE’s density esti-

mation was better for all these attributes.

64

Comparing the Number of Bins

Table 4.3 shows a comparison of the number of bins generated by the different

methods (which is always fixed to ten for the methods not using ‘inner’ cross-

validation). A smaller number of bins yields histograms that are generally

easier to understand and analyze. In the category 80 percent and higher the

TUBE discretization can adapt well to the data and generates a significantly

smaller number of bins than the other methods.

4.1.4 Visual Evaluation of TUBE Discretization

Histograms are a method used for visual data exploration. Therefore it makes

sense to evaluate TUBE discretization results by looking at the resulting his-

tograms built from the discretized range. This subsection first visually evalu-

ates the way TUBE represents certain features of a data distribution, namely

empty areas and areas of varying density, and then compares it with how equal-

width discretization and equal-frequency discretization can represent these fea-

tures. To strengthen the argument, the size of the difference area was measured

and used to compare TUBE discretization with the other methods used in this

section. The difference area is the area representing the difference between

the estimated density function and the ‘real’ function used for generating the

data.

A second set of examples explores the effect of varying TUBE’s parameters

like the minimal bin width and the cut point distance to the data values. The

resulting histograms are shown and the log-likelihood values are compared.

Discretization of Distribution with Empty Area

The first example dataset investigated contains two areas with uniform dis-

tribution and a large empty area in between them. Figure 4.5 shows the

histogram built using TUBE discretization. The true generated distribution

is the dotted line. TUBE’s histogram and the true distribution are very close

together.

Two additional histograms were generated for this dataset using simple

equal-width discretization and equal-frequency discretization, both with ten

bins—see Figure 4.6. The empty range is not clearly shown as in TUBE’s

histogram. It can be seen that the equal-frequency histogram does not identify

empty areas because of the way it is constructed, with each bin containing

approximately the same number of instances and never zero instances.

65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 3 4 5 6 7 8 9 10

De
ns

ity

TUBE CV
real distribution

Figure 4.5: TUBE discretization: two uniform areas with an empty range.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 3 4 5 6 7 8 9 10

De
ns

ity

EW 10 bins
EF 10 bins

real distribution

Figure 4.6: EW with ten bins and EF with ten bins: two uniform areas with
an empty range.

66

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 3 4 5 6 7 8 9 10

De
ns

ity
EW cross-validated

real distribution

Figure 4.7: EW cross-validated: two uniform areas with an empty range.

Figure 4.7 shows a histogram built using cross-validated equal-width dis-

cretization. The algorithm finds the number of bins using cross-validation and

for this dataset decides on eight bins (A similar result can be obtained by also

cross-validating the origin). It defines the empty areas well, setting the bin

boundaries at the points of density change, but the areas of uniform density

are split into many bins instead of one as in TUBE’s discretization.

Discretization of a Distribution with Extreme Changes

The dataset generated for this example has extreme changes in the distribution

and consists of subranges of several different uniform densities but does not

have any empty subrange like the dataset in the previous example.

Figure 4.8 shows TUBE’s histogram and again TUBE fits the real dis-

tribution perfectly. A second histogram was generated with cross-validated

equal-width discretization—see Figure 4.9. Cross-validated equal-width man-

ages to adapt the number of bins and the bin origin in such a way that all big

steps are defined well. However, the uniform areas get quite dissected when

represented by many bins instead of one.

67

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14 16 18

De
ns

ity

TUBE
true distribution

Figure 4.8: TUBE discretization: five uniform areas.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16 18

De
ns

ity

EW CV
true distribution

Figure 4.9: EW cross-validated: five uniform areas.

68

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-15 -10 -5 0 5 10 15 20

De
ns

ity
TUBE

EF 10 bins

Figure 4.10: TUBE and EF ten bins discretization: two Gaussians.

Discretization of a Distribution with two Gaussians

The dataset used in this experiment contains values generated from two Gaus-

sian distributions. Figure 4.10 shows how TUBE and equal-frequency dis-

cretization adapt to the change of density along the flanks of a Gaussian by

changing the width of the bins. In contrast, the cross-validated equal-width

histogram in Figure 4.11 has to select a large number of bins to represent the

distribution accurately. However, it does make the two peaks discernible.

Comparison of the Discretization Methods using the Difference Area

The datasets generated for visual comparison of discretization methods (‘two-

uniforms’, Figure 4.7; ‘several-uniforms’, Figures 4.8 and 4.9 and ‘two-gaussians’,

Figures 4.10 and 4.11) are also compared using the area which represents the

difference of the generated density and the modelled density function. This

difference area is computed using a numerical method by splitting the range

into 1000 subranges and adding all 1000 difference area sizes, with both func-

tion values measured in the middle of each subrange. With xi being the value

in the middle of the subrange i, g(xi) being the value of the generated function,

f(xi) being the value of the modelled density function, and w1000 being the

width of each of the 1000 subranges, the difference area size S is:

69

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

-15 -10 -5 0 5 10 15 20

De
ns

ity

EW CV

Figure 4.11: EW cross-validated discretization: two Gaussians.

S =
1000∑
i=1

abs(g(xi)− f(xi))× w1000 (4.2)

These values were computed for the three datasets for TUBE discretization

with number of bins cross-validated (TUBE), equal-width with the number of

bins cross-validated (EW-cv), equal-width with ten bins (EW-10) and equal-

frequency with ten bins (EF-10). For reference, values where also computed

using the multi-mode Gaussian model found by the clustering method EM.

(EM is explained and used for multi-dimensional clustering in Chapter 6).

The results in Table 4.4 show that TUBE discretization produces the best

model for the uniform distributions and the third best for the Gaussians. EW-

cv discretization produced a better fit for the Gaussians but with an unpracti-

cally high number of bins for the density model. EM’s multi-Gaussian model

was not unexpectedly the best for the dataset with two Gaussians. A closer

look at the parameters of the two estimated Gaussian distribution shows that

they are very similar to the parameters of the generated ‘real’ distribution (see

Table 4.5).

70

Table 4.4: Comparing the fit of the density estimates generated by TUBE
cross-validated (TUBE), EW cross-validated (EW-cv), EW with ten bins (EW-
10), EF with ten bins (EF-10), and EM cross-validated (EM-cv), using the
difference area size (see Equation 4.2). An asterisk (∗) marks the smallest
difference area for each dataset.

TUBE EW-cv EW-10 EF-10 EM-cv
two-uniforms 0.00821 * 0.02871 0.17280 0.23360 0.17614
several-uniform 0.05262 * 0.15425 0.26731 0.14948 0.20790
two-gaussians 0.10146 0.09119 0.22770 0.24223 0.01824 *

Table 4.5: Parameters of generated Gaussians compared to those found by
EM-cv.

mean-1 stdv-1 num-1 mean-2 stdv-2 num-2
Generated Gaussian 1.00 5.0 900 10.00 2.00 3000
EM-cv 0.09 5.08 897 10.01 1.96 3003

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 20 30 40 50 60 70 80 90

De
ns

ity

Age

TUBE eps = 1.0E-4

Figure 4.12: TUBE discretization of an attribute with discrete values. Cut
distance is set to default 1.0E − 4.

71

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 20 30 40 50 60 70 80 90

De
ns

ity

Age

TUBE eps = 0.1

Figure 4.13: TUBE discretization of an attribute with discrete values. Cut
distance is set to 0.1, larger than default.

Data with Discrete Values (Comparison of Log-likelihood)

The age attribute of the diabetes datasets (diabetes-08) is an example of a nu-

meric attribute with discrete values where all the values are integers. TUBE’s

cut point distance parameter defines where splits are attempted next to each

data value. For the construction of the histogram in Figure 4.12, the cut point

distance (eps) was set to the default value 1.0E − 4. This setting results in

a histogram that defines a bin around each discrete value and for each empty

space between the values. Increasing the cut point distance to 0.1 yields a

histogram that gives a more intuitive representation of the distribution of the

values; see the resulting histogram in Figure 4.13. On the other hand, com-

paring the cross-validated log-likelihood values (10-fold cross-validation) shows

that the less smoother histogram yields a higher score (4.88 > 3.49).

Data with Spikes based on Few Instances (Comparison of Log-likelihood)

For the construction of the histogram in Figure 4.14, based on a dataset with

small spikes in the distribution, the cut point distance (eps) was set to the

default value 1.0E − 4. The resulting histogram shows that TUBE finds some

very narrow bins with only a few values in them. These bins form high spikes

72

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35

De
ns

ity
TUBE eps = 1.0E-4

Figure 4.14: TUBE discretization of an attribute with spikes based on few
values only. Cut distance is set to default 1.0E − 4.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 10 15 20 25 30 35

De
ns

ity

TUBE eps = 0.1

Figure 4.15: TUBE discretization of an attribute with spikes based on few
values only. Cut distance is set to 0.1. The spikes have disappeared.

73

and render the rest of the histogram invisible. For the next histogram in

Figure 4.15, the cut point distance was increased to 0.1. Moreover, bins below

this distance were disallowed per user parameter. Note that, by default, TUBE

cuts in the middle between two values if the cut point distance is larger than

the distance of the two values.

It can be seen that with these changes to the parameters, TUBE finds a

histogram which perhaps gives more useful information about the distribution

of the values. However, the comparison of the cross-validated log-likelihood

values (10-fold cross-validation) again shows that the less smoother histogram

yields a better value (−3.19 > −3.20).

4.1.5 Experiments with Varying Cut Distance

To investigate the effect of the cut point distance parameter on real-world data,

an experiment was performed on the UCI datasets using all the attributes in

the group of attributes that exhibit [40..60) percent uniqueness. The above

experiment shows that TUBE performs only sometimes better than the other

discretization methods for this group. Hence, the experiments were repeated

for TUBE, once leaving the setting for the cut distance (eps) at the default

value (1.0E− 4) as in the experiment before, and also setting the cut distance

to the values 0.01 and 1.0E − 8.

The results are listed in Table 4.6. They show that on some attributes

(glass-2, hepatitis-3, ionosphere-3) the likelihood values increase strongly when

the cut distance is set to a smaller value. This is possibly because the his-

tograms have bins which are small but have very high spikes and therefore

yield very high log-likelihood values.

4.1.6 Summary of Application to Discretization

TUBE, like other unsupervised binning methods, can be used to discretize data

by interpreting the bin boundaries as discretization thresholds. Discretization

is often applied in data mining for preprocessing data, mostly when numeric

data has to be transformed into categorical data, but it can also be used for

density estimation. In this section it is evaluated whether TUBE discretization

is a good algorithm for density estimation with histograms. The log-likelihood

criterion and the size of the difference area was used for the empirical evaluation

of artificial datasets. Moreover, some histograms were visually inspected and

discussed.

74

Table 4.6: Results for TUBE evaluation with different values for the parameter
eps. The values with an asterisk (*) show significant improvement based on
the corrected t-test compared to the left-most value in the same row.

eps = 0.01 eps = 1.0E-4 eps = 1.0E-8
default

arrhythmia-105 -1.90 -1.93 -1.71
arrhythmia-106 -2.17 -2.17 -2.17
arrhythmia-115 -2.06 -2.05 -2.10
arrhythmia-116 -2.18 -2.18 -2.18
arrhythmia-136 -1.79 -1.82 -1.75
arrhythmia-146 -2.05 -2.01 -1.97
arrhythmia-156 -2.10 -2.11 -2.11
arrhythmia-165 -2.21 -2.18 -2.16
arrhythmia-166 -2.50 -2.44 -2.34
arrhythmia-185 -2.40 -2.41 -2.40
arrhythmia-195 -2.04 -2.06 -2.13
arrhythmia-196 -2.44 -2.44 -2.45
arrhythmia-205 -1.81 -1.80 -1.82
arrhythmia-206 -2.14 -2.14 -2.11
arrhythmia-96 -1.82 -1.82 -1.84
glass-2 1.04 1.01 * 2.11
glass-7 0.75 0.71 0.98
hepatitis-3 -1.29 * 0.01 * 3.36
ionosphere-3 3.13 * 3.85 * 8.90
sonar-50 5.14 5.20 5.19
sonar-51 5.33 5.30 5.29
sonar-52 5.51 5.56 5.49
sonar-54 5.77 5.74 6.30
vowel-7 1.53 1.53 1.52

75

TUBE discretization produces histograms that adapt the bin size to the

density changes in the distribution. It can thus represent complex distributions

with sudden density changes in the data using a comparably small number of

bins and can reliably detect empty spaces. On truly continuous data the

method provides a discretization that represents the data as well as the other

methods but with fewer bins and hence gives a clearer picture of areas of

different density.

However, when the algorithm finds a range of a few instances that lie close

together and are close to the border, it shows a tendency to interpret them as a

feature of the distribution and decides to separate them into a bin. Also, with

discrete data, the algorithm creates a bin around each value and an empty bin

between two values. By modifying the minimal bin width or the cut distance

these narrow spikes can be avoided.

Empirical experiments were performed on 464 numerical attributes of 21

UCI datasets [6]. The attributes have a surprisingly high percentage of discrete

values. For the analysis, the attributes were split into five groups based on

their level of uniqueness. The results show that, when using the log-likelihood

criterion, TUBE is better or as good as the other unsupervised benchmark

methods in a high percentage of cases.

It is noteworthy that TUBE, despite being a more complex algorithm than

the unsupervised discretization algorithm it was compared with, did not show

more than a negligible increase in runtime. On the contrary, as a greedy

top-down tree-based method it is guaranteed to be practical even for large

datasets.

The results show that TUBE outperforms equal-width and equal-frequency

discretization on discontinuous attributes in particular. The visual investi-

gation of those discretizations that produce well-formed histograms without

spikes indicate that the histograms with spikes return higher log-likelihood

values—even if the log-likelihood criterion is cross-validated—despite the fact

that the spikes appear overfitted to the training data. Further experiments on

the group of attributes in the [40 − 60) uniqueness range, which is the range

with the worst results, show that if the spikes in the dataset are made higher by

reducing the cut distance parameter, the log-likelihood values get even better

for some of the attributes. This is a strong indication that the log-likelihood

criterion favours density estimation models which, at least visually, appear

overfitted.

The next section applies TUBE discretization to density estimation for

76

classification in naive Bayes. The experiments for naive Bayes are evaluated

using the accuracy of the classification task and provide an indirect measure

of the quality of the discretization.

77

4.2 Application: Naive Bayes

In the application discussed in this section, TUBE discretization is used to

perform density estimation inside the naive Bayes classifier. The naive Bayes

classifier is a well known inductive machine learning algorithm—inductive be-

cause it uses training data to build a model to be used for the later class

probability prediction for new unseen instances.

The naive Bayes classifier is a simplified Bayesian belief network. Bayesian

networks use probability models of the attributes to generate a prediction.

If the attribute is numeric the probabilities are generally approximated using

Gaussian distributions. However, if the distributions are more complex they

cannot be approximated accurately using a simple Gaussian distribution. For

example, Dougherty et al. [15] find that naive Bayes classification is in most

cases more accurate when the numeric attributes are discretized and trans-

formed into categorical attributes. A different approach again is to discretize

the attribute concerned and use the thresholds of the discretization to build

a nonparametric density estimator. This is the approach taken for applying

TUBE to naive Bayes in what follows.

Many discretization methods have been developed to support supervised

discretization for decision tree algorithms. Discretization for naive Bayes does

not have the same requirements as discretization for decision trees. Discretiza-

tion methods developed for naive Bayes are discussed in a subsection about

related work (Section 4.2.2).

Nonparametric density estimators like histograms can adapt better to com-

plicated density distributions than parametric ones. As shown before, the

TUBE discretization algorithm finds bins of varying length that adapt the es-

timated density function closely to the actual distribution of the training set.

Note that if an attribute is simply transformed into a discrete attribute, the

information about the width of the bin is lost. Hence using a density estima-

tor instead of generating a nominal attribute through discretization should be

advantageous when using naive Bayes.

To summarise the organization of this section, Section 4.2.1 explains the

naive Bayes algorithm. Section 4.2.2 discusses some related work on discretiza-

tion for naive Bayes. Section 4.2.3 explains the way TUBE is applied to naive

Bayes. Section 4.2.4 discusses the evaluation of the application. The sec-

tion ends with a summary of the application of TUBE to naive Bayes (Sec-

tion 4.2.5).

78

4.2.1 The Classification Algorithm Naive Bayes

A Bayesian network, when used for classification, utilizes probability models

of the attribute values for class probability prediction. In the case of a naive

Bayesian network it is best to explain this process by starting with Bayes

theorem of posterior probability. With Ci being the class of the example and

X its attribute vector, Bayes’ theorem says that:

P (Ci|X) =
P (X|Ci)P (Ci)

P (X)
(4.3)

The predicted class Ci is the class for which P (Ci|X) is maximal. Since

P (X) is the same for each class, it can be ignored because simple normalization

can be applied and the following statement can be used:

P (Ci|X) ∝ P (X|Ci)P (Ci) (4.4)

P (Ci) are the class prior probabilities. If they are not known, there are two

possibilities, either all P (Ci) are set to the same value or they are set relative to

the class distribution in the training set. WEKA’s [68] implementation of the

naive Bayes classifier does the latter and is used in this way in the experiments

performed for the evaluation (Section 4.2.4).

Bayes’ theorem can be applied with general Bayesian networks as well as

naive Bayes. The computation of the probabilities P (X|Ci) can be difficult if

conditional dependencies between attributes of the dataset have to be consid-

ered. In naive Bayes, these dependencies are ignored and P (X|Ci) is computed

using the probability of each attribute depending on the class independently.

So, with n being the number of attributes and X being the tuple of attributes

(a1, ..., an), P (X|Ci), the probability of the example X depending on a class

Ci, is:

P (X|Ci) =
∏
i

P (ai|Ci) (4.5)

Using the training instances, the naive Bayes classifier produces probabil-

ity estimates for each class and each attribute. Having a test instance X,

this yields all the probability estimates required to compute the probabilities

P (Ci|X).

79

4.2.2 Related Work

In the context of the previous application, ‘Discretization’ (Section 4.1.1),

related discretization algorithms are discussed in the general discretization

setting. Discretization methods for classification have often been applied to

both decision trees and naive Bayes. Yang & Webb [70] argue that naive

Bayes needs special-purpose discretization methods different from those used

for decision tree classification.

Dougherty [15] applies discretization as a preprocessing step to naive Bayes.

In his experiments he compares equal-width discretization and the supervised

methods 1RD [29] and Fayyad-Irani’s entropy minimization heuristic [18]. He

also compares naive Bayes with decision tree classification.

Yang & Webb [70] developed and tested their discretization method espe-

cially for naive Bayes. Their proportional k-Interval Discretization (PKID) is

based on equal-frequency discretization and computes the number of intervals

automatically from the number of instances by setting it to the square root of

the number of instances. The complexity of their algorithm is O(nlogn) only.

PKID always keeps identical values in one interval.

Davies and Moore [12] use interpolating density trees to efficiently learn

joint probability models for datasets with dozens of attributes and thousands

of examples.

4.2.3 Applying Univariate TUBE in Naive Bayes

In the following, the univariate TUBE algorithm is used as a nonparametric

density estimation tool to support naive Bayes classification. When building

the classification models, the values of each attribute are split into subdatasets,

one dataset for each class. The values for each single attribute are then ordered

and TUBE performs a splitting of the corresponding range. The resulting

discretization is used to generate a histogram. (See the detailed description

of the univariate TUBE algorithm in Chapter 3.) Like PKID, TUBE always

keeps identical values in one interval.

For the prediction of the class, the attributes a1, ..., an of the corresponding

test example are taken to compute the probability that this example is of class

Ci, using Equation 4.5. However, for continuous data, the probability P (ai|Ci)

is zero. Hence, instead of the probability, the density of the histogram for

class Ci and attribute ai is used, which is generated by applying TUBE to

the subdatasets that have been collected and under the presumption that this

80

density is strongly correlated with the probability. As mentioned above, the

prior probability of class P (Ci) is estimated as the proportion of the instances

of this class in the training data. The class probability of the test instance

P (Ci|X) is computed using Equation 4.3. The class for which P (Ci|X) is

largest is predicted as the class for the test instance X.

For the experiments, TUBE discretization was used both with default pa-

rameter settings and with modified parameter settings that change the cut

distance and the minimal bin width. The experiments are explained in detail

in the next section.

4.2.4 Evaluation

Naive Bayes was tested using 21 UCI datasets [6], with all nominal attributes

removed. This was done to isolate the effect of the discretization, which is

obviously only applied to numeric attributes.

Several experiments were performed comparing naive Bayes using Gaus-

sian distributions (Gauss) with either TUBE as density estimator or equal-

width histograms. The first experiment used the following density estimators:

Gaussians (Gauss), TUBE histogram cross-validated for the number of bins

(TUBE-CV) and equal-width discretization cross-validated for the number of

bins (EW-CV). To verify the usefulness of any of these classification methods,

they are compared with ZeroR, a classifier that simply predicts the majority

class. All experiments were performed using 10 × 10 cross-validation and all

comparisons are based on the corrected resampled t-test [47]. Equal-frequency

discretization was not used in the test since many datasets have attributes

with very low uniqueness, for which the equal-frequency algorithm could not

find ten valid bins.

Table 4.7 shows that TUBE-CV is better than the Gaussian estimator in

five tests and worse in seven. The simpler EW-CV method wins nine times

and loses only five times when compared to the Gaussian estimator. On the

datasets where TUBE-CV outperformed the Gaussian estimator EW-CV was

superior on four of the five.

In a second set of experiments, an attempt was made to change TUBE’s

parameters so as to avoid spikes in the histogram, caused by a few instances

lying close together. Table 4.8 lists again the accuracy of TUBE cross-validated

(TUBE-CV) and TUBE with the cut distance set to 0.1 and the minimal bin

width set to 0.2 (TUBE-02). For the results in the third column the maximal

81

number of bins was set to fifteen (TUBE-15) in addition to the previous settings

for the cut distance and minimal bin width. The last column uses a heuristic to

avoid spikes in the data and set the maximal number of bins. It builds a cross-

validated equal-width histogram first and takes the minimal bin width from

the resulting histogram and the maximal number of bins as well (TUBE-EW).

The results show that on seven of the datasets the accuracy of the classification

improves with all of these variants. But unfortunately performance cannot be

improved by these adjustments for most of the datasets.

The third table (Table 4.9) lists the result of further experiments with

equal-width varying its parameter settings: the cross-validated equal-width

discretization (EW-CV), equal-width discretization with the number of bins

fixed to 30 (EW-30) and equal-width discretization with the number of bins

fixed to fifteen (EW-15). It can be seen that some results improve, even quite

drastically as can be seen in the case of the vowel dataset, but others worsen.

In a fourth table (Table 4.10), naive Bayes with the Gaussian estimator is

compared with the best versions from the previous two tables: TUBE with the

minimal bin width set to 0.2 (TUBE-02), and equal-width discretization with

fifteen bins only (EW-15). TUBE now wins more often: nine times (losing

four times) and equal-width discretization wins more often as well: ten times

(losing four times). It can be said that the results have improved. This is

perhaps because the changes in the distribution are not so sharply represented

with these variants, thus the distribution is less overfitted and this improves

the predictions.

The last table (Table 4.11) re-states earlier results but in this case the other

methods are compared to the best TUBE method, TUBE with the minimal

bin width set to 0.2 (TUBE-02). This table shows that only in two cases where

TUBE is outperformed by Gaussian the equal-width estimators perform similar

to Gaussian (arrhythmia and heart-statlog).

A single Gaussian function is not well suited for fitting multi-modal den-

sity functions. An additional experiment investigates the number of modes

found in the histograms built by TUBE-15 and EW-15. Table 4.12 lists for

those datasets where the binning algorithms performed best (anneal, autos,

segment and vehicle), the average number of modes in all non-uniform density

estimates (of which there is one for each attribute and each class) for the given

datasets.Table 4.13 lists the same numbers for the datasets where the binning

algorithms performed worse (heart-statlog, hypothyroid, iris, sick). The his-

tograms with uniform density and therefore zero modes have been left out of

82

Table 4.7: Naive Bayes with Gaussian density (Gauss) compared with TUBE
cross-validated (TUBE-CV), EW cross-validated (EW-CV) and ZeroR (v sig-
nificant win, * loss against Gauss).

Gauss TUBE-CV EW-CV ZeroR
anneal 39.50 79.77 v 86.42 v 76.17 v
arrhythmia 61.31 54.20 * 61.97 54.20 *
autos 48.01 73.33 v 77.71 v 32.70 *
balance-scale 90.53 91.44 91.44 45.76 *
w-breast-cancer 96.12 96.77 97.35 v 65.52 *
horse-colic 59.84 65.04 65.11 63.05
german-credit 70.97 67.31 * 66.71 70.00
ecoli 85.50 70.59 * 69.74 * 42.56 *
glass 49.45 56.74 63.24 v 35.51 *
heart-statlog 83.59 63.48 * 72.96 * 55.56 *
hepatitis 80.13. 79.43 78.07 79.38 *
hypothyroid 94.81 93.91 * 95.95 v 92.29 *
ionosphere 82.17 89.57 v 87.80 v 64.10 *
iris 95.53 91.60 * 89.67 * 33.33 *
labor 89.20 84.73 84.03 64.67 *
lymphography 71.91 67.60 69.00 54.76 *
segment 80.13 87.52 v 92.00 v 14.29 *
sick 95.85 91.39 * 96.97 v 93.88 *
sonar 67.71 72.72 65.78 53.38 *
vehicle 44.68 61.41 v 63.04 25.51 *
vowel 67.03 65.97 44.12 9.09 *

83

Table 4.8: Comparing naive Bayes using TUBE density estimation with vari-
ous parameter settings for the TUBE estimator: cross-validated (TUBE-CV);
cross-validated and 0.2 minimal bin width (TUBE-02); cross-validated, 0.2
minimal bin width and a maximum of 15 bins (TUBE-15); and minimal bin
width and maximal number of bins set with EW (TUBE-EW) (v significant
win, * loss against TUBE-CV).

TUBE-CV TUBE-02 TUBE-15 TUBE-EW
anneal 79.77 79.48 79.49 80.66
arrhythmia 54.20 55.56 v 56.31v 54.51
autos 73.33 75.90 72.01 72.56
balance-scale 91.44 91.46 91.46 91.46
w-breast-cancer 96.77 97.34 97.20 97.25
horse-colic 65.04 65.55 65.28 65.02
german-credit 67.31 67.21 62.45 * 67.89
ecoli 70.59 82.68 v 82.68 v 73.93
glass 56.74 60.24 60.24 64.32 v
heart-statlog 63.48 73.74 v 76.56 v 76.37 v
hepatitis 79.43 79.57 78.45 79.78
hypothyroid 93.91 96.08 v 97.07 v 96.47 v
ionosphere 89.57 90.37 90.37 87.47
iris 91.60 93.60 93.60 90.87
labor 84.73 81.30 81.63 76.10
lymphography 67.60 69.54 69.54 68.87
segment 87.52 91.82 v 91.74 v 92.47 v
sick 91.39 94.94 v 96.29 v 96.72 v
sonar 72.72 75.76 75.76 74.59
vehicle 61.41 62.93 62.50 62.05
vowel 65.97 70.62 v 70.62 v 68.27

84

Table 4.9: Comparing naive Bayes using equal-width density with various
parameter settings for the equal-width estimator: cross-validated (EW-CV);
30 bins (EW-30); and 15 bins (EW-15) (v significant win, * loss against EW-
CV).

EW-CV EW-30 EW-15
anneal 86.42 86.51 84.78
arrhythmia 61.97 58.63 * 65.22 v
autos 77.71 75.21 68.46 *
balance-scale 91.44 91.44 91.44
w-breast-cancer 97.35 97.37 97.38
horse-colic 65.11 68.84 69.98
german-credit 66.71 68.16 68.83
ecoli 69.74 77.72 v 81.41 v
glass 63.24 64.81 65.07
heart-statlog 72.96 79.63 v 81.30 v
hepatitis 78.07. 76.81 80.48
hypothyroid 95.95 93.70 * 93.44 *
ionosphere 87.80 88.75 88.41
iris 89.67 90.87 94.67 v
labor 84.03 85.40 84.67
lymphography 69.00 69.00 69.00
segment 92.00 92.84 92.45
sick 96.97 97.09 94.79 *
sonar 65.78 69.05 76.77 v
vehicle 63.04 62.13 60.66
vowel 44.12 66.01 v 72.40 v

85

Table 4.10: Naive Bayes with Gaussian density compared with best of TUBE
and best of equal-width estimator: cross-validated and 0.2 minimal bin width
(TUBE-02); EW with fifteen bins (EW-15); and ZeroR (v significant win, *
loss against Gauss).

Gauss TUBE-02 EW-15 ZeroR
anneal 39.50 79.48 v 84.78 v 76.17 v
arrhythmia 61.31 55.56 * 65.22 54.20 *
autos 48.01 75.90 v 68.46 v 32.70 *
balance-scale 90.53 91.46 91.44 45.76 *
w-breast-cancer 96.12 97.34 v 97.38 v 65.52 *
horse-colic 59.84 65.55 69.98 v 63.05
german-credit 70.97 67.21 * 68.83 * 70.00
ecoli 85.50 82.68 81.41 * 42.56 *
glass 49.45 60.24 v 65.07 v 35.51 *
heart-statlog 83.59 73.74 * 81.30 55.56 *
hepatitis 80.13. 79.57 80.48 79.38
hypothyroid 94.81 96.08 v 93.44 * 92.29 *
ionosphere 82.17 90.37 v 88.41 v 64.10 *
iris 95.53 93.60 94.67 33.33 *
labor 89.20 81.30 84.67 64.67 *
lymphography 71.91 69.54 69.00 54.76 *
segment 80.13 91.82 v 92.45 v 14.29 *
sick 95.85 94.94 * 94.97 * 93.88 *
sonar 67.71 75.76 v 76.77 v 53.38 *
vehicle 44.68 62.93 v 60.66 v 25.51 *
vowel 67.03 70.62 72.40 v 9.09 *

86

Table 4.11: TUBE with the minimal bin width set to 0.2 (TUBE-02) compared
with EW using fifteen bins (EW-15), EW cross-validated (EW-CV), and naive
Bayes with Gaussian densities(Gauss) (v significant win, * loss against TUBE-
EW).

TUBE-EW EW-15 EW-CV Gauss
anneal 79.48 84.78 v 86.42 v 39.50 *
arrhythmia 55.56 65.22 v 61.97 v 61.31 v
autos 75.90 68.46 * 77.71 48.01 *
balance-scale 91.46 91.44 91.44 90.53
w-breast-cancer 97.34 97.38 97.35 96.12 *
horse-colic 65.55 69.98 65.11 59.84
german-credit 67.21 68.83 66.71 70.97 v
ecoli 82.68 81.41 69.74 * 85.50
glass 60.24 65.07 63.24 49.45 *
heart-statlog 73.74 81.30 v 72.96 83.59 v
hepatitis 79.57 80.48 78.07 80.13
hypothyroid 96.08 93.44 * 95.95 94.81 *
ionosphere 90.37 88.41 87.80 * 82.17 *
iris 93.60 94.67 89.67 95.53
labor 81.30 84.67 84.03 89.20 v
lymphography 69.54 69.00 69.00 71.91
segment 91.82 92.45 92.00 80.13 *
sick 94.94 94.97 96.97 v 95.85 *
sonar 75.76 76.77 65.78 * 67.71 *
vehicle 62.93 60.66 63.04 44.68 *
vowel 70.62 72.40 44.12 * 67.03

87

Figure 4.16: Two lists of instances per bin for the class per attribute sub-
datasets of the dataset anneal. The distributions show at least two significant
modes.

Dataset anneal: 3-rd class, 4-th attribute

Equal Width Estimator. Counts = 8 70 0 0 0 0 0 0 0 11 0 0 0 0 10

Dataset anneal: 3-rd class, 7-th attribute

Equal Width Estimator. Counts = 19 0 0 0 0 0 0 0 0 0 0 0 0 0 80

Figure 4.17: Two lists of instances per bin for the class per attribute sub-
datasets of the dataset iris. Each distribution shows only one significant mode.

Dataset iris, 1-st class. 1-th attribute:

Equal Width Estimator. Counts = 1 3 5 0 7 0 12 8 0 4 0 7 0 0 3

Dataset iris, 1-st class. 2-th attribute:

Equal Width Estimator. Counts = 1 0 0 0 7 5 5 11 6 5 4 2 2 1 1

the computation of the average to avoid distorting it. The average number of

modes for the first set of datasets is not significantly different from the average

for the second set of datasets. Only a closer look at the histograms explains the

good performance on the datasets anneal, autos, segment and vehicle. For ex-

ample, Figure 4.16 lists the instances per bin for two EW fifteen bin histograms

from the anneal data. The histograms clearly illustrate the multi-modality of

the distributions of the anneal data. In contrast to this, the lists of instances

per bin in Figure 4.17 show a distribution that can be represented well by a

uni-modal Gaussian distribution. The densities have only one significant mode

with some additional small insignificant modes.

4.2.5 Summary Naive Bayes

In this section the univariate TUBE algorithm is applied to naive Bayes clas-

sification. The binning of TUBE is used to generate histograms representing

the probability distribution of each attribute given a class. A histogram is

a nonparametric density estimator that can better represent complex density

functions than a parametric density estimator such as the Gaussian distribu-

tion. The aim was to improve the accuracy of naive Bayes’ predictions by

exploiting this property.

88

Table 4.12: This table repeats the results for the four datasets with the best
accuracy for the binning algorithms and adds the average number of modes
found: Classification results for Naive Bayes with Gaussian (Gauss), TUBE
cross-validated and 0.2 minimal bin width (TUBE-02) and EW with fifteen
bins (EW-15); average number of modes found with TUBE cross-validated, 0.2
minimal bin width and maximally fifteen bins (mode-TUBE) and the average
number of modes found with EW with fifteen bins (mode-EW).

Gauss TUBE-15 EW-15 mode-TUBE mode-EW
anneal 39.50 79.49 v 84.78 v 3.61 3.27
autos 48.01 72.01 v 68.46 v 3.88 4.24
segment 80.13 91.74 v 92.45 v 1.82 3.63
vehicle 44.68 62.50 v 60.66 v 5.62 4.36

Table 4.13: This table repeats the results for the four datasets with the worst
accuracy for the binning algorithms and adds the average number of modes
found: Classification results for Naive Bayes with Gaussian (Gauss), TUBE
cross-validated and 0.2 minimal bin width (TUBE-02) and EW with fifteen
bins (EW-15); average number of modes found with TUBE cross-validated, 0.2
minimally bin width and maximal fifteen bins (mode-TUBE) and the average
number of modes found with EW with fifteen bins (mode-EW).

Gauss TUBE-15 EW-15 mode-TUBE mode-EW
heart-statlog 83.59 76.56 * 81.30 3.47 3.50
hypothyroid 94.81 97.07 v 93.44 * 3.10 2.49
iris 95.53 93.60 94.67 1.17 5.16
sick 95.85 96.29 94.97 * 4.17 2.34

89

It is shown that TUBE can be used for density estimation inside the naive

Bayes classifier. It was compared with Gaussian density estimation and two

other nonparametric density estimators: equal-width histograms with a fixed

number of bins (15 and 30 bins) and equal-width histograms with the number

of bins set using cross-validation.

The results show that in some cases the classification accuracy can indeed

be improved. However, in most cases the much simpler equal-width estimator

performs equally well or even better than TUBE, which is discouraging. With

TUBE achieving better results than Gaussian functions on only about half

of the datasets, nonparametric density estimation seems to work better only

in some cases. Avoiding spikes in the data improves classification accuracy

for a number of datasets. This is potentially due to the fact that the density

measure used instead of the probability does not correlate at all well with the

probability measure at values that fall into areas of spikes.

TUBE histograms are capable of representing the distribution of complex

probability functions more closely than the Gaussian distribution. However,

this appears to result in an overfitted naive Bayes model in some cases. Hence

the aim of improving classification performance could not be reached in general

using TUBE as a density estimator for naive Bayes.

90

4.3 Summary

In this chapter, the univariate TUBE method has been applied to discretiza-

tion and evaluated firstly as a nonparametric density estimation method. In

the first section, about discretization, TUBE histograms were also examined

visually to explain how TUBE histograms can represent features like empty

areas and abrupt changes in the density distribution. TUBE discretization was

compared with other unsupervised discretization methods, namely equal-width

and equal-frequency discretization, using the log-likelihood criterion. TUBE

gave similar results to these methods and better results for very discontinuous

data.

However, a caveat needs to be attached to these findings: experiments with

different values of the minimal bin width show that on some of the test datasets

a small value can strongly influence the log-likelihood of the TUBE histogram.

The second evaluation of TUBE discretization was as a density estimation

tool inside the naive Bayes classifier. Naive Bayes predicts the class value

using probability measures estimated from the data. A standard method is to

use a Gaussian density function. TUBE histograms, like other nonparametric

density estimators, can infer more complex probability structures. However,

the comparison of naive Bayes prediction accuracy using TUBE histograms

compared with naive Bayes using Gaussian distribution functions and other

nonparametric density estimators based on equal-width discretization could

not fulfil the expectation of improving naive Bayes classification in general.

Overfitting of the density function may be the reason that TUBE discretization

is not a general-purpose tool for density estimation inside naive Bayes

The next chapter, Chapter 5, introduces the multidimensional TUBE al-

gorithm, Multi-TUBE. Multi-TUBE can be applied to clustering and mode

finding for density estimation. Applications of Multi-TUBE are investigated

in Chapter 6.

91

92

Chapter 5

Multivariate Density Estimation

Trees

This chapter discusses a variant of the basic TUBE tree building algorithm

that builds a density estimation model for multivariate data. The basic TUBE

algorithm for building a tree model for density estimation from univariate data

is introduced in Chapter 3. The algorithm for multivariate data is called Multi-

TUBE.

Multi-TUBE stands for Multidimensional Tree-based Unsupervised Bin Es-

timator. Multi-TUBE, like TUBE, creates a binary density estimation tree by

splitting the dataset recursively. It is also an unsupervised method and thus

does not take class values into account when building the tree model. Each

inner node of the tree represents a split along one value of one of the attributes

in the data. In this way the algorithm cuts the total range into axis-parallel

multidimensional bins, which represent areas of approximately uniform den-

sity. The combined bins form a step-wise constant density function blanket

and can be viewed as a multidimensional histogram. Like the one-dimensional

TUBE histogram, this multidimensional histogram can be used for density

estimation.

In the field of multidimensional density estimation the curse of dimension-

ality is an important issue, as discussed in Section 2.1.2. It is easy to see

that, because of the curse of dimensionality, an adaptation of the equal-width

histogram to the multidimensional case is not a feasible approach for many

cases. To see why, consider the data model with four numeric attributes from

Section 2.1.2. A general heuristic for equal-width histograms is to choose the

number of bins between 10 and 30. Let us assume that each attribute is di-

vided into ten equal-length subranges. Let n be the number of attributes and

93

k be the number of subranges. The number of resulting multidimensional bins

is kn and for this example it is 104 = 1000. The resulting multidimensional

histogram for this problem has 1000 bins. Consequently the datasets must

contain substantially more than 1000 instances; otherwise only a few instances

would be in each bin and the density estimate would be distorted.

In datasets with a large number of attributes it is likely that some attributes

do not contribute to the overall density in a meaningful way because they are

uniformly distributed. Also, groups of attributes can be strongly correlated.

Thus the question arises as to how to ignore these irrelevant attributes. Several

attribute selection methods have been developed for preprocessing a dataset

before a classification, clustering or other machine learning task is performed.

However, there is little work on unsupervised attribute selection. TUBE gen-

erates a density model by searching for the most significant changes in density.

Multi-TUBE does the same as TUBE, but across multiple attributes. When

selecting the next best split, it searches for the most significant change in den-

sity, for each of the attributes in the data, and consequently automatically

chooses between attributes when splitting. Hence Multi-TUBE can avoid ir-

relevant attributes effectively by not splitting on them.

The following sections of this chapter explain the Multi-TUBE method in

more detail. They largely cover the same topics as in the univariate case, while

highlighting the required adaptations to multidimensionality. More specifi-

cally, this chapter discusses the evaluation methods used for the binning steps

(Section 5.1), the splitting process (Section 5.2), and the construction of the

density estimation tree (Section 5.3)—including attribute selection 5.3.1, stop-

ping criteria (Section 5.3.2) and the problem of narrow cuts (section 5.3.3).

Section 5.4 introduces a feature that is specific to Multi-TUBE: the mixing

of binnings. Section 5.4 also briefly mentions using Multi-TUBE for cluster-

ing, but TUBE-based clustering will be explained in more detail in the next

chapter. Section 5.5 discusses new representation techniques developed for

Multi-TUBE’s multidimensional histograms and uses these techniques to ex-

plore a few datasets.

5.1 Evaluating a Multidimensional Binning

Like TUBE, Multi-TUBE uses the log-likelihood criterion to evaluate a single

split and the whole binning corresponding to a particular tree. Since Multi-

TUBE’s bins do not only have width but volume, the computation has to be

94

generalized.

Multi-TUBE cuts the space into multidimensional bins, and the density of

these bins forms a multidimensional blanket and thus represents the estimated

density function. In TUBE, the density (i.e. height) di of bini is computed

using the bin width wi and the number of training instances ni falling into

bini:

di =
ni

wi ×N

In Multi-TUBE the width of the bin is substituted by its volume vi. With

this, the density di of bini is:

di =
ni

vi ×N

To avoid very large values for the volume each attribute range is implicitly

normalized to length 1.0. More specifically, the volume vi is computed using

the width wi,j of bin i for attribute i and maxj, the length of the full range

for attribute aj. Then the volume of bini is:

vi =
∏
j

wi,j

maxj

5.2 Splitting a Range and Setting the Cut Point

Multi-TUBE uses the same principles as TUBE for splitting a range, but con-

siders all attribute ranges of a bin for each split decision. To achieve this, each

attribute must be sorted independent of the other attributes. Each attribute

is only sorted once and further split operations adapt the begin and end index

in the sorted array of values according to the bin they are working in.

For the first split, which forms the root node, univariate TUBE searches the

full range of the attribute in the data, compares all possible split points using

the log-likelihood criterion and selects the best point as the next possible split.

Multi-TUBE does exactly the same, but for each of the attributes individually.

It then uses the criterion of log-likelihood improvement (i.e. likelihood gain) to

select between the options. More specifically, assuming a training dataset with

k attributes, it decides between k attributes for the first split in the root node.

Note that, after this split has been performed, the other k − 1 computed cut

points become invalid since the instances they have been computed with have

95

been separated into two different bins. This process is repeated recursively as

described in the next section.

Where does Multi-TUBE cut when considering a certain attribute? The

cut is performed in exactly the same way as in the univariate case: at a fixed

position before or after a particular instance (cuts are axis-parallel). In a

dataset with N instances, Multi-TUBE has 2 × (N − 1) cut points to test

(and one more cut point at each end of the range if the empty space between

the most extreme instances and the corresponding end point is larger than

the fixed distance Multi-TUBE is cutting with). In the implementation of the

algorithm used for the experiments presented later, the fixed distance was set

to 10−5 as in TUBE. The value can be set with a user parameter.

5.3 Building the Density Estimation Tree for

Multidimensional Data

The multidimensional Multi-TUBE algorithm builds a density estimation tree

in a very similar way as one-dimensional TUBE. Multi-TUBE considers each

of the attributes for each split. However, the splits are done in an axis-parallel

fashion which means only one attribute is involved in each split. In the fol-

lowing, the tree building algorithm is first explained in detail. A small simpli-

fication is given at the end of the section and the pseudo code in Algorithm 2

contains the final algorithm with this simplification.

As a first step, Multi-TUBE searches the full range for the best split, as

explained above. In contrast to TUBE, Multi-TUBE does this not just once

but, in a dataset with k attributes, k times. All k computed splits are added

to the priority queue. Then the best split from the top of the queue is taken

and performed. The information corresponding to this split is stored in the

root node of the tree. As in TUBE, the priority queue holds all prepared splits

ordered by the improvement in log-likelihood that they yield.

Unlike TUBE, Multi-TUBE has to delete some of the computations from

the queue, because the split of the dataset renders them void. For the first

split, the k − 1 computations for the other attributes have to be discarded

even though the split was not performed in their respective dimensions: the

instances are now partitioned into two bins, which makes the computations

invalid. This can be shown using an example. Consider a two-dimensional

dataset with attributes a1 and a2. In Figure 5.1, no split has been performed

96

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

a2

a1

Figure 5.1: Two-dimensional dataset with possible cut points before first cut.

yet, and the two best computed splits for the two dimensions are drawn as

dotted lines. The split on a1 turns out to be the better one according to

the likelihood improvement measure. Figure 5.2 shows the two best splits for

the left bin after a1 has been split at value 10. Note that the new split for

attribute a2 is in a different position than the discarded split on a2 , which

was computed for the full range. This shows that the prepared splits have to

be discarded since the distribution in one part of a bin is never completely

identical to the distribution in the whole bin. This applies to all splits, not

only the first split.

Consequently, after cutting a multidimensional range, Multi-TUBE deletes

the k − 1 unused splits of the bin. Then it searches the two resulting bins for

the best possible splits in each of their k attribute ranges and adds all 2 × k

new splitting canditates to the priority queue. This process is repeated recur-

sively. This way Multi-TUBE builds a binary density estimation tree similar

to TUBE’s density estimation tree. Each inner node of the tree represents one

split and stores not only the split value but also the attribute it splits on. The

leaf nodes are the resulting bins.

The way Multi-TUBE selects the next node to expand by comparing all

possible splits using a criterion is again a greedy way of finding a locally optimal

solution. Multi-TUBE, like TUBE, does not perform backtracking, but relies

97

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

a2

a1

Figure 5.2: Left bin after first cut, with two new cut points for a1 and a2.

on a sufficiently good, non-optimal result.

As mentioned at the beginning of this section, the process of adding com-

puted splits to the priority queue can be simplified. In the process described

so far, k split candidates are added to the priority queue for each successor

bin. But, because only the best of the k splits is performed and all other splits

have to be discarded once this split has been executed, it is more efficient

to simply select the best split and add only that split to the priority queue.

This makes it unnecessary to delete the other split candidates after the split

has been done. This simplified algorithm is implemented in Multi-TUBE and

shown as the pseudo code in Algorithm 2.

5.3.1 Selecting the Next Attribute to Cut

In Multi-TUBE, the algorithm implicitly decides which attribute to cut by

comparing the k possible split candidates from each of the current leaf nodes

and then selecting the best of them. Similar processes have been used for

decision tree construction [50]. Multi-TUBE uses a priority queue-based best-

first expansion strategy to place an order on the nodes so as to enable cross-

validation-based pruning.

At each step, Multi-TUBE selects the attribute that defines the most sig-

98

Algorithm 2 Pseudo code for the basic Multi-TUBE binning algorithm.

maxNumBins⇐ CV-ForOptimalNumberOfBins();

numSplits⇐ 0; {Counts current number of splits}
bestLocalSplit⇐ new Split; {Auxiliary variable to store best local split}
bestLocalSplit.LLKGain⇐ 0.0; {Initialize log-likelihood-gain}
splitPriorityQueue⇐ empty; {Priority queue stores next possible splits}

firstBin⇐ new Bin; {Bin which contains the whole attribute range}
binList.add(firstBin); {List to gather all bins}
for i over all k attributes do

split⇐ bin.findBestSplitInAttribute(i); {Best split for i }
if split.LLKGain > bestLocalSplit.LLKGain then

bestLocalSplit⇐ split
end if

end for
splitPriorityQueue.add(bestLocalSplit);

while numSplits + 1 < maxNumBins do
nextBestSplit⇐ splitPriorityQueue.top(); {Best split in queue}

{* Perform the split on the bin *}
{* and replace the bin in bin list with two new bins *}
newBinLeft, newBinRight⇐ nextBestSplit.performSplit(binList);
numSplits + +; {One more split done}

{* Finds the best possible split in the range of the new left bin ..*}
for i over all k attributes do

split⇐ newBinLeft.findBestSplitInAttribute(i); {Best split for i }
if split.LLKGain > bestLocalSplit.LLKGain then

bestLocalSplit⇐ split;
end if

end for
splitPriorityQueue.add(bestLocalSplit); {Adds it to the priority queue}

{* .. and in the range of the new right bin *}
for i over all k attributes do

split⇐ newBinRight.findBestSplitInAttribute(i); {Best split for i }
if split.LLKGain > bestLocalSplit.LLKGain then

bestLocalSplit⇐ split;
end if

end for
splitPriorityQueue.add(bestLocalSplit); {Adds it to the priority queue}

end while
return binList

99

nificant density changes in the dataset to find areas of equal density. This way

it automatically ignores uniformly distributed attributes and attributes that

are correlated to other attributes. In practice, it sometimes only cuts a small

fraction of the attributes of a dataset to create its binning.

5.3.2 The Stopping Criteria

Multi-TUBE uses the same stopping criteria as TUBE, the cross-validated

likelihood and the local penalty rule discussed in Section 3.6. For the local

penalty rule to apply to a node in the case of Multi-TUBE, all attributes’ best

splits must be rejected so that the node is not expanded further. The number

of node expansions that are performed can be selected in the same fashion as

in TUBE, using cross-validation, because the same best-first node expansion

process is applied.

5.3.3 The Problem of Narrow Cuts

The tendency of Multi-TUBE to produce narrow bins was investigated us-

ing nine real-world datasets. (These datasets are again used in the multiple-

instance application of Multi-TUBE described in the next chapter. Details on

these datasets can be found in Section 6.2.5. For the purposes of this exper-

iment they were transformed from multiple-instance format to standard data

format).

All datasets were split using Multi-TUBE, based on a fixed number of bins.

The resulting histograms were inspected manually. Interestingly, the results

showed that there were no narrow cuts that resulted in a distortion of the

histograms. Although there were no extreme distortions due to narrow bins,

the histograms were generally quite skewed, with one mode bin that contained

many instances in one small bin—between 10 and 90 percent of the instances,

in a bin with a volume smaller than 1 percent of the total volume.

5.4 Additional Functionality in Multi-TUBE

In this thesis, Multi-TUBE is used in two applications, which are both in-

vestigated in detail in Chapter 6. For these applications, the combination

of cuts from two histograms and a clustering algorithm respectively were im-

plemented. The combination algorithm is explained in detail in the following

100

subsection (Section 5.4.1). The clustering algorithm is rather complex and con-

stitutes an application in itself and is discussed in detail in the next chapter,

but Section 5.4.2 gives a brief preview.

5.4.1 Mixing Two Binnings

In tasks like classification of data with a binary class it can be important to

find areas in the distribution of the data where the density of one class value

is high, not absolute but in relation to the density of the second class value.

Two densities over the same range can easily be compared when represented

by two density histograms, if it is ensured that each bin has the same position

and size as the corresponding bin of the other histogram. For a comparison

of two densities, a ‘difference’ function can be used; for instance, the following

function D(x), which defines the difference between the two densities f(x) and

g(x):

D(x) = f(x)− g(x)

The function D of any two histograms can be generated by setting the

height of each bin to di,f − di,g, with di,f being the height of bini of histogram

f and di,g being the height of bini of histogram g. In up to two dimensions,

the resulting difference function can be visualized. Note that the ranges of

the two histograms might have to be consolidated in the resulting histogram

and resulting bins can have negative heights: the difference function D of two

histograms is not a density histogram itself.

The process necessary for computing this kind of difference function is

called mixing of two binnings. It was implemented to be able to compare two

histograms (one-dimensional and multidimensional ones), which do not have

identical cuts. The mixing of binnings requires a process of ‘unifying’ two

binnings so that there is a direct correspondence between the resulting bins.

The mixing process does this by simply adding the cuts of the second binning

to those of the first.

This section first gives an example, illustrating the outcome of combining

two one-dimensional binnings using the mixing algorithm. It then explains the

implementation of the multidimensional mixing process. Later it discusses an

upper bound on the number of bins that mixing can yield and under which

conditions this maximum is reached. Finally, this section discusses a technical

101

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

a2

a1

neg
pos

Figure 5.3: Two univariate distributions: dataset with ‘negative’ instances and
dataset with ‘positive’ instances.

problem concerning the mixing process. The feature ‘mixing of two binnings’

is used in the application of Multi-TUBE to multiple instance learning, which

is discussed in detail in the next chapter (Chapter 6).

Example: Mixing Two One-dimensional Binnings

In this example, two different datasets distributed over the same range [0.0..10.00]

have been discretized using one-dimensional TUBE, which resulted in two in-

dependent binnings with bins of varying length. The histograms are both

shown in Figure 5.3. The function D, the corresponding difference function, is

given in Figure 5.4. It can be seen that it has some bins of negative ‘height’ .

Implementation of the Multidimensional Mixing of Binnings

Compared to the mixing performed on one-dimensional datasets, mixing mul-

tidimensional binnings is more complicated. In the one-dimensional case, any

additional cut only affects one existing bin. When two multidimensional bin-

nings are mixed, each cut can disect several bins. A simple two-dimensional

example illustrates this.

102

-2

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

a2

a1

neg
pos

D = pos - neg

Figure 5.4: Two univariate distributions and their difference distribution Ddiff .

Example: Mixing Two Two-dimensional Binnings Consider two data-

sets that are spread over the same two-dimensional range. One dataset has

instances of class A, the second dataset has instances of class B. For each

dataset, Multi-TUBE was used to generate a binning (called binning A and

binning B in the following). Figure 5.5 shows how the range was split for

dataset A and Figure 5.6 how it was split for dataset B. If the cut along

attribute X1 of binning B is performed on dataset A, two of the bins in

binning A are split. Taking the next cut in binning B and applying it to

binning A shows one bin from binning A is cut fully and the other relevant

bin has already been cut with the first cut from binning B and therefore only

a part of it is cut. Figure 5.7 shows the result of mixing the two binnings.

Tree Structure of the Combined Binning As explained above, two bin-

nings built by Multi-TUBE on datasets with the same set of attributes can

be combined into one binning. However, the current implementation of the

mixing algorithm does not actually construct a tree structure that is a model

for the new binning. If such a tree structure were needed a simple way to

build it would be to attach the tree of the second binning to each of the leaf

nodes of the tree corresponding to the first one. After the leaf nodes have been

replaced, all these newly attached trees can be pruned, removing redundant

103

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

X1

X0

Figure 5.5: Two-dimensional dataset with class A instances and two splits.

nodes. A redundant node is for example a node with a condition a1 < 7.0

when in the path to this leaf node a condition a1 < 5.0 already exists.

Overview of the Implementation of the Mixing Algorithm To com-

bine two multidimensional binnings Multi-TUBE’s mixing of binnings feature

first defines a total range by taking the maximum of the ranges for each at-

tribute. It then takes the bins of the first binning and cuts them using the cuts

defined by the second binning, starting from the top of the tree. For this it

uses both tree structures but does not build a new tree structure. This process

results in a new set of bins with some or all of the bins of the first binning

being refined into smaller bins. See also Algorithm 3

The Maximal Number of Bins after Mixing

This section examines, what is the maximum number of bins that can result

from mixing, to check whether there is a danger of shredding the multidimen-

sional space into too many small bins when mixing two binnings.

Assume there are two multidimensional density estimation trees, N and M ,

generated by Multi-TUBE, which represent a multidimensional binning: Tree

M with m cuts and tree N with n cuts. Each cut splits one bin into two bins

and hence adds one more bin. Therefore the binning represented by tree M

has m+1 multidimensional bins and that of tree N has n+1 multidimensional

bins. What is the maximal number of bins that can result when combining

the cuts of both trees?

104

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

X1

X0

Figure 5.6: Two-dimensional dataset with class B instances and two splits.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8

X1

X0

Figure 5.7: Dataset with class A and class B instances and mixing of binnings
performed.

105

Algorithm 3 Pseudocode: The mixing of binnings algorithm combines two
binnings (A and B) by recursively applying the cuts stored in cut tree B to all
bins in bin list A (current implementation does not change cut tree A)

function OneCut(node, bins; list of all leave bins to be cut)

for bini in bins do
if bini is within subrange of node.innerBin then

if node.cutV alue on attribute node.cutAttr is within subrange of bini

then
perform cut and replace bini in binListA with the two new bins

end if
end if

end for

perform function OneCut(node.nodeLeft, binListA)
perform function OneCut(node.nodeRight, binListA)
end of function

main()
binningA: binListA (all leave bins) based on cutTreeA
cutTreeB
node: cutAttr, cutV alue, innerBin, nodeLeft, nodeLeft

actualNode = rootNode of cut tree B
perform function OneCut(actualNode, binListA)
end of main

106

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

X
1

X0

Figure 5.8: The first mixed cut is cutting an attribute (X1) that has not been
cut yet and therefore cuts all existing bins.

A new cut that uses an attribute that has never been used before, always

splits all existing bins (see Figure 5.8). Therefore, it results in the maximum

increase in the number of bins. Based on this fact and in each step considering

the worst case the following will show which conditions must hold so that a

mixing of two binnings M and N results in the maximum number of bins.

First Cut: In the worst case, the first cut from the root node of tree N is

on an attribute that is not used in any cuts in M and therefore cuts all bins

and so adds m + 1 new bins. The resulting binning has now 2× (m + 1) bins.

Second Cut: The next cut taken from tree N (from either of the two

branches extending from the root node) and applied to tree M ’s binning is

in another new dimension not used in M and not used in the first cut in N . It

cuts m + 1 bins and adds another m + 1 bins, which is the maximum number

of bins a second cut can add.

Continuing to Add Cuts from N to M Multi-TUBE continues splitting

the bins recursively, and if all further cuts in N are each in a further new

dimension, they each add m + 1 bins.

Result: In the worst case, each of the n cuts of tree N adds m + 1 bins to

M . Therefore the result is that the maximum number of bins after mixing the

binnings of trees M and N is:

107

max = (n + 1)× (m + 1)

Conditions for Maximum Number of Bins The necessary conditions

under which the maximum number of bins in the resulting binning is obtained,

is that all cuts in N are on different attributes and on attributes different from

those used in M . This can only be the case when the number of attributes k

in the dataset is larger or equal to the number of cutting attributes in N plus

the number of cutting attributes in M .

Example with m = 9 and n = 9 If m = 9 and and n = 9, which

would mean that both trees M and N represent a binning with 10 bins, the

maximum number of bins after mixing the two binnings is 10×10 = 100. This

maximum number is reached if each cut in N uses a different attribute, all of

the attributes used in N are different to the attributes used in M , and the

number of attributes is 10 or greater.

Conclusion The above shows that the multidimensional mixing of binnings

can, under certain conditions, shred the range into many more bins than the

original two binnings had.

Problem: Identical Cut Points with Different Bounds

The bounds of intervals can either be defined as ‘open’, which means that the

value at the bound is not part of the interval, or ‘closed’, when the value at

the bound is part of the interval. Open bounds are denoted by ‘(’ or ‘)’ and

closed bounds by ‘[’ or ‘]’. Because histogram bins are mutually exclusive inter-

vals, the interval bounds of two adjoining histograms are always different—e.g.

..), [..—and thus leave a value that is located exactly at the boundary of the

bins in either the left or the right bin.

When mixing the binnings of two histograms, the problem can arise that

both histograms have a cut point in common but the respective bounds are

defined differently in each of the histograms. For example, two one-dimensional

two-bin histograms could have their bins defined as:

Histogram-1: [2.0 .. 5.0), [5.0 .. 7.0]

Histogram-2: [2.0 .. 5.0], (5.0 .. 7.0]

108

A possible solution is to define a new bin around the problematic value

using the fixed cut distance employed in TUBE’s cutting process to form a

new bin.

In practise this problem very rarely arises because TUBE does not cut at

the value of an instance, but at a fixed distance from the training instance,

when building the density estimation tree. If two cut points are nevertheless

identical, the first setting of bounds is taken. A test instance could be exactly

on the cut value, but arbitrarily the impact of this inexactness was considered

marginal.

5.4.2 Clustering Using the Multi-TUBE Binning

Clustering data means to identify high density areas surrounded by low density

ones. The high density areas correspond to modes (peaks) in the density.

Multi-TUBE’s multidimensional histogram can be used to search for clusters

in multidimensional datasets. The clustering algorithm developed in this thesis

uses Multi-TUBE’s binning to find modes in the density. It searches for ‘mode’

bins and gathers all neighbouring bins down to the ‘valley’ bins to form clusters.

The TUBE-based clusterer is a density-based clusterer. It is explained in detail

in the next chapter (Chapter 6).

In the remainder of this section tools for inspecting the output of Multi-

TUBE are discussed.

5.5 Presentation Methods for

Multidimensional Bins

For centuries the histogram has been a very popular tool to represent data.

However, multidimensional data is difficult to represent in a visualization. For

the analysis of the results in this thesis it was desireable to have some visual

means of gaining insight into the structure of the data. Visualization can aid

in finding explanations for results of a machine learning step like classification.

The matrix plot is a common method to represent multidimensional data.

It consists of scatter plots considering all combinations of the attributes to

form a matrix of two-dimensional scatter plots. But, for datasets with many

attributes, perhaps more than 100, the matrix plot gets too large to make an

overview possible. There is also the problem of having many instances in the

datasets. In a scatterplot, each instance is plotted as a dot. When plotting

109

the instances as black dots on a white background, the user can identify local

densities as the variation in the darkness of the area. The darkest areas are

the densest. But if the number of instances is very high, some areas can be

blackened out, and no information about density variation is gained from the

plot. The histogram obviates this problem with large datasets because it is a

smoothed version of the scatterplot.

The multidimensional TUBE algorithm can be used to construct histograms.

To represent these histograms, two simple semi-graphical representations—the

bin list and the bin position overview—have been developed. Both methods

are not restricted by datasets with many attributes and can also be used with

very large datasets. The two diagram techniques are explained in the follow-

ing subsections, and are used in the chapter on ”Applications of Multivariate

Density Estimation Trees” (Chapter 6) to document the results obtained in

the Multi-TUBE applications.

5.5.1 Ordering the Bins

In contrast to the one-dimensional binning, there is no order on the bins in

the multidimensional case. In the new representation technique bin list, ex-

plained in the following, the bins are ordered based on the tree generated by

Multi-TUBE. The left-most bin in the tree is the bin for which all subranges

start from the minimum of the range of the corresponding attributes. This is

because, if a range is cut, the part with the smaller values is located on the

‘left’ side of the cut (traditionally the real line is represented from the smallest

values on the left to the larger values on the right). With this order given, a

histogram could be drawn and the width of each bin set relative to the volume

of this bin. Instead, the semi-graphical representation technique called bin list

was developed, which can give even more information to the user.

5.5.2 The Bin List: A Simplified Histogram

Multi-TUBE splits the range into areas, choosing the sizes of the bins in such

a way that they adapt to the local density. The resulting bins show the most

significant features of the distribution of the instances. Instead of drawing the

multidimensional bins with the width relative to the volume, the representation

technique bin list was developed. It uses a textual representation.

More specifically, one line of text in a bin list gives the most important

information for one bin. These are: density, volume and the percentage of

110

Bin List - with instances percent:

Highest Mode Bin: 3

0 : Dns:[] Ins:[] Vol:[X.........]

1 : Dns:[X.........] Ins:[X.........] Vol:[XX........]

2 : Dns:[XXXX......] Ins:[X.........] Vol:[X.........]

3 : Dns:[XXXXXXXXXX] Ins:[XXXX......] Vol:[X.........]

4 : Dns:[X.........] Ins:[X.........] Vol:[X.........]

5 : Dns:[X.........] Ins:[X.........] Vol:[X.........]

6 : Dns:[XXXX......] Ins:[XXXXX.....] Vol:[X.........]

7 : Dns:[X.........] Ins:[X.........] Vol:[X.........]

8 : Dns:[X.........] Ins:[X.........] Vol:[X.........]

9 : Dns:[X.........] Ins:[X.........] Vol:[XXXXXX....]

Percentage of instances presented(Dns): 100%

Figure 5.9: A sample bin list of ten bins; Bin 0 is empty.

...

15 : Dns:[<1E-3.....] Ins:[<0.01.....] Vol:[XXXXXXX...]

Percentage of instances presented(Dns): 99.87%

Figure 5.10: Values below 0.1%.

instances that the bin contains. Each of these values is not given as a number

but as a list of X-characters (exceptions to this rule will be explained below)

aligned in a way that the density values, for example, of all bins form a column.

This way columns of these values can be seen as small vertical histograms. Next

to the density information, two more lists are given that show the relative

volume (=‘width’) of the bins and the relative number of instances in each bin

respectively. An example bin list is given in Figure 5.9.

In a multidimensional histogram, as mentioned above, the order of the bins

is not clearly defined, as it is for the one-dimensional histogram. In the bin

list, the order of the bins is determined by gathering the leaves of the tree

generated by Multi-TUBE from left to right: smaller value subranges to larger

value subranges.

For the examples considered below, a dataset was generated with instances

that have six attributes. The distribution in this dataset consists of a few

areas of uniform density. The matrix plot in Figure 5.11 shows this dataset as

a matrix of scatter plots.

Using the Multi-TUBE binning, the generated dataset was split into nine

bins and the resulting multidimensional histogram is represented in the bin

111

Figure 5.11: Matrix plot of the example dataset.

list in Figure 5.9. As can be seen, the representation of the bins is strongly

simplified. Each bin is given a number for further reference. One line in the

bin list shows the following values for the corresponding bin: density (Dns),

percentage of number of instances in the bin (Ins), and percentage of volume

(Vol), forming three columns. All three values are represented in a semi-

graphical way using X characters. One X stands for 10 percent. The volume is

given as the percentage of the total volume, and the number of instances as the

percentage of all instances. The percent values are rounded up to the next 10.

So if the percentage is 53.0 percent, six X characters are drawn. Consequently

the number of X characters seen across all rows do not add up to ten.

For the density values nothing like a total sum exists. For the presentation

of the density, the density of the ‘highest’ bin—the bin with largest density

across all bins—is taken as 100 percent and the densities of the other bins are

given as a percentage compared relative to the density of this bin. Therefore

the densest bin is represented with [XXXXXXXXXX], a string containing ten X

characters.

All values are rounded up to the next 10, but values that are smaller than

0.1 are not shown as [X.........], instead they are written as <0.1 or <0.01

continuing down to <1E-28. (See two examples in Figure 5.10.) In practise,

112

0 : -..........- Dns:[] Ins:[] Vol:[X.........]

1 : Ab.........B Dns:[X.........] Ins:[X.........] Vol:[XX........]

2 : BaaaaaaaaaaA Dns:[XXXX......] Ins:[X.........] Vol:[X.........]

3 : 0bbbbbbaaaaA Dns:[XXXXXXXXXX] Ins:[XXXX......] Vol:[X.........]

4 : Ab.........B Dns:[X.........] Ins:[X.........] Vol:[X.........]

5 : Ab.........B Dns:[X.........] Ins:[X.........] Vol:[X.........]

6 : Abbb.......B Dns:[XXXX......] Ins:[XXXXX.....] Vol:[X.........]

7 : Ab.........B Dns:[X.........] Ins:[X.........] Vol:[X.........]

8 : Ab.........B Dns:[X.........] Ins:[X.........] Vol:[X.........]

9 : -..........B Dns:[X.........] Ins:[X.........] Vol:[XXXXXX....]

Percentage of instances presented(Dns): 100%

Figure 5.12: Bin list with information about class distribution.

it is useful to have small values emphasized in the output. It can also be

important to show if a bin is completely empty, so an empty bin is represented

with ten space characters.

In the last line, the value after Percentage of instances presented

refers to the density column and is the sum of all instances represented by

all X characters. Reporting this value should help to detect a distortion of the

histogram—in case one of the bins is very narrow and its density value is very

large. In relation to very dense bins, other bins get very low density values

and become invisible, hiding features of the dataset. Then Multi-TUBE will

have to be rerun with different values for parameters like minimal bin width,

to avoid the distortion.

As a user parameter, the number of characters can be increased so that

for example, twenty X characters stand for 100 percent, allowing the output

to show more detail. Further features could be added with a fully graphical

interface and some ideas for future features are summarised in the later section

‘Future work’ (Section 5.5.6).

5.5.3 Bin Lists For Two-Class Problems

For a classification dataset with a binary class, the distribution of the classes

in the different bins can also be of interest. With an additional column the

distribution of a binary class (with two possible values, i.e. ‘true’ and ‘false’)

can be documented in the bin list. This is shown in Figure 5.12.

The representation is again very coarse in order to give a quick overview.

The first ten characters after the first column in each row give the density of

113

#5:

[XXXXXXXXXX][XXXXXX....]

[XXX.......][...XX.....]

[XXXXXXXXXX][XXXXXXXXXX]

#6:

[XXXXXXXXXX][XXXXXX....]

[XXX.......][.....XXXXX]

[XXXXXXXXXX][XXXXXXXXXX]

Figure 5.13: Positions of Bin 5 and Bin 6.

the first and second class, each as a sequence of characters. The sequence for

the class with the lower density is hiding the lower part of the sequence for

the second class. For example the sequence [-aaaaab....-] stands for a bin

with class a at 50 percent and class b at 60 percent. 100 percent is the highest

percentage of all bins and both classes for this column.

The characters before and after this character sequence have special mean-

ing. The character after the sequence, given as an uppercase A or B shows

which of the two classes was denser in this bin. This is important if the two

classes have the same number of characters in the middle part. The character

before the string indicates which of the classes was represented zero times in

a bin, or is written 0 if neither was. When no instances at all are in a bin, the

bin is represented by the following string: [-..........-].

Note that any bin list output after the mixing of two binning operations

gives the bins in the order from highest difference density to lowest difference

density (Section 5.5.1).

A graphical user interface would make it possible to draw blocks of exact

length. This would show more detail but may also obscure higher level features

of the data that the user needs to discover at an early point of exploration.

5.5.4 Bin Position Overview

The bin position representation is designed to give an overview of where in the

total attribute range a bin is positioned. Figure 5.13 gives two examples of a

bin position overview : for Bin 5 and Bin 6 from the bin list in Figure 5.10. For

each attribute, a string of characters shows the part of the full range the bin

covers. If the string is [XXXXXXXXXX], the bin was not cut in this attribute and

covers its whole range. The string [XXXXX.....] means the range was cut in

114

approximately the middle of the range and the bin covers the first part of the

range. If the bin is very slim (below 0.1 percent of the range), an I character

is given instead of an X.

In the given example, the split tree never selected a cut on the last two

attributes, so these attributes could be ignored for the presentation. The selec-

tion of attributes for presentation can be important if the number of attributes

is very high.

5.5.5 Examples of Data Exploration

In this section two datasets are explored by examining their bin lists, which rep-

resent their multidimensional histograms, and for some bins their bin position

overviews. Both datasets are two-class datasets with the class values ‘positive’

and ‘negative’. The datasets are also used for experiments in the application

multiple-instance learning, discussed in the next chapter (Section 6.2).

Both datasets explored in this section are binary and therefore well suited to

demonstrate the ‘Mixing of Two Binnings’ method introduced in Section 5.4.1.

To summarise, this method splits the dataset into two subdatasets, one dataset

with all negative instances and one with all positive instances. In the examples

given in this section, each of the datasets was first split a certain small num-

ber of times using Multi-TUBE binning considering the combined maximum

range of the attributes. Following that, the two binnings were mixed and both

datasets filled into the binning to obtain a density model.

For each example histogram, the highest mode is indicated first in the

output. As the histogram was constructed using the mixing of binnings tech-

nique, the mode bin is the maxima of the difference of the density function.

The density column (‘Dns:’) always refers to the normal density of the bin.

As additional information each bin list gives as the last value in each row the

exact percentage of instances in the corresponding bin.

Both datasets used in this section have the class values ‘negative’ and

‘positive’ and with that the letters A and a stand for the negative instances

and B and b for the positive instances.

The eastwest Dataset

The eastwest dataset [6] was first split into fifteen bins using Multi-TUBE.

(This example does not use the mixing of binning process.) Fourteen of the

26 attributes were cut. The bin list in Figure 5.14 shows that the bin with the

115

Bin List - with instances percent:
Highest Mode Bin: 3

0 :0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.0001...] 6.57%
1 :0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-10....] 8.92%
2 :0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-12....] 8.45%
3 :0aaaaaaaaaaB Dns:[XXXXXXXXXX] Ins:[XXXXX.....] Vol:[<1E-13....] 44.6%
4 :-..........- Dns:[] Ins:[] Vol:[<1E-11....] 0.0%
5 :0b.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-9.....] 5.16%
6 :0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-8.....] 7.04%
7 :0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<0.000001.] 7.98%
8 :-..........- Dns:[] Ins:[] Vol:[<0.00001..] 0.0%
9 :Ab.........B Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.001....] 3.76%
10:Ab.........B Dns:[<1E-10....] Ins:[X.........] Vol:[<0.01.....] 3.29%
11:0b.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.1......] 2.35%
12:-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
13:-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
14:Ab.........B Dns:[<1E-14....] Ins:[X.........] Vol:[XXXXXXXXXX] 1.88%

Figure 5.14: Eastwest dataset: fifteen bins bin list; two-class problem.

highest density is Bin 3, with 44.6 percent. This bin only has a small volume

with less than 1E − 13 percent of the total volume.

Most bins are mixed with negative and positive instances in similar den-

sities. The A in the first column of the first column block for the Bins 9, 10

and 14 indicates that they contain no negative instances. Bin 14 is the only

bin with a very high volume (more than 90 percent of the total volume) and it

contains less than 10 percent of the instances. This is thus an example of an

aspect of the curse of dimensionality, that most of the high dimensional range

is empty or almost empty.

#3:
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XX........][XX........]
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][.........I][XX........]
[.........I][XX........][XX........][XX........][.........I]
[XX........][XX........][XXXXXXXXXX][XX........][XX........]
[XXXXXXXXXX][XXXXXXXXXX][XX........][XXXXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX]

Figure 5.15: Bin 3: bin position overview; eastwest dataset.

Bin 3 is the bin with the most instances but with very small volume. Its

bin position overview in Figure 5.15 shows that 14 attributes have been cut for

this bin. For example, the attributes 1, 2 and 3 have not been cut at all and

therefore are shown as [XXXXXXXXXX]; the attribute 4 has been cut between

10 and 20 percent of the total range and the lower values are part of the bin.

116

#14:
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][..XXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX][XXXXXXXXXX]
[XXXXXXXXXX]

Figure 5.16: Bin 14: bin position overview; eastwest dataset.

The attributes 11 and 15 have been cut into very slim bins so that an I is

shown for them. It can be seen on this output that Bin 3 is positioned in the

range of low values.

The bin position overview of the Bin 14 (in Figure 5.16), the bin with the

largest volume, shows that only one attribute (attribute 4) has been cut for

this bin, and that most of the range is covered for this attribute.

In a second experiment the eastwest dataset was split again using the

method of mixing of two binnings. In this case, both subdatasets were cut

into 5 bins and the mixing of these two binnings resulted in 36 bins (Bin 0 to

Bin 35). Only 6 of the 26 attributes were cut. The highest mode bin according

to the difference of density values (positive - negative density) is Bin 0, which

has the highest proportion of positive instances compared to all other bins but

only 3.76 percent of all instances.

In Figure 5.17 is the bin list of the resulting multidimensional histogram.

The bins are ordered by their difference density (as always after the mixing of

two binnings). The bins are not completely listed, because bins 3 to 33 look

very similar, and all of these bins are empty. In this dataset only 5 bins of 36

are non-empty. None of the non-empty bins have large volume.

The bins 0, 1 and 2 all have no negative instances and therefore an A

is shown in the first column of the first block of columns. All three bins

have very small volume—smaller than 0.1 percent and only a small number of

instances—3.76 percent, 3.76 percent and 1.88 percent respectively.

The bins 34 and 35 have positive and negative instances, but more negative

instances than positive ones, therefore the A in the last column of the first block.

Bin 35 has 88.73 percent of the instances but is also a small bin. The number

of positive and negative instances in this bin is similiar.

For reference, a bin list generated with standard Multi-TUBE for 36 bins

(not shown) had 14 non-empty bins instead of only 5.

117

Bin List - with instances percent:
Highest Mode Bin 0

0 :Ab.........B Dns:[X.........] Ins:[X.........] Vol:[<0.001....] 3.76%
1 :Ab.........B Dns:[X.........] Ins:[X.........] Vol:[<0.001....] 3.29%
2 :Ab.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<0.1......] 1.88%
3 :-..........- Dns:[] Ins:[] Vol:[<0.01.....] 0.0%
...
19:-..........- Dns:[] Ins:[] Vol:[XXXXXX....] 0.0%
...
34:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<0.01.....] 2.35%
35:0bbbbbbbbbaA Dns:[XXXXXXXXXX] Ins:[XXXXXXXXX.] Vol:[<0.001....] 88.73%

Figure 5.17: Eastwest dataset: mixing of binnings bin list (started with 5
bins).

The elephant Dataset

The elephant dataset [6] was split with Multi-TUBE into fifteen bins and the

resulting histogram is represented as a bin list in Figure 5.18. Only 14 of the

231 attributes have been cut. The result does not show any too narrow cuts.

In Bin 0, a high percentage of instances is found, namely 87.2 percent. Most

bins are mixed with negative and positive instances in similar densities.

The A or B in the first column of the first column block shows that several

bins have either no negative or no positive instances in them. Bin 14 is the only

bin with very high volume—more than 90 percent of the total volume—and it

contains less than 0.5 percent of the instances.

Bin List - with instances percent:
Highest Mode Bin 0

0 :0bbbbbbbbbbA Dns:[XXXXXXXXXX] Ins:[XXXXXXXXX.] Vol:[<1E-25....] 87.2%
1 :0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-24....] 1.44%
2 :Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-22....] 0.58%
3 :Ab.........B Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-20....] 0.29%
4 :0a.........B Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-18....] 1.44%
5 :0b.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<1E-16....] 1.73%
6 :Ab.........B Dns:[<1E-12....] Ins:[X.........] Vol:[<1E-14....] 0.93%
7 :0a.........B Dns:[<1E-14....] Ins:[X.........] Vol:[<1E-13....] 0.65%
8 :0b.........A Dns:[<1E-16....] Ins:[X.........] Vol:[<1E-11....] 1.37%
9 :Ba.........A Dns:[<1E-18....] Ins:[X.........] Vol:[<1E-9.....] 0.29%
10:Ab.........B Dns:[<1E-21....] Ins:[<0.1......] Vol:[<0.00001..] 0.07%
11:0..........B Dns:[<1E-21....] Ins:[X.........] Vol:[<0.001....] 1.58%
12:0..........B Dns:[<1E-23....] Ins:[X.........] Vol:[<0.1......] 1.73%
13:Ab.........B Dns:[<1E-26....] Ins:[X.........] Vol:[X.........] 0.22%
14:Ba.........A Dns:[<1E-28....] Ins:[X.........] Vol:[XXXXXXXXXX] 0.5%

Figure 5.18: Elephant dataset: fifteen bins bin list; two-class problem.

118

Bin List - with instances percent:
Highest Mode Bin 0

0 : 0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-13....] 2.73%
1 : 0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-13....] 1.65%
2 : 0a.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-13....] 0.5%
3 : 0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-13....] 0.93%
4 : 0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 2.52%
5 : Ab.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-11....] 0.14%
6 : Ab.........B Dns:[<0.0001...] Ins:[<0.1......] Vol:[<1E-11....] 0.07%
7 : Ab.........B Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-9.....] 0.43%
8 : Ab.........B Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.22%
9 : -..........- Dns:[] Ins:[] Vol:[<1E-11....] 0.0%
...
74 : -..........- Dns:[] Ins:[] Vol:[XXXXXXXXXX] 0.0%
75 : Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.22%
76 : 0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.65%
77 : 0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 2.8%
78 : Ba.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-13....] 0.29%
79 : 0bbbbbbbbbbA Dns:[XXXXXXXXXX] Ins:[XXXXXXXXX.] Vol:[<1E-15....] 86.84%

Figure 5.19: Elephant dataset: mixing of binnings bin list (started with 5
bins).

The elephant dataset was again split using the mixing of two binnings

method to examine the difference of the densities between the two classes in

the dataset. The first splitting of both subdatasets (positive and negative) into

10 bins resulted in a histogram of 3584 bins after the mixing of the binnings,

of which less than 40 were non-empty.

A second split with only five bins per subdatasets resulted in a total of 80

bins. The partial bin list for this histogram is shown in Figure 5.19. Eight

of the 231 attributes were cut. Eight bins have more positive instances than

negative instances (letter B in the last column of the first block) and Bin 0 is

the highest mode of the difference density with the highest relative density of

all bins. Bin 79 contains 86.84 percent of all instances but is a very small bin

and would thus be a mode bin according to the joint density of the two classes.

The positive and negative instances in this bin are similarly distributed.

As in the previous example the mixed of binnings method appears to be

better able to detect empty areas. For reference, a bin list generated by running

Multi-TUBE on the union of the two classes, with 80 bins (not shown) had 33

non-empty bins instead of only 14.

119

Summary: Data Exploration

In a multidimensional range the instances are generally more concentrated in

certain areas, leaving large areas empty as explained by aspects of the ‘curse

of dimensionality’ phenomenon. The illustrative results given above indicate

that the mixing of two binnings technique can find empty areas better than a

simple Multi-TUBE binning on the full dataset. The bin lists of the generated

histograms show whether the instances are spread out or are very concentrated

and whether areas with only one class value can be found.

5.5.6 Future Work: Graphical User Interface Support

As an avenue for future work, it would be useful to combine the above methods

with flexible functionality and a full graphical user interface to build an effec-

tive tool for the support of the data exploration task. This section describes

possible GUI support for the representation method considered above.

Both new visualization methods, the bin list and the bin position overview

represent the data in a very coarse fashion. A future feature could be to give

more precise values for the data in addition to the coarse grained output. A

mouse click on one of the bins could open a new window with this more precise

information. Another way would be to give optional view settings that can

easily be changed, perhaps a scale setting in a text file that changes the zoom

level of the text.

Several graphics could be combined with each other: if a bin is selected in

one graph it is also highlighted in the other. This could also be combined with

a matrix plot where the ranges of the selected bin are drawn into the scatter

plots.

Furthermore, a hierarchical nesting of binnings could be enabled. In this

case a bin could be selected and the histogram algorithm could define a his-

togram with a given number of bins using the instances in that bin only. The

clustering algorithm described in the next chapter in Section 6.1 could be used

to identify density modes within the bin.

120

5.6 Empirical Evaluation Using Multiple In-

stance Learning

To extend the empirical evaluation of Multi-TUBE the Multi-TUBE’s clus-

tering method is applied to multiple instance learning (both described in the

next chapter, Section 6.2). The multidimensional clustering process used in

conjunction with mixed binnings is used to improve the runtime behaviour of

a widely known multiple instance learning method.

To provide an indirect, informal evaluation, the above methods for rep-

resenting Multi-TUBE’s binning will be used to document the results of the

application of Multi-TUBE to multiple-instance learning in the next chapter

and explain some of them with the information gained about the structure of

the data.

5.7 Summary

Multi-TUBE is an adaptation of TUBE to multidimensional data. The basic

parts of the Multi-TUBE algorithm are the same as in univariate TUBE. Multi-

TUBE has all attributes to consider when splitting, and it does so with each

of them independently inducing axis-parallel cuts. Again all splits are selected

using the likelihood criterion, with the difference being that Multi-TUBE’s

calculation of the density function differs in the use of the volume of a bin

instead of simply the width of a bin.

The multidimensional binning algorithm performs splits recursively and

builds a binary density estimation tree. Each cut splits a multidimensional

range into two multidimensional rectangular bins in an axis-parallel fashion.

For each resulting bin a locally optimal split is computed and added to a

priority queue. The next split to be performed is taken from the priority

queue, which is ordered according to likelihood gain. The size of the tree is

controlled using the same methods as in the one-dimensional TUBE algorithm:

the cross-validated log-likelihood criterion and the local minimum description

length criterion.

The binning produced by the one-dimensional TUBE method can be repre-

sented as a histogram, a method traditionally used for data exploration. Multi-

TUBE’s binning consists of multidimensional hyperrectangles, which each have

a corresponding density value. A presentation technique, called bin list, has

been developed to present these ‘unordered’ bins in a way that makes it pos-

121

sible for a user to gain insight into the structure of the data. The diagram

methods developed are not restricted by the number of instances in the data

and can also be applied to very large datasets.

In the next chapter Multi-TUBE is applied in two applications: the TUBE

clustering algorithm and multiple instance learning. For the latter applica-

tion a method of mixing two binnings was implemented as described in this

chapter. It is used to construct the difference of the density functions of the

positive and the negative instances, which occur in multiple instance learning.

The evaluation of Multi-TUBE should demonstrate whether it implements

a multidimensional density estimation technique that successfully avoids the

problematic aspects of the curse of dimensionality.

122

Chapter 6

Applications of Multivariate

Density Estimation Trees

This chapter discusses two applications of the multidimensional tree-based

density estimator Multi-TUBE. The chapter is split into two corresponding

parts, the first section (Section 6.1) is about the clustering with Multi-TUBE’s

binning, and the second part (Section 6.2) discusses the application of TUBE

clustering to multiple-instance classification.

Multi-TUBE splits one attribute alone in each split, and in this way cuts

the range in an axis-parallel fashion. The result of Multi-TUBE’s binning are

multidimensional rectangles, which represent areas exhibiting approximatly

uniform distribution.

Clustering has been applied in statistics, pattern matching and data min-

ing. As Berkhin points out in his survey of clustering data mining tech-

niques [8], the application to data mining has the added requirement of being

able to process large datasets with often many attributes. Using Multi-TUBE’s

binning, a TUBE clustering algorithm was developed that is capable of pro-

cessing large datasets with high dimensionality. This algorithm is presented in

Section 6.1.

Multiple-instance learning is the second application in this chapter. In

multiple-instance learning, each example consists of a bag of instances. In a

positive bag only a few of the instances are generally considered to be ‘real’

positive instances. In the standard multiple-instance scenario, the remaining

instances in a positive bag are assumed to be noise. Maron’s Diverse Density

algorithm [43] uses a probability measure to find the positive concept areas. In

this thesis a multiple-instance classifier is presented which defines the positive

concept area using TUBE clustering. In addition the TUBE clusters are also

123

used to improve the runtime behaviour of Maron’s Diverse Density algorithm.

The multiple-instance data application is covered in Section 6.2.

124

6.1 Application: Clustering

Clustering is the grouping of instances according to some similarity measure.

Finding clusters in data can be important if the task is to find concepts that

can be used to label instances. To do this, first clusters are found, then each

concept is assigned to one or more clusters. The work in this thesis is on

multidimensional datasets consisting of numeric attributes (and no nominal

attributes) and so the instances can be seen as distributed in multidimensional

space. A cluster comprises instances clustering close together and so forming an

area of high density. Since clusters can have various shapes, their surrounding

area of lower density is important for the definition of a cluster’s boundary.

The surrounding low density area also forms a border against other clusters.

The simplest form of a cluster is a point. In real-world datasets it is rare

for a significant number of instances to have attributes with identical values

to form a point-like cluster. More likely, the instances are distributed around

a point-like centre. The area of such a cluster forms a multidimensional ball.

The distribution of the instances in the cluster can, for example, be the nor-

mal distribution. It forms an ellipsoid if the variations of the attributes differ.

Between clusters, the area is not necessarily empty because there can be in-

stances that resulted from noise in the data or other outlier values that do not

fit into any concept.

The TUBE binning method can be used to develop a clustering algorithm

that finds clusters of varying shapes in the data. The TUBE clusterer proposed

in the following is a mode-seeking clustering algorithm. In fact it is actually a

bump-hunting method according to the terminology of Silverman [60] because

its emphasis is on detecting clusters in sets of data rather than on finding

modes in underlying densities. Silverman discusses equal-width binning and

points out the indirect correlation between the width of a bin and the number of

modes found. The TUBE binning method builds a multidimensional histogram

describing the density in each bin and the multidimensional blanket of values

represent an estimation of the underlying density function. The more the area

is split into bins, the greater the irregularities in the resulting function. With

fewer bins, the function will be smoother and will show fewer modes. Cutting

the area into more bins reveals more details of the distribution and more modes

can be found.

The concept of a cluster is generally only defined indirectly by the method

of cluster analysis being used. This fact makes it difficult to compare two clus-

125

tering algorithms. Nevertheless, this section empirically compares the TUBE

clusterer with clustering using EM-based mixture modelling and points out

the differences between the cluster structures found.

In Section 6.1.1, the clustering algorithm is explained in detail. Sec-

tion 6.1.2 discusses some problems and parameter settings that can impact

on the clustering process. Section 6.1.3 introduces as related work clustering

algorithms with similarities to the TUBE clusterer. Section 6.1.4 evaluates

TUBE’s ability to find an appropriate number of clusters by comparing it

to cross-validated EM (EM-CV), an algorithm that also finds the number of

clusters automatically. The type of clusters the two algorithms find are also

compared. Section 6.1.5 summarises this section about the TUBE clusterer.

Note that the TUBE clustering algorithm is also used in the multiple instance

application, which is discussed in Section 6.2.

6.1.1 The Multidimensional TUBE Clusterer

The binning produced by the multivariate TUBE algorithm provides a good

basis for a range of clustering methods. It supplies an estimation of the density

distribution of the data and therefore makes it easy to determine the modes

in the distribution. Hence, a mode-seeking clustering algorithm was developed

and implemented. The algorithm was named TUBE clusterer and can be

classified not only as a density-based clusterer but, since the multidimensional

histogram forms a probability function, also as a probability-based clusterer.

What is a Mode? A mode is a peak or bump in the multidimensional

density function that is an area of high density surrounded by an area of lesser

density—a local maximum. As a first step, the algorithm performs a binning

on the data, then it finds the modes among the bins and finally forms clusters

by combining the mode bins with their surrounding lower-density bins down

to the ‘valleys’ of the distribution. Silverman [60] calls a ‘bump’ in a density

function an interval [a, b] such that f is concave over [a, b] but not over a larger

interval. Two questions that remain are whether the entire bump should be

taken as cluster and what should happen to the valley bins.

An Illustrative Example Figure 6.1 gives a very simple example of how

the TUBE clusterer works. The example uses one-dimensional data, which was

generated from two different normal distributions. The range of the values was

126

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6 7 8 9

de
ns

ity

value

Figure 6.1: TUBE clusterer found two clusters.

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

Y

X

Figure 6.2: Bin has three neighbours in the first attribute X.

discretized using the TUBE discretization algorithm. The TUBE clusterer was

used to define clusters on the resulting bins. The algorithm found two modes

and defined two clusters around them by gathering all bins around each mode

that have lower density until reaching a valley of the density function. A valley

bin is a bin that is surrounded by bins of the same or higher density. In this

case the one valley bin between the modes was assigned to the left cluster.

Finding the Modes Each binning forms a histogram, which is a smoothed

representation of the distribution of the data and an estimation of the real

unknown distribution. The TUBE binning method selects the bin width ac-

cording to the underlying density, so it is plausible that the smoothing factor

is chosen appropriately. If this is so, then the modes (or ‘peaks’) found in the

histogram correlate well with the modes of the real unknown distribution of

127

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

Y

X

Figure 6.3: TUBE finds two cluster. Cluster1 is plotted with crosses, Cluster2
with circles.

the data.

In a one-dimensional dataset, finding a peak in the list of bins can be done

with little effort. The mode searching algorithm considers, for each bin, the

density of both neighbours. Each bin for which both neighbouring bins exhibit

lesser density is a mode bin. In the multidimensional case, the bins do not have

any order defined on them. Additionally, each bin can have several neighbours

and maybe even more than two in one direction. As an example the bin in the

middle of the scatterplot in Figure 6.2 has three neighbours in the direction

of X. The mode-seeking algorithm that was developed for multidimensional

data is explained in detail below.

Finding Outliers and Ignoring Noise There are different ways of inter-

preting the data’s structure and detecting areas relevant to the target concept

and areas where the instances should be discarded as noise or should be de-

fined as outliers. It is reasonable to assume that areas of the same density

should always be defined as either concept areas or empty areas that contain

some noise. The TUBE-binning algorithm looks along an axis-parallel line for

a significant change in the density level and cuts the bins, starting from the

whole range of the attribute values, recursively into smaller bins. As a result,

each of the bins is a multidimensional axis-parallel rectangle that spans an

area of similar density. Using user input (e.g. a density threshold value) the

clustering algorithm can then consider each bin and decide if it is part of a

concept or part of ‘empty’ area (which would mean the instances in it should

be viewed as noise or outliers).

128

See Figure 6.3 for how the TUBE clusterer defines clusters in a two-

dimensional dataset. The low density area (valley bins) has been assigned

to Cluster1 but could be discarded as noise using appropriate user parameter

settings.

Representation of the clusters Since the clusters generated by the TUBE

clusterer consist of multiple multidimensional axis-parallel rectangles, a cluster

can be represented as conjunctive statements combined with disjunctions. For

this representation, mini,j is the minimum value of attribute i in bin j, maxi,j

is the corresponding maximum value of attribute i in bin j, and a1, a2..ai..ak

are the attribute values of an instance. A cluster consisting of m bins can then

be represented as:

(a1 > min1,1 ∧ a1 < max1,1) ∧ .. ∧ (ak > mink,1 ∧ ak < maxk,1)

∨(a1 > min1,2 ∧ a1 < max1,2) ∧ .. ∧ (ak > mink,2 ∧ ak < maxk,2)

...

∨(a1 > min1,m ∧ a1 < max1,m) ∧ .. ∧ (ak > mink,m ∧ ak < maxk,m)

Algorithm to Find Modes in the Multidimensional Binning

As mentioned above, the TUBE clustering algorithm requires the modes of the

estimated density to be found. An important part of TUBE’s mode-finding

algorithm is to determine if two bins are neighbours. It turns out that the

neighbourhood test can be made more efficient by reducing the number of at-

tributes used for the test. The mode-finding algorithm and the neighbourhood

test are introduced in detail in the following.

A Simple Mode-Finding Algorithm A straightforward way to find mode

bins is to check, for each bin, whether any of the other bins are adjacent to

it and have greater density. If no such neighbour is found, the bin is declared

to be a mode. But, as soon as one denser neighbour is found, it is clear that

the bin cannot be a mode and no further bins have to be tested. So, in the

worst case, for each bin all other bins have to be tested: For all N bins check

if the other N − 1 bins are neighbours. This means that the worst-case time

complexity of this test is O(N2).

A Faster Mode-Finding Algorithm The following change to the algo-

rithm reduces the work that needs to be done to find all mode bins. As

preparation, all bins are sorted according to their density value. The densest

129

bin can be immediately declared a mode bin because there is no denser bin it

can be adjacent to. Starting from the second densest bin, all the remaining

bins are tested to see if they are modes. The fact that a less denser bin is a

neighbour is irrelevant. Therefore only the denser bins are tested. As soon as

one of the denser bins is found to be a neighbour, the bin cannot be a mode

itself and the test for this bin can be stopped. Assuming that the number

of mode bins is k and k � N (N is the total number of bins), the complex-

ity of this algorithm is O(kN). See Algorithm 4 for the pseudocode for this

algorithm.

Algorithm 4 Pseudocode: Faster mode-finding algorithm.
Uses Algorithm 5 to test if two bins are neighbours.

bins; list of all bins
modeList; empty list of mode bins

{sort all bins from densest to least densest}
sortedBins⇐ sortWithDensityDecending(bins)

modeList ⇐ add densest bin {densest bin is always a mode bin}
for bini starting from second-densest bin to last bin in sortedBins do

bini is a mode ⇐ true

{check all denser bins if neighbour of bini}
for binj from densest bin to bini−1 in sortedBins
and while bini is a mode do

if bini is neighbour of binj {← see Algorithm 5} then
bini is a mode ⇐ false {found denser neighbour}

end if
end for

if bini is a mode = true then
modeList ⇐ add bini {found a mode bin}

end if
end for
return modeList

Two Bins Neighbourhood-Test The test used to see whether two bins are

neighbours can be supported by the tree structure that was constructed when

cutting the bins (the split tree generated by Multi-TUBE). In each node, the

split tree tells us which attribute was cut at which value. The leaf nodes are

the bins. In the implementation presented here, each bin holds the information

130

about the split path to its leaf node. The information about a split can be

used to determine if two bins are neighbours. For example, if one bin’s split

history contains the split (ai < 3) and the second bin has in its split path the

condition (ai > 5) then it is clear that these two bins are not neighbours. In

practise, instead of analyzing the split conditions, the TUBE clusterer tests if

the subranges of the attributes overlap or share one point. The pseudocode in

Algorithm 5 details the neighbourhood test. In the next paragraph, the details

of the attribute selection step it employes are explained.

Algorithm 5 Pseudocode for Test if bina and binb are neighbours
Uses Algorithm 6 to select the set of attributes to be tested.

Given a dataset with k attributes;
Each bini has a range ([mini,1, maxi,1], ..[mini,k, maxi,k])

testF lags; boolean array of same length as number of attributes
testF lags⇐ findTestAttributes() {← see Algorithm 6}

binsOverLap⇐ true
for each attribute i and while binsOverLap do

if testF lags[i] = true then
if mina,i > maxb,i then
{considering attribute i, bina is to the right of binb}
binsOverLap⇐ false {and can finish testing}

else
if minb,i > maxa,i then
{considering attribute i, binb is to the right of bina}
binsOverLap⇐ false {and can finish testing}

end if
end if

end if
end for

Reducing the Set of Attributes in the Neighbourhood Test Since

TUBE clustering is designed to be applied to datasets that can have a large

number of attributes, it is important to reduce the number of attributes to be

tested. It is obviously sufficient to test only the attributes that have been cut.

The depth of the split tree is most likely much smaller than the number of

instances, meaning not all attributes have been split to form the bins.

To further reduce the number of attributes that need to be tested for over-

lapping subranges, the split paths of the two bins being compared are analyzed.

A bin’s split path is a string describing the path of the bin from the root of the

131

split tree down to the leaf where the bin is located. It contains ‘L’ and ‘R’ char-

acters for the way left or right down the split tree (eg. LLRL or RLRLLL).

The common prefix of the two paths can be ignored. As an example, assume

bink has the split path LLRL and binl has the split path LLRRRR. The

common prefix is LLR, which stands for the path left− left− right. The two

bins follow this part of the path simultaneously starting from the root. Before

the fourth split bink and binl are actually one bin. The next split cuts them

apart, with bink being the left bin and binl being the right bin. The right bin

is split further. The next two cuts on the right bin are important to check to

see if the resulting bin binl is still a neighbour of bink. As soon as the split

paths of the bins diverge, all attributes in both further split histories are gath-

ered. This set of attributes is not the smallest possible selection of attributes

that need to be tested, but one that can be achieved with little computational

effort. See Algorithm 6 for the pseudocode detailing this method.

Collecting Bins to Form Clusters At the same time as the search for

modes is executed the bins can be assigned to clusters. Each non-mode bin is

normally assigned to the same cluster as a denser neighbour that was found

when testing if the bin is a mode bin itself. Algorithm 7 is the same as

Algorithm 4 but with the commands added that are used to gather the bins into

clusters. (These commands are labelled with {**}.) Each mode corresponds

to one cluster.

For valley bins, it is not clear which cluster they should be part of. Depend-

ing on the application two scenarios are possible: The valley bins are assigned

to neither cluster or each valley bin is assigned to every neighbouring cluster.

For the second solution the algorithm has to be repeated for each mode bin to

find all clusters each valley bin is in.

Furthermore, it can be useful to set a minimum density threshold for clus-

ters. Bins with a threshold below this threshold are considered not to be part

of any cluster and are stripped from the cluster bin list in a post-processing

step.

6.1.2 Discussion of the Algorithm

Cluster analysis has been applied to many areas like medicine, the social sci-

ences and biology as part of data mining, statistics and pattern recognition [31].

From these applications an immense number of clustering algorithms have ap-

132

Algorithm 6 Pseudocode: function findTestAttributes;
Selects the attributes to be tested

patha; character string containing split path of bina

pathb; character string containing split path of binb

function stepDownTree (node, index)
if patha[index] = “L” then

node⇐ node.left {go down the left branch}
else

node⇐ node.right {go down the right branch}
end if
return node
end function

testF lags; boolean array of same length as number of attributes
set all values in array testF lags to false

index⇐ 0 {set index to beginning of split path string}
node⇐ root of tree

{skip over the path parts which the two bins share}
while patha[index] = pathb[index] and not end of patha or pathb do

index⇐ index + 1
node⇐ stepDownTree (node, index)

end while

{gather attributes used in patha}
savenode⇐ node
node⇐ stepDownTree (node, patha[index])
while not reached end of patha do

testF lags[node.attribute] = true
node⇐ stepDownTree(node, patha[index])
index = index + 1

end while
{gather attributes used in pathb}
node⇐ savenode
node⇐ stepDownTree (node, patha[index])
while not reached end of pathb do

testF lags[node.attribute] = true
node⇐ stepDownTree(node, pathb[index])
index = index + 1

end while

return testF lags

133

Algorithm 7 Pseudocode: Mode-finding algorithm; Same as 4 with com-
mands to select bins into clusters. These commands are labelled with {**}.
Uses Algorithm 5 to test if two bins are neighbours.

bins; list of all bins
isInCluster; array with as many integer values as there are bins {**}
modeList; empty list of mode bins
numClusters⇐ 0; number of modes and clusters is 0 {**}

{sort all bins from densest to least dense}
sortedBins⇐ sortWithDensityDecending(bins)

modeList ⇐ add densest bin {densest bin is always a mode bin}
for bini starting from second-densest bin to last bin in sortedBins do

bini is a mode ⇐ true

{check all denser bins if neighbour of bini}
for binj from densest bin to binj−1 in sortedBins
and while believe bini is a mode do

if bini is neighbour of binj {← see Algorithm 5} then
bini is a mode ⇐ false {found denser neighbour}
isInCluster[i]⇐ isInCluster[j] {**}

end if
end for

if bini is a mode bin = true then
modeList ⇐ add bini {found a mode bin}
numCluster ⇐ numCluster + 1 {**}
isInCluster[i]⇐ numCluster {**}

end if
end for
return modeList

134

peared. Jain [31] gives an overview and taxonomy of existing clustering al-

gorithms. Han and Kamber [24] give typical requirements for clustering in

data mining. The first part of this section briefly discusses how the TUBE

clusterer fits into Jain’s taxonomy and how it fulfils these requirements based

on the current implementation of the TUBE clusterer, but also mentions some

possible variations of it. It then continues with possibilities for future work.

Jain’s Taxonomy

The three main parts of Jain’s [31] taxonomy are: the method of measuring

similarity between instances, how the grouping into clusters is performed, and

the abstract representation of the clusters. The next section discusses these

points with respect to the TUBE clusterer.

Similarity Measure The TUBE clusterer only implicitly uses a distance

measure. The bins are cut in axis-parallel fashion. The bin-width is a Euclidian

distance.

Grouping into Clusters A traditional classification of clustering methods

is the division into hierarchical grouping and partitional grouping methods [25].

The TUBE clusterer can be seen as a partitional method. The split tree of

the TUBE binning method can be used to define a hierarchy on the clusters

to obtain a hierarchical grouping. Note that the split tree does not directly

correspond to a hierarchy of the clusters. To give an example, a first split

might divide the range into an area with low density and an area where all

the clusters are found. Then the split tree at this split has one branch with no

cluster in it.

The TUBE clusterer does not make any assumption regarding a cluster’s

shape. Density based clustering techniques like the TUBE clusterer are well

suited to detect clusters with complex shapes.

The current TUBE clusterer forms a hard partitioning on the data, but

could easily be extended to a fuzzy assignment. This could be done by using

the distances to the centre of the mode bin, or by taking the density of the

bin containing the instance into consideration. Instances in a bin close to the

mode bin but with much lower density could be considered to be less probable

members of the cluster around this mode bin.

135

Representation of the Clusters The clusters can be represented as con-

junctions of disjunctions as stated in detail in Section 6.1.1.

Han and Kamber’s Requirements

Han and Kamber [24] summarise a list of requirements for general clustering

algorithms (see also Table 6.1).

Requirements the TUBE Clusterer Fulfils The TUBE clusterer fulfils

many of the requirements listed by Han and Kamber [24]. To test its scalability

it is compared with cross-validated EM in Section 6.1.4), on datasets with

varying dimensions and sizes. The results show that it generally runs faster

especially on high-dimensional datasets. The TUBE clusterer discovers clusters

of arbitrary shape. However, the input of domain knowledge could help with

its inability to cluster test data that is out of the training data’s range. It can

deal with outliers and noisy data and is not sensitive to the order in which the

input data is given, although it is not incremental. Its ability to find clusters

is not affected by high-dimensional data, and its output represents the clusters

in an easily interpretable form.

One further noteworthy property of the TUBE clusterer outside Han and

Kamber’s requirements is that it finds the number of clusters automatically.

Requirements the TUBE Clusterer Does Not Fulfil The TUBE clus-

terer as presented in this thesis works only for numeric data. Also it cannot

cluster test data that is out of the training data’s range and does not permit

the inclusion of contraints into the clustering process.

Future Work

This section explains variations of the TUBE clusterer that could be considered

for future work. Depending on the application or depending on the way the

data is structured, the clustering could be done differently.

Valley Bins Valley bins are the bins that have no neighbours that are less

dense and are in the ‘valley’ of the density distribution. The algorithm could

vary in the way it decides on which cluster to assign the valley bins to. In

the case of fuzzy assignment, valley bins could be assigned to all neighbouring

clusters in parts.

136

Table 6.1: Han and Kamber’s requirements for clustering algorithms

Requirement Fulfilled by TUBE = X

Scalable X
Finds clusters of arbitrary shape X
Can deal with outliers X
Can deal with noise X
Not sensitive to input order X
Incremental
High-dimensional data X
Interpretable cluster models X
Other data types than numeric
Clusters data out of cluster range
Inclusion of constraints possible
Finds number of clusters automatically X

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

-1 -0.5 0 0.5 1

De
ns

ity

X

Figure 6.4: Small ridge that splits
a cluster.

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 1 2 3 4 5 6 7 8

X1

X0

Figure 6.5: Cutting around dense
area cuts areas of similar densities
apart.

Noise and Outliers Valley bins could be seen as bins with instances that

are outliers or noise. Or, more generally, not only valley bins but all bins

with density below a certain minimum density level could be excluded from

all clusters and classified as noise. This minimum density could be given as a

parameter.

Ridges which Split Clusters If the binning is smooth enough, a mode is

a good point to define a cluster. However, if the smoothing is not well cho-

sen, two modes found can actually be from the same cluster and can be two

peaks connected by a shallow ridge as shown in a one dimensional example in

Figure 6.4. The TUBE binning algorithm chooses the smoothing parameter,

namely the bin width, automatically. The case of a shallow ridge never oc-

137

curred in any of the datasets used in the tests performed in this thesis. Still,

it cannot be said with certainty that it is avoided by the algorithm. It could

be just an arbitrary result of the datasets chosen.

Shredding of the Range If a dense area is located in the middle of the

instance space, the area around the dense area is carved out until the dense area

is isolated into a bin. This results in splits that divide areas of similar density

as can be seen in Figure 6.5. A valuable future task could be to connect the

lower density areas around modes to form areas of similar density that embed

areas of higher density.

6.1.3 Clusterers with Similarities to the TUBE Clus-

terer

The TUBE clusterer can be categorized as a nonparametric density-based clus-

terer and also as a probability-based clusterer. The TUBE binning method se-

lects the best attribute to cut bins of similar density. Later tests will show that

the TUBE clusterer is an effective subspace clusterer, a feature very important

for clusterers that are designed for high-dimensional dataset. The TUBE clus-

terer has similarities to grid-based clusterers. However, in the data mining

literature no clusterer so far has been classified as mode-seeking, which is the

strategy implemented by the TUBE clusterer.

Other Subspace Clusterers CLIQUE [2] can also be seen as a grid-based

clustering method. It partitions the space into non-overlapping rectangular

units. It starts its search for a dense area in one-dimensional space continuing

into higher-dimensional space and in this way finds subspace clusters. PRO-

CLUS [1] starts from a high-dimensional space reducing to lower dimensions

where it then finds the subspace clusters.

Other Density-based Clusterers DBSCAN [17] and OPTICS [5] grow

the area of a cluster by considering the density of instances. DBSCAN ex-

amines the neighbourhood of each instance up to a given distance, which is

provided as a parameter. If the number of neighbouring instances is larger

than a given threshold, the instance is defined as a core for a cluster. Clus-

ters are grown starting from these cores by adding further regions that have

a sufficiently dense neighbourhood. Similar to DBSCAN the TUBE clusterer

138

grows its clusters starting from a mode bin and adds further bins. It has its

data summarised in bins (in a similar fashion as grid-based methods) which

makes the cluster gathering process efficient, but it does not need the two pa-

rameters for the neighbourhood size and the neighbourhood density required

by DBSCAN. OPTICS [5] works the same way as DBSCAN, but it tries to

overcome DBSCAN’s dependency on the two parameters mentioned above and

creates an ordering of the instances from which a density-based clustering can

be extracted. DBSCAN, OPTICS and the TUBE clusterer can be seen as non-

parametric density-based methods in that they do not use a model for their

density estimation.

Other Probability-based Clusterers According to Han and Kamber [24]

EM is a model-based clustering method and according to Berkhin [8] a probability-

based clusterer. Since the model describes a density function it could be seen as

a parametric density-based clusterer in contrast to the TUBE clusterer, which

is based on a nonparametric density function. EM is used in the evaluation of

the TUBE clusterer in the next subsection.

Grid-based Clusterers Grid-based clusterers quantize the instance space

and use the grid cells as representatives for the instances in it. The TUBE

clusterer also takes its bins as representatives for the instances. The cuts of

the TUBE binning do not form a grid but partition the instance space in a

tree-like fashion with varying bin width. Like in grid methods, the cuts for

the bins are axis-parallel. STING [66] and WaveCluster [58] are well known

grid-based clusterers. STING is built for spatial databases and the algorithm

constructs a hierarchical grid, which contains statistical information of the

data. The statistical data is often sufficient to answer standard queries to the

data base. WaveCluster applies a wavelet transform function to the attribute

space. WaveCluster is not recommended for datasets with high dimensionality.

As mentioned above, CLIQUE also is a grid-based subspace clusterer.

6.1.4 Evaluation of the TUBE Clusterer

Many different clustering algorithms have been invented. Most of them need

the number of clusters as input from the user. The TUBE clustering algorithm

finds the number of clusters itself. The well known mixture model EM clus-

tering [13] can also automatically decide between models that differ in their

139

number of clusters. Because it estimates a density function, the cross-validated

likelihood can be used for this purpose just like in TUBE. In this section the

TUBE clusterer’s and EM-CV’s ability to find a correct number of clusters

are compared. In this comparison, the number of clusters found and also the

type of clusters found are analyzed. For this analysis, several datasets were

generated. The following sections contain each scenario composed of several

tests on datasets using the TUBE clusterer and the EM clusterer.

The EM Clustering Algorithm and cross-validated EM

The EM algorithm The Expectation Maximisation (EM) algorithm is based

on finite mixture densities and is a probabilistic clustering method. It assumes

that the underlying density of the dataset U is a finite mixture density function

f (xi is an instance of the given dataset, φj is the set of unknown variables of

the finite mixture model and αj are the weights of the component functions

gj):

fk(xi|φk) =
k∑

j=1

αjgj(xi|φj)

The algorithm alternates between two steps: finding the unknown variables

of the finite mixture distribution and finding the assignment of instances to

clusters. Proof of convergence for this algorithm was given by Dempster, Laird

and Rubin [13]. The expectation step (E-step) maximises a local lower bound

for the posterior distribution. The maximisation (M-step) maximises the pos-

terior probability of the unknown parameters given the data. The lower bound

used can be represented as a sum of log’s and so avoids the log’s of large sums.

Since EM clustering is commonly used with mixtures of Gaussian distri-

butions, EM, like other clustering algorithms that are based on a distance

measure, can only find convex, spherical or elliptical clusters [24].

The EM clustering algorithm implemented in the WEKA data mining

tool [68] has an option to use cross-validation to select the number of clus-

ters, by cross-validating the likelihood. Note that this implementation also

assumes conditional independence of the attributes given the clusters.

Experiments with Generated Datasets

This section discusses the results of experiments that have been done to exam-

ine the way TUBE finds clusters in multidimensional data. For these experi-

140

ments several datasets were generated. The datasets vary in their number of

attributes. Some of the generated clusters are subspace clusters, which means

that they are clustered over only a subset of the attributes of the dataset and

equally distributed over the rest. The first experiments are done on datasets

with clusters of spherical shape, with the instances normally distributed around

a point. Further test datasets have clusters with oblong shapes and uniform

distributions. Last is a dataset that has a cluster with a non-convex shape.

The algorithms used are EM-CV and the TUBE clusterer. Each exper-

iment uses both clustering algorithms and compares the number of clusters

found. The shape and the position of the clusters is analyzed and discussed.

For these experiments the WEKA machine learning workbench was used [68].

The clustering tab in WEKA has the option to compute and output an error

measurement using an extra nominal attribute (this attribute is not used in

the clustering process) that gives the true cluster assignment. The error is

given as a percentage of the instances clustered wrongly compared to the total

dataset. The datasets were generated using the WEKA Subspace data genera-

tor. Each example dataset has an additional attribute that contains the label

for each cluster.

The runtime of the algorithm is part of the results. The time differences

between EM-CV and the TUBE clusterer are obvious and therefore were only

measured with the coarse measurement method of the Linux time command,

which gives the total time elapsed and not the time when only the CPU was

used.

First, the generated datasets were clustered using EM and the TUBE clus-

terer. For these experiments the TUBE clusterer had the maximum number

of bins set to 100. The valley bins were not assigned to any cluster.

Tables 6.2 etc. give details for the generated datasets that were used. The

tables contain, for each cluster, the attributes it was generated in (column

‘Attrs’) and the number of instances (column ‘Insts’) that are generated in the

cluster. The generated datasets contain two types of clusters, clusters with a

Gaussian distribution, for which the mean values and the standard deviations

in each dimension are given, and uniform clusters, for which the minimum and

maximum values for each dimension are given.

The experiments are structured in six examples and for each example a

result overview table is given with the resulting numbers of clusters and the

runtime values of all test runs performed

141

Example 1: Dataset with three clusters in fifteen dimensions, each

with three relevant attributes. This dataset has fifteen attributes and

three spherical clusters with a Gaussian distribution (see Table 6.2 below) and

600 instances.

Table 6.2: Example 1: Instructions for the data generator
Example 1: 3 Gaussian Subspace Clusters

Distribution Mean Variance Attrs Insts

Cluster-1 Gaussian 2.0, 4.0, 1.0 1.0, 1.0, 1.0 1, 2, 3 200
Cluster-2 Gaussian 8.0, 0.0, 4.0 1.0, 1.0, 1.0 1, 2, 4 200
Cluster-3 Gaussian 10.0, 7.0, 9.0 1.0, 1.0, 1.0 2, 3, 4 200

Table 6.3: Example 1: Results overview
Algorithm Num. Clusters Found Error Rate CPU-time

EM-CV 3 0.0% 0m51.727s
TUBE(100 bins) 3 25.2% 0m3.786

Table 6.3 shows that the TUBE clusterer is approximately 17 times quicker

than EM-CV to finish the task. EM-CV’s clustering is absolutely precise

with 0.0% errors because the Gaussian distributions produce spherical clusters,

which are ideal for EM. The TUBE clusterer makes rectangular cluster models,

which do not fit the generated spherical shape well. Hence TUBE’s number of

incorrectly clustered instances is 25.2%

Example 2: Dataset with three clusters in four dimensions, each

with three relevant attributes. This dataset is almost the same as the

one above but it has one additional irrelevant (equally distributed) attribute.

This dataset also has 600 instances.

The clusters have Gaussian distributions and are subspace clusters in three

dimensions and the fourth irrelevant dimension is equally distributed. The

dimensions chosen to be relevant vary between the clusters. The means of the

clusters are at least double their standard deviation apart. The dataset does

not have further attributes that are irrelevant for all clusters.

Table 6.4: Example 2: Results overview
Algorithm Num. Clusters Found Error Rate CPU-time

EM-CV 7 47.3% 0m50.372s
TUBE(100 bins) 3 25.2% 0m1.418s

142

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

-4 -2 0 2 4 6 8 10 12 14

X3

X0

Cluster 1
Cluster 2
Cluster 3

Figure 6.6: Three tube-shaped clusters.

EM-CV finds seven clusters and the TUBE clusterer finds three clusters,

which is the same as the number of clusters that were generated. Why does

EM-CV find far more clusters? The fourth equally distributed attribute gives

the clusters a tube-like shape (see Figure 6.6) and EM-CV sets its normal

spherical clusters along that tube. The difference of the number of generated

clusters explains the high error rate of 47.3% for EM-CV. The TUBE clusterer

makes rectangular shaped cluster models and again this does not fit the gener-

ated spherical shape well so 25.2% instances are assigned to a different cluster

than the one they were generated in.

The TUBE clusterer is about 50 times quicker than EM-CV.

Example 3: Dataset with eight clusters in four dimensions, with

three relevant attributes each. The eight clusters have been generated

in a dataset that has four attributes (see Table 6.5). Each cluster is a sub-

space cluster with only three of the four dimensions relevant. The relevant

dimensions vary between the clusters.

The eight clusters each have a Gaussian normal distribution in three di-

mensions and the fourth dimension is equally distributed. The means are at

least ten times the standard deviation apart. When the clusters were set closer

the TUBE algorithm only found half the number of clusters.

EM-CV finds all eight clusters. After various generated test datasets that

had the eight clusters set closer and TUBE only modelling one or a few clusters,

TUBE found seven clusters on this dataset. Analyzing the output of the

clusterer shows that cluster two and five have been put into one output cluster.

143

Table 6.5: Example 3: Instructions for the data generator
Example 3: Eight Gaussian Subspace Clusters

Distribution Mean Variance Atts Insts

Cluster-1 Gaussian 2.0, 14.0, 28.0 1.0, 1.0, 1.0 1, 2, 3 200
Cluster-2 Gaussian 14.0, 28.0, 14.0 1.0, 1.0, 1.0 1, 2, 4 200
Cluster-3 Gaussian 2.0, 2.0, 28.0 1.0, 1.0, 1.0 2, 3, 4 200
Cluster-4 Gaussian 28.0, 14.0, 14.0 1.0, 1.0, 1.0 1, 2, 3 200
Cluster-5 Gaussian 2.0, 28.0, 2.0 1.0, 1.0, 1.0 1, 2, 4 200
Cluster-6 Gaussian 2.0, 28.0, 2.0 1.0, 1.0, 1.0 2, 3, 4 200
Cluster-7 Gaussian 14.0, 14.0, 2.0 1.0, 1.0, 1.0 1, 2, 3 200
Cluster-8 Gaussian 28.0, 28.0, 28.0 1.0, 1.0, 1.0 1, 2, 4 200

Table 6.6: Example 3: Results overview
Algorithm Num. Clusters Found Error Rate CPU-time

EM-CV 8 0.0% 70m52.239s
TUBE(100 bins) 7 19.6% 0m14.612s

EM-CV again finds the generated clusters precisely with error rate 0.0%.

The TUBE clusterer is 280 times faster than EM-CV to finish this task.

Example 4: Example with diagonally set clusters. TUBE performs

axis-parallel cuts. If the clusters are set on diagonals and not on a grid,

it should become more difficult for the algorithm to find the clusters. This

scenario comprises two datasets that both have only two dimensions. The first

dataset has three Gaussian clusters positioned along a row. The clusters have

been pushed so far apart that the EM-CV algorithm finds three clusters (see

Table 6.7, and Figure 6.7).

Table 6.7: Example 4: Instructions for the data generator
Example 4: Three Clusters in a Row

Distribution Mean Variance Attrs Insts

Cluster-1 Gaussian 2.0, 2.0 1.0, 1.0 1, 2 200
Cluster-2 Gaussian 7.0, 2.0 1.0, 1.0 1, 2 200
Cluster-3 Gaussian 12.0, 2.0 1.0, 1.0 1, 2 200

For the second dataset, the distances of the clusters have been kept similar,

one of the clusters has been moved to a diagonal position and one more cluster

was added in a position blocking a cut between two clusters. This way it

should become more difficult for the TUBE clusterer to find axis-parallel cuts

to separate them from each other (see Table 6.8, and Figure 6.8).

144

-2
-1
 0
 1
 2
 3
 4
 5
 6

-2 0 2 4 6 8 10 12 14 16

X1

X0

Cluster 1
Cluster 2
Cluster 3

Figure 6.7: Three two-dimensional clusters.

-2

 0

 2

 4

 6

 8

 10

-2 0 2 4 6 8 10 12 14 16

X1

X0

Cluster 1
Cluster 2
Cluster 3
Cluster 4

Figure 6.8: Four two-dimensional clusters.

Several datasets with three clusters in a row had been tested with EM-CV

until one was found with the clusters just far enough away from each other

so that it recognized more than one or two clusters. On this dataset EM-CV

found five clusters instead of three. TUBE defines three clusters but has a

higher error value. Most errors happen with TUBE first detecting the change

in density along the X1 axis (the clusters are along the X0 axis), which then

forms a valley bin and gets assigned to one of the clusters.

In this example the TUBE algorithm found a way to cut around the di-

agonally positioned clusters so they could be modelled better (with a lower

error-rate) than the clusters positioned in a row.

145

Table 6.8: Example 4: Second dataset - Instructions for the data generator
Example 4 (Second dataset): Four Clusters in Diagonal Position

Distribution Mean Variance Attrs Insts

Cluster-1 Gaussian 2.0, 2.0 1.0, 1.0 1, 2 200
Cluster-2 Gaussian 7.0, 2.0 1.0, 1.0 1, 2 200
Cluster-3 Gaussian 12.0, 4.5 1.0, 1.0 1, 2 200
Cluster-4 Gaussian 4.5, 7.0 1.0, 1.0 1, 2 200

Table 6.9: Example 4: Results overview
Algorithm Dataset Num. Clust. Error Rate CPU-time

EM-CV row 5 13.4% 1m7.210s
TUBE(100 bins) row 3 21.2% 0m1.881
EM-CV diagonal 4 0.6% 0m36.112s
TUBE(100 bins) diagonal 4 7.3% 0m1.980s

Example 5: Datasets with Oblong-shaped Clusters. Another dataset

was generated to have two strongly oblong-shaped clusters. The dataset has

two attributes only. See Table 6.10 for the specifications for the generator.

Table 6.10: Example 5: Instructions for the data generator
Example 5: Two Oblong-shaped Clusters

Distribution Minx, Maxx, Miny, Maxy Attrs Insts

Cluster-1 uniform random 2.0, 8.0, 2.0, 3.0 1, 2 500
Cluster-2 uniform random 2.0, 3.0, 8.0, 14.0 1, 2 500

The result with EM-CV finding seven clusters is not surprising. It posi-

tioned several spherical shaped clusters along the oblong-shaped clusters. For

the TUBE clusterer the generated shapes of clusters are ideal and it finds

the two clusters with 0.0% error. The runtime of TUBE and EM-CV are al-

most the same on this dataset with only few dimensions, only two clusters and

relatively few instances.

Example 6: Dataset with Non-Convex Cluster. The dataset for this

example was generated with two attributes and one U-shaped cluster. See

Table 6.12 for the specifications for the generator and Figure 6.9 for a two-

dimensional plot. (The WEKA Subspace clusterer cannot generate U-shaped

clusters. To build the U-shaped cluster three oblong-shaped clusters were

joined to one cluster by applying a WEKA filter tool.)

The EM-CV algorithm yields similar results as before (Example 5) and

146

Table 6.11: Example 5: Results overview
Algorithm Num. Clusters Found Error Rate CPU-time

EM-CV 7 53.4% 0m0.249s
TUBE(100 bins) 2 0.0% 0m0.243s

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8 9 10

X1

X0

Cluster 1

Figure 6.9: Non-convex shaped cluster.

generates several clusters along the shape of the dense areas in the dataset. The

TUBE clusterer finds only one cluster, as expected, but adds the surrounding

noise data also to the cluster. 12.5% of the instances are noise instances,

therefore the result has 12.5% incorrectly clustered instances.

Test on UCI Datasets

For this test the clustering methods TUBE clusterer and EM are used as

classifiers to predict the class value. The results in Table 6.14 are here the

accuracy and not the error rate (accuracy = 100 - error rate). As test data some

of the UCI datasets [6] with nominal class values were selected. The results

were evaluated using 10fold-cross-validation, not WEKA’s standard classes-to-

clusters evaluation as used above. The TUBE clusterer is only designed for

numeric attributes so datasets with many or only numeric data were chosen.

The following datasets were too large to be evaluated with the EM-based

methods in a reasonable testing-time: letter, mfeat-morphol., mfea-zernike,

optdigit, pendigit, spambase, waveform-5000 and one test for vowel.

Tube was applied twice, firstly with the evaluation method which assigns

one class to only one cluster (column TUBE in Table 6.14) and secondly with

an evaluation which allows several clusters for one class, assigning each cluster

its training majority class (TU-X). EM was tested three times, searching the

147

Table 6.12: Example 6: Instructions for the data generator
Example 6: Non-Convex U-shaped Cluster

Distribution Minx, Maxx, Miny, Maxy Attributes

Cluster-1 uniform random 2.0, 3.0, 1.0, 6.0 1, 2
3.0, 8.0, 5.0, 6.0
7.0, 8.0, 1.0, 5.0

Noise uniform random 0.0, 10.0,−1.0, 8.0 1, 2

Table 6.13: Example 6: Results overview
Algorithm Num. Clusters Found Error Rate CPU-time

EM-CV 15 84.1% 7m36.229
TUBE(100 bins) 1 12.5% 0m1.572s

number of clusters using cross-validation and the one cluster per class evalua-

tion (EM-CV), setting the number of clusters to the number found by TUBE

and the same one cluster per class evaluation (EM-TU), and the majority class

evaluation using cross-validation-based model selection (EM-X). The number

of classes is listed in column ‘Clas’ and the number of clusters found by TUBE

and EM-CV in columns ‘T-c’ and ‘E-c’.

EM-CV again shows the tendency to generate more clusters than the TUBE

clusterer and the accuracy in column EM-CV is often much lower than that of

TUBE when the number of clusters (E-c) found is much higher than the real

number of classes (Clas).

The results for TUBE are mostly the same with either evaluation method.

Classification with EM improves with either method—setting the number of

clusters to the number found by TUBE (EM-TU) or using the majority class

for the clusters (EM-X). It improves especially when the number of clusters

found by EM was higher than the number of classes. In a few cases, TUBE

does not find enough clusters (e.g. for the wine data).

Overall, the accuracy is, with some exceptions (breast-w, iris, etc.), far too

low, even below fifty percent, which shows that none of the methods are able to

build a good enough classification model on many of these datasets. It appears

that most areas with a single class are not clustered in a way to form one or

several areas of high density surrounded by areas of lower density. EM with

the conditional independence assumption and using Gaussian distributions,

as implemented in WEKA, finds ball-shaped clusters even when an ellipsoid

shape seems to fit better. Along a tube-like shape it defines several clusters

and TUBE does define one cluster for such a high density area only.

148

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

X1

X0

Figure 6.10: The first cut does not define the clusters yet.

TUBE Clusterer: How Many Bins are Needed to Find All Clusters

TUBE binning does not use a fixed bin width but adapts the bin width to the

distribution. The TUBE clusterer still needs a certain number of cuts to cut

out the areas of higher density. Consider the scatter plot of a two-dimensional

dataset with two clusters on one side, which is shown in Figure 6.10. The line

shows the first cut chosen. After this cut only one cluster is found. Further

binning would cut the two clusters apart.

A fixed number of bins was used for the tests in the above examples. The

following test performs the same clustering 99 times, starting with two bins

and incrementing the number of bins by one in each iteration. The results in

Table 6.15 show the number of bins at which the number of clusters increases.

Summary of the Results

It was shown that the TUBE clustering method can find clusters in multi-

dimensional spaces and has the ability to ignore irrelevant attributes. Ad-

ditionally, the TUBE clusterer also handles clusters in subspaces very well.

The generated subspace clusters vary in the set of attributes. The TUBE

clusterer’s runtime scales very well to larger datasets. It can find clusters of

complex shapes and also non-convex high density areas. The precision of the

model used to capture these shapes and with that the error rate, depends on

the shape of the cluster. The better the cluster fits into a hyper-rectangular

box, the better is the precison of the fit.

The examples with generated data and the comparison on the UCI datasets

show that EM-CV tends to generate more clusters than the TUBE clusterer.

149

This can be explained with the nature of the EM algorithm, which best fits

convex spherical shapes and fills dense structures or complex oblong shapes

with several of these clusters.

6.1.5 Summary for Application Clustering

In this section the applicability of the TUBE clusterer was explored. It was

applied to several generated datasets and also to UCI datasets and its error

rate and runtime compared with EM-CV, another clustering algorithm which

can determine the number of clusters itself. The examples showed that the

TUBE clusterer often defines useful clusters and is computationally efficient.

It fulfils several positive characteristics summarised according to Han’s and

Kamber’s list of requirements [24] for clustering algorithms. The above eval-

uation provide examples of the TUBE clusterer’s scalability for large high-

dimensional datasets. The test with a non-convex cluster shows that the TUBE

clusterer can find clusters of arbitrary shapes.

In the above examples, no parameter had to be chosen according to the

domain of the data. The nature of the clusterer allows it to deal well with noisy

data and outliers and the representation of the clusters are in interpretable

form. The test showed that it can deal well with high-dimensional data because

it is scalable to larger datasets and because it can find clusters in subspaces

with varying sets of relevant attributes for each cluster in the same dataset.

The number of clusters TUBE finds depends on the number of bins into

which the Multi-TUBE binning splits the data and remains constant after a

value like 50 or 100 on the datasets considered. On some datasets, cross-

validation-based selection of the number of bins in TUBE does not yield the

optimum number of clusters.

For future work, several variants of clusterers based on the TUBE binning

method could be designed, fitting new applications not yet worked on in this

thesis. For a clustering algorithm there is no absolute measureable validation

criterion like e.g. the accuracy in classification tasks. It can be said that the

usefulness of applying the TUBE clusterer or any other clustering algorithm

will always strongly depend on the application. In this thesis the TUBE clus-

terer was also applied to multiple-instance classification where the evaluation is

more objective. This application is explained in the next section (Section 6.2).

150

Table 6.14: UCI datasets: Results overview with number of classes (Clas),
number of clusters found equal to by TUBE (T-c), achieved accuracy using
TUBE’s clusters for classification (TUBE), and with clusters assigned to classes
according to the majority class (TU-X), number of clusters found by EM (E-
c), achieved accuracy using EM’s clusters for classification (EM-CV);EM with
fixed number of clusters to the number of clusters found by TUBE (EM-TU),
and with clusters assigned to classes according to the majority class (EM-X).

Dataset Clas T-c TUBE TU-X E-c EM-CV EM-TU EM-X

arrhythmia 16 1 47.8 47.8 2 39.8 54.2 56.9
autos 6 3 34.1 33.6 6 39.5 37.6 49.8
balance-scale 3 10 27.8 67.2 3 45.8 23.2 62.4
breast-w 2 2 55.0 65.7 9 56.1 94.0 95.0
cylinder-bands 2 2 55.7 55.7 7 24.6 53.9 64.6
diabetes 2 1 64.7 64.7 7 38.4 65.1 66.8
ecoli 8 2 51.5 51.5 3 77.1 62.2 76.8
glass 7 1 33.6 33.6 7 43.0 35.0 49.1
hayes-roth test 4 1 50.0 50.0 1 50.0 50.0 50.0
hayes-roth train 4 7 31.8 42.4 1 38.6 30.3 38.6
heart-statlog 2 1 54.4 54.4 7 43.0 55.6 77.4
ionosphere 2 1 64.1 64.1 10 38.5 64.1 92.0
iris 3 2 53.3 54.7 5 58.7 66.7 90.7
letter 26 2 4.9 4.9 — — — —
liver-disorders 2 1 53.0 58.0 3 43.5 54.5 56.0
mfeat-morphol. 10 4 28.7 28.7 — — — —
mfeat-zernike 10 1 9.7 9.7 — — — —
optdigits 10 3 10.0 10.0 — — — —
page-blocks 5 3 85.6 89.8 6 30.3 89.8 91.3
pendigits 10 3 85.6 85.6 — — — —
segment 7 5 47.2 47.4 13 49.7 69.4 60.3
sonar 2 1 31.7 31.7 8 30.8 51.4 62.5
spambase 2 1 60.0 60.0 — — — —
spectf test 2 1 64.7 64.7 6 37.5 79.6 79.6
spectf train 2 1 28.8 28.8 3 67.5 50.0 67.5
spectrometer 4 1 38.4 38.4 11 11.7 42.3 53.1
vehicle 4 2 29.2 29.2 25 22.5 37.0 56.0
vowel 11 1 9.7 9.7 22 — 9.1 19.6
waveform-5000 3 1 32.8 32.8 — — — —
wine 3 1 30.3 30.3 4 75.8 37.1 92.7

151

Table 6.15: UCI datasets: Number of clusters found
Example Dataset clusters 2 3 4 5 6 7 8

Ex 1: 15D, 3 clusters 3 16 29 - - - - -
Ex 2: 4D, 3 clusters 3 16 29 - - - - -
Ex 3: 4D, 8 clusters 7 5 13 15 22 32 40 -
Ex 4: 2D, 4 in a row 4 10 12 - - - - -
Ex 4: 2D, 4 diagonal 4 9 11 20 - - - -
Ex 5: 2D, 2 square clusters 2 4 - - - -

152

6.2 Application: Multiple-Instance Learning

Multiple-instance learning is a new learning paradigm, which has been devel-

oped by Dietterich et al. in support of the complex problem of drug activity

prediction [14]. The complexity of the problem necessitated a new data rep-

resentation, which is the multiple-instance format. First developed for the

prediction of drug activity this new data format is now mostly used for image

classification.

In the multiple-instance format an object is not represented by just one

instance, but by a bag of instances. Each bag is given a class value but the

class values of the individual instances in the bag are not known. Like most

work on multiple-instance learning, this thesis only considers binary problems

where the datasets contain positive and negative objects.

It is assumed that each positive bag contains one or more positive instances

that belong to a positive concept. Dietterich et al. consider the positive con-

cept to be a contiguous area in multidimensional space in which the positive

instances are located. He uses a single multidimensional rectangle to prescribe

the positive concept area. In contrast, Maron and Lozano-Perez [44] developed

a framework where the difference of the density of positive instances and the

density of negative instances is taken to find the positive concept area. In his

thesis [43] Maron also allows the option of a concept space that consists of sev-

eral positive concept areas rather than just one. See Section 6.2.3 for further

discussion of different models on how the positive concept area is formed in

multiple-instance learning.

In this thesis the multidimensional TUBE binning algorithm, Multi-TUBE

is applied to multiple-instance learning in two different ways. In Section 6.2.6

the first application is introduced, which is entirely based on the TUBE cluster-

ing algorithm. The second application, an improvement of the time-efficiency

of Maron and Lozano-Perez’s Diverse Density framework, is explained in Sec-

tion 6.2.7. This application again uses the TUBE clusterer. For both applica-

tions an empirical evaluation is performed and its results are presented.

This section is organized as follows. Section 6.2.1 gives an overview of

multiple-instance learning and its principles. Section 6.2.2 introduces well-

known existing multiple-instance learning methods and Section 6.2.3 discusses

various possibilities to define the concept area. Section 6.2.4 explains the way

TUBE clustering is used to define the concept areas. Section 6.2.5 gives an

overview of the datasets used for evaluation of both approaches considered: the

153

TUBE multiple-instance classifier (TUBE-MIC) and the improved version of

the Diverse Density algorithm. This algorithms are discussed in Section 6.2.6

and Section 6.2.7 as was mentioned above. In Section 6.2.8 TUBE-based data

exploration is performed to elucidate some of the experimental results ob-

tained. Section 6.2.9 summarises the results of the application of Multi-TUBE

in multiple-instance learning.

6.2.1 Multiple-Instance Learning

Drug molecules are active when they bind to larger molecules (e.g. proteins)

well. How strongly they bind, depends on the shape of their binding site. The

molecules of those substances have flexible structures and can form several

different three-dimensional conformations, which occur in parallel in the sub-

stance. Each conformation has its own shape of binding site. Only one of the

conformations needs to bind to make the substance an active one, but often it

is not known which one is the one that binds. Each drug is represented by a bag

of instances. To facilitate machine learning, each of the instances in the bag

represents one of the conformations of the drug molecule. The attributes de-

scribing a conformation represent measurements made on the molecule. If the

substance was judged to be active, the whole bag containing all conformations

of this molecule is labelled as active.

The standard way of representing data in a dataset is that one vector of

features represents one instance in the dataset. In the multiple-instance data

format one instance is represented by a varying number of feature vectors,

called a bag of instances. Each of the instances in a bag has the same number

of features. The number of instances in each bag normally varies between the

bags in a dataset. Each bag is assigned a class value but the class values of

individual instances in the bag are not known.

Note that multiple-instance learning is a different method than learning

from multi-represented objects [33]. Multi-represented objects are represented

by several instances in different feature spaces. In multiple-instance learning

an object is also represented by several instances but all of the instances are

from the same feature space. Multiple-instance learning sometimes is also

called multi-instance learning.

154

6.2.2 Existing Multiple-Instance Learning Methods

The first methods developed for multiple-instance learning were Dietterich

et al.’s [14] method of axis-parallel rectangles (APR), Maron and Lozano-

Perez’s [44] Diverse Density method and an adaptation of the nearest neigh-

bour method to multiple-instance learning by Wang and Zucker [65]. Subse-

quently other standard machine learning methods were customized for the use

in multiple-instance problems, e.g. support vector machines by Andrews et

al. [4] and decision trees by Zucker and Chevaleyre [11]. Frank and Xu [22]

considered simple methods of transforming a multiple-instance dataset into a

normal propositional dataset. After the transformation of the dataset standard

machine learning techniques can be applied without any further adaptation.

Multiple-instance learning methods with special relevance to the work in this

thesis are discussed in more detail in the following.

Dietterich et al.’s Axis Parallel Rectangle method

Dietterich et al. invented the multiple-instances data representation and also

introduced the musk datasets on which they tested their algorithms. In the

musk datasets each bag contains information about one drug molecule. Each

instance in the bag has attribute values representing measurementd pertaining

to one conformation of the drug molecule. A bag can be either of class active

(positive) or of class inactive (negative).

Dietterich et al.’s learning algorithm searches for an estimate f̂ of the un-

known function f , which is the function that labels the bags correctly. Let

M be the set of all possible feature vectors of length n, and mi,j ∈ M be one

of the feature vectors of bag mi. Dietterich et al. say that in the multiple-

instance case it is not a single-instance function that is the ultimate goal, but

a multi-instance function f(mi) where mi,1, mi,2, ...,mi,νi
are the νi ambiguous

variants of an (unknown) feature vector mi. They define function f based on

a single-instance function g.

f(mi) =

 1 if ∃j g(mi,j) = 1

0 otherwise
(6.1)

where f(mi) = 0 for inactive bags and f(mi) = 1 for active bags. This

models the assumption that in a positive bag at least one ambiguous variant

must be positive (active).

The goal of the multiple-instance algorithm is to construct an approxima-

155

tion ĝ of the internal function or in other words to build a model of the positive

concept that classifies at least one instance from each positive bag as positive

and all instances from the negative bags as negative. In Dietterich et al.’s work

the model of the positive concept is one axis-parallel hyper-rectangle (APR).

Three different algorithm variants are described:

1. The ‘standard’ algorithm generates the smallest APR that contains all

positive instances. This algorithm effectively ignores the multiple-instance

nature of the problem.

2. The ‘outside-in’ algorithm takes the APR of the ‘standard’ algorithm and

shrinks it to exclude all false-positive instances. The shrinking process

considers the multiple-instance nature of the problem.

3. The ‘inside-out’ algorithm starts with the APR representing a single

positive instance and grows it with the goal to cover at least one instance

of all positive bags and no instance of the negative bags. In this way the

algorithm also takes the multiple-instance nature of the problem into

account.

In [14] Dietterich et al. find that the APR variants that take the multiple-

instance nature of the problem into account show better results and that the

‘inside-out’ algorithm performs best. They evaluated these methods on the

musk drug discovery datasets.

TUBE’s similarity to the APR methods is that TUBE’s binning also results

in axis-parallel rectangles. However, TUBE’s method of finding the rectangles

differs from APR’s algorithm in that it can be used to generate a cluster of

rectangles as the model for the positive concept area instead of one rectangle

alone. The method is explained in detail in Section 6.2.4.

Weidmann et al’s Two-Level Classification Approach

Weidmann et al. [67] developed a two-level classification approach assuming

that each instance in the bag is potentially contributing to the class label and

called it multi-instance learning.

Weidmann at al.’s algorithm designed the two-level classification approach

for generalized multi-instance learning. In the generalized scenario it is as-

sumed that the relationship between the class labels of a bag’s instances and

the bag’s label can be more complicated than in the scenario considered by

Dietterich et al.

156

Weidmann et al.’s algorithm implements the two-level classification ap-

proach in a heuristic manner. To reach the first level each bag is transformed

into a meta-instance, resulting in a new dataset that has as many instances as

there are bags in the original dataset. In the second level, the data can thus

be classified by any propositional learner and the method does not require

learners that are adapted to the multi-instance format. The transformation

is done by decomposing the instance space into ‘candidate’ regions for each

concept using a decision tree to split the instance space according to the rela-

tive number of positive and negative instances. The regions found become the

attributes of the newly formed meta-instances. Attribute values for a meta-

instance corresponding to a bag are computed based on the distribution of the

bag’s instances into these regions. Weidmann et al. compare this method with

the Diverse Density algorithm [43] and the MI Support Vector Machine [4] on

several artificial datasets representing generalized multiple-instance problems.

Weidmann et al.’s approach is related to the methods introduced in this the-

sis because it also uses a tree structure to create rectangular regions. However,

their method is explicitly focused on the application to generalized multiple-

instance problems.

Maron and Lozano-Perez’s Diverse Density Algorithm

Maron and Lozano-Perez [43][44] use density measures to model the probability

that a bag is positive. The positive concept is viewed as a ‘fuzzy’ point in the

instance space, defined by the location where the instance areas of all positive

bags intersect without intersecting any of the negative bags. Using only a

single point would mean a rather severe restriction for the model of the positive

concept, therefore the method uses probability theory to define a ‘fuzzy’ area

around this point. This prevents overfitting, which would exclude too many

bags by classifying them as negative.

To find the positive concept Maron and Lozano-Perez use a new measure

called Diverse Density. This is defined for each point in the instance space

and measures how many different positive bags have instances near that point,

and how far the negative instances are from that point. This is defined as

a probabilistic measure. The algorithm returns the location of the positive

concept point that represents a local maximum of Diverse Density and also a

weight vector that emphasizes important attributes. The concept area has a

multidimensional ellipsoid form.

Maron derives the probabilistic model of the positive concept in the fol-

157

lowing way: Assume that the positive concept is a single point x and that

B+
i is the i-th positive and B−

i the i-th negative bag. The idea is to find the

optimal point for the positive concept by maximising the probability that x is

the positive concept given the positive and negative bags.

arg maxx(P (x = t|B+
1 , ..., B+

n , B−
1 , ..., B−

m)) (6.2)

To compute this Maron and Lozano-Perez use Bayes’ rule and an uninformative

prior over all locations and make the assumption that the bags are conditionally

independent given the target concept. After using Bayes’ rule again this results

in a general definition of the maximum Diverse Density:

arg maxx

∏
i

P (x = t|B+
i)

∏
i

P (x = t|B−
i) (6.3)

Using the noisy-or model to define the terms in the products and assuming

the jth point in the bag Bi is Bij yields:

P (x = t|B+
i) = P (x = t|Bx

i1, .., B
x
in) = 1−

∏
j

(1− P (x = t|B+
ij)) (6.4)

The probability for a negative bag P (x = t|B−
i) is defined as one minus the

term on the right-hand side of this equation. The probability P (x = t|Bij) that

an instance is similar to a certain positive concept is relative to the distance

of the point to the positive concept:

P (x = t|Bij) = exp(−||Bij − x||2) (6.5)

Note that with the number of positive intersecting bags the quantity in Equa-

tion 6.2 grows in an exponential way.

A gradient ascent method is used to find a maximum for Equation 6.2,

but this can only be a local maximum. Therefore gradient ascent is repeated

several times choosing the instances of the largest positive bag or bags as

starting points. This makes the computation very time consuming.

Maron [43] tested the Diverse Density algorithm on the musk datasets and

on a generated dataset. He further applied it to image recognition and stock

selection, with the aim of showing that the algorithm can deal with a high

level of noise. In his thesis, Maron [43] also offers a variant of the method with

several positive concepts instead of one. However, this method is even more

computationally complex.

158

The Diverse Density algorithm is one of the standard algorithms that are

applied to multiple-instance problems and it often achieves very competitive

classification accuracy. Unfortunately the method has unacceptable runtime

behaviour especially when applied to larger datasets. Section 6.2.7 explains

how the runtime behaviour can be improved using TUBE while maintaining

high accuracy.

6.2.3 Models for the Positive Concept

Although MI-Learning is a fairly new domain in machine learning there is

already a traditional view of how a positive concept is formed. Weidmann [67]

named it the standard multiple-instance assumption. This and other models

are briefly discussed below.

Standard Multiple-instance Assumption This assumption is that the

class value of a bag is determined by the presence or absence of at least one

positive instance; the other instances can actually be viewed as negative in-

stances even if they are in a positive bag. Dietterich et al. [14] argued that

the negative instances have no impact on the class value and that therefore all

negative instances in positive bags can effectively be regarded as noise. Some

of the APR methods and the Diverse Density method are explicitly based on

this assumption.

Long and Tan [41] give a succinct expression for the standard assumption,

with xi being the k feature vectors in a bag and f(xi) being the function that

determines the class value of an instance (either positive or negative) 1:

({x1, x2, ..., xk}, f(x1) ∨ f(x2) ∨ ... ∨ f(xk))

i.e. the bag’s class label is the disjunction of its instances’ class label.

‘Whole Bag’-Theory Weidmann et al. [67] define the ‘Whole Bag’-theory

which states that an interaction between instances in a bag determines its class

label. This means that the negative instances in positive bags can be part of

the concept and the data is represented as:

({x1, x2, ..., xk}, f(x1, x2, .., xk))

1Remember: In the case of a standard, single-instance learning, with one instance repre-
senting each object, the representation of an instance is (x, f(x)).

159

using a more general function f .

Looking at the drug activity prediction problem and at a drug that is active,

then it is likely that only one conformation of the drug molecule is active. But

perhaps its negative conformations differ from those of other negative drugs.

The physical properties of the molecule enable the drug to transform from its

negative, non-active conformation to an active conformation.

The Number of Concept Areas The APR methods look for only one

single axis-parallel rectangle to capture the positive concept. In contrast

Maron [43] considers multiple-instance problems with one or several concepts.

Weidmann et al. [67] generalize further and specify variations of problems

with several concept areas so that a positive bag must have instances in each

of them. They differentiate between three classes of problems, one which re-

quires only one instance in each positive concept area, a second with a certain

sufficient minimum number of instances for each area, and a third one with a

minimum and a maximum number of instances in each area.

Shape of the Concept Area A concept can be seen as a point or a cloud

of instances in the concept space, or a set of those. The APR methods are

based on using a multidimensional rectangle as model for the positive concept.

The Diverse Density method is based on a ‘soft’ probabilistically defined area

around a target point. Weidmann et al. use sets of rectangular areas to

represent the target concept.

6.2.4 Using TUBE to Define the Positive Concept Area

The technique explained in this section finds the positive concept area for

a multiple-instance learning problem using the multidimensional TUBE his-

togram. The same technique is part of both of the two applications of Multi-

TUBE to multiple-instance learning: the TUBE multiple-instance classifier

and the improved version of the Diverse Density algorithm, which are dis-

cussed in the following sections, Sections 6.2.6 and 6.2.7.

TUBE can define a positive concept area that is more complex than APR by

gathering a cluster of multidimensional rectangles. In order to do this, Multi-

TUBE generates a multidimensional histogram. Then the TUBE clusterer is

used to locate the mode bins in this histogram and gather the neighbouring

bins down to the valley bins to form the clusters. Depending on the application

a density threshold can be set to exclude bins below a certain density.

160

The standard histogram would be of no use for this task. The concept area

in multiple-instance learning is an area with positive instances from positive

bags but very few instances from negative bags. Maron [43] uses the new

Diverse Density measure to define the optimal point of the positive concept.

With some similarity to Maron’s approach, the TUBE difference density tech-

nique models the concept area looking for multidimensional rectangles with

high difference of densities Ddiff . With n+
i being the number of positive in-

stances in bini, and n−i being the number of negative instances in bin i, the

volume of the bin being vi, and the total number of instances being N , the

difference of densities Ddiff is defined as follows:

Ddiff =
n+

i

(vi ×N+)
− n−i

(vi ×N−)
(6.6)

To find the rectangles that best represent the concept area the TUBE algo-

rithm ‘mixing of binnings’ (see Section 5.4.1 and Algorithm 3 in the previous

chapter) is used. In the following, this technique is again briefly summarised

and it is explained how it is used in the context of multiple-instance learning.

To prepare for the mixing, the instances of all bins are gathered in two

new datasets, one for the positive instances and one for the negative instances,

with the instances inheriting their class value from the corresponding bags.

Two multidimensional histograms are formed with a fixed number of bins (in

the experiments in this section, 5 or 10 bins) using the two training datasets.

Then the two binnings are combined into one histogram on their joint range.

Finally the TUBE clusterer locates all mode bins and the clusters in the

histogram using the Difference Density measure. Using this measurement to

define the modes is again specific to the multiple-instance scenario. The TUBE

clusterer has been explained in the previous chapter in Section 6.1. The modes

in the difference density histogram are the areas where the difference between

the densities of the positive and the negative instances is the largest and are

therefore good candidates for the concept area.

The mixing of binnings can quickly result in a shredded result range. There-

fore, the two subdatasets must be split into a small number of bins (e.g. 5 and

10) for this method. This was done for all experiments in both applications of

Multi-TUBE in multiple-instance learning.

161

Table 6.16: Basic statistics of the datasets used.

Dataset num-bags num-inst min-inst max-inst num-attr
eastwest 20 213 4 16 24
elephant 200 1391 2 13 230
fox 200 1320 2 13 230
musk1 92 476 2 40 166
musk2 102 6598 1 1044 166
mutagenesis3atoms 188 1618 5 15 10
mutagenesis3bonds 188 3995 8 40 16
mutagenesis3chains 188 5349 8 52 24
tiger 200 1220 1 13 232
thioredoxin 193 26611 35 189 8
westeast 20 213 4 16 24

6.2.5 Datasets

Table 6.16 shows some statistics summarising the datasets used in the exper-

iments. The number of bags (first column) varies between 20 and 200 and

the datasets have from 8 to 232 attributes (last column). The column num-

inst lists the number of instances over all bags for each dataset. The two

columns min-inst and max-inst give the minimum number and the maximum

number of instances found in a single bag of the dataset. The musk1 dataset

shows the largest variation in number of instances per bag here (min = 1 and

max = 1044). Many of the datasets have some bags with very few (≤ 2)

instances. More information on these datasets can be found in [19].

6.2.6 Using TUBE Clusters for MI Classification

This section discusses a new multiple-instance classifier, the TUBE multiple-

instance classifier (TUBE-MIC), that is directly based on the binning gen-

erated by Multi-TUBE using the process described above in Section 6.2.4.

It constructs clusters of multidimensional rectangles as a model for the posi-

tive concept area. TUBE-MIC calls the TUBE clusterer to find the clusters.

The binning is based on the mixing of binnings method and the method uses

the difference density Ddiff (see Equation 6.6) instead of the density for each

bin. Thus, TUBE-MIC finds a positive concept area that is a collection of

connected multidimensional rectangles with high difference between positive

instance density and negative instance density.

The prediction of the class of a new bag is straightforward in this approach.

TUBE-MIC simply checks if one of the instances in the bag falls into the

concept area it has identified based on the training data, to predict it as a

162

Table 6.17: Multiple-instance Diverse Density classification (MIDD) compared
with TUBE-MIC with the thresholds set to 90 (TMIC-90), 70 (TMIC-70) and
60 (TMIC-60) respectively (v significant win, * loss against DD).

MIDD TMIC-90 TMIC-70 TMIC-60
eastwest 61.50 80.00 v 80.00 v 80.00 v
elephant 80.20 65.15 * 66.90 * 67.55 *
fox 61.05 55.45 * 54.55 * 54.65 *
musk1 86.17 65.49 * 69.54 * 69.32 *
musk2 82.18 63.05 * 63.52 * 63.13 *
mutagenesis3-atoms 72.46 48.49 * 51.68 * 67.70 *
mutagenesis3-bonds 75.25 70.37 * 69.72 * 66.54 *
mutagenesis3-chains 78.33 58.25 * 71.18 * 66.60 *
tiger 64.32 62.15 64.85 65.85
thioredoxin 76.37 80.07 v 79.56 v 78.36 v
westeast 79.78 41.00 * 41.00 * 41.00 *

positive bag. TUBE-MIC uses a density threshold and bins with lower density

than the threshold are discarded from the positive concept cluster. A threshold

is given in percent format per user parameter, with the highest density in the

histogram represented by the value 100 percent.

Evaluation

The method was tested on the multiple-instance datasets in Table 6.16, using

ten bins for the mixing of binnings algorithm and several different density

thresholds. Table 6.17 shows the accuracy values of the TUBE-MIC classifier

that were achieved, compared with the results of the Diverse Density classifier

in WEKA [68]. All experiments were performed using 10× 10-cross-validation

and all comparisons are based on the corrected resampled t-test [47].

The results show that except for the eastwest dataset the result achieved

by the Diverse Density classifier could not be improved substantially. In fact in

most other cases except tiger and thioredoxin, performance was worse. Thus,

the ‘soft’ ellipsoid concept found by the Diverse Density algorithm appears

more appropriate for most of these datasets.

The result on the eastwest data will be explored further in Section 6.2.8 us-

ing the histogram representation method bin list. For most datasets the results

vary with the different density threshold values. Lowering of the threshold im-

proved the result substantially on the mutagenesis3 datasets. The reason for

this is that this adjustment added one or several more significant lower density

163

bins to the positive concept cluster area.

6.2.7 Improving the Efficiency of the Diverse Density

Algorithm

Maron’s Diverse Density algorithm (MIDD) uses the Diverse Density measure

to find the positive concept area. It is started several times for each instance of

the largest positive bag(s), to avoid a local maximum solution. Using instances

of a positive bag increases the probability that the process starts from a point

where the density of the ‘real’ positive instances is high and the maximum

can be found faster. Nevertheless, the computational requirements of the DD

algorithm remain very high.

The TUBE-based improvement to the Diverse Density method discussed

in this section has the aim of shortening the search for the global maximum

by providing the algorithm with better starting points. The idea is to again

use the difference of the densities function of the positive instances and the

density of the negative instances to generate a difference density histogram.

The modes of the difference density function are areas were the density of the

positive instances, which are the instances from positive bags, is high compared

to the density of the negative instances (the instances from negative bags) and

thus more likely to be areas of ‘real’ positive instances. Hence they are a good

area to harvest starting points for the Diverse Density algorithm

The actual process of generating the density estimator and finding the

modes is in most parts the same as in the previous application (Section 6.2.6)

and uses the mixing of binnings to build a multidimensional histogram and the

TUBE clusterer to cluster the bins. However, in this application only the mode

bins of these clusters are utilized and the clusters are irrelevant. Either the

centre point of each mode bin is taken as starting point or one of the training

instances in this bin is randomly selected for this purpose.

Evaluation

The method was tested on the datasets introduced previously, with several dif-

ferent parameter settings: either using five bins (TUBE-5) or ten bins (TUBE-

10) in the histograms generated for the mixing of binnings. TUBE-5 and

TUBE-10 both use the centre of the mode bins, that have been found as start-

ing points for the Diverse Density algorithm. The third variation is again based

on using ten bins but instead of using the centre points, picks one randomly

164

Table 6.18: Multiple-instance Diverse Density classification (DD); accuracy
compared with TUBE-augmented method with five bins (TUBE-5), ten bins
(TUBE-10) and ten bins with the starting instances selected randomly (TUBE-
10-rand) (v significant win, * loss against DD).

MIDD TUBE-5 TUBE-10 TUBE-10-rand
eastwest 61.50 66.00 67.00 69.50
elephant 80.20 77.45 78.90 79.00
fox 61.05 59.75 58.60 58.00
musk1 86.17 48.89 * 54.47 * 67.16 *
musk2 82.18 61.73 * 61.73 * 82.67
mutagenesis3-atoms 72.46 72.25 72.72 72.93
mutagenesis3-bonds 75.25 75.41 75.17 74.85
mutagenesis3-chains 78.33 76.31 78.76 76.00
tiger 73.20 50.60 * 69.35 63.45
thioredoxin 90.06 84.43 * 84.54 * 84.38 *
westeast 37.50 28.50 27.00 31.00

selected training instance from each mode bin as the starting points (TUBE-

10-rand). All experiments were performed using 10 × 10-cross-validation and

all comparisons are based on the corrected resampled t-test [47].

Table 6.18 shows the classification results of the Diverse Density (MIDD)

algorithm compared with the accuracy achieved with the Diverse Density clas-

sifier augmented with TUBE-based starting point selection. For all datasets

but musk1, musk2 and thioredoxin the TUBE method achieves similar results

as the plain Diverse Density classification. The last column shows that the use

of a randomly picked training instance enables the TUBE version to perform

equivalently to DD on the musk2 dataset but not the musk1 dataset. The

musk datasets are two very similar, high-dimensional datasets both containing

drug prediction data. Section 6.2.8 explores the musk datasets and analyzes

their structure with the aim of explaining why the method does not work for

the musk1 dataset.

Picking an instance randomly from the mode bin yielded a substantial

improvement on the musk2 dataset. This could be because in the multidimen-

sional bin, most instances lie closer to the borders than to the centre point of

the bin.

Table 6.19 lists the CPU training times required by the experiments and

shows that the TUBE-augmented method is in all cases significantly faster,

yielding a practical algorithm with good performance in many cases.

165

Table 6.19: CPU time comparison: Diverse Density method (DD), TUBE
augmented method with five bins (TUBE-5), ten bins (TUBE-10) and ten bins
with the starting instances selected randomly (TUBE-10-rand) (v significantly
faster, * significantly slower than DD).

MIDD TUBE-5 TUBE-10 TUBE-10-rand
eastwest 3.56 0.21 v 0.24 v 0.25 v
elephant 438.58 48.74 v 33.75 v 35.48 v
fox 229.36 35.21 v 33.85 v 33.27 v
musk1 29.65 0.55 v 1.32 v 3.05 v
musk2 2639.09 5.21 v 6.66 v 52.92 v
mutagenesis3-atoms 19.23 1.51 v 1.61 v 0.87 v
mutagenesis3-bonds 111.00 3.10 v 3.81 v 2.15 v
mutagenesis3-chains 445.14 4.86 v 7.04 v 3.56 v
tiger 166.97 5.59 v 23.67 v 19.19 v
thioredoxin 1332.52 15.21 v 5.62 v 6.17 v
westeast 1.93 0.38 v 0.17 v 0.18 v

6.2.8 Elucidating the Results Using Data Exploration

In this section, the eastwest dataset is explored in more detail in an attempt to

explain the good results obtained with the TUBE multiple-instance classifier

(TUBE-MIC) on this dataset. In addition, the musk1 and musk2 datasets

are explored to analyze Diverse Density multiple-instance classification with

TUBE. As mentioned above, for the musk2 dataset, the accuracy achieved

using TUBE’s starting points for the Diverse Density classifier was comparable

to the results achieved with Diverse Density classification by itself. This goal

could not be achieved for the musk1 dataset.

The histograms generated as part of the learning process are represented

using bin lists. This technique is explained in detail in the previous chapter,

in Section 5.5. The binning shown in the bin lists is the same as that used

in the classification tasks (Section 6.2.6), although only when the algorithm is

applied to the whole dataset and not within the cross-validation. As a result

of the mixing of binnings the bins are ordered according to their difference

density (Ddiff).

In the following sections the structure found is briefly explained and the

bin lists are given. Whenever similar bins are repeated in a bin list they are

substituted by a row with “...”. The bin lists with all non-empty bins listed

are given in Appendix A.

166

The eastwest Dataset

The mixing of binnings applied to the eastwest dataset resulted in 509 bins. All

areas are very mixed with positive and negative instances. 4 of the 26 attributes

in this data have been cut. Nine clusters were found. The information for the

nine corresponding mode bins is shown in Figure 6.11. Five of the clusters’

mode bins contain only positive instances, many of the bins only negative

instances. The last cluster has a mode with zero instances in it, surrounded by

bins of mostly negative instances. Mode bins with zero positive instances are

not used for the harvesting of starting points. Only two of the nine clusters

are shown in Figure 6.11. (For the more complete bin list see Appendix A.)

Cluster Bin List: 0
Mode Bin: 0

0 :AbbbbbbbbbbB Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%
1 :Abbbb......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%
2 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
...
...
75 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
76 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%
77 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%
...
85 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

Cluster Bin List: 1
Mode bin: 0

0 :AbbbbbbbbbbB Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%
1 :Abbbb......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%
2 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
...
...
75 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%
76 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%
77 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%
...
84 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%
85 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

...
(For Cluster Bin Lists 3 - 8 see appendix.)

Figure 6.11: Bin list of the eastwest datasets. Nine clusters found.

167

The musk1 Dataset

The bin list of the multidimensional histogram built for the musk1 dataset con-

tains 584 bins. All areas are very mixed with positive and negative instances.

11 of the 168 attributes have been cut. Only one cluster was found. The bin

list of this cluster is shown in Figure 6.12. This means when applied to Diverse

Density it will use one instance only as starting point. The mode bin is a very

small bin with a comparably large number of instances (15.13 percent). The

density of negative instances in the mode bin is between 30 and 40 percent.

(For the more complete bin list see Appendix A.)

Cluster Bin List: 0
Mode bin: 0
0 :0aaaabbbbbbB Dns:[XXXXXXXXXX] Ins:[XX........] Vol:[<1E-17....] 15.13%
1 :0a.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 3.15%
2 :Ab.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-15....] 0.21%
...
23 :0a.........B Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.42%
24 :-..........- Dns:[] Ins:[] Vol:[<1E-17....] 0.0%
...
...
522:-..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%
523:Ba.........A Dns:[<1E-16....] Ins:[X.........] Vol:[<0.1......] 0.21%
524:Ba.........A Dns:[<1E-15....] Ins:[X.........] Vol:[<0.1......] 0.21%
...
581:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 7.35%
582:Ba.........A Dns:[<0.1......] Ins:[X.........] Vol:[<1E-16....] 0.21%
583:Ba.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-16....] 0.63%

Figure 6.12: Bin list of the musk1 datasets. Only one cluster found.

The musk2 Dataset

The mixing of binnings resulted in 722 bins for the musk2 dataset. As in the

case of the musk1 datasets areas are very mixed with positive and negative

instances. 9 of the 168 attributes have been cut. The TUBE clusterer found

two clusters. Thus it provides two starting points when applied in conjunction

with the Diverse Density algorithm. The mode of the first cluster is a small

area with only a small percentage of training instances but is quite pure with

respect to the positive instance class. The bin lists of the two clusters are

shown in Figure 6.13. (For the more complete bin lists see Appendix A.)

168

Cluster Bin List: 0
Mode Bin: 0

0 :0abbbbbbbbbB Dns:[XXXX......] Ins:[X.........] Vol:[<1E-15....] 1.85%
1 :0aaaaabbbbbB Dns:[XXXXXXXXXX] Ins:[XX........] Vol:[<1E-14....] 19.38%
2 :Abbb.......B Dns:[X.........] Ins:[<0.1......] Vol:[<1E-16....] 0.06%
3 :0ab........B Dns:[XX........] Ins:[X.........] Vol:[<1E-15....] 0.41%
...
26 :0a.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%
27 :-..........- Dns:[] Ins:[] Vol:[<1E-16....] 0.0%
...
...
269:-..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%
270:Ba.........A Dns:[<1E-15....] Ins:[<0.1......] Vol:[X.........] 0.08%
...
372:Ba.........A Dns:[X.........] Ins:[<0.1......] Vol:[<1E-14....] 0.02%
373:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 0.11%
374:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-13....] 4.88%
375:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-14....] 0.17%

Cluster Bin List: 1
Mode Bin: 0

0 :0a.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-12....] 0.32%
1 :Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 0.17%
2 :0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.18%
...
7 :Ab.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%
8 :0a.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%
9 :-..........- Dns:[] Ins:[] Vol:[<1E-16....] 0.0%
...
...
245:-..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%
246:Ba.........A Dns:[<1E-15....] Ins:[<0.1......] Vol:[X.........] 0.08%
247:Ba.........A Dns:[<1E-14....] Ins:[X.........] Vol:[X.........] 0.14%
...
345:Ba.........A Dns:[<0.01.....] Ins:[<0.1......] Vol:[<1E-12....] 0.03%
346:Ba.........A Dns:[<0.1......] Ins:[<0.1......] Vol:[<1E-14....] 0.03%
347:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 0.11%

Figure 6.13: Bin list of the musk2 datasets. Two clusters found.

Evaluation

The eastwest dataset histogram was examined to investigate the good perfor-

mance of TUBE-MIC classification on this data (see Section 6.2.6). Consid-

ering the bin list, the positive area appears to be clearly defined: many of

the mode bins and some of their neighbouring bins contain positive instances

only. This makes it easy for the TUBE multiple-instance classifier to find the

positive concept area and results in the high accuracy observed.

169

The musk1 and musk2 datasets are very similar datasets both contain-

ing information about drug activity prediction but still show quite different

results when processed with Diverse Density classification using TUBE (see

also Section 6.2.7). The musk2 dataset is larger than musk1. Because it has

more instances to train a nonparametric density estimator, the resulting his-

togram can better model the underlying density function and can thus provide

DD classification with better starting points. Multi-TUBE binning finds more

structure in musk2 than in musk1: two clusters instead of one. Moreover the

mode bin of musk2’s first cluster has a relatively small density of negative in-

stances, which makes it a better source of starting points for DD classification.

6.2.9 Summary Application Multiple-Instance Learning

In this section TUBE clustering was applied in two ways, in both cases in

the area of multiple-instance learning. One new multiple-instance classifica-

tion algorithm was developed, and one existing algorithm augmented with

TUBE primarily to improve its runtime. Both applications employ the same

techniques, presented earlier in this thesis: Multi-TUBE’s multidimensional

histograms, the mixing of binnings and the TUBE clusterer. A novel aspect of

these applications is that the positive concept area is identified based on the

bins of the histogram generated using the difference density Ddiff instead of

the density.

The first application, the TUBE multiple-instance classifier (TUBE-MIC),

predicts the class value of new bags directly if any of the instances in the bag

fall into the positive concept area. TUBE-MIC takes a cluster as model that

consists of several potentially neighbouring bins surrounding a mode bin. The

borders of the cluster are confined by a density threshold that is given per user

parameter. Several multiple-instance datasets were tested with this method

and the performance compared with that of the Diverse Density classifier. One

observation was that the best density threshold to use appears to differ be-

tween datasets, which makes adjustment to each dataset necessary. Except for

the eastwest dataset, and perhaps thioredoxin and tiger, the classification re-

sults were disappointing compared to the (albeit much slower) Diverse Density

method. Further analysis of the bins that were generated shows that the east-

west dataset has areas containing exclusively positive instances, which makes

it easy for TUBE-MIC to define a good model.

In the second application, the search for the concept area point performed

170

by the Diverse Density classifier [43] was supported by supplying the algo-

rithm with a small set of high-quality starting points using TUBE. The pro-

posed method takes the starting points from the mode bins of Multi-TUBE’s

histogram estimator. As mentioned above, the histogram uses the difference

density, so that the mode bins define a range in which the density of the

positive instances is high compared to that of the negative instances. This

improved the runtime of the Diverse Density classifier significantly. The ac-

curacy was comparable in most cases, with only the musk1 and thioredoxin

datasets exhibiting substantially worse accuracy. Further exploration of the

musk1 dataset using the bin list representation technique, showed that the

multidimensional histogram only contained bins mixing positive and negative

instances, which makes it difficult to identify good mode bins for the selection

of starting points.

Both application ignored the standard multiple-instance assumption —that

the positive concept area should have at least one instance of each positive bag

in it—in the process of identifying relevant rectangular regions using TUBE.

For the first application taking it into account did not show any improvement

in the results and in the second application, improving the DD algorithm,

the number of starting points was already sufficiently reduced for each of the

datasets.

171

6.3 Summary

In this chapter the new multivariate tree-based density estimation methods

proposed in this thesis have been applied to clustering and to multiple-instance

learning. The chapter contains two corresponding sections. The first section

discusses the newly developed TUBE clustering algorithm. In the second sec-

tion, the TUBE clusterer is first used directly for multiple-instance classifi-

cation and secondly in support of an existing algorithm for multiple-instance

classification.

Section 6.1 explains the newly developed TUBE clusterer. It generates mul-

tidimensional clusters based on the Multi-TUBE binning. The TUBE clusterer

exhibits several positive attributes such as the ability to find subspace clusters,

good scalability and it can also handle data with noise well. The clusters found

are not restricted to be simple geometric shapes but can be of complex shape.

The second application, covered in Section 6.2, concerns the field of multiple-

instance learning. Multiple-instance learning has a special data format, with

each example represented by a bag of instances. A class value is assigned

to each bag but the actual class of each single instance is not known. The

standard multiple-instance assumption is that each negative bag contains only

negative instances but that each positive bag contains one or more positive

instances. Based on this assumption each multiple-instance problem has a

positive concept area where the positive instances are found.

Using Multi-TUBE as the underlying algorithm, a model for classifying

future bags is identified by finding areas with ‘real’ positives instances. The

precision of this method depends on the level of false negative instances in the

negative bags. The positive areas are very fragile with only a few instances

being ‘real’ positives and could easily be covered up by a noisy false positive

bag. The assumption is that the negative instances in the positive bags are

not different to the negative instances in the negative bags and fall into the

same negative concept areas.

The TUBE multiple-instance classifier (TUBE-MIC) defines the concept

area by generating clusters of bins using the difference density. TUBE-MIC

predicts class values directly: if one instance in a test bag is in the positive

concept cluster, the bag is declared positive. In this way it can model com-

plex non-convex concept areas. However, classification with TUBE-MIC was

disappointing compared with the accuracy results of the Diverse Density clas-

sifier. The reason for the unsatisfying results could be due to overfitting of the

172

model to the concept area. Future work should provide ‘soft’ cluster borders.

Further development of TUBE-MIC could also take into account the fact that

a positive concept area should contain a positive instance of each positive bag

from the training data.

In the second application discussed in Section 6.2, a TUBE-based method

was used in support of the Diverse Density classifier. This classifier is based

on maximising the Diverse Density measure and looks for areas with high

density of positive instances and low density of negative instances. Diverse

Density repeatedly applies an optimization algorithm (gradient ascent) with

several starting points. The TUBE-based improvement takes instances from

the mode bins of the multivariate histogram to provide high-quality starting

points and so can quicken the process of generating a Diverse Density classifier

in almost all cases without significant loss of accuracy.

The next chapter summarizes the work done in this thesis and lists the

conclusions which were drawn from it.

173

174

Chapter 7

Conclusions

In this thesis new unsupervised, tree-based algorithms for the discretization

of univariate and multivariate ranges were developed and used to construct

density estimators. These were applied in several machine learning tasks:

discretization for density estimation itself, naive Bayes classification, clustering

and multiple-instance classification. The research questions are:

- Can greedy algorithms for tree-based density estimation represent the

significant structure of the distribution function well, by adapting to all

changes in the density function, and also abrupt changes and areas of

(effectively) zero density? For instance, can tree-based density estimation

be used to find clusters in multidimensional data?

- Can the algorithms employ cross-validation to determine an appropriate

number of bins based on the input data alone?

- Can the induced nonparametric density estimators support density es-

timation tasks in machine learning applications such as single-instance

and multiple-instance classification, so that the performance in the tar-

get application is improved when the new estimator is used to augment

an existing approach or replace a standard histogram estimator?

- Can tree-based density estimators generate density models based on com-

putational requirements that render them useful in practical applica-

tions?

In the next section the work done in this thesis is summarised and answers

to these questions are provided. Section 7.2 highlights the main contributions.

175

Section 7.4 lists the conclusions that can be drawn considering these ques-

tions. Section 7.5 proposes further possible work based upon the developed

algorithms.

7.1 Summary

Greedy tree-based approaches are the basis for the algorithms developed and

evaluated in this thesis. It was shown that they can support discretization,

clustering and can make classification algorithms more efficient. The greedy

tree-based approach was chosen to enable an efficient search for bin thresh-

olds so as to obtain a histogram estimator that flexibly adapts its bin width

to the change of density over a range of numeric values. The log-likelihood

was used as splitting criterion. Two algorithms were developed: one for one-

dimensional data and one for multidimensional data. These newly developed

density estimators were applied to several machine learning problems.

Chapters 1 and 2 give an introduction to density estimation and tree build-

ing algorithms. Density estimation is explained with a focus on histogram

density estimation. A histogram estimator is a density estimation technique

that has been used for centuries in statistics. Tree building algorithms dis-

cussed in the introductory chapters are decision tree learners as they are used

for classification in machine learning.

The work on new algorithms introduced in this thesis is presented in four

chapters. Chapters 3 and 4 introduce the univariate tree-based density esti-

mation algorithm TUBE, and discuss its applications. Chapters 5 and 6 cover

the multivariate case Multi-TUBE and applications of this algorithm.

Discretization methods in general correspond directly to binning density

histogram techniques like equal-width and equal-frequency estimation. TUBE,

the new algorithm introduced in Chapter 3, is a binning density estimator and

a discretization technique. Histogram estimators are nonparametric. Non-

parametric methods are more flexible density estimators than parametric ones

and TUBE adapts particularly well to complex distribution functions because

it builds a histogram estimator with variable bin length without user input of

a smoothing parameter. It can model multiple modalities, abrupt changes in

the density, and finds empty areas precisely.

Cross-validation is a standard method to choose between models. In TUBE,

cross-validation can be applied incrementally and therefore results in a feasible

method to decide on the number of bins. This search for the best binning can

176

also be viewed as pruning of the tree. Like every histogram, TUBE’s binning

yields an easily interpretable model of the density function.

In Chapter 4, TUBE discretization was compared with standard unsuper-

vised discretization methods and it was shown that TUBE fits the density

function as well or sometimes better than these techniques. It was shown that

problems with overfitting due to a small number of instances that lie close

together can be solved using heuristics.

Greedy tree-based learning algorithms are known to be very scaleable meth-

ods. The greedy solution search in TUBE makes it a density estimation algo-

rithm that is well-behaved in terms of execution time.

In a second application, discussed in Chapter 4, TUBE histograms were

used to create probability models in naive Bayes classifiers. Naive Bayes pre-

dicts a class value for an instance by computing its class probabilities and by

deciding on the class with the highest probability. Part of the overall probabil-

ity model is the conditional probability (or density) of an attribute value given

the class. This is required for each attribute and can be modelled with TUBE

histograms. This new method for creating conditional models in naive Bayes

was compared with Gaussians and equal-width histograms. It was shown that

TUBE density estimation can outperform Gaussians on some datasets but

cannot outperform the much simpler equal-width estimator.

Chapters 5 and 6 introduce the multivariate algorithm Multi-TUBE and

two applications. Multi-TUBE extends TUBE’s binning algorithm to the mul-

tivariate case. It splits, like TUBE, the range in a recursive fashion and also

places cut points the same way as in TUBE.

Multi-TUBE, described in Chapter 5, considers each attribute for each

split but only one attribute at a time. Thus, it performs axis-parallel cuts and

the resulting bins have the form of multidimensional rectangles. The splitting

criterion is again the log-likelihood and, like TUBE, Multi-TUBE also attempts

to identify bins that exhibit a uniform distribution.

When Multi-TUBE creates bins, it ignores irrelevant attributes and it can

therefore serve as a feature selection algorithm. Only few unsupervised fea-

ture selection algorithms have been developed so far. Note also that a simple

method like equal-width estimation, which would consider every attribute for

splitting, cannot be applied to multivariate data in practice, because of the

high number of bins it would produce.

The multidimensional histogram produced by Multi-TUBE, with its hard

split points and non-overlapping bins, is an easy to understand model when

177

presented as a tree. However, it does not yield a good overview of the distri-

bution of the space and the data into bins.

To achieve this objective, a suitable representation technique was devel-

oped. It lists the bins in the order in which they occur in the tree and outputs

columns of the most significant measurements—percentage of instances, den-

sity and percentage of total volume—using strings of ‘X’ characters. The

columns can be read like a stacked histogram, where the volume—which is the

‘width’ of the multidimensional histogram is not shown directly as the width

of the bin but using a string of ‘X’s in the corresponding column.

In Chapter 6, a TUBE clusterer for multidimensional data was implemented

based on the binning produced by Multi-TUBE. The clustering method is a

mode-seeking algorithm and can be classified as a probabilistic clusterer. It

was compared with the probabilistic clusterer EM based on the way it finds

clusters and its time performance. It was shown that it can find accurate

clusters with much less computational effort.

The nature of Multi-TUBE’s algorithm means that the TUBE clusterer can

cope well with noise. Compared to many other clustering algorithms, one of the

advantages of the TUBE clusterer is that it yields an easily comprehensible

representation of the clusters it finds. Its output can be represented as a

conjunctive statement combined with disjunctions. Although it was found

that cross-validation produced too many bins for good results in the clustering

application, the algorithm was applied successfully when the number of bins

was set by user parameter.

A second application of Multi-TUBE, also discussed in Chapter 6, is posi-

tioned in the specialized area of multiple-instance learning, where each example

consists of a collection of attribute vectors called a bag of instances. The indi-

vidual instances in the bag have unknown labels and only the bag has a label

assigned to it. Diverse Density is a well known multiple-instance algorithm,

which gives one of the best accuracy results on standard multiple-instance test

data, but has impractical runtime behaviour. Chapter 6 shows that, with the

help of the TUBE clusterer and a new algorithm for mixing two binnings, areas

of differing density can be found and used to yield better starting points for

the Diverse Density classifier to speed up the learning process.

178

7.2 Main Contributions

In this thesis, two novel tree-based density estimation methods were intro-

duced and evaluated: TUBE and Multi-TUBE. TUBE is a univariate binning

algorithm and Multi-TUBE its adaptation to multivariate data. Experiments

showed that the algorithms are able to identify significant components of uni-

variate and multivariate density functions. They define bins as univariate

subranges or as multidimensional rectangles respectively, by cutting the space

recursively in a greedy fashion into subranges of varying length, with the aim of

finding a good piece-wise constant approximation to the density function. Ex-

periments showed that the binning algorithms developed, adapt well to changes

in the density of the data, regardless of the complexity of the distribution.

Another important contribution of this thesis is the new clustering algo-

rithm, which it introduces. The TUBE clusterer uses Multi-TUBE’s binning

to find clusters by first searching for mode bins and connecting them with all

their surrounding bins of lower but still significant density. In this way the

TUBE clusterer effectively and efficiently finds clusters in the data by iden-

tifying ‘density bumps’ in the multidimensional density estimation function.

The shape of the clusters found is flexible enough to accommodate a variety

of possible structures in multidimensional data. The clusterer can deal with

outliers or noise in data and was shown to have good scalability. Because it

has the ability to ignore irrelevant attributes it can cope with datasets of high

dimensionality.

It was also shown how univariate density estimation tree learning can au-

tomatically determine an appropriate number of bins using the cross-validated

log-likelihood. Moreover, it can do so efficiently because trees can be grown

by incrementally adding nodes. Very few unsupervised algorithms have this

advantage.

It was shown how TUBE and Multi-TUBE can be applied to classification

tasks in machine learning. The application of TUBE to naive Bayes showed

reasonable results but did not yield an improvement on equal-width discretiza-

tion. However, the application of Multi-TUBE to multiple-instance learning

successfully improved the runtime of the Diverse Density learning algorithm

in a significant manner.

It is particularly important to note that, like most greedy algorithms, and

specifically other tree learners, TUBE and Multi-TUBE are well-behaved con-

sidering computational complexity and thus suitable for use in practical appli-

179

cations with large datasets and high-dimensional data.

7.3 Repeatability

To ensure that all experiments performed in this thesis are repeatable, the

software has been made publicly available from

http://www.cs.waikato.ac.nz/ml/weka/TUBE

together with the datasets generated for the clustering application. For each

experiment, documentation like the command line program call with the re-

spective parameter settings is provided. Also documented are the program

calls for the generation of diagrams and representation techniques (bin lists

and bin position overviews).

7.4 Conclusions

There is a close connection between binning density estimators and discretiza-

tion. Discretization is the term used in machine learning for splitting the

range of a numeric attribute into subranges for further transformation of the

data. Discretization is mostly employed in classification and many supervised

methods have been developed, but only few unsupervised ones. However, as

is standard practise in statistics, the binning can also be used to produce a

density estimator.

Nonparametric density estimation is more flexible than a parametric ap-

proach. Standard unsupervised methods like equal-width and equal-frequency

discretization are bound by fixed parameters, namely the bin width and the

number of instances per bin respectively. Fayyad & Irani’s supervised method

[18] employs the entropy values computed from the class labels to flexibly adapt

interval boundaries. TUBE and Multi-TUBE are unsupervised discretization

algorithms that use the log-likelihood as splitting criterion. This results in

density estimators that can closely follow the form of complex density func-

tions. Both algorithms choose variable bin widths and appropriate numbers

of instances per bin implicitly. Using a greedy tree-based algorithm to cut

the range makes it possible to achieve a runtime behaviour that facilitates the

application to practical problems.

Data mining often has to deal with datasets with many instances and

many attributes. This provides significant challenges for algorithms. Often

attributes are irrelevant and some algorithms are sensitive to this. So far there

180

are only few unsupervised feature selection algorithms that have been devel-

oped. The Multi-TUBE binning procedure, an unsupervised method, selects

the next best split by choosing between attributes and thus automatically

ignores irrelevant ones.

Many known clustering algorithms include a strong bias regarding the

shape of the clusters that can be found. TUBE is very flexible in this respect.

Moreover, in the multidimensional case, clusters can be found in subspaces

of the features with a different subspace for each cluster. Thus the TUBE

clusterer is a subspace clusterer that can find clusters with complex shapes.

Obtaining insight into the structure of multidimensional data can help to

analyze its structure and choose the right methods for further analysis. In

the application to multiple-instance learning in this thesis, Multi-TUBE was

used to find modes in multivariate data and provide the subsequently applied

multiple-instance learning algorithm with better starting points to accelerate

its search for the underlying concept.

7.5 Future Work

The univariate and the multivariate algorithm developed in this thesis have

been applied in very different areas of machine learning. This demonstrates

their versatility. Thus it can be expected that there are other application areas

and further possibilities for future work.

Naive Bayes Classification Further possibilities should be explored to

make TUBE a better estimator when used in Naive Bayes classification. The

implementation of a soft boundary could help prevent overfitting.

Enhancing Multivariate Gaussian or Kernel Estimators TUBE his-

tograms could be used to find the position of modes for multi-mode Gaussian

estimators or kernel estimators. Kernel estimators have been successfully used

as density estimators in naive Bayes classifiers but can exhibit poor runtime

behaviour. TUBE histograms could help to build a faster kernel estimator.

Ensemble Learning Techniques Applied to Density Estimation En-

semble learning techniques such as bagging, which have been used to enhance

the predictive performance in classification and regression problems by building

181

an ensemble of trees, could easily be adapted and applied to density estimation

based on the tree learners introduced in this thesis.

Feature Selection Applications of Multi-TUBE’s inherent feature selection

ability could be further explored and its performance compared with that of

other unsupervised feature selection methods that have been developed.

Further Clustering Methods It is possible to envisage other clustering

algorithms that build on the multidimensional binning found by Multi-TUBE.

The clustering analysis of the real-world datasets in Chapter 6 showed that

many of them contain one cluster only. The TUBE clusterer is a partitional

clusterer. A hierarchical clusterer could be developed that defines a more fine

grained clustering for the mode bins found by the existing TUBE clusterer,

which would be the next lower level hierarchy. A further possibility would be

to use the split tree generated by TUBE to define a hierarchy on the existing

clusters.

Finding Outliers in Data There are many applications of clustering and

very few could be explored in this work. One further task the TUBE clusterer

could be applied to is the identification of outliers in data.

Enhancing the Multivariate Histogram In this thesis a simple repre-

sentation method was developed to represent the multidimensional histogram

constructed by Multi-TUBE. Some possible future work for the expansion of

this to an interactive visualization has already been discussed in Chapter 5.

Selecting a Classification Method Mitchell asks in [45]: “What is the

relationship between different learning algorithms and which should be used

when?”. In many cases the answer to this questions could be given if more

knowledge about the structure of the data were available. However, gaining

information about the data is difficult when it is multidimensional. The anal-

ysis of the multidimensional histograms generated by Multi-TUBE could help

to produce input for this selection task.

182

Appendix A

Bin Lists

This appendix contains the bin lists of the three datasets eastwest, musk1 and

musk2. The bin lists were generated using the mixing of binnings technique,

started with ten bins on each of the two subdatasets. The split into two

datasets was performed according to the class value of the instances. The

characters a and A refer to the positive instances and the characters b and B

refer to the negative instances. The bins were then clustered using the TUBE

clusterer. Each cluster is listed as one separate bin list. Because a mixing

of binnings was performed the bins are ordered according to their difference

density (Ddiff).

A.1 The eastwest Dataset

The mixing of binnings applied to the eastwest dataset resulted in 509 bins

and nine clusters.

Cluster Bin List: 0

Mode Bin: 0

0 :AbbbbbbbbbbB Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%

1 :Abbbb......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

2 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

75 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

76 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

77 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

78 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

79 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

183

80 :Baaaaa.....A Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 0.94%

81 :Baaaaaaa...A Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

82 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

83 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

84 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

85 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

Cluster Bin List: 1

Mode bin: 0

0 :AbbbbbbbbbbB Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%

1 :Abbbb......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

2 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

75 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

76 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

77 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

78 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

79 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

80 :Baaaaa.....A Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 0.94%

81 :Baaaaaaa...A Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

82 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

83 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

84 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

85 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

Cluster Bin List: 2

Mode bin: 0

0 :0abbb......B Dns:[XXXX......] Ins:[XX........] Vol:[X.........] inst 10.33%

1 :Abb........B Dns:[XX........] Ins:[X.........] Vol:[X.........] 8.45%

2 :0aaa.......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

3 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

61 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

62 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

63 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

64 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

65 :0bbbbbbaaa.A Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%

66 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

67 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

184

Cluster Bin List: 3

Mode bin: 0

0 :Abbb.......B Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 7.04%

1 :0aab.......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.35%

2 :Abb........B Dns:[XX........] Ins:[X.........] Vol:[X.........] 7.04%

3 :0aaaaab....B Dns:[XXXXXXXX..] Ins:[X.........] Vol:[X.........] 2.82%

4 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

64 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

65 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

66 :0ba........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 2.82%

67 :0ba........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 2.35%

68 :0baa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 2.82%

69 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

70 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

71 :0bbaaaa....A Dns:[XXXXX.....] Ins:[X.........] Vol:[X.........] 6.57%

72 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

73 :Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

Cluster Bin List: 4

Mode bin: 0

0 :Abb........B Dns:[XX........] Ins:[X.........] Vol:[X.........] 1.41%

1 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

19 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

Cluster Bin List: 5

Mode bin: 0

0 :Abb........B Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

1 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

23 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

24 :Baa........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

25 :Baaaaa.....A Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 0.94%

Cluster Bin List: 6

Mode bin: 0

185

0 :Abb........B Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

1 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

24 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

25 :Baa........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

Cluster Bin List: 7

0 :0aaa.......B Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

1 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

20 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

Cluster Bin List: 8

Mode bin: 0

0 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

...

...

91 :-..........- Dns:[] Ins:[] Vol:[X.........] 0.0%

92 :Ba.........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

93 :0ba........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 2.82%

94 :0ba........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 2.35%

95 :Baa........A Dns:[X.........] Ins:[X.........] Vol:[X.........] 0.94%

96 :0baa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 2.82%

97 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

98 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

99 :Baaa.......A Dns:[XX........] Ins:[X.........] Vol:[X.........] 0.94%

100:0bbbbbbaaa.A Dns:[XXXXXXXXXX] Ins:[X.........] Vol:[X.........] 3.76%

101:0bbaaaa....A Dns:[XXXXX.....] Ins:[X.........] Vol:[X.........] 6.57%

102:Baaaaa.....A Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 0.94%

103:Baaaaa.....A Dns:[XXX.......] Ins:[X.........] Vol:[X.........] 0.94%

104:Baaaaaaa...A Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

105:Baaaaaaa...A Dns:[XXXX......] Ins:[X.........] Vol:[X.........] 2.82%

106:Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

107:Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

108:Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

109:Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

110:Baaaaaaaaa.A Dns:[XXXXXX....] Ins:[X.........] Vol:[X.........] 1.88%

186

A.2 The musk1 Dataset

The clusterer found only one cluster in the binning of the musk1 dataset. The

bin list of this cluster contains 584 bins.

Cluster Bin List: 0

Mode bin: 0

0 :0aaaabbbbbbB Dns:[XXXXXXXXXX] Ins:[XX........] Vol:[<1E-17....] 15.13%

1 :0a.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 3.15%

2 :Ab.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-15....] 0.21%

3 :0a.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 1.26%

4 :0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-14....] 8.4%

5 :Ab.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-14....] 0.21%

6 :Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-14....] 0.21%

7 :0a.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-13....] 1.68%

8 :Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-13....] 0.21%

9 :0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-13....] 0.63%

10 :0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-11....] 3.36%

11 :0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-12....] 0.42%

12 :Ab.........B Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.21%

13 :Ab.........B Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-11....] 0.21%

14 :0a.........B Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.42%

15 :0a.........B Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 0.63%

16 :0a.........B Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 0.42%

17 :Ab.........B Dns:[<1E-9.....] Ins:[X.........] Vol:[<1E-9.....] 0.21%

18 :0a.........B Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-9.....] 1.26%

19 :0a.........B Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.000001.] 1.89%

20 :Ab.........B Dns:[<1E-10....] Ins:[X.........] Vol:[<0.000001.] 0.63%

21 :Ab.........B Dns:[<1E-10....] Ins:[X.........] Vol:[<1E-8.....] 0.21%

22 :0a.........B Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.000001.] 2.94%

23 :0a.........B Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.42%

24 :-..........- Dns:[] Ins:[] Vol:[<1E-17....] 0.0%

...

...

522:-..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%

523:Ba.........A Dns:[<1E-16....] Ins:[X.........] Vol:[<0.1......] 0.21%

524:Ba.........A Dns:[<1E-15....] Ins:[X.........] Vol:[<0.1......] 0.21%

525:Ba.........A Dns:[<1E-15....] Ins:[X.........] Vol:[<0.1......] 0.21%

526:0b.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.84%

527:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.42%

528:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

529:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

530:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

531:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

187

532:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

533:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.21%

534:Ba.........A Dns:[<1E-13....] Ins:[X.........] Vol:[<0.001....] 0.84%

535:0b.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.0001...] 1.05%

536:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.001....] 0.84%

537:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.21%

538:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.21%

539:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.21%

540:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.0001...] 0.42%

541:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.00001..] 0.21%

542:0b.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 0.63%

543:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 0.21%

544:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 0.42%

545:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.0001...] 1.47%

546:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 0.21%

547:0b.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 2.1%

548:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.00001..] 1.05%

549:0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.000001.] 5.88%

550:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.000001.] 0.21%

551:0b.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.000001.] 0.63%

552:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.000001.] 0.21%

553:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<1E-8.....] 0.21%

554:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.000001.] 1.68%

555:0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<1E-9.....] 1.05%

556:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<1E-9.....] 0.21%

557:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<1E-9.....] 0.21%

558:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-9.....] 0.21%

559:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-10....] 0.21%

560:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-10....] 0.21%

561:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<1E-9.....] 0.42%

562:0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-9.....] 1.47%

563:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 0.63%

564:0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 1.05%

565:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 0.21%

566:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-10....] 0.63%

567:0b.........A Dns:[<0.00001..] Ins:[XX........] Vol:[<1E-10....] 13.03%

568:0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-12....] 1.47%

569:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-11....] 0.21%

570:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.63%

571:Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.21%

572:Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.21%

573:Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.63%

574:Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-11....] 0.42%

575:Ba.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-12....] 0.21%

188

576:Ba.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-12....] 0.21%

577:Ba.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-13....] 0.21%

578:Ba.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-13....] 0.42%

579:Ba.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-13....] 0.63%

580:Ba.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-14....] 0.42%

581:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 7.35%

582:Ba.........A Dns:[<0.1......] Ins:[X.........] Vol:[<1E-16....] 0.21%

583:Ba.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-16....] 0.63%

A.3 The musk2 Dataset

The mixing of binnings resulted in 722 bins for the musk2 dataset. The TUBE

clusterer found two clusters.

Cluster Bin List: 0

Mode Bin: 0

0 :0abbbbbbbbbB Dns:[XXXX......] Ins:[X.........] Vol:[<1E-15....] 1.85%

1 :0aaaaabbbbbB Dns:[XXXXXXXXXX] Ins:[XX........] Vol:[<1E-14....] 19.38%

2 :Abbb.......B Dns:[X.........] Ins:[<0.1......] Vol:[<1E-16....] 0.06%

3 :0ab........B Dns:[XX........] Ins:[X.........] Vol:[<1E-15....] 0.41%

4 :0ab........B Dns:[XXX.......] Ins:[X.........] Vol:[<1E-16....] 0.2%

5 :Ab.........B Dns:[X.........] Ins:[<0.1......] Vol:[<1E-15....] 0.02%

6 :0a.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-14....] 0.29%

7 :Ab.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-14....] 0.11%

8 :0a.........B Dns:[X.........] Ins:[X.........] Vol:[<1E-13....] 0.61%

9 :0a.........B Dns:[X.........] Ins:[<0.1......] Vol:[<1E-14....] 0.09%

10 :0a.........B Dns:[<0.1......] Ins:[<0.1......] Vol:[<1E-14....] 0.05%

11 :0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-12....] 0.8 %

12 :0a.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-12....] 0.3%

13 :0a.........B Dns:[<0.1......] Ins:[X.........] Vol:[<1E-12....] 0.15%

14 :0a.........B Dns:[<0.01.....] Ins:[<0.1......] Vol:[<1E-13....] 0.08%

15 :0a.........B Dns:[<0.1......] Ins:[XX........] Vol:[<1E-11....] 10.64%

16 :Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 0.17%

17 :0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 0.35%

18 :0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.33%

19 :0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 1.68%

20 :0a.........B Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.06%

21 :0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 0.95%

22 :Ab.........B Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.09%

23 :0a.........B Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.05%

24 :0a.........B Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.05%

25 :Ab.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

26 :0a.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

189

27 :-..........- Dns:[] Ins:[] Vol:[<1E-16....] 0.0%

...

...

269:-..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%

270:Ba.........A Dns:[<1E-15....] Ins:[<0.1......] Vol:[X.........] 0.08%

271:Ba.........A Dns:[<1E-14....] Ins:[X.........] Vol:[X.........] 0.14%

272:Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.03%

273:Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.06%

274:Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.06%

275:Ba.........A Dns:[<1E-13....] Ins:[<0.1......] Vol:[<0.1......] 0.02%

276:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.11%

277:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.01.....] 0.06%

278:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.01.....] 0.03%

279:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.02%

280:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.18%

281:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.18%

282:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.01.....] 0.17%

283:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

284:Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.01.....] 0.35%

285:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

286:Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.06%

287:Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.02%

288:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.15%

289:Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

290:Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.08%

291:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.52%

292:Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.11%

293:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.17%

294:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.83%

295:Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.0001...] 0.02%

296:0b.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 1.56%

297:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.21%

298:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.0001...] 0.17%

299:Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.03%

300:Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.03%

301:Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.0001...] 0.05%

302:Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.0001...] 0.26%

303:0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.001....] 1.21%

304:Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.02%

305:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

306:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.15%

307:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.21%

308:0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.27%

309:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

190

310:0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 2.3%

311:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

312:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

313:0b.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.0001...] 1.94%

314:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.06%

315:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.08%

316:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.11%

317:Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.61%

318:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.03%

319:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

320:Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.03%

321:Ba.........A Dns:[<1E-8.....] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

322:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 0.8%

323:Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 0.15%

324:Ba.........A Dns:[<1E-8.....] Ins:[<0.1......] Vol:[<0.000001.] 0.02%

325:0b.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 2.29%

326:0b.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 0.39%

327:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.05%

328:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 0.27%

329:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.06%

330:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

331:Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 0.15%

332:0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 1.29%

333:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 1.39%

334:0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 1.94%

335:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.05%

336:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 0.71%

337:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.02%

338:Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.05%

339:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.06%

340:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.02%

341:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.08%

342:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.09%

343:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 0.7%

344:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 2.52%

345:Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-9.....] 0.15%

346:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-8.....] 0.85%

347:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 1.38%

348:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-10....] 0.02%

349:0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.32%

350:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-10....] 0.02%

351:Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.06%

352:0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-8.....] 2.68%

353:Ba.........A Dns:[<0.0001...] Ins:[<0.1......] Vol:[<1E-10....] 0.05%

191

354:0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-9.....] 0.44%

355:0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-9.....] 1.09%

356:0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.24%

357:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 0.39%

358:Ba.........A Dns:[<0.0001...] Ins:[<0.1......] Vol:[<1E-11....] 0.05%

359:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-9.....] 2.93%

360:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 1.18%

361:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-9.....] 7.29%

362:Ba.........A Dns:[<0.001....] Ins:[<0.1......] Vol:[<1E-12....] 0.02%

363:0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 2.58%

364:Ba.........A Dns:[<0.001....] Ins:[<0.1......] Vol:[<1E-12....] 0.02%

365:Ba.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 0.18%

366:0b.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-11....] 0.82%

367:Ba.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-11....] 0.77%

368:Ba.........A Dns:[<0.01.....] Ins:[<0.1......] Vol:[<1E-12....] 0.03%

369:Ba.........A Dns:[<0.01.....] Ins:[<0.1......] Vol:[<1E-13....] 0.02%

370:0b.........A Dns:[<0.1......] Ins:[X.........] Vol:[<1E-12....] 1.18%

371:Ba.........A Dns:[<0.1......] Ins:[<0.1......] Vol:[<1E-14....] 0.03%

372:Ba.........A Dns:[X.........] Ins:[<0.1......] Vol:[<1E-14....] 0.02%

373:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 0.11%

374:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-13....] 4.88%

375:0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-14....] 0.17%

Cluster Bin List: 1

Mode Bin: 0

0 : 0a.........B Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-12....] 0.32%

1 : Ab.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-11....] 0.17%

2 : 0a.........B Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.18%

3 : 0a.........B Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 1.68%

4 : 0a.........B Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.06%

5 : Ab.........B Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.09%

6 : 0a.........B Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.05%

7 : Ab.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

8 : 0a.........B Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

9 : -..........- Dns:[] Ins:[] Vol:[<1E-16....] 0.0%

...

...

245: -..........- Dns:[] Ins:[] Vol:[XXXXXXXXX.] 0.0%

246: Ba.........A Dns:[<1E-15....] Ins:[<0.1......] Vol:[X.........] 0.08%

247: Ba.........A Dns:[<1E-14....] Ins:[X.........] Vol:[X.........] 0.14%

248: Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.03%

249: Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.06%

250: Ba.........A Dns:[<1E-14....] Ins:[<0.1......] Vol:[<0.1......] 0.06%

192

251: Ba.........A Dns:[<1E-13....] Ins:[<0.1......] Vol:[<0.1......] 0.02%

252: Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.11%

253: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.01.....] 0.06%

254: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.01.....] 0.03%

255: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.02%

256: Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.18%

257: Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.1......] 0.18%

258: Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.01.....] 0.17%

259: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

260: Ba.........A Dns:[<1E-12....] Ins:[X.........] Vol:[<0.01.....] 0.35%

261: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

262: Ba.........A Dns:[<1E-12....] Ins:[<0.1......] Vol:[<0.001....] 0.06%

263: Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.02%

264: Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.15%

265: Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.03%

266: Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.06%

267: Ba.........A Dns:[<1E-11....] Ins:[<0.1......] Vol:[<0.001....] 0.08%

268: Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.52%

269: Ba.........A Dns:[<1E-11....] Ins:[X.........] Vol:[<0.001....] 0.11%

270: Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.17%

271: Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.83%

272: Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.0001...] 0.02%

273: 0b.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 1.56%

274: Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.001....] 0.21%

275: Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.0001...] 0.17%

276: Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.03%

277: Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.03%

278: Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.0001...] 0.05%

279: Ba.........A Dns:[<1E-10....] Ins:[X.........] Vol:[<0.0001...] 0.26%

280: 0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.001....] 1.21%

281: Ba.........A Dns:[<1E-10....] Ins:[<0.1......] Vol:[<0.00001..] 0.02%

282: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.09%

283: Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.15%

284: Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.21%

285: 0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.27%

286: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.06%

287: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

288: 0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 2.3%

289: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

290: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.05%

291: 0b.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.0001...] 1.94%

292: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.06%

293: 0b.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.44%

294: Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.33%

193

295: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.00001..] 0.08%

296: Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.00001..] 0.11%

297: Ba.........A Dns:[<1E-9.....] Ins:[X.........] Vol:[<0.0001...] 0.61%

298: 0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<1E-8.....] 0.11%

299: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.03%

300: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

301: Ba.........A Dns:[<1E-9.....] Ins:[<0.1......] Vol:[<0.000001.] 0.03%

302: Ba.........A Dns:[<1E-8.....] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

303: Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 0.8%

304: Ba.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 0.15%

305: Ba.........A Dns:[<1E-8.....] Ins:[<0.1......] Vol:[<0.000001.] 0.02%

306: Ba.........A Dns:[<1E-8.....] Ins:[<0.1......] Vol:[<0.000001.] 0.02%

307: 0b.........A Dns:[<1E-8.....] Ins:[X.........] Vol:[<0.00001..] 2.29%

308: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.05%

309: Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 0.27%

310: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.06%

311: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<0.000001.] 0.08%

312: Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 0.15%

313: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.03%

314: Ba.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 0.86%

315: 0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 1.29%

316: 0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 1.39%

317: 0b.........A Dns:[<0.000001.] Ins:[X.........] Vol:[<0.000001.] 1.94%

318: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.05%

319: 0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 0.71%

320: Ba.........A Dns:[<0.000001.] Ins:[<0.1......] Vol:[<1E-9.....] 0.02%

321: Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.06%

322: Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.02%

323: Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.08%

324: Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-9.....] 0.09%

325: 0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 0.7%

326: Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-9.....] 0.15%

327: 0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<0.000001.] 1.38%

328: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.32%

329: Ba.........A Dns:[<0.00001..] Ins:[<0.1......] Vol:[<1E-10....] 0.03%

330: Ba.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-9.....] 0.15%

331: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-9.....] 0.45%

332: 0b.........A Dns:[<0.00001..] Ins:[X.........] Vol:[<1E-8.....] 2.68%

333: Ba.........A Dns:[<0.0001...] Ins:[<0.1......] Vol:[<1E-10....] 0.05%

334: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-9.....] 0.44%

335: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-9.....] 1.09%

336: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.24%

337: 0b.........A Dns:[<0.0001...] Ins:[X.........] Vol:[<1E-10....] 0.35%

338: 0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-9.....] 2.93%

194

339: 0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 1.18%

340: Ba.........A Dns:[<0.001....] Ins:[<0.1......] Vol:[<1E-12....] 0.02%

341: 0b.........A Dns:[<0.001....] Ins:[X.........] Vol:[<1E-10....] 2.58%

342: 0b.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-11....] 0.82%

343: 0b.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-11....] 1.38%

344: Ba.........A Dns:[<0.01.....] Ins:[X.........] Vol:[<1E-11....] 0.77%

345: Ba.........A Dns:[<0.01.....] Ins:[<0.1......] Vol:[<1E-12....] 0.03%

346: Ba.........A Dns:[<0.1......] Ins:[<0.1......] Vol:[<1E-14....] 0.03%

347: 0b.........A Dns:[X.........] Ins:[X.........] Vol:[<1E-15....] 0.11%

195

196

Appendix B

Command Line Program Calls

This document is a short user guide for the programs developed in the thesis

Tree-based Density Estimation: Algorithms and Applications [?]. It

lists for each application introduced in the thesis relevant examples of java

program calls of the corresponding classes from the command line. All pro-

grams for this thesis have been implemented in Java and are based on the

WEKA machine learning tool set [68]. (Note, all command lines given in this

appendix perform only simple 10-fold cross-validation but most experiments

performed for the work in this thesis used 10 × 10 cross-validation using the

WEKA experiment environment.)

197

198

Appendix C

Program Calls Used in

Application Discretization

C.1 Drawing Histograms

Drawing a 10 Bin Equal-Width Histogram Output data for gnuplot

to print an equal-width histogram with 10 bins (-B 10); the input file is

gauss.arff (-i gauss.arff) and the output file suffix is gauss-B10 (-X

gauss-B10).

java weka.estimators.EqualWidthEstimator -i gauss.arff -B 10 \

-V 8 -X gauss-B10

[plot with gnuplot]

plot ’gauss-B10-0EW.hist’ title "EW 10 bins" with lines

Drawing a 10 Bin Equal-Frequency Histogram

java weka.estimators.EqualFrequencyEstimator -i gauss.arff -B 10 \

-V 8 -X gauss-B10

[plot with gnuplot]

plot ’gauss-B10-0EF.hist’ title "EF 10 bins" with lines

199

Drawing a TUBE Histogram with a fixed number of bins

java weka.estimators.TUBEstimator -i gauss.arff -B 10 \

-V 8 -X gauss-B10

[plot with gnuplot]

plot ’gauss-B10-V8-0LL.hist’ title "TUBE 10 bins" with lines

Drawing a TUBE Histogram, TUBE computes the number of bins

using cross-validation

java weka.estimators.TUBEstimator -i gauss.arff -B 10 \

-V 8 -X gauss

[plot with gnuplot]

plot ’gauss-0LL.hist’ title "TUBE CV" with lines

C.2 Discretizing

(TUBE) TUBE discretization with cross-validation for the number of bins

(default).

java weka.estimators.TUBEstimator -i iris01.arff

(EW-10) Equal-width discretization with ten bins.

java weka.estimators.EqualWidthEstimator -i iris01.arff -B 10

(EWcvB) Equal-width discretization with cross-validation for the number

of bins (- Y); the maximum number of bins is set to 100 (-B 100).

java weka.estimators.EqualWidthEstimator -i iris01.arff -Y -B 100

(EWcvBO) Equal-width discretization with cross-validation for the origin

of the bins (- Z) and the number of bins (- Y); the maximum number of bins

is set to 100 (-B 100).

java weka.estimators.EqualWidthEstimator -i iris01.arff -Y -Z -B 100

200

(EF-10) Equal-frequency discretization with ten bins.

java weka.estimators.EqualFrequencyEstimator -i iris01.arff -B 10

201

202

Appendix D

Program Calls Used in

Application Naive Bayes

Introduction: Naive Bayes classifier used with varying estimators

In WEKA the standard implementation of a naive Bayes classifier is the class

NaiveBayes. NaiveBayes uses Gaussian distributions for density estimation.

The class NaiveBayesParametrized substitutes the Gaussian estimators with

an estimator given in the parameter -E.

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.EqualWidthEstimator -B 10"

(Gauss) Naive Bayes classifier using Gaussian distribution.

java weka.classifiers.bayes.NaiveBayes -t iris.arff

(TUBE-CV) Naive Bayes classifier using TUBE histograms; the number

of bins is cross-validated (default); the maximum number of bins is 100 (-B

100).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.TUBEstimator -B 100"

(EW-CV) Naive Bayes classifier using equal-width histograms; the number

of bins is cross-validated (-Z); the maximum number of bins is 100 (-B 100).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.EqualWidthEstimator -Z -B 100"

203

(TUBE-02) Naive Bayes classifier using TUBE histograms; TUBE with the

cut distance set to 0.1 (-Z 0.1) and the minimal bin width set to 0.2 (-L -U

2); the number of bins is cross-validated (default); the maximum number of

bins is 100 (-B 100).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.TUBEstimator -L -Z 0.1 -U 2 -B 100 "

(TUBE-15) Naive Bayes classifier using TUBE histograms; TUBE with the

cut distance set to 0.1 (-Z 0.1) and the minimal bin width set to 0.2 (-L -U

2); the number of bins is cross-validated (default); the maximum number of

bins is 15 (-B 15).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.TUBEstimator -L -Z 0.1 -U 2 -B 15"

(TUBE-EW) Naive Bayes classifier using TUBE histograms; TUBE esti-

matior with the cut distance and the minimal bin width set using equal-width

heuristic (-L -U 4); the number of bins is cross-validated (default); the max-

imum number of bins is 100 (-B 100).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.TUBEstimator -L -U 4 -B 100 "

(EW-15) Naive Bayes classifier using equal-width histograms; the number

of bins is fixed to 15 (-B 15).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.EqualWidthEstimator -B 15"

(EW-30) Naive Bayes classifier using equal-width histograms; the number

of bins is fixed to 30 (-B 30).

java weka.classifiers.bayes.NaiveBayesParametrized -t iris.arff \

-E "weka.estimators.EqualWidthEstimator -B 30"

204

Appendix E

Program Calls Used for

Presentation Methods

E.1 Bin Lists

Bin List Generated Using the MultiTUBE Estimator java -Xmx1500M

weka.estimators.MultiTUBE -i musk1-propositional.arff -V17 -B 10 -N ¿musk1-

B10-V17.binpos

E.2 Bin Lists for Two-Class Problems

Bin List Generated Using MultiTUBEClusterer

java -Xmx1500M weka.clusterers.MultiTUBEClusterer \

-t musk1_propositional.arff -T musk1-propositional.arff -V 19 -L last -C 1 -X \

-E "weka.estimators.MultiTUBE -B 50 -N" >musk1-B50-C1-V19.binlist

Bin List After Using the Mixing of Binnings Method

java -Xmx1500M weka.clusterers.MultiTUBEClusterer \

-t musk1_propositional.arff -T musk1-propositional.arff -V 19 -L last -C 3 -Y 2 -X \

-E "weka.estimators.MultiTUBE -B 10 -N" >musk1-B50-C3-Y2-V19.binlist

E.3 Bin Position Overview

java -Xmx1500M weka.clusterers.MultiTUBEClusterer \

-t musk1_propositional.arff -T musk1-propositional.arff -V 9 -L last -C 1 -X \

-E "weka.estimators.MultiTUBE -B 10 -N" >musk1-B10-C1-V9.binpos

205

206

Appendix F

Program Calls Used in

Application Clustering

F.1 Generating the Example Datasets

Introduction: WEKA Subspace Data Generator For the evaluation

of the application clustering all datasets used were generated using WEKA’s

subspace data generator (generating arff datasets). The class SubspaceCluster

has parameters to set the number of attributes (-a 4), if a class attribute is

generated or not (-c), the percentage of generated noise (-P 10 for 10 percent

noise), the output file name for the generated arff-file (-o test.arff) and the

value range for all attributes that are not listed in the attribute list of the

cluster (-s -10.0,10.0).

Several clusters can be defined with each a -C parameter list containing:

the type of cluster specified (-G for Gaussian, -A for uniformly distributed),

the dimensions of the cluster (-D ..,..,... for uniform distributions the

minimal and the maximal value of the range, for Gaussian distributions the

mean value and the standard deviation are given), and the number of instances

in this cluster (-N 100..200).

In the example below the WEKA subspace clusterer generates two clusters.

The first cluster is normally distributed around the mean point (2.0, 4.0, .., ..)

and has the standard deviation 1.0 in both attributes. This cluster is clustered

in the subspace of the first two attributes only and is normally distributed in

the last two attributes in the range [−10.0, 10.0]. A value between 100 and

200 is randomly selected as number of instances in this cluster.

The second cluster is a subspace cluster in the third and fourth attribute

207

and is there randomly uniform distributed between 8.0 and 9.0 in attribute 3

and between 6.0 and 7.0 in attribute 4. The first two attribute values of the

instances in this cluster are uniformly distributed in the range [−10.0, 10.0].

For this second cluster 300 instances are generated in this fashion.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 4 \

-s -10.0,10.0 -o test.arff \

-C "-G 1,2 -D 2.0,1.0,4.0,1.0 -N 100..200" \

-C "-A 3,4 -D 8.0,9.0,6.0,7.0 -N 300..300"

Example 1: Dataset with three clusters in fifteen dimensions, each

with three relevant attributes.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 15 \

-s -3.4,12.6 -o appcluster_multi_3_Vers2.arff \

-C "-G 1,2,3 -D 2.0,1.0,4.0,1.0,1.0,1.0 -N 200..200" \

-C "-G 1,2,4 -D 8.0,1.0,0.0,1.0,4.0,1.0 -N 200..200" \

-C "-G 2,3,4 -D 10.0,1.0,7.0,1.0,9.0,1.0 -N 200..200"

Example 2: Dataset with three clusters in four dimensions, each

with three relevant attributes.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 4 \

-s -2.3,12.6 -o appcluster_multi_3_Vers3.arff \

-C "-G 1,2,3 -D 2.0,1.0,4.0,1.0,1.0,1.0 -N 200..200" \

-C "-G 1,2,4 -D 8.0,1.0,0.0,1.0,4.0,1.0 -N 200..200" \

-C "-G 2,3,4 -D 10.0,1.0,7.0,1.0,9.0,1.0 -N 200..200"

Example 3: Dataset with eight clusters in four dimensions, with

three relevant attributes each.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 15 \

-s 0.0,10.0 -o appcluster_multi_3_Vers4.arff \

-C "-G 1,2,3 -D 2.0,1.0,4.0,1.0,8.0,1.0 -N 500..500" \

-C "-G 1,2,4 -D 4.0,1.0,8.0,1.0,4.0,1.0 -N 500..500" \

-C "-G 2,3,4 -D 2.0,1.0,2.0,1.0,8.0,1.0 -N 500..500" \

-C "-G 1,2,3 -D 8.0,1.0,4.0,1.0,4.0,1.0 -N 500..500" \

-C "-G 1,2,4 -D 2.0,1.0,8.0,1.0,2.0,1.0 -N 500..500" \

-C "-G 2,3,4 -D 2.0,1.0,8.0,1.0,2.0,1.0 -N 500..500" \

208

-C "-G 1,2,3 -D 4.0,1.0,4.0,1.0,2.0,1.0 -N 500..500" \

-C "-G 1,2,4 -D 8.0,1.0,8.0,1.0,8.0,1.0 -N 500..500"

Example 4: Example with diagonally set clusters. 2 datasets.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 2 \

-o appcluster_multi_3_Vers11.arff \

-C "-G 1,2 -D 2.0,1.0,2.0,1.0 -N 200..200" \

-C "-G 1,2 -D 7.0,1.0,2.0,1.0 -N 200..200" \

-C "-G 1,2 -D 12.0,1.0,2.0,1.0 -N 200..200"

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 2 \

-o appcluster_multi_3_Vers12.arff \

-C "-G 1,2 -D 2.0,1.0,2.0,1.0 -N 200..200" \

-C "-G 1,2 -D 7.0,1.0,2.0,1.0 -N 200..200" \

-C "-G 1,2 -D 12.0,1.0,4.5,1.0 -N 200..200" \

-C "-G 1,2 -D 4.5,1.0,7.0,1.0 -N 200..200"

Example 5: Datasets with Oblong-shaped Clusters. .

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 2 \

-s 0.0,10.0 -o appcluster_multi_3_Vers8.arff \

-C "-A 1,2 -D 2.0,3.0,2.0,3.0 -N 500..500" \

-C "-A 1,2 -D 2.0,3.0,8.0,14.0 -N 500..500"

Example 6: Dataset with Non-Convex Cluster.

java weka.datagenerators.clusterers.SubspaceCluster -P 10 -c -a 2 \

-o appcluster_multi_3_Vers9.arff \

-C "-A 1,2 -D 2.0,3.0,1.0,6.0 -N 500..500" \

-C "-A 1,2 -D 3.0,8.0,5.0,6.0 -N 500..500" \

-C "-A 1,2 -D 7.0,8.0,1.0,5.0 -N 500..500" \

-C "-A 1,2 -D 0.0,10.0,-1.0,8.0 -N 100..100"

F.2 Clustering with TUBE Clusterer

Introduction: TUBE Clusterer The class weka.clusterers.MultiTUBEClusterer

clusters the data given in arff format (-t test.arff), ignoring the attribute

209

given with its index as the -L parameter. Before the clustering the multi-

dimensional space is discretized using the multidimensional TUBE estimator

(MultiTUBE). The parameters of the MultiTUBE discretizer can be set via the

-E parameter.

java weka.clusterers.MultiTUBEClusterer -t test.arff -L last \

-E "weka.estimators.MultiTUBE -B 10"

Evaluation of the TUBE Clusterer All tests done to evaluate the TUBE

clusterer used the default setting of 100 bins for the discretization step.

java weka.clusterers.MultiTUBEClusterer -t test.arff -L last

210

Appendix G

Program Calls Used in

Application Multiple-Instance

Learning

G.1 Using TUBE Clusters for MI Classifica-

tion

Introduction: TUBE Multiple-instance Classifier TUBEMIC performes

clustering to find a cluster defining the positive concept area. In order to do

this it uses Ddiff (-Y 2) instead of the density for the bin ‘height’. Bins are

only accepted as part of the positive concept cluster if their density is above a

certain threshold (-P 90 sets the threshold to 90 percent). Also, in all exam-

ples TUBEMIC uses the mixing of binnings (-C 3). The number of bins is set

with the parameter list of the MultiTUBE estimator in the -E parameter.

(TMIC-90) TUBE multiple-instance classifier using 90 percent as density

threshold (-P 90); the mixing of binnings (-C 3) was performed with 10 bins

(-B 10) and uses Ddiff (-Y 2) instead of the density for the bin ‘height’.

java weka.classifiers.mi.TUBEMIC -t eastwest_relational.arff -P 90 \

-C "weka.clusterers.MultiTUBEClusterer -L last -C 3 -Y 2 \

-E \"weka.estimators.MultiTUBE -B 10\" "

(TMIC-70) and (TMIC-60) Same as TMIC-90 but with different thresh-

old settings (-P 70 and -P 60).

211

(MIDD) The results of the TUBE multiple-instance classifier were com-

pared with the Multiple-instance Diverse Density classifier

java weka.classifiers.mi.MIDD -t eastwest_relational.arff

G.2 Improving the Efficiency of the Diverse

Density Algorithm

Introduction: Diverse Density Augmented with TUBE The standard

Diverse Density classifier is implemented in the class MIDD. The TUBEDD

class implements the Diverse Density (MIDD) classifier augmented with TUBE.

The TUBE method computes starting points for the Diverse Density method

in two ways: as the centre point of the modes (default) bins or as randomly

selected training points from the mode bins (-S 6).

Mixing of Binnings Method The TUBE augmented DD method uses

the mixing of binnings method, which is implemented in the TUBE clus-

terer’s class MultiTUBEClusterer (-C 3, and for using Ddiff : -Y 2). The

number of bins is given with the specification of a MultiTUBE estimator (-E

"weka.estimators.MultiTUBE -B 5").

(TUBE-5) Diverse Density augmented with TUBE: using five bins (-B 5)

in the histograms generated for the mixing of binnings (-C 3 -Y 2) and using

the centre point of the mode (default) as starting point.

java weka.classifiers.mi.TUBEDD -t eastwest_relational.arff \

-C "weka.clusterers.MultiTUBEClusterer -L last -C 3 -Y 2 \

-E \"weka.estimators.MultiTUBE -B 5\" "

(TUBE-10) Diverse Density augmented with TUBE: using ten bins (-B 10)

in the histograms generated for the mixing of binnings (-C 3 -Y 2) and using

the centre point of the mode (default) as starting point.

java weka.classifiers.mi.TUBEDD -t eastwest_relational.arff \

-C "weka.clusterers.MultiTUBEClusterer -L last -C 3 -Y 2 \

-E \"weka.estimators.MultiTUBE -B 10\" "

212

(TUBE-10-rand) Diverse Density augmented with TUBE: using ten bins

(-B 10) in the histograms generated for the mixing of binnings (-C 3 -Y 2),

and using a training instance randomly selected from the concept area (-S 6)

as starting point.

java weka.classifiers.mi.TUBEDD -t eastwest_relational.arff -S 6 \

-C "weka.clusterers.MultiTUBEClusterer -L last -C 3 -Y 2 \

-E \"weka.estimators.MultiTUBE -B 10\" "

(MIDD) Multiple-instance Diverse Density classifier.

java weka.classifiers.mi.MIDD -t eastwest_relational.arff

213

214

Bibliography

[1] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and

Jong Soo Park. Fast algorithms for projected clustering. SIGMOD Rec.,

28(2):61–72, 1999. 138

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar

Raghavan. Automatic subspace clustering of high dimensional data for

data mining applications. In ACM SIGMOD Conference, pages 94–105,

1998. 27, 138

[3] Hald Anders. A history of parametric statistical inference from Bernoulli

to Fisher, 1713-1935. Springer, New York, 2007. 2, 4

[4] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support

vector machines for multiple-instance learning. In In Advances in Neural

Information Processing Systems 15, pages 561–568. MIT Press, 2003. 155,

157

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg

Sander. OPTICS: Ordering points to identify the clustering structure.

In Proc. ACM SIGMOD99 Int. Conf. on Management of Data, pages

49–60, 1999. 138, 139

[6] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

57, 61, 76, 81, 115, 118, 147

[7] Stephen D. Bay. Multivariate discretization of continuous variables for

set mining. In In: Proceedings of the Sixth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 315–319.

Morgan Kaufmann, 2000. 56

[8] Pavel Berkhin. Survey of clustering data mining techniques. Technical

report, Accrue Software, San Jose, CA, 2002. 123, 139

215

[9] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J.

Stone. CART: Classification and Regression Trees. Wadsworth Interna-

tional Group, Belmont, California, 1984. 3, 18, 19, 20, 49

[10] Jason Catlett. On changing continuous attributes into ordered discrete

attributes. In Proc. Machine Learning - EWLS-91, pages 164–178, 1999.

56

[11] Yann Chevaleyre and Jean-Daniel Zucker. A framework for learning rules

from multiple instance data. In Proceedings of the 12th European Con-

ference on Machine Learning (ECML-01), pages 49–60. Springer-Verlag,

2001. 155

[12] Scott Davies and Andrew Moore. Interpolating conditional density trees.

A. Darwiche, N. Friedman (Eds.), Uncertainty in Artificial Intelligence,

18:119–127, 2002. 80

[13] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood estima-

tion from incomplete data via the EM algorithm. Journal Royal Statistical

Society B, 39:1–38, 1977. 139, 140

[14] Thomas G. Dietterich, Richard H. Lathrop, and Tomas LozanoPerez.

Solving the multiple instance problem with axis-parallel rectangles. Arti-

ficial Intelligence, 89(1-2):31–71, 1997. 153, 155, 156, 159

[15] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and

unsupervised discretization of continuous features. In Proceedings of the

Twelfth International Conference on Machine Learning, pages 194–202.

Morgan Kaufmann, 1995. 55, 78, 80

[16] Robert P.W. Duin. On the choice of smoothing parameters for parzen

estimators of probability density functions. IEEE Transactions on Com-

puters, 25:1175–1179, 1976. 14

[17] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A

density-based algorithm for discovering clusters in large spatial databases.

In Second International Conference on Knowledge Discovery and Data

Mining, pages 226–231. AAAI Press, 1996. 138

[18] Usama M. Fayyad and Keki B. Irani. Multi-interval discretization of

continuous valued attributes for classification learning. In Proc. of the

216

Thirteenth International Joint Conference on Artificial Intelligence, pages

1022–1027, 1993. 25, 32, 37, 42, 56, 80, 180

[19] James Foulds and Eibe Frank. Revisiting multiple-instance learning via

embedded instance selection. In Proc 21st Australasian Joint Conference

on Artificial Intelligence, Auckland, New Zealand. Springer, 2008. 162

[20] Eibe Frank. Pruning Decision Trees and Lists. PhD thesis, Department

of Computer Science, University of Waikato, 2000. 19, 23, 24

[21] Eibe Frank and Ian H. Witten. Making better use of global discretiza-

tion. Proc. of the Sixteenth International Conference on Machine Learn-

ing, pages 115–123, 1999. 53

[22] Eibe Frank and Xin Xu. Applying propositional learning algorithms to

multi-instance data. Technical Report 06/03, Department of Computer

Science, University of Waikato, 2003. 155

[23] Mark A. Hall. Correlation-based Feature Selection for Machine Learning.

PhD dissertation. PhD thesis, Department of Computer Science, Univer-

sity of Waikato, 1998. 13

[24] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Tech-

niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

second edition, 2006. 2, 22, 40, 54, 57, 135, 136, 139, 140, 150

[25] John A. Hartigan. Clustering Algorithms. John Wiley & Sohn, Inc., New

York, 1975. 135

[26] Trevor Hastie, Robert Tibishirani, and Jerome Friedman. The Elements

of Statistical Learning. Springer, 2001. 1, 18, 32

[27] David C. Hoaglin, Frederick Mosteller, and John W. Tukey. Understand-

ing Robust and Exploratory Data Analysis. Wiley, 1983. 3

[28] Geoffrey Holmes, Bernhard Pfahringer, Richard Kirkby, Eibe Frank, and

Mark Hall. Multiclass alternating decision trees. In Proc 13th Euro-

pean Conference on Machine Learning, Helsinki, Finland, pages 161–172.

Springer, 2002. 20

[29] Robert C. Holte. Very simple classification rules perform well on most

commonly used datasets. In Machine Learning, pages 63–91, 1993. 56, 80

217

[30] Jenq-neng Hwang and Shyh-rong Lay. Nonparametric multivariate den-

sity estimation: A comparative study. IEEE Trans. Signal Processing,

42:2795–2810, 1994. 11

[31] Anil K. Jain, M. Narasimha Murty, and Patrick. J. Flynn. Data clustering:

a review. ACM Computing Surveys, 31(3):264–323, 1999. 132, 135

[32] Ruoming Jin, Yuri Breitbart, and Chibuike Muoh. Data discretization

unification. In Proceedings of the 7th IEEE International Conference on

Data Mining, pages 183–192, 2007. 26

[33] Karin Kailing, Hans-Peter Kriegel, Alexey Pryakhin, and Matthias Schu-

bert. Clustering multi-represented objects with noise. In Proc. ACM

SIGMOD99 Int. Conf. on Management of Data, pages 49–60, 1999. 154

[34] Randy Kerber. ChiMerge: Discretization of numeric attributes. In

AAAI-92, Proceedings Ninth National Conference on Artificial Intelli-

gence, pages 129–134. AAAI Press/The MIT Press, 1992. 55, 56

[35] Donald Ervin Knuth. The art of computer programming. Addison Wesley,

1973. 39

[36] Ron Kohavi and George H. John. Wrappers for feature subset selection.

Artificial Intelligence, Special issue on relevance, 97:273–324, 1997. 13

[37] Ron Kohavi and Mehran Sahami. Error-based and entropy-based dis-

cretization of continuous features. In Proceedings of the Seventeenth Inter-

national Conference on Machine Learning, pages 495–502. Morgan Kauf-

mann, 1996. 56

[38] Daphne Koller and Mehran Sahami. Toward optimal feature selection.

In Proceedings of the Thirteenth International Conference on Machine

Learning, pages 284–292. Morgan Kaufmann, 1996. 13

[39] Ming Li and Paul Vitalnyi. An introduction to Kolmogorov complexity

and its applications. Springer, New York, 1997. 25

[40] Huan Liu, Farhad Hussain, Chew Lim Tan, and Manoranjan Dash. Dis-

cretization: An enabling technique. Data Min. Knowl. Discov., 6(4):393–

423, 2002. 54, 55

218

[41] Philip M. Long and Lei Tan. PAC learning axis-aligned rectangles with re-

spect to product distributions from multiple-instance examples. In COLT

’96: Proceedings of the ninth annual conference on Computational learn-

ing theory, pages 228–234, New York, NY, USA, 1996. ACM. 159

[42] Machine Learning. (Monthly Journal), Kluwer Academic Publishers,

Boston, 1986-. 1

[43] Oded Maron. Learning from ambiguity. PhD thesis, Massachusetts Insti-

tute of Technology, 1998. 123, 153, 157, 158, 160, 161, 171

[44] Oded Maron and Tomas Lozano-Perez. A framework for multiple-instance

learning. In Advances in Neural Information Processing Systems, pages

570–576. MIT Press, 1998. 153, 155, 157

[45] Tom M. Mitchell. The discipline of machine learning, technical report. 1,

182

[46] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997. 18, 19, 22, 27

[47] Claude Nadeau and Yoshua Bengio. Inference for the generalization error.

Machine Learning, 52:239–281, 2003. 62, 81, 163, 165

[48] Emanuel Parzen. On estimation of a probability density function and

mode. The Annals of Mathematical Statistics, 33:1065–1076, 1962. 2, 11

[49] Bernhard Pfahringer. Compression-based discretization of continuous at-

tributes. In Proceedings of the 12th International Conference on Machine

Learning, pages 456–463. Morgan Kaufmann, 1995. 56

[50] John Ross Quinlan. C4.5: Programs for Machine Learning. Morgan

Kaufmann, 1993. 3, 18, 20, 21, 25, 98

[51] Jorma Rissanen. Information and complexity in statistical modeling.

Springer, New York, 2007. 25

[52] Stuart J. Russell and Peter Norvig. Artificial Intelligence. Prentice Hall,

2003. 20

[53] Cullen Schaffer. Selecting a classification method by cross-validation. Ma-

chine Learning, 13:135–143, 1993. 17, 22, 27

219

[54] Gabi Schmidberger and Eibe Frank. Unsupervised discretization using

tree-based density estimation. In Proc 9th European Conference on Prin-

ciples and Practice of Knowledge Discovery in Databases, Porto, Portugal,

pages 240–251. Springer, 2005. 29

[55] David W. Scott. On optimal and data-based histograms. Biometrika,

66:605–610, 1979. 3, 5

[56] David W. Scott. Multivariate Density Estimation: Theory, Practice and

Visualization. John Wiley & Sohn, Inc., 1992. 7, 12, 13, 18, 29

[57] David W. Scott and Stephan R. Sain. Multi-dimensional Density Estima-

tion, pages 229–263. Elsevier, 2004. 17

[58] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.

WaveCluster: A multi-resolution clustering approach for very large spa-

tial databases. In Proc. 24th Int. Conf. Very Large Data Bases, VLDB,

pages 428–439, 24–27 1998. 139

[59] Sven Siggelkow. Feature Histograms for Content-Based Image Retrieval.

PhD thesis, Albert-Ludwigs-Universität Freiburg, Fakultät für Ange-

wandte Wissenschaften, Germany, December 2002. 54

[60] Bernard W. Silverman. Density Estimation. Chapman and Hall, 1986.

12, 15, 16, 17, 42, 60, 125, 126

[61] Padhraic Smyth. Model selection for probabilistic clustering using cross-

validated likelihood. UCI-ICS Technical Report No.98-09, 1998. 17

[62] M. Stone. Cross-validatory choice and assessment of statistical predic-

tions. Journal of the Royal Statistical Society (Series B), 36, 36(2):111–

147, 1974. 17

[63] George R. Terrell and David W. Scott. Variable kernel density estimation.

The Annals of Statistics, 20:1236–1265, 1992. 12

[64] Christopher S. Wallace. Statistical and inductive inference by minimum

message length. Springer, New York, 2005. 25

[65] Jun Wang and Jean-Daniel Zucker. Solving the multiple-instance prob-

lem: A lazy learning approach. In Proceedings of the 17th International

Conference on Machine Learning, pages 1119–1125. Morgan Kaufmann,

2000. 155

220

[66] Wei Wang, Jiong Yang, and Richard R. Muntz. STING: A statistical

information grid approach to spatial data mining. In Matthias Jarke,

Michael J. Carey, Klaus R. Dittrich, Frederick H. Lochovsky, Pericles

Loucopoulos, and Manfred A. Jeusfeld, editors, Twenty-Third Interna-

tional Conference on Very Large Data Bases, pages 186–195, Athens,

Greece, 1997. Morgan Kaufmann. 26, 139

[67] Nils Weidmann, Eibe Frank, and Bernhard Pfahringer. A two-level learn-

ing method for generalized multi-instance problems. In Proc 14th Euro-

pean Conference on Machine Learning, Cavtat-Dubrovnik, Croatia, pages

468–479. Springer, 2003. 156, 159, 160

[68] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Morgan Kaufmann, San Francisco, 2 edition, 2005.

4, 6, 62, 79, 140, 141, 163, 197

[69] Ying Yang and Geoffrey Webb. Proportional k-interval discretization for

naive-bayes classifiers. In Proceedings of the 12th European Conference on

Machine Learning, pages 564–575. Springer, 2001. 55

[70] Ying Yang and Geoffrey I. Webb. A comparative study of discretiza-

tion methods for naive-bayes classifiers. In Proceedings of PKAW 2002:

The 2002 Pacific Rim Knowledge Acquisition Workshop, pages 159–173,

Tokyo, 2002. 47, 80

221

