315 research outputs found

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Get PDF
    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Applications of Coding Theory to Massive Multiple Access and Big Data Problems

    Get PDF
    The broad theme of this dissertation is design of schemes that admit iterative algorithms with low computational complexity to some new problems arising in massive multiple access and big data. Although bipartite Tanner graphs and low-complexity iterative algorithms such as peeling and message passing decoders are very popular in the channel coding literature they are not as widely used in the respective areas of study and this dissertation serves as an important step in that direction to bridge that gap. The contributions of this dissertation can be categorized into the following three parts. In the first part of this dissertation, a timely and interesting multiple access problem for a massive number of uncoordinated devices is considered wherein the base station is interested only in recovering the list of messages without regard to the identity of the respective sources. A coding scheme with polynomial encoding and decoding complexities is proposed for this problem, the two main features of which are (i) design of a close-to-optimal coding scheme for the T-user Gaussian multiple access channel and (ii) successive interference cancellation decoder. The proposed coding scheme not only improves on the performance of the previously best known coding scheme by ≈ 13 dB but is only ≈ 6 dB away from the random Gaussian coding information rate. In the second part construction-D lattices are constructed where the underlying linear codes are nested binary spatially-coupled low-density parity-check codes (SCLDPC) codes with uniform left and right degrees. It is shown that the proposed lattices achieve the Poltyrev limit under multistage belief propagation decoding. Leveraging this result lattice codes constructed from these lattices are applied to the three user symmetric interference channel. For channel gains within 0.39 dB from the very strong interference regime, the proposed lattice coding scheme with the iterative belief propagation decoder, for target error rates of ≈ 10^-5, is only 2:6 dB away the Shannon limit. The third part focuses on support recovery in compressed sensing and the nonadaptive group testing (GT) problems. Prior to this work, sensing schemes based on left-regular sparse bipartite graphs and iterative recovery algorithms based on peeling decoder were proposed for the above problems. These schemes require O(K logN) and Ω(K logK logN) measurements respectively to recover the sparse signal with high probability (w.h.p), where N, K denote the dimension and sparsity of the signal respectively (K (double backward arrow) N). Also the number of measurements required to recover at least (1 - €) fraction of defective items w.h.p (approximate GT) is shown to be cv€_K logN/K. In this dissertation, instead of the left-regular bipartite graphs, left-and- right regular bipartite graph based sensing schemes are analyzed. It is shown that this design strategy enables to achieve superior and sharper results. For the support recovery problem, the number of measurements is reduced to the optimal lower bound of Ω (K log N/K). Similarly for the approximate GT, proposed scheme only requires c€_K log N/ K measurements. For the probabilistic GT, proposed scheme requires (K logK log vN/ K) measurements which is only log K factor away from the best known lower bound of Ω (K log N/ K). Apart from the asymptotic regime, the proposed schemes also demonstrate significant improvement in the required number of measurements for finite values of K, N

    Applications of Coding Theory to Massive Multiple Access and Big Data Problems

    Get PDF
    The broad theme of this dissertation is design of schemes that admit iterative algorithms with low computational complexity to some new problems arising in massive multiple access and big data. Although bipartite Tanner graphs and low-complexity iterative algorithms such as peeling and message passing decoders are very popular in the channel coding literature they are not as widely used in the respective areas of study and this dissertation serves as an important step in that direction to bridge that gap. The contributions of this dissertation can be categorized into the following three parts. In the first part of this dissertation, a timely and interesting multiple access problem for a massive number of uncoordinated devices is considered wherein the base station is interested only in recovering the list of messages without regard to the identity of the respective sources. A coding scheme with polynomial encoding and decoding complexities is proposed for this problem, the two main features of which are (i) design of a close-to-optimal coding scheme for the T-user Gaussian multiple access channel and (ii) successive interference cancellation decoder. The proposed coding scheme not only improves on the performance of the previously best known coding scheme by ≈ 13 dB but is only ≈ 6 dB away from the random Gaussian coding information rate. In the second part construction-D lattices are constructed where the underlying linear codes are nested binary spatially-coupled low-density parity-check codes (SCLDPC) codes with uniform left and right degrees. It is shown that the proposed lattices achieve the Poltyrev limit under multistage belief propagation decoding. Leveraging this result lattice codes constructed from these lattices are applied to the three user symmetric interference channel. For channel gains within 0.39 dB from the very strong interference regime, the proposed lattice coding scheme with the iterative belief propagation decoder, for target error rates of ≈ 10^-5, is only 2:6 dB away the Shannon limit. The third part focuses on support recovery in compressed sensing and the nonadaptive group testing (GT) problems. Prior to this work, sensing schemes based on left-regular sparse bipartite graphs and iterative recovery algorithms based on peeling decoder were proposed for the above problems. These schemes require O(K logN) and Ω(K logK logN) measurements respectively to recover the sparse signal with high probability (w.h.p), where N, K denote the dimension and sparsity of the signal respectively (K (double backward arrow) N). Also the number of measurements required to recover at least (1 - €) fraction of defective items w.h.p (approximate GT) is shown to be cv€_K logN/K. In this dissertation, instead of the left-regular bipartite graphs, left-and- right regular bipartite graph based sensing schemes are analyzed. It is shown that this design strategy enables to achieve superior and sharper results. For the support recovery problem, the number of measurements is reduced to the optimal lower bound of Ω (K log N/K). Similarly for the approximate GT, proposed scheme only requires c€_K log N/ K measurements. For the probabilistic GT, proposed scheme requires (K logK log vN/ K) measurements which is only log K factor away from the best known lower bound of Ω (K log N/ K). Apart from the asymptotic regime, the proposed schemes also demonstrate significant improvement in the required number of measurements for finite values of K, N

    Raptor Codes for BIAWGN Channel: SNR Mismatch and the Optimality of the Inner and Outer Rates

    Get PDF
    Fountain codes are a class of rateless codes with two interesting properties, first, they can generate potentially limitless numbers of encoded symbols given a finite set of source symbols, and second, the source symbols can be recovered from any subset of encoded symbols with cardinality greater than the number of source symbols. Raptor codes are the first implementation of fountain codes with linear complexity and vanishing error floors on noisy channels. Raptor codes are designed by the serial concatenation of an inner Luby trans-form (LT) code, the first practical realization of fountain codes, and an outer low-density parity-check (LDPC) code. Raptor codes were designed to operate on the binary erasure channel (BEC), however, since their invention they received considerable attention in or-der to improve their performance on noisy channels, and especially additive white Gaussiannoise (AWGN) channels. This dissertation considers two issues that face Raptor codes on the binary input additive white Gaussian noise (BIAWGN) channel: inaccurate estimation of signal to noise ratio (SNR) and the optimality of inner and outer rates. First, for codes that use a belief propagation algorithm (BPA) in decoding, such as Raptor codes on the BIAWGN channel, accurate estimation of the channel SNR is crucial to achieving optimal performance by the decoder. A difference between the estimated SNR and the actual channel SNR is known as signal to noise ratio mismatch (SNRM). Using asymptomatic analysis and simulation, we show the degrading effects of SNRM on Raptor codes and observe that if the mismatch is large enough, it can cause the decoding to fail. Using the discretized density evolution (DDE) algorithm with the modifications required to simulate the asymptotic performance in the case of SNRM, we determine the decoding threshold of Raptor codes for different values of SNRM ratio. Determining the threshold under SNRM enables us to quantify its effects which in turn can be used to reach important conclusions about the effects of SNRM on Raptor codes. Also, it can be used to compare Raptor codes with different designs in terms of their tolerance to SNRM. Based on the threshold response to SNRM, we observe that SNR underestimation is slightly less detrimental to Raptor codes than SNR overestimation for lower levels of mismatch ratio, however, as the mismatch increases, underestimation becomes more detrimental. Further, it can help estimate the tolerance of a Raptor code, with certain code parameters when transmitted at some SNR value, to SNRM. Or equivalently, help estimate the SNR needed for a given code to achieve a certain level of tolerance to SNRM. Using our observations about the performance of Raptor codes under SNRM, we propose an optimization method to design output degree distributions of the LT part that can be used to construct Raptor codes with more tolerance to high levels of SNRM. Second, we study the effects of choosing different values of inner and outer code rate pairs on the decoding threshold and performance of Raptor codes on the BIAWGN channel. For concatenated codes such as Raptor codes, given any instance of the overall code rate R, different inner (Ri) and outer (Ro) code rate combinations can be used to share the available redundancy as long asR=RiRo. Determining the optimal inner and outer rate pair can improve the threshold and performance of Raptor codes. Using asymptotic analysis, we show the effect of the rate pair choice on the threshold of Raptor codes on the BIAWGN channel and how the optimal rate pair is decided. We also show that Raptor codes with different output degree distributions can have different optimal rate pairs, therefore, by identifying the optimal rate pair we can further improve the performance and avoid suboptimal use of the code. We make the observation that as the outer rate of Raptor codes increases the potential of achieving better threshold increases, and provide the reason why the optimal outer rate of Raptor codes cannot occur at lower values. Finally, we present an optimization method that considers the optimality of the inner and outer rates in designing the output degree distribution of the inner LT part of Raptor codes. The designed distributions show improvement in both the decoding threshold and performance compared to other code designs that do not consider the optimality of the inner and outer rates

    Diagnosis of weaknesses in modern error correction codes: a physics approach

    Full text link
    One of the main obstacles to the wider use of the modern error-correction codes is that, due to the complex behavior of their decoding algorithms, no systematic method which would allow characterization of the Bit-Error-Rate (BER) is known. This is especially true at the weak noise where many systems operate and where coding performance is difficult to estimate because of the diminishingly small number of errors. We show how the instanton method of physics allows one to solve the problem of BER analysis in the weak noise range by recasting it as a computationally tractable minimization problem.Comment: 9 pages, 8 figure

    Decomposition Methods for Large Scale LP Decoding

    Full text link
    When binary linear error-correcting codes are used over symmetric channels, a relaxed version of the maximum likelihood decoding problem can be stated as a linear program (LP). This LP decoder can be used to decode error-correcting codes at bit-error-rates comparable to state-of-the-art belief propagation (BP) decoders, but with significantly stronger theoretical guarantees. However, LP decoding when implemented with standard LP solvers does not easily scale to the block lengths of modern error correcting codes. In this paper we draw on decomposition methods from optimization theory, specifically the Alternating Directions Method of Multipliers (ADMM), to develop efficient distributed algorithms for LP decoding. The key enabling technical result is a "two-slice" characterization of the geometry of the parity polytope, which is the convex hull of all codewords of a single parity check code. This new characterization simplifies the representation of points in the polytope. Using this simplification, we develop an efficient algorithm for Euclidean norm projection onto the parity polytope. This projection is required by ADMM and allows us to use LP decoding, with all its theoretical guarantees, to decode large-scale error correcting codes efficiently. We present numerical results for LDPC codes of lengths more than 1000. The waterfall region of LP decoding is seen to initiate at a slightly higher signal-to-noise ratio than for sum-product BP, however an error floor is not observed for LP decoding, which is not the case for BP. Our implementation of LP decoding using ADMM executes as fast as our baseline sum-product BP decoder, is fully parallelizable, and can be seen to implement a type of message-passing with a particularly simple schedule.Comment: 35 pages, 11 figures. An early version of this work appeared at the 49th Annual Allerton Conference, September 2011. This version to appear in IEEE Transactions on Information Theor
    corecore