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ABSTRACT

The broad theme of this dissertation is design of schemes that admit iterative al-

gorithms with low computational complexity to some new problems arising in massive

multiple access and big data. Although bipartite Tanner graphs and low-complexity

iterative algorithms such as peeling and message passing decoders are very popular

in the channel coding literature they are not as widely used in the respective areas

of study and this dissertation serves as an important step in that direction to bridge

that gap. The contributions of this dissertation can be categorized into the following

three parts.

In the first part of this dissertation, a timely and interesting multiple access

problem for a massive number of uncoordinated devices is considered wherein the

base station is interested only in recovering the list of messages without regard to the

identity of the respective sources. A coding scheme with polynomial encoding and

decoding complexities is proposed for this problem, the two main features of which

are (i) design of a close-to-optimal coding scheme for the T -user Gaussian multiple

access channel and (ii) successive interference cancellation decoder. The proposed

coding scheme not only improves on the performance of the previously best known

coding scheme by ≈ 13 dB but is only ≈ 6 dB away from the random Gaussian

coding information rate.

In the second part construction-D lattices are constructed where the underlying

linear codes are nested binary spatially-coupled low-density parity-check codes (SC-

LDPC) codes with uniform left and right degrees. It is shown that the proposed

lattices achieve the Poltyrev limit under multistage belief propagation decoding.

Leveraging this result lattice codes constructed from these lattices are applied to the
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three user symmetric interference channel. For channel gains within 0.39 dB from

the very strong interference regime, the proposed lattice coding scheme with the

iterative belief propagation decoder, for target error rates of ≈ 10−5, is only 2.6 dB

away the Shannon limit.

The third part focuses on support recovery in compressed sensing and the non-

adaptive group testing (GT) problems. Prior to this work, sensing schemes based on

left-regular sparse bipartite graphs and iterative recovery algorithms based on peeling

decoder were proposed for the above problems. These schemes require O(K logN)

and Ω(K logK logN) measurements respectively to recover the sparse signal with

high probability (w.h.p), where N,K denote the dimension and sparsity of the sig-

nal respectively (K � N). Also the number of measurements required to recover

atleast (1 − ε) fraction of defective items w.h.p (approximate GT) is shown to be

cεK logN . In this dissertation, instead of the left-regular bipartite graphs, left-

and-right regular bipartite graph based sensing schemes are analyzed. It is shown

that this design strategy enables to achieve superior and sharper results. For the

support recovery problem, the number of measurements is reduced to the optimal

lower bound of Ω
(
K log N

K

)
. Similarly for the approximate GT, proposed scheme

only requires cεK log N
K

measurements. For the probabilistic GT, proposed scheme

requires Ω(K logK log N
K

) measurements which is only logK factor away from the

best known lower bound of Ω(K log N
K

). Apart from the asymptotic regime, the pro-

posed schemes also demonstrate significant improvement in the required number of

measurements for finite values of K,N .
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SNR Signal-to-noise ratio

SIC Successive interference cancellation

MAC Mulitple-access

GMAC Gaussian multiple-access

SC-LDPC Spatially-coupled low-density parity check

CS Compressed sensing

AWGN Additive white Gaussian noise

BP Belief propagation
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I. INTRODUCTION

We are entering an era of massive by every metric of interest whether it be the

total number of internet users, the total number of networked devices or the amount

of data that needs to be stored and accessed. By 2020 the total number of connected

smart devices in the world (excluding smart phones, tablets and computers) that are

embedded with electronics and sensors is estimated to reach 20.8 billion according

to Gartner analytics or 28.1 billion according to International Data Corporation

(IDC). Similarly in regards to data storage and traffic Cisco estimates that cloud

traffic could rise to 14.1 zettabytes (ZB) by 2020 from 3.9 ZB in 2015. Note that 1

ZB=1021 bytes=1 trillion gigabytes. According to IDC the total amount of digital

data created worldwide could rise to 44 ZB by 2020. The Internet of Things (IoT) and

the associated big data are a big part of this growth. By any standard this is a massive

number of devices and an enormous amount of data and this provides for exciting

opportunities in various engineering and scientific domains like advancing health care,

resource utilization patterns, understanding the demands of certain demographics

etc., via data-mining. However there are two significant challenges that need to be

addressed before any such advances are feasible:

• design of efficient communication protocols for a large number of smart devices

• data mining the available massive data sets in an algorithmically efficient man-

ner.

In this thesis we attempt to tackle some problems that fall under these two issues

and provide practical, low-complexity solutions for such problems. In the following

section we summarize the contributions of this dissertation.
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I.A Organization

I.A.1 Background

The overarching theme of this dissertation is leveraging the sparse bipartite Tan-

ner graph structure and the associated low-complexity iterative peeling decoding

algorithms to construct design schemes for the multiple access communication and

big data problems outlined above.

I.A.2 Massive multiple access

In Chapters II and III, we consider the massive multiple access problem. The im-

minent advent of IoT gives rise to a framework consisting of a large number of sensor

devices that have brief but sporadic messages to communicate. This poses a vastly

different set of challenges for radio resource management in wireless infrastructures.

Currently deployed scheduling policies and wireless protocols which are suitable for

fairly small number of sustained connections are ill-equipped to deal with such IoT

traffic since they rely on gathering information about channel quality and queue

length for every active user and hence pose a significant overhead to the system.

This paradigm is unsustainable in environments with myriad devices, each sending

a brief message. This points to an urgent need for design of practical uncoordinated

schemes for the massive multiple access setup.

In the uncoordinated multiple access setup, each device in the system wants to

transmit a message of certain length to the access point in an uncoordinated fashion.

The total available time for communication is divided into slots of constant length

where the users are assumed to know the structure of time slots. The access point is

interested in recovering the messages transmitted by each user. In 1970 Abramson

in his pioneering work [6] proposed a random access scheme, known as ALOHA,

that achieves a throughput of 1/e ≈ 0.37. In the slotted version of the ALOHA
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scheme each user repeats the intended message in a certain number of slots, slots

being chosen randomly and independently of other users in an uncoordinated fashion.

All the slots in which there is no collision i.e., there is only one user transmitting,

the message can be decoded successfully and the slots with collisions are simply

discarded. This remained the state-of-the-art until a decade ago. In 2007 [7] Cassini

et al showed that higher throughput can be achieved by not discarding the slots

where the transmissions of distinct users collide but by using these slots to decode

the colliding users via iterative successive interference cancellation (SIC) process.

In 2011, Liva demonstrated a close connection between the analysis of such ran-

dom access schemes under the SIC decoding process and the design of low density

generator matrix codes [8]. Strengthening this connection, in Chapter III we intro-

duce an analytical framework for analyzing the evolution of the iterative SIC process

as a function of the random access strategy employed by each user in the system.

In 2012, Narayanan and Pfister showed that by choosing the repetition parameter

randomly according to a Soliton distribution and using SIC decoder the optimal

throughput of one can be achieved asymptotically[9]. However, this paradigm of

choosing according to Soliton distribution is known to perform poorly when the

number of active devices is not very large. We took the first step in addressing this

issue. In Chapter III, given a probability distribution with finite maximum degree

(not necessarily Soliton), we provide analytic expressions to compute the probability

of error for the SIC decoder in the random uncoordinated access problem. The ana-

lytic evaluation of the error performance offers a possible solution path to designing

optimal random access strategies for this practical setup.

The unsourced formulation of the massive multiple access corresponds to the sce-

nario where an access point only wishes to recover the collection of sent messages,

and not the identity of the respective sources. Although the sourced formulation of
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the uncoordinated multiple access described earlier has been around for nearly four

decades, Polyanskiy in 2017 for the first time considered the unsourced formulation

of the multiple access [2]. Polyanskiy and Ordentlich [10] proposed a coding scheme

for the unsourced multiple access based on concatenated codes. The authors show

that this scheme outperforms all the other existing schemes available for the uncoor-

dinated multiple access. In Chapter II we propose a coding scheme for the unsourced

MAC in which the transmitted codeword is purely a function of the message being

transmitted thus exploiting the unsourced nature of the problem. The main differ-

entiating ingredient in our scheme when compared to [10] is that we use successive

interference cancellation decoding process. We show that our proposed scheme not

only improves substantially on the performance in [10] but is also only ≈ 6dB away

from the achievable limit based on random Gaussian coding and joint typical decoder

which has exponential complexity [2].

I.A.3 Interference channel

While the massive multiple access framework is important in the context of IoT,

many-to-many communication setups with a small number of users such as Gaussian

interference channel are still relevant. Finding the capacity of the Gaussian interfer-

ence channel has been a long standing open problem in information theory[11]. The

capacity is derived under certain conditions such as (i) two-user interference chan-

nel with very strong interference [12, 13], (ii) characterization of capacity region to

within one bit per channel use [14] (iii) approximate characterization of many-to-one

and one-to-many interference channels etc. Since we do not yet know the charac-

terization of the full capacity region few attempts were made at designing practical

coding schemes for the Gaussian interference channel. In [15] it was shown that

lattice coding achieves the capacity of the two-user symmetric interference channel
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under very strong interference. However no practical lattice coding schemes were

provided. In Chapter IV we attempt to bridge this gap by constructing a new

class of lattices using construction-D where the underlying linear codes are nested

binary spatially-coupled low-density parity-check codes (SC-LDPC) codes from the

uniform left and right degree ensembles. By leveraging results on the optimality of

spatially-coupled codes for binary input memoryless symmetric channels and Forney

et al.’s earlier results on the optimality of construction-D, we show that the proposed

lattices achieve the Poltyrev limit under low-complexity iterative multistage belief

propagation decoding. We then show that the lattice codes derived from the pro-

posed lattices via hyper cube shaping perform upto a shaping loss of 1.53dB for the

three user symmetric interference channel.

In Chapters V & VI we focus on the sparse signal estimation problems.

I.A.4 Compressed sensing

Compressed sensing is a signal processing technique for efficiently acquiring lin-

ear measurements, traditionally referred to as sensing, of a sparse signal and recon-

structing the signal from the acquired measurements. In Chapter V, we focus on

the support recovery problem in compressed sensing wherein the objective is to re-

cover the set of signal dimensions with non-zero power and not necessarily the whole

signal. In 2015 Li, Pawar and Ramchandran proposed two schemes to recover the

support of a K-sparse N -dimensional signal from noisy linear measurements [4, 16].

Both the schemes employ left-regular sparse bipartite graph code based matrices for

sensing the signal and a peeling based reconstruction algorithm. Both the schemes

require O(K logN) measurements and the first scheme requires O(N logN) total

computations whereas the second scheme requires O(K logN) total computations

(sub-linear computational complexity when K is sub-linear in N). We show that
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by replacing the left-regular ensemble with left-and-right regular ensemble, we can

reduce the number of measurements required of these schemes to the optimal order

of Θ
(
K log N

K

)
with optimal decoding complexities of O(K log N

K
) and O(N log N

K
)

respectively.

I.A.5 Group testing

The group testing problem was first introduced to the fields of applied mathe-

matics and statistics by Dorfman [17] during World War II for testing the soldiers

for syphilis without having to test each soldier individually. The aim of the prob-

lem is to detect K defective items out of a large population of N total items where

grouping multiple items together for a single test is possible. The output of the test

is negative if all the grouped items are non-defective or else the output is positive.

In Chapter VI, we focus on the non-adaptive version of group testing where the

testing scheme is pre-determined and is independent of the test results. We propose

a testing scheme based on left-and-right regular sparse bipartite graphs that admit

a simple iterative recovery scheme and show that for any arbitrarily small ε > 0

our scheme requires only m = cεK log c1N
K

tests to recover (1 − ε) fraction of the

defective items with high probability (w.h.p) i.e., with probability approaching 1

asymptotically in N and K, where the value of constants cε and ` are a function of

the desired error floor ε and constant c1 = `
cε

(observed to be approximately equal

to 1 for various values of ε). More importantly the iterative decoding algorithm has

a sub-linear computational complexity of O(K log N
K

) which is known to be optimal.

Also for m = c2K logK log N
K

tests our scheme recovers the whole set of defective

items w.h.p. These results are valid for both noiseless and noisy versions of the prob-

lem as long as the number of defective items scale sub-linearly with the total number

of items, i.e., K = o(N). The simulation results validate the theoretical results by
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showing a substantial improvement in the number of tests required when compared

to the testing scheme based on the left regular sparse graphs.
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II. MASSIVE MULTIPLE ACCESS∗

In [2], Polyanskiy introduced an interesting and timely multiple access problem;

throughout, we refer to this new formulation as the unsourced multiple access channel

model (MAC). In this setting, a very large number,Ktot, of users in a wireless network

operate in an uncoordinated fashion. Out of the Ktot users, a subset of Ka users are

active at any time; and each of them wishes to communicate a B-bit message to

a central base station. The base station is interested only in recovering the list of

messages without regard to the identity of the user who transmitted a particular

message. In addition to this, the interest is typically in the case when B is small.

The unsourced, uncoordinated nature of the problem and the small block lengths

represent a substantial departure from the traditional multiple access channel and,

consequently, has important implications both on the fundamental limits as well as

the design of pragmatic low-complexity coding schemes. Due to small block lengths,

information rates do not provide reasonable benchmarks and finite block length

bounds are more meaningful. In [2], Polyanskiy provides bounds on the performance

of finite-length codes for this channel model. The design of coding schemes is also very

challenging for this setting. Almost all well-known low-complexity coding solutions

for the traditional MAC channel such as code-division multiple access, rate-splitting

[18], and interleave-division multiple access [19], implicitly assume some form of co-

ordination between the users and that some parameters of the coding scheme such

as the spreading sequence, code rates, time sharing parameters, Tanner graph of the

code, etc., are user dependent. When the message length is small, establishing such
∗ c© 2017 IEEE. Reprinted, with permission, from A. Vem, K. R. Narayanan, J. Cheng, J.-F.

Chamberland, “A User-Independent Serial Interference Cancellation Based Coding Scheme for the
Unsourced Random Access Gaussian Channel", accepted for publication in Information Theory
Workshop, Nov. 2017.
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coordination becomes inefficient; this renders well-known coding solutions tailored to

the traditional MAC inadequate for the unsourced MAC. Ordentlich and Polyanskiy

describe the first low-complexity coding paradigm for the unsourced MAC [10]. In

their scheme, a transmission period is partitioned into smaller sub-blocks and users

randomly pick one sub-block to transmit in. The encoding structure employed by

each user is a concatenated code where the inner code is designed to recover the

modulo-p sum of codewords transmitted by users and the outer code is designed to

decode multiple users given the modulo-p sum of their codewords. Succinctly, the

inner code operates in the spirit of integer-forcing [20], whereas the outer code is an

optimal code for the T -user modulo-p multiple access channel [21].

While Ordentlich and Polyanskiy have contributed an important first step in

finding practical schemes for the unsourced MAC, there remains a substantial gap

between the performance of their proposed scheme and the capacity limit derived

in [2]. Indeed, they point to this gap and discuss possibilities for improving its per-

formance. In [10, Section III.A], they discuss the possibility of improving their scheme

by decoding the T messages using the real sum from the channel output instead of

first reducing the output of the channel to modulo-p operations. However, in the

unsourced MAC, each user is forced to use the same codebook and they remark that

“the task of designing low complexity capacity approaching same-codebook schemes

for the real binary adder seems quite challenging.” Another important limitation

that is not discussed in [10] is that their scheme does not admit iterative cancellation

and, hence, successive interference cancellation is not considered. Therefore, when

more than T -users transmit in a slot, this slot is not utilized in the decoding process.

As a result, their scheme uses a large number of slots in order to ensure that every

user is received in a time slot that contains at most T -users, resulting in poor spectral

efficiency.
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The main contribution of this chapter is to propose, analyze and optimize a

new coding architecture that overcomes these drawbacks and substantially improves

performance when compared to the state-of-the-art. Key features of our scheme are

summarized as follows.

• User symmetry: Active users employ the same coding scheme, with trans-

mitted signals determined solely by the message to be transmitted and is in-

dependent of the identity of the user. To be precise, no parameter of the

encoding scheme such as the interleaver and spreading sequence are unique to

a transmitter.

• Binary-input, real-adder channel: The proposed coding scheme is tailored

to the binary-input real-adder channel. The information message is split into

two parts. The first portion picks an interleaver for an LDPC code, and the

second part is encoded using this LDPC code. Bits associated with the first

portion are communicated using a compressed sensing scheme. The second

part is decoded using a message passing decoder that jointly recovers up to T

messages within a slot.

• Successive interference cancellation: Active users repeat their codewords

in several slots. The repetition patterns are selected based on message bits.

This scheme facilitates interference cancellation within the slotted structure,

and therefore renders obsolete the over-provisioning of slots to avoid undue

collisions with more than T users.

While [10] also incorporates the user symmetry aspect described above, our scheme

differs from theirs in the other features highlighted above.
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Notation Parameter represented
Ktot Total number of users in the system
Ka Number of active users
Ñ Number of channel uses per frame
ε Maximum decoding probability of error, per active user
V Number of slots each frame is divided into
N Number of channel uses per slot i.e. N = Ñ/V
B Number of message bits each active user wants to transmit

Np, Nc Channel uses allocated for preamble and channel coding respectively.
Note that Np +Nc = N

Bp, Bc Message bits transmitted by the preamble and channel coding
components respectively. Note that Bp +Bc = B

Table II.1: Important parameters encountered in this chapter along with the notation
used are listed above.

II.A System model

The observed signal vector at the receiver corresponding to the Ñ channel uses

can be written as

~y =
Ktot∑
i=1

si~xi +~z, (II.1)

where ~xi is a signal of dimension Ñ transmitted by the user i, and the additive

noise is characterized by ~z ∼ N (0, IÑ). For convenience, we use boolean indicators

indexed by i, where si = 1 if user i is active and si = 0 otherwise. We impose an

average power constraint on the transmitted vectors when averaged over all possible

message indices, i.e., 1
M

∑
w ||~x(w)||2 ≤ ÑP . The receiver produces a list of messages

L(~y) = {ŵ1, ŵ2, . . . , ŵKa}. As in [10], the probability of decoding error, per active

user, is defined as

Pe = max
|(s1,...,sKtot )|=Ka

1

Ka

Ktot∑
i=1

siPr (wi /∈ L(~y)) (II.2)
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where | · | denotes the Hamming weight. The objective of the problem is to design a

coding scheme with polynomial encoding and decoding complexities such that Pe ≤ ε

for a given per user target error rate ε.

II.B Description of the proposed scheme

The overall schematic of the proposed scheme is shown in Fig. II.1. In our pro-

posed scheme, the Ñ channel uses which are available for communication are split

into V sub-blocks (also referred to as slots throughout the chapter), each of length

N = Ñ/V channel uses. The encoding operation at the i-th user takes place in two

steps.

Encoder C
Repeat
`w1 times

Encoder C
Repeat
`wi times

Encoder C
Repeat

`wKa times

Slots

Up to T-users
jointly decoded

in each slot
+

Successive Interference
Cancellation (SIC)

across slots.

w1 ~xw1

wi ~xwi

wKa ~xwKa

Slot 1

Slot 2

Slot 3

Slot V

...

...

ŵ1, . . . , ŵKa

Figure II.1: Schematic of the proposed scheme

II.B.1 Transmission policy across sub-blocks - message based repetition

For the code word to be transmitted in a sub-block each user uses an identical

code book (not-necessarily linear) C of rate B
N
and lengthN . Given the message index
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to be transmitted is wi the user encodes it into a codeword ~cwi ∈ C and modulates ~cwi

into ~xwi . In the following discussion, we will refer to ~cwi as the transmitted codeword

and the reader should assume that the codeword is modulated appropriately and

transmitted. Each user also chooses a repetition parameter `wi = g(wi) using a

function g : [1 : M ]→ [1 : V ] and repeats their codeword ~cwi , `wi times by choosing

`wi sub blocks from [1 : V ] based on the message wi and transmits during these

sub blocks. It is important to note that `wi as well as the slots where the codeword

is repeated are deterministic functions of the message index and do not depend on

the identity of the user. As shown in Fig. II.1, a Tanner graph G can be used to

visualize the repetition of the codewords where the left nodes correspond to users

and the right nodes corresponds to sub-blocks. The degree of the left nodes is

determined by `wi and choosing wi uniformly at random induces a distribution on `wi

through the function g. Let the left degree distribution (d.d) from node perspective

be L(x) =
∑lmax

i=1 Lix
i, where Li denotes the fraction of user (left) nodes that are

connected to i slot(right) nodes. Similarly let the left d.d from edge perspective be

denoted by λ(x) =
∑lmax

i=1 λix
i−1, where λi denotes the fraction of edges in G that are

connected to left nodes connected to i − 1 other edges. The two distributions L(x)

and λ(x) are related as L(x) = L′(x)
L′(1)

. We choose the mapping g such that a desired

left d.d. L(x) (or equivalently λ(x)) is obtained.

During the j-th sub-block, let Nj denote the set of users who transmit. During

the j-th sub-block, the i-th user transmits symbols of positive power if i ∈ Nj.

Otherwise, the i-th user remains silent. The received signal during the j-th sub-

block is given by

~yj =
∑
i∈Nj

~xwi +~zj. (II.3)
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II.B.2 Transmission policy within a sub-block - same code book scheme

for the T -user multiple access

There are two components to the code C used in the proposed transmission scheme

within each sub-block: a good sensing matrix for a T -sparse robust compressed

sensing (CS) problem and a good channel code for the T -user binary-input real-

adder channel that is decodable with low computational complexity. The B bits to

be transmitted are split into two groups of size Bp and Bc = B−Bp bits, respectively.

For convenience, we define Mp := 2Bp and Mc := 2Bc . The main idea is to use a

linear code Cc good for multiple access channel coding to encode Bc message bits

which we refer to as channel coding message bits. The remaining Bp bits, which we

refer to as preamble message bits, are used to pick a permutation of the codeword

belonging to the channel code Cc encoded using the Bc channel coding message bits.

Typically, we want Bp � Bc.

For the channel coding part of the code book C we begin with a good linear

block code such as a low density parity check (LDPC) code or a spatially-coupled

low density parity check (SCLDPC) code Cc of rate Bc

Nc
and length Nc. As an ex-

ample, we will consider the case when Cc is chosen uniformly at random from the

(l, r,w,Nc) SCLDPC ensemble [1]. Let the modulated codewords of Cc be denoted by

{~c1,~c2, . . . ,~cMc}, where ~cw = [cw(1), cw(2), . . . , cw(Nc)], cw(i) ∈ {±
√
Pc} ∀i satisfying

the power constraint

||~cw||22 = NcPc (II.4)

denotes the modulated SCLDPC codeword corresponding to message index w.

For the second part of the encoder let A ∈ {−
√
Pp,+

√
Pp}Np×Mp denote a

sensing matrix that can recover the sum of any T columns of A with low error
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probability. Let f : [1 : Mp] → [1 : Nc!] denote a hash function which maps Bp

preamble message bits into an integer τw = f(w) such that τw is uniformly distributed

over [1 : Nc!] denoting all possible permutations of length Nc. Note that here the

integer τw chooses the permutation πτw ∈ SNc of the encoded codeword from Cc before

transmission where SNc is the symmetric group.

The description of the overall encoder for code book C combining the above

two components can be described as following. Let w = (wp, wc) be the mes-

sage index to be encoded, where the indices wp and wc correspond to the pream-

ble and coding message indices respectively. We first encode the message index

wc to the codeword ~cwc ∈ Cc followed by permuting it according to permutation

πτwp = [π1
τwp , π

2
τwp , . . . , π

Nc
τwp ]. The final code word ~cw is then obtained by inserting

the wpth column from the compressed sensing matrix A at the beginning of the

permuted codeword i.e.,

~cw = [~awp , πτwp (~cwc)] where ~awp ∈ A,~cwc ∈ Cc

= [~awp , cwc(π1
τwp ), cwc(π2

τwp ), . . . , cwc(πNc
τwp )]. (II.5)

The overall encoding process is summarized in Fig. II.2.

The main idea here is that permuting the codeword ~cwc decorrelates the multiple

access interference from users even though they use identical linear codes and results

in a performance that is similar to that obtained by using different codes of identical

rates for the different users. This is similar to interleave-division multiple access

scheme that was originally proposed in [19]. The overall code is non-linear because

of the random permutations for different codewords and ~awp being appended at the

beginning. However, if ~awp is identified (and consequently also wp) and removed at

the receiver, then the permutations can be determined and decoding the users can
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w = (wp, wc)

πτwp (~cwc )

wc

Ch. Encoder
wp

A

Permute
~cwc

πτwp (~cwc )

~aTwp

~awp

~cw

wp

τwp = f(wp)

Figure II.2: Schematic depicting the overall encoding scheme in a sub-block given
the message index w = (wp, wc). The final code word transmitted in a sub-block is
given by ~cw = [~awp , πτwp (~cwc)].

be accomplished using a belief propagation decoder that works on the joint graph of

the two users.

The overall decoder has two components - a decoder for the T -user Gaussian mul-

tiple access(GMAC) channel that works within a sub-block and a serial interference

canceler that works across sub-blocks. Note that T is a design parameter of choice.

The code book C within a sub-block is designed such that if T or less users transmit

simultaneously within a sub-block the set of the respective transmitted code words

can be decoded with low probability of error.

In the following sub-sections we first describe the decoding process within each

sub-block followed by the SIC decoding process that works across sub-blocks.

II.B.3 Decoding process within a sub-block

The decoder first estimates the number of users transmitted in a sub-block. Let

Rj = |Nj| denote the number of users that have transmitted during the j-th sub-

block. Given ~yj is the received vector during sub-block j, a simple estimate for Rj
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based on energy of the received vector is given by

R̂j =

[
||~yj||2 −Nσ2

NcPc +NpPp

]

where [·] denotes the nearest integer function and the noise variance σ2 = 1 through

out this paper. Although the simple energy based estimate is adequate for the

scope of this paper, more sophisticated estimates based on GMAC decoding can be

obtained, if necessary.

The received signal ~yj in sub-block j is

~yj =
∑
i∈Nj

~xwi +~zj

=
∑
i∈Nj

[~awp
i
πτ

w
p
i

(~cwc
i
)] +~zj.

As discussed earlier, since the codebook C employed within the sub-block is designed

for T -user GMAC channel the decoder aims to recover the set of messages {wi =

(wp
i , w

c
i ), i ∈ Nj} and equivalently the set of transmitted codewords {~xwi , i ∈ Nj}

if |N |j ≤ T . There are three components to this decoder: (i) the first component,

referred to as compressed sensing (CS) decoder, decodes the set of preamble message

indices, (ii) the second component error energy test performs an energy test on the

residual error after the compressed sensing decoder to determine whether the output

of the compressed sensing decoder in the sub-block is accurate and (iii) the third

component, referred to as channel coding decoder, given the set of preamble message

indices from the CS decoder as input, decodes the set of channel coding message

indices.
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Compressed sensing (CS) decoder

The input to the compressed sensing decoder is the preamble component of the

received signal given by

~yj
p := ~yj[1 : Np] =

∑
i∈Nj

~awp
i

+~zj[1 : Np] (II.6)

= A~bj +~zp
j (II.7)

where A is the sensing matrix and ~bj ∈ {0, 1}Mp is a |Rj|-sparse vector that indicates

the set of transmitted messages during sub-block j. Our proposed decoder to recover

~bj from ~yj
p exploits the sparsity of ~bj as well as the fact that the non-zero entries of

~bj are all equal to one. The latter aspect makes the design of the decoder different

from many standard compressed sensing reconstruction algorithms.

We consider two options for the choice of compressed sensing decoder. The first

option is correlation decoder based on the simple idea that the correlation of the

received vector with any of the Rj participating sensing vectors would be high and

would be low for the rest.

• Correlation decoder : We correlate the preamble part of the received vector with

all the columns of the sensing matrix and output the list of R̂j column indices

that have the maximum correlation value:

Ŵp
j = arg max

i
〈~yp
j~ai〉

where arg max considers the R̂j largest values.

• List decoder : In the list decoder we first run a non-negative least squares

algorithm that gives us an estimate ~̂bj of ~bj. But this does not guarantee an
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output signal either of the required sparsity or with elements strictly from the

set {0, 1} (as we know apriori from the problem). To address this, we perform

a hard thresholding operation on each element of ~̂bj and form a list of non-

negative indices Wlist = {i : ~̂bj(i) > ηTh}. The value of parameter ηTh is

chosen such that the list size is larger than T . We then implement a maximum

likelihood decoder within the above list of indices to find the set of Rj indices

that best explain the received vector ~yjp i.e.,

Ŵp
j = arg min

S⊆Wlist,|S|=Rj
||~yp

j ,
∑
i∈S

~ai||22. (II.8)

As one can observe as we decrease the value of the threshold ηTh the list size

increases which increases the complexity of the MMSE estimator in Eq. (II.8)

whereas if we increase the value of the threshold the list size decreases and the

performance worsens. Clearly for a given SNR the value of the threshold ηTh

needs to be optimized. The CS decoder outputs the set of preamble message

indices Ŵp
j , where |Ŵ

p
j | = Rj, to the channel coding decoder.

Error energy test

This component outputs positive that preamble collision did not occur if

1

Np

||~yp
j −

∑
i∈Ŵp

j

~ai||2 ≤ (1 + Pp).

To understand the collision detection rule, consider the input to the compressed

sensing decoder ~yp = A~b + ~zp given in Eqn. (II.7), where ~b ∈ {0, 1}Mp . However

this is invalid if there is a collision of preamble message indices in a sub-block i.e.,

two users transmitting in a sub-block chose the same preamble message index. For

e.g., let Rj = 3 and the set of preamble message indices chosen by the three users
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transmitting in sub-block j be {1, 2, 2}. In this case, the compressed sensing decoder

outputs a set of three distinct message indices since Rj = 3 which leads to an error.

The idea here is that the collision detection rule prevents such cases from proceeding

to further decoding with the incorrect set of preamble message indices.

Channel coding decoder

We employ joint belief propagation (BP) decoder for decoding the channel coding

part of the received signal. To keep it simple we describe the decoder assumingRj = 2

which can be be generalized to larger values of Rj in a straight forward manner.

Without loss of generality let the two message indices be w1 = (wp
1 , w

c
1) and w2 =

(wp
2 , w

c
2) respectively. Note that the estimates of preamble message indices {wp

1 , w
p
2}

are available at the channel coding decoder, output from the CS decoder. Assuming

appropriate demodulation is performed before the decoding step the channel coding

part of the received signal, which can be written as

~yj
c := ~yj[Np + 1 : N ] =

∑
i∈{1,2}

πτ
w

p
i

(~cwc
i
) +~zj[Np + 1 : Nc],

is input to the joint BP decoder. As we can observe, the codeword before being

transmitted across the GMAC channel is permuted according to a permutation cho-

sen as a function of the preamble message index. Therefore in the joint BP decoder

we need to apply the permutations and their inverses on the messages whenever they

are being sent to and from the MAC nodes respectively. The schematic of the joint

Tanner Graph of the two users is shown in Fig. II.3.

Given the received signal ~yc
j the joint BP decoder proceeds iteratively in a similar

manner to that of a single user AWGN channel decoding apart from an extra step of

messages being sent to and received from the MAC node in each iteration. We use
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Figure II.3: Schematic showing the joint Tanner graph, of the channel coding compo-
nent, for two users with message indices w1 and w2. In the SC-LDPC code πSCLDPC

refers to a random permutation of the edge connections from check nodes to bit
nodes. For more details refer to [1]. We introduce multiple access (MAC) node
denoting the sum over the multiple access channel. For e.g., k-th MAC node is
represented by ~yc

j [k] =
∑

i∈{1,2}~cwc
i
[πkτ

w
p
i

] +~zj[k].

the following notation for the messages passed in the joint BP decoder:

• u1
i,MAC, u

1
i,j: messages passed from i-th bit node of user 1 to the corresponding

MAC node and SCLDPC check node j respectively

• v1
j,i: message passed from SCLDPC check node j to bit node i of user 1

• v1
MAC,i: message passed to ith bit node from corresponding MAC node of user

1.

The messages for user 2 are defined similarly. Refer to Fig. II.4 for a graphical

representation of the messages. The message passing rules in the joint message

passing decoder can be summarized as following.
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bit node:

u1
i,j = v1

MAC,i +
∑

j′ 6=j,j′∈N (i)

v1
j′,i

u1
i,MAC =

∑
j∈N (i)

v1
j,i

SCLDPC check node:

v1
j,i = 2 tanh−1

(∏
i′ 6=i

tanh

(
u1
i′,j

2

))
.

MAC node:

v1
MAC,i = h(u2

i,MAC, yi,ch) (II.9)

v2
i,MAC = h(u1

i,MAC, yi,ch) where

h(l, y) = log
1 + ele2(y−1)/σ2

el + e−2(y+1)/σ2 .

The function h(l, y|σ2) can be seen as the log-likelihood of variable x2 when y =

x1 + x2 + z, x1, x2 ∈ {−1,+1} when the log-likelihood ratio of variable x1 is known

to be l and z ∼ N (0, σ2).

i

+

ui,MAC =
3∑

j=1

vj,i

1

v1,i

2

v2,i 3

v3,i

+

i

u2i,MAC

yi,ch

i

v1MAC,i

i

+

vMAC,i

1

2

3

v1,i
v2,i

ui,3 = vMAC,i +
2∑

j=1

vj,i

Figure II.4: Message passing rules at individual nodes on the joint Tanner graph of
two users. The message passing rules at the check nodes of the SCLDPC code are
identical to the single user channel coding case.
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II.B.4 Decoding process across sub-blocks - SIC

For any sub-block j, if R̂j <= T the T -user GMAC decoder within the sub-block,

described in the previous sub-section, outputs the set of messages transmitted during

the j-th sub-block. Given the decoded set of messages {wi, i ∈ Nj} for sub-block j

and that the preamble collision detector output is negative, for each decoded message

wi:

• the sub-blocks where the codeword is repeated can be obtained using the func-

tion g(wi),

• the codeword corresponding to message wi is subtracted or ‘peeled off’ from

the received signal in the corresponding repeated sub-blocks and

• in each of the repeated sub-blocks, the estimate R̂k (k being the sub-block)

is updated (reduced by one) to account for the subtraction of one interfering

codeword.

The above process is repeated until either all the Ka messages are decoded or no

sub-blocks with less than T codewords remain. The above described iterative de-

coding process is known in the literature as successive interference cancellation (SIC).

II.C Choice of parameters and analysis

In this section we analyze the performance of different components of the proposed

scheme and the effect each of them has on the overall performance. At j-th sub-block

where Rj ≤ T let us define the following error events:

• Epj : Given there is no preamble collision, let Epj be the event that the output

of the compressed sensing decoder is incorrect i.e., Ŵp
j 6=W

p
j . The event Ep is

defined for the worst case Rj = T
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• Eej : Let Eej be the event that the error energy test makes an error. With the

following notations:

– Given that there is no preamble collision and the compressed sensing

decoder is correct let E0
ej be the event the error energy test detects a

preamble collision and

– let E1
ej be the event there exists a collision but the energy test fails to

detect the preamble collision

we can see that Eej = E0
ej ∪ E1

ej.

• Ecj : Given there is no preamble collision and that the preamble message indices

are decoded successfully, let Ecj be the event that the channel decoder fails to

recover all the channel coding message indices correctly. The event Ec is defined

for the worst case, when Rj = T

• ESIC : Let ESIC be the event that a random user is not recovered by the SIC

decoding process

We observe that the overall decoding process within a given sub-block j making an

error is a disjoint union of the above described events i.e.,

Ej = Epj ∪ E0
ej ∪ Ecj ∪ E1

ej

= Epj ∪ Eej ∪ Ecj.
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The per user error probability Pe, which is equivalent to Pr (ESIC), can be bounded

as following:

Pe = Pr (ESIC) ≤ Pr

(
ESIC| (

⋃
j

Ej)c
)

+ Pr

(⋃
j

Ej

)

≤ Pr

(
ESIC|

⋂
j

Ecj

)
+ Pr

(⋃
j

Epj ∪ Eej ∪ Ecj

)

≤ Pr
(
E ′SIC

)
+
∑
j

(Pr(Epj) + Pr(Eej)Pr(Ecj))

≤ Pr
(
E ′SIC

)
+ V (Pr(Ep) + Pr(Ee) + Pr(Ec)) (II.10)

where E ′SIC is the event of a user not being recovered under the SIC decoder assuming

that the compressed sensing decoder, collision detector and the channel decoder do

not make any errors. The precise characterization of this decoding process, referred to

as simplified SIC, that can be used to evaluate Pr
(
E ′SIC

)
is given in Def. 1. The mul-

tiplicative factor V in Eqn. (II.10) union bounds the total number of instances(sub-

blocks) compressed sensing decoder, the collision detector or the channel decoder can

commit an error.

Definition 1 (Simplified SIC decoder). We define simplified SIC decoder as an

iterative decoding process on a bipartite graph with two types of nodes, variable

and slot. Consider a graph wherein the users represent variable nodes and sub-

blocks represent slot nodes. Each variable node is associated with a unique preamble

message index chosen independently and uniformly at random from [Mp]. Simplified

SIC decoder proceeds iteratively on the bipartite graph in which at any slot node if

the number of variable nodes connected is less than or equal to T :

• if there is no preamble collision between the connected variable nodes, then the

respective variable nodes are assumed to have been decoded successfully. All
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the connected variable nodes and their edges will be peeled off from the graph

• if there is a preamble collision, then the slot node is simply ignored in this

iteration.

The idea behind the simplification is that the sub-blocks in which there is a

preamble collision need not necessarily result in an error, but they can be resolved

in future iterations when one of the colliding users has been decoded and peeled off

from the sub-block.

II.C.1 Compressed sensing problem and design choices

In this section we discuss the choice of parameters T,Bc (or equivalently Mp),

sensing matrixA and analyze the performance of the preamble component for various

such choices under the correlation and list decoders described in Sec.II.B.3.

We consider two options for the choice of sensing matrix: (i) random matrix

with each entry chosen according to Rademacher distribution, referred to as random

ensemble and (ii) sensing matrix derived as a subset of a binary code with good

minimum distance properties, referred to as binary ensemble.

random ensemble

For a given Np andMp a sensing matrix A = [aij]i∈[Np],j∈[Mp] from random ensem-

ble is obtained by choosing each aij = ±
√
Pp, independently, with equal probability.

binary ensemble

A sensing matrix from binary ensemble is derived as a subset of a binary linear

code with appropriate scaling and shifting. More precisely, for a given Np and Mp,

let Cbin be a subset of size Mp, not necessarily a sub-code, of a binary linear code

with block length Np. Then the sensing matrix is obtained by A =
√
Pp(1− 2Cbin).
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Also let the minimum and maximum Hamming distances between any two binary

vectors in Cbin be represented by dmin and dmax respectively.

For the random and binary ensembles described above the following lemma gives

the probability of error under correlation decoder for a given T denoting the sparsity.

Lemma 2 (Compressed sensing with correlation decoder). Consider the T -sparse

support recovery problem where let {1, 2, . . . , T} be the set of sparse indices without

loss of generality and ~y be the preamble part of the received vector. The probability

of error for the correlation decoder can then be bounded by

Pr(Ep) = 1− (1− (Mp − T )Pr(Ecorr))
T (II.11)

≤ T (Mp − T )Pr(Ecorr),

where Pr(Ecorr) denotes the the probability of the error event that the correlation

〈~y,~ai〉 ≤ 〈~y,~aj〉 for some i ≤ T and j > T . For the random and binary ensembles

this can be upper bounded by

random ensemble: Pr(Ecorr) ≤ exp

{
−NpPp

2(2 + (2T − 1)Pp)

}
(II.12)

binary ensemble: Pr(Ecorr) ≤ exp

{
−Ppdmax(1− T (1− dmin/dmax))2

2

}
.

(II.13)

Proof. We observe that the correlation decoder makes an error if there exists i ≤ T

and j > T such that 〈~y,~ai〉 ≤ 〈~y,~aj〉 the probability of which is given by the right

hand side in Eqn. (II.11). The analysis for the event Ecorr and the bounds in Eqns.

(II.12) and (II.13) are provided in Appendix. II.E.1.

For the random ensemble we observe from Equations. (II.11) and (II.12) that
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the error probability of correlation decoder decreases exponentially in the number of

channel uses Np. However, with respect to SNR Pp, the rate of decay is very slow.

In fact it converges to a positive value

Pr(Ecorr)→ exp

{
−Np

2(2T − 1)

}
.

If we consider the binary ensemble, the error probability of the overall decoder decays

exponentially in both the channel uses Np and SNR Pp given that the subset Cbin

has the following properties:

• The gap between minimum and maximum Hamming distances dmax − dmin is

small

• The minimum distance dmin is large. Note that this in conjunction with the

above condition implies a large dmax which is necessary for a large exponent
−Ppdmax(1−T (1−dmin/dmax))2

2

Based on the design objectives outlined above, we design a sensing matrix from the

binary ensemble for a toy example with parameters Mp = 512, Np = 63.

Example 3 (Sensing matrix from binary ensemble). Let binary code CBCH be the

BCH(63, 10) code of size 1024. We obtain a subset of CBCH of sizeMp by the following

decomposition

CBCH = C0 ∪ C1 such that c ∈ C1 ⇐⇒ c̄ ∈ C0,

where c̄ = 1 ⊕ c i.e., the one’s complement of c. We choose the sensing matrix of

size Np ×Mp = 63× 512 as A = [~a1,~a2, . . . ,~aMp ], where ~ai =
√
Pp(1− 2~ci),~ci ∈ C1,

i.e., aij ∈ {−
√
Pp,
√
Pp}∀i, j. This specific decomposition allows us to maintain the
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minimum distance dmin = 28 identical to the original code CBCH while reducing the

maximum distance for the subset C1 to dmax = 36 from 63 of the original code.

In Fig. II.5 we present the error performance results for the sensing matrix in

Example 3 under correlation decoder and compare with the performance of a sensing

matrix from the random ensemble. It can be clearly seen that correlation decoder is

sub-optimal. Therefore we also present the performance of both the ensembles under

the list decoder. Although the list decoder is difficult to analyze primarily due to the

LASSO and constrained least squares optimization algorithm components, it can be

seen from Fig. II.5 that the list decoder has superior performance when compared to

the correlation decoder via numerical simulations.
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Figure II.5: For Np = 63,Mp = 512 we compare the performance of the binary and
random ensembles under list and correlation decoders for T = {2, 3}. The sensing
matrix for binary ensemble is given in Ex. 3. For the correlation decoder we simply
use the performance bounds given in Lemma. 2 whereas for the list decoder we
perform numerical simulations using list decoder where we use non-negative least
squares for the first component of the decoder.
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II.C.2 Energy test

In this section we analyze the the performance of the error energy test component.

Lemma 4. The probability of the event that the energy test makes an error can be

bounded by

Pr(Ee) ≤
(
(1 + Pp)e−Pp

)Np/2
+
T (T − 1)

2Mp

Pr

(
1

Np

||~ai +~aj +~z||2 ≤ (1 + Pp)

)
,

where i, j are distinct indices chosen randomly from the set [Mp].

Proof. If we let Pr(Ecoll) be the event that there is a preamble collision, then

Pr(Ee) = Pr(Ee, Eccoll) + Pr(Ee, Ecoll)

≤ Pr(Ee|Eccoll) + Pr(Ecoll)Pr(Ee|Ecoll)

(a)
= Pr(E0

e ) + Pr(Ecoll)Pr(E1
e )

where substituting the results from Lemmas. 5, 6 and 7 in (a) completes the proof.

Lemma 5. Pr(E0
e ) ≤

(
(1 + Pp)e−Pp

)Np/2

Proof. Given there is no preamble collision and the compressed sensing decoder is

successful, Pr(E0
e ) can be bounded as

Pr(E0
e ) = Pr

 1

Np

||~y −
∑
i∈N̂j

~ai||2 > 1 + Pp


= Pr

(
1

Np

||~z||2 > 1 + Pp

)

the probability of which can be upper bounded using the tail bound of chi-squared

distribution.
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Corollary 6. Let i, j be distinct indices chosen randomly from the set [Mp], then

Pr(E1
e ) ≤ Pr

(
1

Np

||~ai +~aj +~z||2 ≤ 1 + Pp

)

Proof. Let the set of T preamble indices be Wp and the output of the compressed

sensing decoder be Ŵp.

Pr(E1
e ) = Pr

 1

Np

||~yp
j −

∑
i∈Ŵp

j

~ai||2 ≤ (1 + Pp)



= Pr

 1

Np

||
∑
i∈Wp

j

~ai −
∑
i∈Ŵp

j

~ai +~z||2 ≤ (1 + Pp)


= Pr

 1

Np

||
∑

i∈Wp
a
Ŵp

~ai +~z||2 ≤ (1 + Pp)


(b)

≤ Pr

(
1

Np

||~ai +~aj +~z||2 ≤ (1 + Pp)

)

where for (b) we recall that the compressed sensing decoder outputs T distinct

preamble indices whereas Wp has atleast one repeating preamble index and thus

|Wp
a
Ŵp| ≥ 2.

Lemma 7. Pr (Ecoll) ≤ T (T−1)
2Mp

.

Proof. Let us consider the event Eccoll where the T users in the slot picked a unique

preamble message index. Note that in total there are Mp possible preamble indices
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for each user.

Pr(Eccoll) =
Mp(Mp − 1) . . . (Mp − (T − 1))

MT
p

=⇒ Pr(Ecoll) = 1−
T−1∏
i=0

(1− i

Mp

)

≤ T (T − 1)

2Mp

. (II.14)

II.C.3 Channel coding problem

In the following subsection we will look at the analysis of the T -GMAC channel

coding problem and the bounds on performance. Although the information theoretic

limits for the multiple access problem especially the symmetric rate region are well

known these do not prove to be very useful for our purposes. It is because even though

the block lengths we are interested in are considerably large the information length

(or equivalently the code size for each user) is small. Therefore we will be considering

the finite length performance especially we will use the finite length random coding

bounds for the Gaussian multiple access channel derived by Polyanskiy [2]. The

following lemma is identical to Thm. 1 in [2] except for the difference that we are

interested in the case where error is declared if atleast one of the users messages is

not in the decoded set (see event E3j) in contrast to [2] where the error probability

is defined similar to Eqn. (II.2).

Lemma 8. There exists an (N ′,M1) random-access code for T -user satisfying the

power constraint P (see Eqn. (II.4)) with the probability of error under maximum-
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likelihood decoder bounded by

P (E3) ≤ hFBL(N ′,Mc, T, P ) :=
T∑
t=1

min(pt, qt) + p0, (II.15)

where

p0 =

(
T
2

)
Mc

+ TPr

(
N ′∑
j=1

Z2
j >

N ′P

P ′

)

pt = e−N
′E(t)

E(t) = max
0≤ρ,ρ1≤1

−ρρ1tR1 − ρ1R2 + E0(ρ, ρ1)

E0 = ρ1a+
1

2
log(1− 2bρ1)

a =
ρ

2
log(1 + 2P ′tλ) +

1

2
log(1 + 2P ′tµ)

b = ρλ− µ

1 + 2P ′tµ
, µ =

ρλ

1 + 2P ′tλ

λ =
P ′t− 1 +

√
D

4(1 + ρ1ρ)P ′t

D = (P ′t− 1)2 + 4P ′t
1 + ρρ1

1 + ρ

R1 =
1

N ′
logMc −

1

N ′
log(t!)

R2 =
1

N ′
log

(
T

t

)
qt = inf

γ
Pr[It ≤ γ] + exp{N ′(R1 +R2)− γ}.
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and

It = min
|S0|=t,S0⊆[T ]

N ′Ct +
log e

2

( ||∑i∈S0
~ci + ~z||22

1 + P ′t
− ||~z||22

)
Ct =

1

2
log(1 + P ′t)

~z ∼ N (0, IN ′).

Proof. In [2], author Y. Polyanskiy considers the T -user GMAC problem with power

constraint P according to Eqn. (II.4). LetW be the set of messages of size T , chosen

by the users uniformly without replacement and Ŵ be the set of messages of size T

output by the decoder. The author considers a random Gaussian codebook generated

from Gaussian process N (0, P ′In), (P ′ < P ), and maximum-likelihood decoder and

shows that

Pr(|W\Ŵ | = t) = min(pt, qt). (II.16)

It was also shown that p0 is the total variation distance of a random variable of

maximum value 1 when the measure under which a) the messages are sampled inde-

pendently rather than without replacement and b) the codeword is set to zero-vector

if the total power of the random codeword is larger than nP is replaced by the mea-

sure considered in showing Eqn. (II.16) i.e., messages sampled independently and

disregarding the strict power constraint on each codeword. These results along with

the observation that

Pr(E3) = 1−
t∏
i=1

(
1− Pr(ŵi /∈ Ŵ )

)
+ p0

≤
T∑
t=1

Pr(|S\Ŝ| = t)
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completes the proof.
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Figure II.6: We simulate the performance of the channel coding component alone
using regular (3, 6) and (3, 9) spatially-coupled LDPC (SC-LDPC) ensembles for in-
creasing block lengths for two user Gaussian MAC channel. The results demonstrate
that it is possible to achieve the capacity of two-user GMAC (and can be generalized
for T -GMAC) using identical code books at all the users.

II.C.4 Successive interference cancellation

In the channel coding literature for LDPC codes on binary erasure channel and

sparse signals via Tanner graphs literature the symmetric interference cancellation is

traditionally studied under the name of peeling decoder which is an iterative process

in which if a right node (slot in our case) is connected to only one left node (user)
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the corresponding left node and all its connections are peeled off from the bipartite

graph. This is essentially the symmetric interference cancellation process described

in Sec. II.B.4 except that we peel off the connections from a right node if the number

of variable nodes connected is less than or equal to T instead of 1. Although density

evolution methods are well studied to predict the performance of such decoding

processes all the existing density evolution methods are for values of T = 1. Before

we address this issue let us define the considered peeling process precisely.

Definition 9 (T -peeling). We define an ideal SIC decoder as the decoder in which

at each slot, if the number of users transmitted and are still undecoded is less than

or equal to T , then the remaining undecoded users in that slot are decoded with zero

error. In other words in the ideal SIC process there are no hash collisions in any

slot and the channel and sparse signal decoders are assumed to be zero-error. This

process proceeds iteratively until all the users are decoded or there are no slots with

undecoded users less than or equal to T . We also refer to this as T -peeling process.

Lemma 10 (Density Evolution (DE)). Let the left and right degree distributions

(d.d.) of the bipartite graph from the edge perspective be λ(x) and ρ(x). Then let xt

be the probability that an edge in the graph, in iteration t of the T -peeling process,

is connected to a left node that is undecoded yet. Then the recurrence relation for

xt corresponding to the T -peeling process is given by

yt =

[
T∑
r=1

ρr +
∑
r>T

ρr

(
T−1∑
t=0

(
r − 1

t

)
(1− xt)r−1−txtt

)]
, (II.17)

xt+1 = λ(1− yt). (II.18)

Proof. Proof is provided in Appendix II.E.2.
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Let L(x) =
∑lmax

i=1 Lix
i be the left d.d according to which the the users choose

their repetition parameters as described in Sec. II.B.1 i.e., Pr(Lw = i) = Li. Also

let the average left degree of this distribution be lavg =
∑

i iLi. Then according to

our transmission policy the right d.d. R(x) is Binomial distributed with parameters

(Kalavg, 1/V ) and in the limit Ka → ∞ R(x) can be approximated as Poisson dis-

tribution with parameter ravg = Kalavg
V

. Thus, asymptotically in Ka, it can be seen

that R(x) = e−ravg(1−x) and ρ(x) = R′(x)/R′(1) = e−ravg(1−x). For more details refer

to [9].

Lemma 11. For V = αKa where α is fixed the asymptotic performance of our

transmission scheme under the ideal SIC decoding process can be characterized by

lim
Ka→∞

Pr(ESIC(Ka, T )) = L(1− y∞)

where y∞ = lim
t→∞

yt,

and Pr(ESIC(Ka, T )) is the probability that the ideal SIC process does not recover a

user given there are Ka users. Here the initial condition is x0 = 1 and the evolution

of xt, yt is given by the DE relationship in Lem. 10.

As we can see from Eqns. (II.18) and (II.17) that xt = 0 is a fixed point if and

only if λ0 = 0. This leads us to the following result characterizing he threshold

behavior of the system.

Definition 12 (Density Evolution Threshold). If L1 = 0 we define the density

evolution threshold α∗DE to be

α∗DE , inf{α : lim
Ka→∞

Pr(ESIC(Ka, T )) = 0}.
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Figure II.7: α∗DE is the density evolution threshold computed for L(x) = x2 and
T = {2, 4} from Lemmma. (10). We validate the threshold behavior by evaluating
the T -peeling performance via Monte Carlo simulations for increasing blocklengths.
We observe that the simulations indeed confirm the threshold behavior for values of
α above the DE threshold.

We validate the threshold behavior via simulations. For a fixed left d.d L(x) = x2

we first compute the density evolution thresholds according to Def. 12 to be 0.5975

and 0.2949 for T = 2, 4 respectively. We then perform Monte Carlo simulations

where each time a random graph is chosen as described in Sec. II.B.1 for increasing

values of Ka and plot the performance as we incrase the number of slots. The results

are presented in Fig. II.7. In both the cases the threshold behavior can be clearly seen

that as Ka increases the probability of a user not being decoded decreases sharply

for values of α > α∗DE and remains fairly constant for values of α ≤ α∗DE.

38



II.D Numerical results

In this section we numerically evaluate the overall performance of the proposed

scheme and compare with other multiple access schemes available in the literature. In

[10] apart from proposing a low complexity coding scheme for the unsourced GMAC

channel the authors Ordentlich and Polyanskiy also evaluate the performance of their

proposed scheme by computing the minimum SNR required to achieve the target

error probability for a fixed set of parameters. To make the comparison convenient

we pick identical parameters, summarized as following:

• number of bits each user intends to transmit B = 100

• total number of channel uses Ñ = 30, 000

• number of active users Ka ∈ [25 : 300]

• maximum per user error probability Pe ≤ ε = 0.05.

With the parameters B, Ñ,Ka, ε fixed, the choices for the design parameters are

as following:

1. Maximum number of users to be jointly decoded at a slot T ∈ {2, 4, 5}.

2. The left d.d is chosen to be L(x) = βx+ (1− β)x2 (see Remark 13). The free

parameter is optimized over the set β ∈ {0, 0.1, . . . , 1}.

3. Number of preamble and channel coding message bits: Bp = 9, Bc = B−Bp =

91.

4. Sensing matrix for preamble component : Note that Mp = 2Bp = 512 is the

size of the sensing matrix A. We choose the sensing matrix of dimensions

Np ×Mp = 63× 512 as described in Ex. 3.
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5. Channel coding component : The number of channel uses available for channel

coding Nc is dependent on N which in turn depends on the total number

of sub-blocks V . It is impractical to build a channel code for various rates

Rc = Bc

Nc
(although Bc is fixed, Nc needs to be optimized over) and evaluate

the performance numerically for each set of parameters (Nc, Bc). Therefore to

evaluate the performance of the channel coding component we use the finite

block length achievability bound in Eqn. (II.16) due to Polyanskiy. This seems

a reasonable choice as we demonstrated in Fig. xx that one can construct

LDPC codes even for moderate block lengths that perform close to the above

mentioned bound.

From Eqn. II.10 we want Pr(E ′SIC) + V (Pr(Ep) + Pr(Ee) + Pr(Ec)) ≤ ε = 0.05.

Therefore we set the target error probabilities for the individual events as Pr(Ei) ≤

ε0/3/V , i ∈ {p, e, c} where we choose ε0 = 0.01 and Pr(E ′SIC) ≤ (ε− ε0) = 0.04. For

a fixed T the performance of the overall scheme i.e., the minimum Eb/N0 required

for achieving Pe ≤ ε is computed as following:

Eb
N0

= min
β

(2− β)(NpPp +NcPc)

2B
(II.19)

where

Pp := arg min
P

max (Pr(Ep),Pr(Ee)) ≤
ε0
3V

(II.20)

Pc := arg min
P

hFBL(N,Bc, T, P )) ≤ ε0
3V

(see Eqn. (II.15)) (II.21)

N :=

⌊
Ñ

V

⌋

V := arg min
V

Pr(E ′SIC(Ka, V, T )) ≤ ε− ε0. (II.22)
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A remark on how we compute the quantities in Eqns. (II.20), (II.21) and (II.22):

• Pr(Ep) : We choose T preamble message indices, randomly, without replacement

from the available Mp indices and form the measurement vector. We then use

the list decoder as described in Sec. II.B.3. The probability of error Pr(Ep) in

Eqn. (II.20) is then computed from atleast 105 Monte Carlo simulations

• Pr(Ec): We use the upper bound for Pr(Ec) given in Lem. 4 except for the term

Pr

(
1

Np

||~ai +~aj +~z||2 ≤ (1 + Pp)

)

which we evaluate numerically from atleast 105 Monte Carlo simulations. In

each simulation we choose indices i, j randomly without replacement from the

set [Mp] and ~z ∼ N (0, INp).

• Pr(E ′SIC(Ka, V, T )): We rely on Monte Carlo simulations wherein for each sim-

ulation we generate a bipartite graph of Ka variable nodes and V slot nodes

with edge connections as described in Sec. II.B.1. We run the simplified SIC

decoder on just the bipartite graph as described in Def. 1 and evaluate the per

user error probability.

Finally the results for the minimum SNR required to achieve the target error prob-

ability optimized according to Eqn. (II.19) are presented in Fig. II.8.

In Fig. II.8 the curves labelled T = 2, T = 4 and T = 5 correspond to the

performance of our proposed scheme evaluated as described above for various values

of parameter T . The curve labelled 4-fold ALOHA is the performance of the 4-fold

ALOHA scheme from [10]. It can be seen that for large values of Ka, our proposed

scheme with T = 4 or 5 substantially outperforms the 4-fold ALOHA and this gain

is due to the iterative decoding process that is absent in 4-fold ALOHA. The curve
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Figure II.8: Minimum Eb/N0 required to achieve Pe ≤ 0.05 as a function of number
of users. The x mark represents the performance of our proposed scheme where for
the channel coding part instead of the finite blocklength bounds given in [2], we use
numerical simulation results from a regular LDPC code.

labelled OP-Exact is a reproduction of the results from [10] of the practical scheme

introduced there.

The x mark represents our proposed scheme where for the channel coding part

instead of the FBL bounds we use the actual simulation results. We use a rate-1/4

(364, 91) LDPC code obtained from repeating every coded bit of (3,6) LDPC code

twice and a message passing decoder for T = 2. It can be seen that the simulation

results with the (3, 6) LDPC code are only 0.5 dB away from the curve corresponding

to T = 2 showing that the pragmatic coding scheme can perform close to the finite

length bounds. It can also be seen that our proposed scheme provides substantial
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gain over the results in [10].

In the proposed encoding scheme, for L(x) = βx + (1 − β)x2 each user may

transmit once or twice depending on the message index chosen. We need to point

out that the power constraint employed is an average over all the message indices i.e

Ew
[
||~cw||2

]
= (2− β)P.

We also present the results when the power constraint is uniform across all the

codewords in the code i.e., ||~cw||2 ≤ P∀w in Fig. II.9. We achieve this, for each value

of SNR Es/N0, by choosing β = 0( or 1) which in turn guarantees each codeword is

repeated exactly twice (or once) irrespective of the message.

Remark 13. Although in Sec. II.C.4 we remarked that if the minimum left degree

is one then zero is not a fixed point for the DE equations or in other words, in the

asymptotic regime, we will have error floors rather than threshold behavior. But the

effects of a minimum left degree of one in the finite number of users regime are not

very clear.

II.E Appendix

II.E.1 Proof of Lem. 2

To complete the proof of Lemma. 2 we need to show that

random ensemble: Pr(Ecorr) ≤ exp

{
−NpPp

2(2 + (2T − 1)Pp)

}
binary ensemble: Pr(Ecorr) ≤ exp

{
−Pp(dmax − T (dmax − dmin))2

2dmax

}
.

According to the hypothesis in Lemma. 2 the preamble part of the received vector

is written as ~y =
∑T

i=1~ai + ~z where ~z ∼ N (0, INp). For a fixed j chosen randomly
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Figure II.9: Minimum Eb/N0 required to achieve Pe ≤ 0.05 as a function of number
of users. We present the performance comparison of the average power constraint
versus the uniform power constraint case. For the uniform power constraint case,
number of times a codeword is repeated is constant and is independent of the message
index thus resulting in equal energy being expended for all the codewords uniformly.

from j ∈ {T + 1, ..,Mp},

Pr(Ecorr) , Pr(〈~y, ~aj〉 > 〈~y, ~a1〉) (II.23)

= Pr(〈~z +
T∑
i=2

~ai,~aj −~a1〉+ 〈~a1,~aj〉 > NpPp) (II.24)

= Pr

(
1

NpPp

[
〈~z,~aj −~a1〉+ 〈

T∑
i=1

~ai,~aj〉 − 〈
T∑
i=2

~ai,~aj〉

]
> 1

)
(II.25)

where we use the fact ||~ai||2 = NpPp∀i in Eqn. (II.24).

random ensemble

For the random ensemble 1
Pp
aikajk is a Rademacher random variable ∀i 6= j, k ∈

[Np] and thus from central limit theorem 1
NpPp
〈~ai,~aj〉 1

NpPp

∑
k aikajk → N (0, 1

Np
)

asymptotically inNp. Similarly for all k ∈ [Np], 1
Pp
zkaik ∼ N (0, 1

Pp
) and 1

NpPp

∑
k zkaik ∼
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N (0, 1
NpPp

). Thus the right hand side in Eqn. (II.25) can be approximated as

Pr(Ecorr) = Pr

(
1

NpPp

[
〈~z,~aj −~a1〉+ 〈

T∑
i=1

~ai,~aj〉 − 〈
T∑
i=2

~ai,~aj〉

]
> 1

)

≈ Pr(zeq + aeq > 1) where zeq ∼ N (0,
2

NpPp

), aeq ∼ N (0,
2T − 1

Np

)

≤ exp

{
− NpPp

2(2 + Pp(2T − 1))

}
.

binary ensemble

For the binary ensemble the correlation between any two vectors is bounded as

Np − 2dmax ≤ 1
Pp
〈~ai,~aj〉 ≤ Np − 2dmin. Thus the right hand side in Eqn. (II.25) can

be upper bounded as

Pr(Ecorr) = Pr

([
〈~z,~aj −~a1〉+ 〈

T∑
i=1

~ai,~aj〉 − 〈
T∑
i=2

~ai,~aj〉

]
> NpPp

)

≤ Pr ([〈~z,~aj −~a1〉+ PpT (Np − 2dmin)− Pp(T − 1)(Np − 2dmax)] > NpPp)

= Pr
(
z′eq > 2Pp(dmax − T (dmax − dmin)

)
≤ exp

{
−Pp(dmax − T (dmax − dmin))2

2dmax

}
,

where z′eq = 〈~z,~aj − ~a1〉 ∼ N (0, 4Ppd1j), d1j is the Hamming distance between the

vectors ~a1 and ~aj. Thus the maximum variance z′eq can have is 4Ppdmax which when

used in the tail bound for normal distribution gives the required upper bound.

II.E.2 Proof of Lem. 10

In the context of low density parity check (LDPC) codes the bipartite graph

corresponds to the parity check matrix where the left and right nodes represent the

bits of the codeword and the parity check equations respectively. If we consider an
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LDPC code under binary erasure channel where each bit is erased with probability

ε, under the assumption that the bipartite graph is a tree, the probability that a

random edge in the graph is an erasure in iteration t of the peeling process is given

by [22]

yt =
rmax∑
r=1

ρr(1− xt)r−1, (II.26)

xt+1 = ελ(1− yt). (II.27)

Eqn. (II.26) is due to the observation that all the incoming messages at a check node

are independent, due to the tree assumption, and the outgoing message on an edge

from a check node of degree r is a non-erasure if and only if all the incoming messages

are non-erasures. For degree distributions with finite maximum degree on the left

and right it is shown that a graph chosen randomly from the ensemble (N, λ, ρ) is a

tree with probability approaching 1 asymptotically in blocklength of the code.

Now if we consider an edge e connected to check node of degree r in the T -

peeling process, the outgoing message is a non-erasure if and only if there are at

most T − 1 erasures in the remaining r − 1 incoming edges. Thus the probability

that the outgoing message from a check node of degree r is non-erasure, denoted

by yt,r, if the incoming message on the remaining r − 1 edges is an erasure with

probability xt is equal to

yt,r =
T−1∑
t=0

(
r − 1

t

)
(1− xt)r−1−txtt if r > T

= 1 else if r ≤ T.

Averaging over all edges where an edge is connected to a check node of degree r with
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probability ρr gives us Eqn. (II.17).

II.E.3 Lattice decoding based analysis for compressed sensing

In this appendix we present an alternate analysis for the compressed sensing

problem we encountered in Sec II.C.1 based on lattice decoding. A low probability

of error for event Ep for low values of T translates to designing a sensing matrix A

where we require:

1. A large minimum distance in the Euclidean space between distinct T -sums of

columns and

2. a minimal number of T -sets of columns whose sum is identical.

Before we formalize the above mentioned notions, we would like to note that, for

the choice of A, we considered the superimposed codes proposed by authors Fan,

Darnell and Honary for the multiaccess binary adder channel [23]. In this work

the authors consider binary codes and show that every constant weight code with

weight w and maximum correlation c corresponds to a subclass of disjunctive code

of order T < w
c
. In other words, for any T < w

c
sum of any T codewords from this

code results in a distinct output. Although the superimposed codes solve the second

requirement we mentioned above they do not consider the first requirement i.e., the

larger minimum distance of the resulting signal space of T -sums of codewords which

is also critical in obtaining a low probability of decoding error values. We present the

discussion of these results and our result relaxing the constraint of constant weight

in Appendix II.E.4.

In the following subsection we introduce lattice and derive upper bounds on

Pr(Ep) based on maximum-likelihood decoder for lattices.

Definition 14. A lattice Λ in n-dimensional Euclidean space Λ ⊂ Rn can be defined
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as:

Λ = {λ ∈ Rn : λ = Gu,u ∈ Zm} (II.28)

whereG ∈ Rn×n is called the generator matrix of the lattice. We define the minimum

distance dmin(Λ) of the lattice Λ as

dmin(Λ) , min
λ1,λ2∈Λ

||λ1 − λ2||2.

Let the set of codewords/columns of A be denoted by C and C ⊆ Clin where Clin

is a binary linear code. We can then observe that the set of T -sums of codewords is

a subset of lattice formed from Clin ie..,

T∑
j=1

~aij ∈ Λ ij ∈ [1 : Mp]

where Λ = {Gu,u ∈ Zm},G is the generator matrix of the binary code Clin. Now that

the connection between the T -sums of the binary code and the lattice in which they

are contained in is established we formalize the two requirements on A mentioned

above.

Definition 15. For a given binary code C and fixed T , for a subset S of size T , we

define the indicator parameter

βT (S) , 1[∃S ′ s.t. u(S) = u(S ′), |S ′| = T, S ′ 6= S],

where u(S) :=
∑

i∈S ~ci and βT (S) indicates if the T -sum of codewords for the index

set S is unique in the set of T -sums of codewords from C. The second require-

ment mentioned above translates to minimizing βT (C) where we define βT (C) ,∑
S⊂[1:|C|] βT (S) that counts the total number of subsets whose sum is not unique in
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the set of T -sums of codewords from C.

Definition 16. For a given binary code C, fixed T , we define the minimum Euclidean

distance of a set S in the space of T -sums of codewords as

dmin(S; C) , min
S 6=S′,|S|=|S′|=T

||u(S)− u(S ′)||2 .

Also the following relation combining the three quantities above can be observed:

dmin(S; C)


≥ dmin(Λ) if βT (S) = 0

= 0 otherwise.
(II.29)

We will upper bound the probability of decoding error for the CS problem in

terms of the parameters defined in Def. 15 and 16.

Lemma 17. Let C ⊆ Clin, where Clin is a linear code containing C, be a binary

code with parameters (n,M, dmin). The probability of error of the bounded distance

decoder in decoding ~z =
∑

i∈S,|S|=T ~ci+~n where ~n ∼ N (0, σ2I) can be upper bounded

by

Pr(Ep) ≤ βT (C)(|C|
T

) +

(
ed2

min(Λ)

4σ2N
e
−dmin(Λ)2

4σ2N

)N/2
where N is the blocklength of the code C.

Proof. We recall that the error event E2 is defined as the event in which the CS

decoder fails to decode the set S exactly from

~y =
∑
i∈S

~ai + ~z
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where |S| = T . When we condition event E2 on the T -sum of vectors from S not being

unique, which happens with probability βT (C)
(|C|T )

the first part of the bound is obtained.

If we assume that the T -sum of vectors from S is unique, then the probability of

error in decoding the set S under bounded distance decoding can be upper bounded

by Pr
[
||~z|| ≥ dmin(Λ)

2

]
which is equivalent to

Pr

[
N∑
i=1

z2
i ≥

d2
min(Λ)

4σ2

]

where zi ∼ N (0, 1). The result is obtained by using the right tail bounds of Chi-

squared distribution.

We should note that it is not easy to compute the values of βT (C) especially

for higher values of T or Mp. However sharper conditions for T -disjunctive codes

provided in Appendix II.E.4 hopefully provide guidelines to design codes such that

βT (C) = 0

II.E.4 T-Disjunctive codes

In the following subsection we first present the main results from [23] that enabled

the authors to show that constant weight codes are a subclass of disjunctive code.

Then we follow it up with our result where we relax the constant weight constraint

on the code to nearly constant weight.

Definition 18. The maximum correlation c of a binary code C is defined as

c = max
~ci,~cj∈C, i 6=j

< ~ci,~cj > .

Definition 19. A binary vector ~c = [c(1), c(2), . . . , c(n)] is said to be included in a

vector ~z = [z(1), z(2), . . . , z(n)] if and only if z(i) ≥ c(i) ∀i.
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Definition 20. A binary code C with length n, size M is said to be a disjunctive

code of order T if each subset S ⊂ C with size |S| ≤ T has the property that the

vector ~z includes only those codewords in C that belong to S where

~z =
∑
~ci∈S

~ci (II.30)

is the output of the multiple access real adder channel. We denote a disjunctive code

by D(n,M, T ).

Definition 21. A constant weight(CW) binary code is one in which all the codewords

have equal weight w. For a CW code, the minimum distance dmin and the maximum

correlation c are related as

2c = 2w − dmin.

We denote a constant code by parameters CW(n,M,w, c) where n,M are blocklength

and size of the code respectively.

Lemma 22 ([23] Theorem 1). A constant weight binary code C with parameters

(n,M,w, c) is also a disjunctive code of order (n,M, T ) for all T satisfying

T <
w

c
.

Example 23. Consider a Reed-Solomon code RS(n, k, dmin) = RS(7, 3, 5). As de-

scribed in [23] we construct a constant weight code by mapping each symbol in a
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codeword from GF(23) to a length 8 binary vector of weight one

0→ 10000000

1→ 01000000

· · ·

7→ 00000001.

Note that this code has parameters n = 56,M = 29, w = 7, dmin = 10 which implies

c = w− dmin/2 = 2. Thus any T -sum of the codewords from this CW code is unique

for all T ≤ 3 < w
c
.

Now we relax the constant weight constraint in Lemma. 22 and give the corre-

sponding bounds on the disjunctive code parameters.

Lemma 24. For a binary code C with parameters (n,M, dmin, wmax), where wmax

is the maximum Hamming weight of all the codewords in the code, the maximum

correlation between any two codewords can be given by

c ≤ wmax − dmin/2.

Proof. For any two codewords ~ci,~cj ∈ C the relationship between correlation, Ham-

ming distance and sum of Hamming weights can be given by

dH(~ci,~cj) + 2c(~ci,~cj) = wH(~ci) + wH(~cj)

where dH and wH are the Hamming distance and weights respectively. By substitut-

ing the lower and upper bounds dmin and wmax for the two parameters gives us the

required upper bound on maximum correlation of any two codewords of the binary
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code.

Lemma 25. A binary code C with parameters (n,M, dmin, wmax) is also a disjunctive

code of order (n,M, T ) for all T satisfying

T <
wmin

wmax − dmin/2
. (II.31)

where wmin and wmax respectively are the minimum and maximum Hamming weights

of all codewords in the code. Note that the values of dmin and wmin are not necessarily

equal for non-linear codes.

Proof. Without loss of generality consider a set S = {~c1,~c2, . . . ,~cT} of codewords of

size T and let the output of the real adder multiple access channel, given by Eqn.

(II.30), be ~z. Let us consider codeword ~ce ∈ C\S and look at the event in which ~z does

not include ~ce. Let sie := {k : ci(k) = ce(k) = 1} ∀i ≤ T and se = {k : ce(k) = 1}.

Since ~z =
∑

i≤T ~ci =⇒ z(k) ≥ 1 ∀k ∈ ∪sie. Hence the condition that needs to be

satisfied for ~z to not include ~ce is that ∃k : k ∈ se\ ∪ sie which translates to

| ∪ sie| < |se|. (II.32)

The inequality in Eq. (II.32) is satisfied when
∑

i c(~ci,~ce) < wH(ce) which is implied

by the condition Tcmax < wmin and from Lemma. 24 the required result follows.

Example 26. Consider a binary BCH code C with parameters (n, k, dmin) = (63, 10, 27).

Let the subset C0 ⊂ C be obtained via the following decomposition:

C = C0 ∪ C1 such that c ∈ C0 ⇐⇒ c̄ ∈ C1,

where c̄ = 1⊕ c is the one’s complement of c. For the code C0\0, 0 being the all-zero
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codeword, the weight and distance parameters are computed to be (wmin, wmax, dmin) =

(27, 36, 27) for which the bound in Eqn. (II.31) is T ≤ 1. But numerically we observe

that this code produces unique outputs from the MAC adder channel atleast upto

values of T = 3. The parameters βT (C0) and dmin(C0, T ) are computed numerically

for T ≤ 1 and are given by :

T dmin βT (C)

1
√

27 0

2
√

27 0

3
√

27 0 .
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III. RANDOM MULTIPLE ACCESS

III.A Motivation

Recently, there has been a lot of interest in the design of random access strategies

for the uncoordinated massive multiple access problem in view of wireless networks.

An interesting connection has been established between codes on graphs and the

decoding of multiple users (or, collision resolution in multiple access schemes) [8].

Leveraging this connection, results from coding theory have been used to design

and analyze various random access strategies. Particularly, it has been shown that

in the limit of the number of users becoming asymptotically large, the throughput

efficiency of uncoordinated multiple access can be as high as that of coordinated

multiple access [9]. In this chapter, we consider the non-asymptotic regime when

the number of users is fixed and finite. By extending the finite-length analysis of

low density parity check (LDPC) code ensembles [3] to the multiple access case, we

analyze the performance of the random access schemes for finite lengths and validate

the analysis with numerical simulations.

III.A.1 System model

In the considered system model there are a total of n users currently active each

with one packet of information to transmit to the access point. Similar to Ch. II the

transmission period is partitioned into sub-blocks, referred to as slots, thus resulting

in a similar slotted structure. Let the total number of slots available per round be

m. The random access strategy of each user, independent and uncoordinated from

other users, can be described as following. Each user k, k ∈ [1 : n], populates a

random variable Dk distributed according to the probability mass function L(x) or

equivalently Pr(Dk = i) = Li. The respective user then chooses Dk time slots uni-
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formly at random, with replacement, from the m available slots. We will refer to

this framework of picking check nodes randomly as uniform-with replacement frame-

work. We can represent the random strategy via bipartite Tanner graphs similar to

a LDPC code where the variable nodes represent the n users and the check nodes

represent the m available slots. There exists an edge between variable node i and

check node j if and only if user i chose to transmit in slot j. Note that we follow

the same convention as used in describing LDPC codes for the degree distribution

polynomials:

L(x) =
lmax∑
i=1

Lix
i (III.1)

λ(x) =
lmax∑
i=1

λix
i−1,

where L(x) and λ(x) denote variable node degree distributions, from node and edge

perspectives respectively. R(x) and ρ(x) are defined similarly for the check nodes.

For a given n, L(x) probability that a randomly generated graph is not decoded

Notation Parameter represented
n Total number of users in the system (variable nodes)
m Number of time slots per one round of communication (check nodes)
L(x) Variable node degree distribution, node perspective
R(x) Check node degree distribution, node perspective
λ(x) Variable node degree distribution, edge perspective
ρ(x) Check node degree distribution, edge perspective
PB Prb. that n users are not decoded successfully
Pb Prb. that a random user is not decoded successfully

Table III.1: Summary of parameters encountered in this chapter along with the
notation used is given above.
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completely by successive interference cancellation decoder (see peeling decoder [22])

referred to as probability of block error PB. Similarly the probability that a random

user in a session is failed to be decoded by the access point as probability of bit error

Pb.

III.B Review

We start with a review of the existing results in the analysis of error perfor-

mance of finite-length LDPC codes over binary erasure channel (BEC) under peeling

decoder. Most of these results are due to Amraoui, Montanari and Urbanke [3].

Consider an LDPC (n, λ, ρ) ensemble which can be defined as the ensemble of

bipartite graphs with n variable nodes, m check nodes, and edge connections are

formed randomly such that the variable and check node d.d’s are λ(x), ρ(x) respec-

tively. For more details refer [22]. Luby et al, [24] analyzed the peeling decoder

and computed expressions for the evolution of expected number of degree-one check

nodes as a function of the size of the residual graph, as the peeling algorithm pro-

gresses. More precisely, let R̃1(y) denote the fraction of degree-one check nodes (as

a fraction of m- number of check nodes in the original graph) present in the residual

graph. Here the number of degree-one check nodes in the residual graph is given in

parametric form where y is a function of the number of edges peeled off. Note that

t = 0 corresponds to y = 1 and t→∞ corresponds to y → 0. Then

R̃1(y) = R′(1)ελ(y)[y − 1 + ρ (1− ελ(y))]. (III.2)

For a (3, 6) regular LDPC code, the average number of degree-one check nodes given

by (III.2) is plotted in Fig. III.1. Note that the figure is reproduced from [3].

The authors [3] demonstrate that (can also be observed from Fig. III.1) the

failure of decoder occurs with high probability in two possible scenarios: The first
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Figure III.1: R̃1(y) at ε = εBP for λ(x) = x2, ρ(x) = x5. Note that this figure is
reproduced from [3] c© 2007 IEEE.

case corresponds to y ≈ 0 or as t→∞ and the other case corresponds to the value

of y such that R̃1(y) = 0 when ε = εBP or equivalently at the value of y where the

curve has a stationary point. This point is referred to as critical point y∗. The errors

caused corresponding to the first case are referred to as small-error events or error

floor erasures since they occur towards the end of peeling decoder and the errors

corresponding to the second case are referred to as large-error events or waterfall

erasures. The authors approximate the total probability of error by two expressions,

each one corresponding to the one of these two cases.

Lemma 27 (Scaling Law [22]). Consider transmission over a BEC channel using

random elements from the LDPC (n, λ, ρ) ensemble. Assume that the ensemble

has a single critical point y∗ > 0 and let ν∗ = εBPL(y∗). Let PW
B (n, λ, ρ, ε) denote

the expected block erasure probability due to erasures of size atleast nγν∗, where
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γ ∈ (0, 1). Fix z :=
√
n(εBP − βn−2/3 − ε). Then as n→∞,

PW
B (n, λ, ρ, ε) = Q

( z
α

) (
1 +O(n−1/3)

)
PW

b (n, λ, ρ, ε) = ν∗Q
( z
α

) (
1 +O(n−1/3)

)
where α and β are constants dependent on the degree distributions.

The expression above approximates the error probability of large-erasure events.

Lemma 28 (Error Floor [3]). Consider transmission over a BEC channel using

random elements from the LDPC (n, λ, ρ) ensemble. Assume that the ensemble has

a single critical point y∗ > 0 and let ν∗ = εBPL(y∗). Let P F
B (n, λ, ρ, ε) denote the

expected block erasure probability due to stopping sets of size between smin and

nγν∗, where γ ∈ (0, 1). Then for any ε < εBP

P F
B (n, λ, ρ, ε) = 1− e−

∑
s≥smin

Ãsεs (1 + o(1))

P F
b (n, λ, ρ, ε) =

∑
s≥smin

sÃsε
s (1 + o(1)) ,

where Ãs = coef{log(A(x)), xs} for s ≥ 1, with A(x) =
∑

s≥0Asx
s and

As =
∑
e

(
coef

{∏
i

(1 + xyi)nLi , xsye

}
×

coef{
∏

i ((1 + x)i − ix)
n(1−r)Ri , xe}(

nL′(1)
e

) )
. (III.3)

Note that As is the expected number of stopping sets of size s in a random graph

chosen uniformly at random from the LDPC (nλ, ρ) ensemble and Ãs is the expected

number of minimal stopping sets of size s. Following along similar lines we derive

error floor expression in the case of random multiple access problem.
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III.C Error analysis for random multiple access

We note that in the case of random uncoordinated multiple access scheme since

the right degree distribution is not a design choice but rather has a Poisson distri-

bution, as discussed in [9], the error probability approximations do not carry over

directly from [3] especially for the water-fall erasures. But we approximate the small-

error events PF
b (n, L), where ‘F’ stands for error floor, the expression for which is

given in III.C.1. We avoid the large error events by imposing a constraint in the opti-

mization problem that the residual degree-1 check nodes R̃1(y) in the initial stages of

peeling decoder is bounded away from 0 by a certain threshold and thus the overall

probability of error is well approximated by PF
b (n, L) alone. We support this claim

by providing evidence via simulations.

We will refer to the random access framework of picking check nodes randomly

but with replacement as uniform-with replacement framework. Even though the

“uniform-with replacement" allows for multiple edges in the graph, the analysis is

made easier because of this assumption. For a given edge, probability that it connects

to any of the check nodes is equal to 1
m
. We also believe that the resulting analysis

can be easily extended to the “uniform-without replacement" framework where in the

Dk check nodes are picked uniformly at random, but without replacement from the

m check nodes. Note that in Narayanan, Pfister [9] consider the “ uniform-without

replacement" framework. Let variable node d.d. L(x), as described in Eqn. (III.1)

be the distribution according to which the users choose the repetition degree and the

edges are chosen according to the “uniform-without replacement" framework. Under

this framework we define the ensemble of graphs for the random multiple access
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problem as UMAC(n, λ, η) where λ(x) is related to L(x) via

L(x) =

∫ x
0
λ(x)∫ 1

0
λ(x)

,

η is the throughput (n = mη).

III.C.1 Error probability approximates

Theorem 29 (Small error events). Consider transmission by users over a noiseless

MAC channel according to a graph picked uniformly at random from the UMAC(n, λ, η)

ensemble. Assume that the ensemble has single critical point y∗ > 0 and let

ν∗ = εBPL(y∗). Let P F
B,smin

(n, λ, ρ, ε) (P F
b,smin

(n, λ, ρ, ε)) denote the expected block

(bit) erasure probability due to stopping sets of size between smin and γν∗, where

γ ∈ (0, 1). Then

P F
B,smin

(n, λ, ρ, ε) = 1− e
−

γn∑
s≥smin

Ãs

(1 + o(1)) , (III.4)

P F
b (n, λ, ρ, ε) =

∑
s≥smin

sÃsε
s (1 + o(1)) , (III.5)

where Ãs = coef{log(A(x)), xs} for s ≥ 1, with A(x) =
∑

s≥0Asx
s and

As =
∑
i

(
coef

{
(1 + x

∑
i

Liy
i)n, xsyi

}
× coef{(ex − x)m, xi}

mi

i!

)
. (III.6)

Proof. We first show that the expression for As in (III.6) is equal to the expected

number of stopping sets of size ‘s’ in a graph chosen uniformly at random from the

UMAC(n, λ, η) ensemble. The first term is
(
n
s

)
times the probability that s nodes

have i edges attached to them and the second term is equal to the probability that
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the i edges, under the “uniform-with replacement" framework, form a stopping set

i.e, they choose check nodes such that none of the check nodes chosen have only one

edge connection.

From there we follow similar argument as in [22] that for large values of n the min-

imal stopping sets tend to a Poisson distribution with independent components. And

then the relation between A(x) and Ã(x), expression for block/bit error probability

follows along the same lines.

III.C.2 Results

We use the degree distribution given in Eqn. (III.7) with a maximum degree of

30. Note that we chose this distribution randomly. For parameters n = 1000,m =

1300(η ≈ 0.77) and L(x) in Eqn. (III.7), we obtain the following results given in

Table. III.2. Note that P F
B,smin

is computed using the analytic expression given in

(III.4) whereas P Sim
B,smin

is computed using numeric simulations of peeling decoder.

L1(x) = 0.3x2 + 0.25x3 + 0.2x4 + 0.1x5 + 0.05x10 + 0.04x15

+ 0.03x20 + 0.02x25 + 0.01x30. (III.7)

Remark 30. We notice that the analytic and numerical results are almost in perfect

agreement. To justify applying Thm. 29 we verify that most of the error events are of

small size, analytically through Fig. III.2 by plotting the number of degree-one check

nodes in the residual graph. We also verify numerically that the maximum stopping

set size we observe is 22 thus rendering an approximation for error probability because

of large error events unnecessary.

To verify for another distribution, we perform the experiments for another vari-

able node distribution given in Eqn. (III.8). The evolution of residual degree-one
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smin P F
B,smin P Sim

B,smin P F
b,smin P Sim

b,smin
2 7.89×10−2 7.97×10−2 2.13× 10−4 2.12× 10−4

3 2.78×10−2 2.84×10−2 1.05× 10−4 1.09× 10−4

4 1.11×10−2 1.30×10−2 5.41× 10−5 6.33× 10−5

5 4.80×10−3 5.90×10−3 2.88× 10−5 3.49× 10−5

6 2.23×10−3 3.00×10−3 1.58× 10−5 2.04× 10−5

7 1.10×10−3 1.50×10−3 9.04× 10−6 1.14× 10−5

8 5.68×10−4 5.00×10−3 5.28× 10−6 4.40× 10−6

9 3.03×10−4 3.00×10−4 3.15× 10−6 2.80× 10−6

10 1.66×10−4 1.00×10−4 1.90× 10−6 1.00× 10−6

Table III.2: Comparison of Probability of Block\Bit errors computed analytically
and via simulations for L1(x) given by Eqn. (III.7), K = 1000, η = 0.77.

check nodes is given in Fig. III.2. The corresponding numeric results obtained via

simulations are given in Table. III.3.

L2(x) = 0.3x2 + 0.25x3 + 0.2x4 + 0.1x5 + 0.05x6 + 0.04x7

+ 0.03x8 + 0.02x10 + 0.01x20. (III.8)

smin P F
B,smin

P Sim
B,smin

P F
b,smin P Sim

b,smin
2 7.91×10−2 7.67×10−2 2.13× 10−4 2.08× 10−4

3 2.79×10−2 2.86×10−2 1.05× 10−4 1.12× 10−4

4 1.11×10−2 1.28×10−2 5.41× 10−5 6.49× 10−5

5 4.82×10−3 6.43×10−3 2.88× 10−5 3.94× 10−5

6 2.25×10−3 3.56×10−3 1.59× 10−5 2.51× 10−5

7 1.11×10−3 1.63×10−3 9.05× 10−6 1.35× 10−6

8 5.73×10−4 8.67×10−4 5.29× 10−6 8.13× 10−6

9 3.06×10−4 5.33×10−4 3.15× 10−6 5.47× 10−6

10 1.68×10−4 4.00×10−4 1.91× 10−6 4.27× 10−6

Table III.3: Comparison of Probability of Block\Bit errors computed analytically
and via simulations for L2(x) given by Eqn. (III.8), K = 1000, η = 0.77.
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III.C.3 Necessity of large error approximation

The next obvious question we consider is for what parameters does the probabil-

ity of small error events given in Eqns. (III.4) & (III.5) is dominated by the large

error events and hence is inaccurate estimators of the total probability of error. We

consider the case of increases throughput from η = 0.77 to η = 0.95 which equates to

m = 1053 by keeping all other variables in the system same. Before we look at the

analytic and numeric results, consider the evolution of residual graph for η = 0.95

given in Fig. III.2. Notice that for y = y∗ ∈ (0.82, 0.98), the curve is negative

implying that with significant probability the error events will be of size concentrat-

ing around
∑

iKL̃i(y
∗) , and hence the large error events are non-negligible and in

fact will dominate the total error events. To verify this observation numerically we

present the results P Sim
B,smin versus P F

B,smin in Table. III.4.

smin P F
B,smin P Sim

B,smin P F
b,smin P Sim

b,smin
2 7.91×10−2 1 2.13× 10−4 0.93
3 2.79×10−2 1 1.05× 10−4 0.93
4 1.11×10−2 1 5.41× 10−5 0.93

Table III.4: Comparison of Probability of Block\Bit errors computed analytically
and via simulations for L1(x) given by Eqn. (III.7), K = 1000, η = 0.95.

III.D Conclusion

We derived analytic expressions to compute the probability of small error events

for the random uncoordinated multiple access problem. We also demonstrated,

through numerical simulation, that these analytic expressions are a good estimator

for the overall probability of error if the throughput η = n
m

satisfies certain condi-

tions. The validity of these conditions on throughput can be evaluated by plotting
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Figure III.2: R̃1(y) for UMAC(1000, L(x), 0.77) corresponding to L1,2(x) in Eqn.
(III.7).

the evolution of residual degree-one check nodes given by the analytic expression in

Eqn. (III.2).
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IV. CONSTRUCTION-D LATTICES VIA SPATIALLY COUPLED LDPC

CODES∗

Lattices have been studied in pure mathematics for more than two centuries. In

the last few decades lattices have also found application in connection with coding

theory, cryptography and various physical sciences. Codes derived from well designed

lattice structures have been shown to be optimal coding solutions to several problems

in information and coding theory [25, 26]. In most of these cases, the underlying

lattices are constructed using Construction-A and it has been shown that such lattices

are simultaneously good for shaping (Roger’s good) and for channel coding (Poltyrev

good) [25]. There are two important drawbacks in using optimal lattices constructed

using Construction-A. On the theoretical side, the use of non-binary codes makes

it difficult to prove the optimality of these lattices and lattice codes under practical

decoding algorithms such as belief propagation (BP) decoding and so far, we are

not aware of any results showing the optimality of Construction-A lattices under BP

decoding. On the practical side, optimal lattices constructed from Construction-A

typically require the underlying linear codes to work over large fields and hence,

result in formidable decoding complexity, even with BP decoding.

In this chapter [27], we discuss Construction-D lattices. We propose a class of

lattices constructed using Construction-D [28] where the underlying linear codes are

nested binary spatially-coupled low density parity check codes (SC-LDPC) codes

with uniform left and right degrees. Forney et al [29] showed that the Construction-

D lattices achieve the Poltyrev-limit under multi-stage decoding if the underlying
∗ c© 2014 IEEE. Reprinted, with permission, from A. Vem, Y.-C. Huang, K. R. Narayanan, H. D.

Pfister, “Multilevel lattices based on spatially-coupled LDPC codes with applications", International
Symposium on Information Theory, 2014.
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codes at each level are capacity achieving. Leveraging this result, and the result due

to Kudekar et al proving that the regular SC-LDPC codes can universally achieve

capacity under BP decoding for the class of binary memoryless symmetric (BMS)

channels [30, 31], we show that the proposed Construction-D lattices achieve the

Poltyrev limit under multistage BP decoding.

We refer to the proposed lattices as SC-LDPC lattices. The density evolution

thresholds show that the proposed SC-LDPC lattices can approach the Poltyrev limit

to within 0.2 dB under multistage BP decoding. Around the same time, binary polar

codes have been used in conjunction with Construction-D to obtain Poltyrev-good

lattices in [32]. The focus of this chapter is on the use of SC-LDPC codes.

We then derive lattice codes from the proposed SC-LDPC lattices and apply

them to the symmetric interference channel [33]. It has been pointed out in [34] that

there is a natural connection between lattices generated by Construction-D and the

interference alignment scheme in [33]. We observe that the interference alignment can

be achieved by replacing the Barnes-Wall lattices in [34] by our proposed SC-LDPC

lattices.

Throughout the rest of the chapter, vectors and matrices are written in lowercase

boldface and uppercase boldface, respectively. In denotes identity matrix of size

n× n.

IV.A Lattice preliminaries

A lattice Λ is a discrete set of points in Euclidean space that form an additive

group. More precisely an m-dimensional lattice Λ(n) ⊂ Rn can be defined as:

Λ(n) = {λ ∈ Rn : λ = Mu,u ∈ Zm} (IV.1)

where M ∈ Rn×m is full-rank and is called the generator matrix of the lattice.
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Throughout this chapter, whenever a lattice Λ is used without the superscript, it is

understood that the lattice is contained in the n-dimensional Euclidean space i.e.,

Λ ⊂ Rn. For a given lattice Λ, we denote the quantizer with respect to the lattice as

QΛ, modulo operation with respect to the lattice as mod Λ, fundamental Voronoi

region as VΛ and the fundamental volume defined as the volume of any fundamental

region as Vol(Λ). For more details on the lattice terminology see [26].

Assume that some λ ∈ Λ is transmitted through an additive white Gaussian noise

(AWGN) channel of variance σ2. The volume-to-noise ratio(VNR) of Λ, α2(Λ, σ2),

is defined as:

α2(Λ, σ2) =
Vol(Λ)2/n

2πeσ2
. (IV.2)

At the receiver given the decoder D : Rn → Λ, let us denote the error probability

of decoding a lattice point λ ∈ Λ as P(λ, σ2) under decoder D. To be more precise,

P(λ, σ2) := Pr (D(λ+ z) 6= λ) ,

where the noise vector is denoted by z. For an infinite lattice Λ, P(λ, σ2) under

the minimum Euclidean distance decoder is independent of λ and hence the average

probability of decoding error for the lattice P(Λ, σ2) is the same as P(λ, σ2) for any

λ ∈ Λ. Note that minimum distance decoder is the optimal decoder for this problem.

IV.A.1 Poltyrev limit

Definition 31 (Poltyrev Limit). Poltyrev in [35] showed that for any δ > 0 there

exists sequence of lattices Λ(n), indexed by n, such that the volume-to-noise ratio

α2(Λ(n), σ2) < 1 + δ, ∀n and the average error probability under minimum distance

decoder P(Λ(n), σ2)→ 0 as n→∞. We shall call such a sequence of lattices as being

Poltyrev-good.
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Remark 32. The converse to the Poltyrev limit i.e., if the VNR of any lattice Λ,

α2(Λ, σ2) < 1, then it can be shown by simple geometric arguments that the average

probability of decoding error is bounded away from 0 even under the minimum dis-

tance decoder. Thus the Poltyrev limit is a fundamental limit for the unconstrained

AWGN channel coding problem. And also note that to show that a specific sequence

of lattices achieve Poltyrev limit it suffices to show that the sequence of lattices sat-

isfy the conditions in Definition 31 using any decoder, not necessarily the optimal

minimum distance decoder.

IV.A.2 Construction-D and its goodness

In the literature, even though many lattice constructions such as Construction-

A, Construction-D, Construction-D′, Construction E etc.., were available since the

1960s, we can safely say that Construction-A has been the most popular one among

the information and coding theory communities. The main reason being that the

lattices based on Construction-A are used to show (constructive) optimal solutions

to various problems like sphere packing, covering, channel coding, source coding,

physical-layer network coding etc., [36, 25, 15, 34]. Note that in many of these

applications, the optimality is only asymptotic in the field size over which the

Construction-A lattice is constructed upon. So even though the Construction-A

provides us optimal lattices, the main disadvantage is that at the encoder and de-

coder should operate over finite fields of very large size. However Construction-D

with it’s multi-level structure enables us to work over fields of very small size at

each level thus making Construction-D lattices much more amenable for practical

implementation.

In this subsection we briefly describe multilevel construction of lattices [28, 37],

specifically Construction-D and then recall Forney et al’s result on the existence of
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Poltyrev-good lattices based on this construction [29].

Multilevel construction of lattices is based on a sequence of nested codes {Cl, 1 ≤

l ≤ r} where each code Cl is of length n over Fq, a field of size q. Construction-D and

Construction-D′ are based on such nested sequence of linear codes. For details we

refer the reader to [37]. Throughout this work we work with binary linear codes i.e.,

q = 2. For 1 ≤ i ≤ r where r is the number of levels, let Ci be a (n, ki) binary code

spanned by the set of binary n-tuples {g1,g2, . . . ,gki} linearly independent over Z

where k1 ≤ k2 ≤ · · · ≤ kr. One can observe that C1 ⊆ . . . ⊆ C2 ⊆ Cr. Using such

nested binary linear codes {Cj, 1 ≤ j ≤ r}, a multilevel Construction-D lattice Λ can

be defined as follows:

Λ =

{
2rZn +

∑
1≤i≤r

2i−1
∑

1≤j≤ki

αijgj|αij ∈ {0, 1}
}

(IV.3)

where “+" denotes addition in Rn. Since the generator vectors g1,g2, . . . ,gkr are all

linearly independent and based on the fact that the volume of the Voronoi region

corresponding to each point in the lattice is equal to the volume of the fundamental

Voronoi region, the VNR of a Construction-D lattice described in (IV.3) can be

computed to be

α2(Λ, σ2) =
22(r−

∑r
i=1 ki/n)

2πeσ2
. (IV.4)

Multistage decoder

We describe the multistage decoding that can be used to decode a Construction-D

lattice over any memoryless additive noise channel. Let λ ∈ Λ, where Λ is as defined

in (IV.3), be transmitted through an AWGN channel and y = λ+z is received where

z ∼ N (0, σ2In). Let Di be the component decoder corresponding to Ci which, given

any x ∈ Rn, maps it to a codeword in Ci, i.e., Di(x) ∈ Ci. Let the initialization step
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be ŷ0 = y.

• Step 1: At stage i, 1 ≤ i ≤ r, ŷi−1 mod 2 is decoded to a codeword x̂i ∈

Ci. Also, the corresponding information bits {α̂i1, α̂i2, . . . , α̂iki} ∈ {0, 1}ki that

generate x̂i, are computed.

• Step 2: Compute ŷi = 1
2
· (ŷi−1 −

∑
1≤i≤ki α̂ijgj). Go to Step 1.

• Step 3: At (r+ 1)th stage of decoding, ŷr is decoded to the closest q ∈ Zn with

respect to the Euclidean norm.

• Output : Decoded lattice point λ̂ ∈ Λ is given by

λ̂ = 2rq +
∑

1≤i≤r

2i−1
∑

1≤j≤ki

α̂ijgj. (IV.5)

At the ith stage of decoding, conditioned on successful decoding in previous stages

i.e., assuming α̂pj = αpj for 1 ≤ p < i, the input to the decoder is of the form

ŷi−1 mod 2 ≡ 1

2

(
ŷi−2 −

∑
1≤j≤ki−1

α(i−1)jgj

)
mod 2

≡
( 1

2i−1
ŷ0 −

∑
1≤p<i

2p−i
∑

1≤j≤kp

αpjgj

)
mod 2

≡ 1

2i−1

(
y −

∑
1≤p<i

2p−1
∑

1≤j≤kp

αpjgj

)
mod 2

≡
( ki∑
j=1

αijgj

)
mod 2 +

(
2−(i−1)z

)
mod 2

≡ xi + 2−(i−1)z mod 2, (IV.6)

where xi ∈ Cj. We call the channel defined in (IV.6) as an additive mod-2 Gaussian

noise (AMGN) channel [29] and denote the capacity for this channel as CAMGN(σ2
i )
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where σ2
i = 2−2(i−1)σ2.

Theorem 33 (Forney et al. [29]). For an AWGN channel with noise variance per

dimension σ2, there exists a sequence of Construction-D lattices Λ based on a chain

of r two-way one-dimensional lattice partitions and r nested random binary linear

codes C1 ⊆ C2 · · · ⊆ Cr that is Poltyrev-good.

Remark 34. Note that in [29], it was shown that if for each level j ∈ {1, . . . , r} the

binary linear code Cj at that respective level is arbitrarily close to the capacity of

the respective AMGN channel and has an arbitrarily low error probability in that

stage of the multistage decoder then it was shown that the Construction-D lattice

can thus be constructed arbitrarily close to the Poltyrev-limit with an arbitrarily low

probability of error.

IV.B Proposed SC-LDPC lattices

As we can see from (IV.3), construction of lattices based on Construction-D using

SC-LDPC codes requires the spanning sets, or equivalently generator matrices, of

the respective codes to be nested. In other words we need a sequence of SC-LDPC

codes where each code is nested in the next code of the sequence. In this section,

we first construct such a sequence of nested linear codes where each code has the

structure similar to a SC-LDPC system and hence has good error performance at

rates arbitrarily close to Shannon capacity. For ease of exposition, we restrict our

description to the case r = 2. For higher values the construction extends naturally.

IV.B.1 Construction

Let the required rates of the two codes be r1 and r2, 0 < r1 < r2. Prior to

the details, let us recall that the Tanner graph of a rate k
n
binary linear code is the

bipartite graph whose n−k check nodes represent the parity check equations defining
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the code and the n variable nodes represent the bits of the code. Our objective is to

construct Tanner graphs G1,G2 similar in structure to a SC-LDPC system(reference

needed?) such that the binary codes C1, C2 represented by the respective graphs are

nested i.e., C1 ⊆ C2 and the rates are arbitrarily close to r1 and r2 respectively. For

small enough ε > 0, choose dc ∈ N such that there exists d1
v, d

2
v ∈ N,

div ≥ 3 and 1− div
dc
> ri − ε, i ∈ {1, 2}. (IV.7)

The ε leeway in the above equations is just for rounding off ri to the nearest rational

number and not very significant.

In this approach we first construct a regular (d1
v, dc) Tanner graph G1 where

regularity here means that all the variables have degree d1
v and all checks have degree

dc. Then we obtain the Tanner graph G2 by removing a fraction of the parity checks

and the edges incident on these checks in a systematic fashion that G2 is (d2
v, dc)

regular. The ensemble described in [38] is not directly amenable to our approach

of deriving the higher rate code, since removing a fraction of the checks from this

ensemble does not result in a regular SC-LDPC code. Therefore, our approach is to

use the following multi edge-type construction.

Fix M ∈ N. We place Mdc variable nodes at each position in the range [1 : L] :=

{1, 2, . . . , L}, L ∈ N andMd1
v check nodes at each position in the range [1 : L+w−1],

where w ∈ N is coupling width. At each position divide the Md1
v check nodes into

d1
v groups where each group contains M check nodes. At any position we refer to all

check nodes belonging to kth group as of type Tk. This equates to, at each position,

Mdc edges coming from check nodes of type Tk for all k ∈ [1 : d1
v]. Similarly, for

each variable node, we arbitrarily classify the d1
v edges into types, where kth edge is

referred to as type Ek which equates to Mdc edges of each type at any position. For
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a fixed k ∈ [1 : d1
v], for all i ∈ [1 : L], each edge of type Ek at position i is assigned

uniformly at random to a type Tk check node from positions [i : i+w−1]. The main

idea is that, for each k ∈ [1 : d1
v], if we consider the sub-graph containing only the

type Tk check nodes and variable nodes with single edge (type Ek edges) the above

mimics the construction of a (1, dc, L, w) ensemble [38] on the sub-graph. This results

in a Tanner graph in which every variable node has exactly one edge connected to

type Tk check node, for all k ∈ [1 : d1
v]. We call such a graph, a check-uniform

connected graph.

More precisely, the ensemble is defined as follows. Choose M such that Mdc
w

is

a natural number. Fix k ∈ [1 : d1
v] and i ∈ [1 : L]. Choose a permutation πvi,k

uniformly at random from the set of permutations on Mdc letters. Under arbitrary

indexing of the Mdc variable nodes at position i, for j ∈ [0 : w − 1], assign Ek type

edges of πvi,k
(
jMdc

w
+ 1 : (j + 1)Mdc

w

)
variable nodes at position i to check nodes at

position i+ j. Under this assignment, ignoring the boundary effects, for each check

node type at position i + j, the number of edges that come from variable nodes at

position i is Mdc
w

, a wth fraction of the total number of connections. From the check

nodes perspective, for k ∈ [1 : d1
v], at each position, distribute these edges according

to a permutation πci,k chosen uniformly at random from the set of all permutations

on Mdc letters. We call the proposed construction as (d1
v, dc, L, w) check-uniform

SC-LDPC (CU-SC-LDPC) ensemble of codes.

Choose a Tanner graph uniformly at random from the above described (d1
v, dc, L, w)

CU-SC-LDPC ensemble, call it G1. Observe that, removal of all check nodes of a

particular type, say Td1
v
, from G1 results in a regular (d1

v − 1, dc) Tanner graph. One

can see that removal of all check nodes of types Td2
v+1, Td2

v+2, . . . , Td1
v
from G1 results

in a graph from the (dc, d
2
v, L, w) CU-SC-LDPC ensemble, which let’s refer to as G2.

More importantly, all the check-nodes in the derived graph G2 are also contained in
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G1 and hence any codeword satisfying all the check constraints in G1 also satisfies all

the check constraints in G2. Thus we can say that the binary code C1 defined by G1 is

a sub-code of the binary code C2 defined by G2. One can obtain a sequence of nested

linear codes C1 ⊆ C2 ⊆ . . . Cr by repeatedly performing the above operation. Given

(dc, d
1
v, . . . , d

r
v), for each code C1 from the (dc, d

1
v, L, w) CU-SC-LDPC ensemble, we

can obtain a nested sequence of codes C1, C2, . . . ,⊆ Cr where Ci ∈ (dc, d
i
v, L, w) CU-

SC-LDPC ensemble. We call the proposed ensemble of nested sequences of codes as

(dc, d
1
v, . . . , d

r
v, L, w) CU-SC-LDPC ensemble.

T1T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

Figure IV.1: A example Tanner graph from the (3, 6), L = 3, w = 2 CU-SC-LDPC
ensemble. Removal of all the type T1 check nodes i.e the filled nodes, results in a
(2, 6) CU-SC-LDPC protograph, see Fig.IV.2.

Remark 35. Observe that choosing G1 uniformly at random from the (dc, d
1
v, L, w)

CU-SC-LDPC ensemble is equivalent to choosing a set of permutations Π1 = {πci,k, πvi,k :

i ∈ [1 : L], k ∈ [1 : d1
v]} where each permutation is chosen uniformly at random from

the set of permutations on Mdc letters. Deriving nested graph G2 is equivalent to

75



considering just the subset: Π2 = {πci,k, πvi,k : i ∈ [1 : L], k ∈ [1 : d2
v]} of permu-

tations. Hence this construction of nested codes is equivalent to first constructing

G2 by choosing Π2 and then choosing {πci,k, πvi,k : i ∈ [1 : L], k ∈ [d2
v + 1 : d1

v]} to

construct Π1 or equivalently G1.

Example 36. For r1 = 0.5, r2 = 0.9 let us try to compute the degree profiles

satisfying (IV.7). One can see that any triplet (dc, d
1
v, d

2
v) = (10k, 5k, k), k ≥ 3,

satisfies all the required conditions and (30, 15, 3) is the simplest degree profile. We

will see later the justification for choosing, r2 = 0.9 in this example (or in general

why a nested super-code of high rate, close to 1, is required).

As we have seen in Example. 36, the CU-SC-LDPC construction requires to work

with high degree Tanner graphs. Therefore when one attempts multi-stage decoding

on lattices based on the proposed nested CU-SC-LDPC ensemble, BP decoding needs

to be carried out on a graph that is not very sparse such as the regular (15, 30)

Tanner graph in Example 36. For this purpose, to avoid high degree Tanner graphs,

we propose the following alternate construction.

IV.B.2 Alternate construction

In contrast to the previous construction where the check node degree remains

constant over all the graphs in the sequence of nested codes, in this construction the

variable node degree remains constant over all the graphs in the sequence of nested

codes. Similar to the previous construction we explain for the case r = 2.

Let the the required rates be r1, r2 , 0 < r1 < r2 < 1. For small enough ε > 0,

choose dv ≥ 3 such that there exists d1
c , d

2
c ∈ N,

d2
c = qd1

c , q ∈ N and 1− dv
dic
> ri − ε, i ∈ {1, 2}. (IV.8)
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Figure IV.2: A (2, 6) SC-LDPC sub-graph of the (3, 6) SC-LDPC graph shown in
Fig.IV.1.

In this construction of a nested pair of C1 ⊆ C2 with SC-LDPC like structure,

we first describe the construction of C2 and then the procedure of deriving the sub-

code C1. The construction of C2 is identical to that of the (dv, d
2
c , L, w) SC-LDPC

ensemble described in [38]. For sake of being self-contained we briefly describe the

construction here. For details we refer the reader to [38].

Fix M such that Mdv
d2
c
∈ N. We place M variable nodes at positions [1 : L], L ∈ N

and Mdv
d2
c

check nodes at positions [1 : L + w − 1], where w ∈ N is the coupling

width. From the variable node perspective we assign the edges such that each of

the dv connections of a variable node at position i is chosen uniformly at random

from the range [i : i+ w − 1]. Ignoring the boundary effects, the above assignments

are such that, for check nodes at position i, the number of edges that come from

variable nodes at position i − j, j ∈ [0 : w − 1] is Mdv
w

. In other words it is exactly

wth fraction of the total number of edges at position i. We distribute these edges

to Mdv
d2
c

check nodes at position i according to a permutation πi chosen uniformly at
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random from the set of permutations on Mdv letters. With this we can also assume

that each of the d2
c connections of a check node at position i is independently chosen

from the range [i − w + 1 : i]. Until this point the construction is identical to the

(dv, d
2
c , L, w) ensemble described in [38], which we hereafter refer to as (dv, d

2
c , L, w)

SC-LDPC ensemble.

We will now describe the construction of a nested sub-code contained in a code

from the above ensemble. Let a graph G2 be picked uniformly at random from the

(dv, d
2
c , L, w) SC-LDPC ensemble and let the binary code defined by this Tanner

graph be C2. Consider a check node C in G2 and replace the check node C by

check nodes C1, C2, . . . , Cq where each new check node Ci has a degree d1
c( Recall:

d2
c = qd1

c , q ∈ N, by design). With an arbitrary ordering of the d2
c edges incident on

C, distribute these edges to the new checks C1, C2, . . . , Cq according to a partition

ΠC picked uniformly at random from the set of all “partitions of a set of qd2
c letters

into q subsets of equal size”. Note that this operation, which we refer to as check-

splitting, does not alter the degree of any variable node in the graph. By performing

the check-splitting operation on all the check nodes in G2, we derive a regular (dv, d
1
c)

tanner graph. Let the derived graph be denoted G1 and let the binary code defined

by G1 be C1.

Lemma 37. C1 ⊆ C2.

Proof. Let c be a check node in G2 and hc be the corresponding parity-check vector

(corresponding row in parity-check matrix). As each check node c in G2 is replaced

by check nodes {c1, . . . , cq} in G1 let their corresponding parity check vectors be

{hc1 , . . . ,hcq}. Clearly, from the construction,

hc = hc1 + . . .+ hcq .
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Consider x ∈ C1 and a check node c ∈ G2. As x satisfies all the parity-check equations

in G1, hTci · x ≡ 0 mod 2, 1 ≤ i ≤ q.

hTc · x =
[
hTc1 + . . .+ hTcq

]
· x

≡ 0 mod 2.

The above implies hTc · x ≡ 0 mod 2, ∀c ∈ G2 and hence x ∈ C2.

One can obtain a sequence of nested linear codes C1 ⊆ C2 ⊆ . . . ⊆ Cr by repeatedly

performing the above operation, starting from Cr. We observe that in this construc-

tion, unlike the previous construction, for any code C2 from the (dv, d
2
c , L, w) SC-

LDPC ensemble, choice for deriving a sub-code is not unique. The non-uniqueness

arises from the fact that for each check node ‘c’ the number of choices for the parti-

tion Πc is not unique and any partition will result in a valid sub-code. We call the

set of all n-tuples of codes (C1, C2, . . . , Cr), where C1 ⊆ . . . ⊆ Cr derived from the

above construction as (dv, d
1
c , . . . , d

r
c) VC-SC-LDPC ensemble of nested codes. Here

VC refers to variable-constant since the variable degree remains constant across the

nested sequence of codes. Here after whenever a nested chain of codes is referred to

as SC-LDPC and no distinction between the constructions CU-SC-LDPC or VC-SC-

LDPC is made, it is implied that the statement is valid for both the constructions.

Remark 38. Note that, given a code C2 from the (dv, d
2
c , L, w) SC-LDPC ensem-

ble, deriving a sub-code C1 is equivalent to choosing a set of partitions: {Πc :

‘c’ is a check node in C2} uniformly at random. Therefore we can say that in this

construction, for any choice of C2 there are equal number of choices for C1 from the

(dv, d
1
c , L, w) SC-LDPC ensemble which are all equal likely.

Example 39. Under the VC-SC-LDPC construction, let’s consider the same desired
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rates r1 = 0.5 and r2 = 0.9 as in Example 36. By simple inspection one can see

that the parameters (dv, d
1
c , d

2
c) = (3, 6, 30) gives us nested VC-SC-LDPC codes of

desired rates. Here we need to work with (3, 6) and (3, 30) SC-LDPC codes compared

to (15, 30) and (3, 30) SC-LDPC codes in Example 36 based on the CU-SC-LDPC

construction.

Since Construction-D works with generator matrices of nested linear codes, we

have to obtain nested generator matrices from the proposed nested SC-LDPC codes.

In the following lemma, we show the existence of such nested generator matrices for

any set of nested binary linear codes.

Lemma 40. Given nested binary linear codes C1 ⊆ C2 ⊆ . . . ⊆ Cr there exists nested

generator matrices for these codes.

Proof. It suffices to consider the case having only two levels. For C1 there exists set

of linearly independent binary vectors G1 = {g1,g2, . . . ,gk1} that span C1 where

k1 =dim(C1). Denote Zi = {G1,gk1+1,gk1+2, . . . ,gk1+i−1} and Yi = C2\ span(Zi) for

i = 1, 2, . . . , k2 − k1. Note that for any x ∈ Yi, x is linearly independent with Zi

and hence Zi+1 = {Zi,gk1+i} forms a linearly independent set where gk1+i = x. This

recursive procedure gives us a basis G2 for C2. Thus the existence of the generator

matrices for nested binary linear codes is shown.

From Lemma 40, given nested SC-LDPC codes C1 ⊆ C2 . . . ⊆ Cr, one can find a

corresponding sequence of nested sets of generator vectors G1 ⊆ G2 ⊆ . . . ⊆ Gr and

hence one can use Construction-D described in (IV.3) with the proposed nested SC-

LDPC codes. We refer to the lattice thus constructed as SC-LDPC lattice. Whenever

required, we will make the distinction of the lattice being constructed from nested

CU-SC-LDPC (or VC-SC-LDPC) sequence of codes by referring it to as a CU-SC-

LDPC lattice (or VC-SC-LDPC lattice).
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Remark 41. For any code from the (dv, dc, L, w) SC-LDPC ensemble, the design

rate can be computed to be

R(dv, dc, L, w) = 1− dv
dc

L+ w − 1

L
. (IV.9)

Similarly we define the design VNR of the proposed SC-LDPC lattices to be

α2
∗(Λ, σ

2) =
22(r−

∑r
i=1Ri)

2πeσ2
.

where Ri is the design rate of the ith code in the nested sequence of SC-LDPC codes.

Although the design rate (IV.9) and the actual rate for any code from the ensemble

are not necessarily equal, it is important to observe that the actual rate is atleast as

large as the design rate, which gives the following inequality on the actual VNR of

the SC-LDPC lattice,

α2(Λ, σ2) ≤ α2
∗(Λ, σ

2). (IV.10)

IV.B.3 Poltyrev-goodness of the proposed lattices

In this section we show the existence of a sequence of proposed lattices which

is Poltyrev-good under BP decoding. In the following lemmas, we show that the

proposed SC-LDPC codes (both the constructions) achieve the AMGN channel ca-

pacity. We then follow the argument by Forney et al. described in Remark 34 to

show the result.

Lemma 42. For a BMS channel with associated L-density xBMS[22], density evolu-
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tion (DE) equation for a (dv, dc, L, w) CU-SC-LDPC ensemble is given by

x
(l)
i =xBMS~

(
1− 1

w

w−1∑
j=0

(
1− 1

w

w−1∑
k=0

x
(l−1)
i+j−k

)�dc−1
)~dv−1

(IV.11)

where x(l)
i is the average L-density of the message sent by a variable node at position

i in iteration l.

Proof. In the proposed CU-SC-LDPC ensemble, from the perspective of a variable

node there are dv types of edges E1, E2, · · · , Edv . We denote edges of type Ek that

originate from a variable node at position i as (i, Tk) and the L-density of the message

emitted by variable nodes along such edge types as x(l)
ik where l denotes the iteration.

But from the perspective of a check node of any type at position i, an edge is randomly

connected to one of the variable nodes located at positions {i, i − 1, ...i − w + 1}.

Hence all the edges connected to check nodes at a certain position are statistically

identical and more importantly all check nodes at certain position are statistically

identical. The average L-density of the message emitted by a check node at position

i in iteration l, denoted by y
(l)
i , is given by

y
(l)
i =

(
1

w

w−1∑
j=0

(
1

dv

dv∑
k=0

x
(l−1)
(i−j)k

))~dc−1

(IV.12)

And a variable node update is given by

x
(l)
ik = xBMS �

(
1

w

w−1∑
j=0

y
(l)
i+j

)�dv−1

(IV.13)

x
(l)
i =

1

dv

dv∑
k=0

x
(l)
ik

where x
(l)
i is the average L-density of the log-likelihood ratio of variable nodes at
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position i. Combining (IV.12) and (IV.13) and observing that the initialization is

x
(1)
i = x

(1)
i1 = x

(1)
i2 = · · · = x

(1)
idv

= xBMS completes the proof.

Note that in (IV.11) we show that the DE equations for the proposed CU-SC-

LDPC ensemble are identical to that of SC-LDPC ensemble proposed in [38, 30].

Remark 43. In the VC-SC-LDPC construction of nested sequence of codes, a

(dv, dc, L, w) SC-LDPC ensemble is identical to the one in [30] and hence the DE

equations in (IV.11) also hold valid for the (dv, dc, L, w) SC-LDPC ensemble.

Lemma 44. For any δ, ε > 0, there exists parameters dc, dv, L, w such that the

design rate R(dv, dc, L, w) > CAMGN(σ2)− δ and a code C from the (dv, dc, L, w) CU-

SC-LDPC ensemble such that PBP
b (C, σ2) < ε, where PBP

b (C, σ2) is the average bit

error probability under BP decoding for C over AMGN channel with noise variance

σ2 and CAMGN(σ2) is the corresponding Shannon capacity.

Proof. It has been proved in [30, 31] that over any BMS channel, under BP decoding,

any system that satisfies the equation (IV.11) achieve the capacity as dv, w, L→∞

(with dv
dc

fixed), in that order. Hence if we show that the AMGN channel described

in (IV.6) is indeed a BMS channel, then from Lemma 42 it follows that there exist

dc, dv, L, w large enough such that the design rate R(dv, dc, L, w) > CAMGN−ε and the

bit error probability → 0 as M →∞. It is clear to see that the AMGN channel has

binary input and output lying in an interval of length 2. Let the input alphabet to the

channel be {0, 1} and without loss of generality let the mod 2 operation produces

a output lying in [−0.5, 1.5]. Then the conditional PDFs of y can be written as

f(y|x = 0) =
1√

2πeσ2

∞∑
j=−∞

exp

[
−(y + 2j)2

2σ2

]
(IV.14)

f(y|x = 1) =
1√

2πeσ2

∞∑
j=−∞

exp

[
−(y + 2j − 1)2

2σ2

]
. (IV.15)
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Therefore the PDFs of the output satisfy

f(y − 0.5|1) = f(0.5− y|0) for all y ∈ [−0.5, 1.5].

Thus, it belongs to the class of BMS channels.

Lemma 45. For any δ, ε > 0, there exists dc, dv, L, w and code C from (dc, dv, L, w)

SC-LDPC ensemble such that the design rate R(dv, dc, L, w) > CAMGN(σ2) − δ and

PBP
b (Ci, σ2) < ε.

Proof. The proof in Lemma 44 that AMGN channel is BMS and Remark 43 gives

us the required result.

We have shown that there exists good codes from the ensembles of both the

constructions, where by a ‘good code’ we mean a code with the design rate arbitrarily

close to the capacity of the AMGN channel and an arbitrarily small probability of

error under BP decoding. But for using Construction-D and to be able to apply

Forney’s result we need to show existence of nested sequence of codes from the

proposed constructions where each code in the sequence is a good code. We show

this in the following theorems.

Lemma 46. Given r, σ2, for any ε > 0, there exists dc, d1
v, . . . , d

r
v, L, w, and a nested

sequence of codes C1 ⊆ C2 ⊆ . . . ⊆ Cr from the (dc, d
1
v, . . . , d

r
v, L, w) CU-SC-LDPC

ensemble such that

R(div, dc, L, w) > CAMGN
(
σ2
i

)
− 5ε, and (IV.16)

PBP
b

(
Ci, σ2

i

)
< ε for 1 ≤ i ≤ r, (IV.17)

where σ2
i = σ2

22(i−1) is the effective noise variance of the AMGN channel observed at
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the ith stage of multi-stage decoding.

Proof. We will prove the result for the case r = 2 i.e., the existence of a good nested

pair of codes and for the cases r > 2 the proof extends naturally. Given r = 2, for

the given ε, δ we choose dc large enough such that there exists parameters d1
v, d

2
v, L, w

that satisfy (IV.16) simultaneously for i ∈ {1, 2}. For these parameters Lemma 44

guarantees us the existence of codes Ci ∈ Ei := (dc, d
i
v, L, w) CU-SC-LDPC ensemble

such that (IV.17) is satisfied for i ∈ {1, 2}.

It was not only shown in [30] that any system that satisfies (IV.11) is capacity-

achieving asymptotically in dv, dc, w, L but also that almost all codes of sufficient

length in the ensemble are good over a BMS channel. More precisely, it ([30] Corollary

43) states that for a given ε > 0, there exists dv, dc, L, w such that R(dv, dc, L, w) ≥

CAMGN(σ2)− 5ε and

lim
n→∞

EC(n)∈(dv ,dc,L,w)

[
1{PBP

b (C(n),σ2)≤ε}

]
= 1, (IV.18)

where the average is over all codes C(n) of blocklength ‘n’ from the (dv, dc, L, w)

SC-LDPC ensemble under uniform distribution. From Lemma 42, (dv, dc, L, w) CU-

SC-LDPC ensemble satisfies (IV.11) and hence (IV.18) is valid for the (div, dc, L, w)

CU-SC-LDPC ensembles, i ∈ {1, 2}. Hence we can choose n large enough such that

ECi(n)∈Ei

[
1{PBP

b (Ci(n),σ2)≤ε}

]
≥ 1− ε1, (IV.19)

for i ∈ {1, 2} where the the average is over all codes of blocklength n from E1.

From Remark 35, this construction is equivalent to first choosing C2 uniformly at

random from E2 and then choosing C1 uniformly at random from the set E1(C2) :=

{C1 : C1 ∈ E1, C1 ⊆ C2}. From the fact that the set E1(C2) has same cardinality for all
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choices of C2 (see remark 35), we can deduce that the marginal distribution for C1 is

uniform on E1(C2).

For being concise we refer to code Ci ∈ Ei as good if PBP
b (Ci, σ2) ≤ ε2 and bad if

otherwise. Consider the probability of choosing a bad code for either levels,

Pr [ C2 is bad or C1 is bad ]

= Pr [ C2 is bad ] + Pr [ C1 is bad|C1 ∈ E1(C2)]

≤ Pr [C2 is bad] + Pr [C1 is bad|C1 ∈ E1]

≤ 2ε1

where the last inequality follows fromEq. (IV.19). This not only gives us the exis-

tence of a good pair of nested codes arbitrarily close to capacity but also that almost

all nested pairs from (dc, d
1
v, d

2
v) CU-SC-LDPC ensemble are good.

Lemma 47. Given r, σ2, for any ε > 0, there exists dc, d1
v, . . . , d

r
v, L, w, and a nested

sequence of codes C1 ⊆ C2 . . . ⊆ Cr from the (dv, d
1
c , . . . , d

r
c, L, w) VC-SC-LDPC

ensemble such that (IV.16) and (IV.17) are satisfied.

Proof. In the proof of Lemma 46, using remark 43, Lemma 45 and remark 38 instead

of Lemma 42, Lemma 44 and remark 35 respectively gives us the required proof.

Theorem 48. For any ε, δ > 0, there exists a CU-SC-LDPC lattice Λ with α2(Λ, σ2) <

1 + ε for which, under multistage BP decoding, the average probability of error

P(Λ, σ2) < δ.

Proof. We first choose r large enough such that

P (Zn2r , σr+1) <
δ

r + 1
,
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where P (Zn2r , σr+1) is the average error probability in decoding a point chosen uni-

formly at random from Zn2r under minimum distance decoder. Then from Lemma 46,

there exists (dc, d
1
v, . . . , d

r
v) and nested sequence of codes (C1, C2, . . . , Cr) from the

(dc, d
1
v, . . . , d

r
v) CU-SC-LDPC ensemble such that

R(div, dc, L, w) > CAMGN (σi)− ε1, and (IV.20)

PBP
b (Ci, σi) < ε2 for 1 ≤ i ≤ r. (IV.21)

By union bound,

PBP(Ci, σ2
i ) < n PBP

b (Ci, σ2
i ) (IV.22)

where PBP(Ci, σ2
i ) is the corresponding block error probability. We then choose ε2 =

δ
n(r+1)

, use the union bound to bound the total error probability in decoding a lattice

point which results in P(Λ, σ2) < δ. Recalling remark 34 and then the Eqn (IV.10)

bounding the actual VNR completes the proof.

Theorem 49. For any ε, δ > 0, there exists a VC-SC-LDPC lattice Λ with α2(Λ, σ2) <

1 + ε for which, under multistage BP decoding, the average probability of error

P(Λ, σ2) < δ.

Proof. In the proof of Theorem 48, using Lemma 47 instead of Lemma 46 completes

the proof.

Remark 50. Although lattices based on both the constructions have shown to be

Poltyrev-good, both have their own pros and cons (advantages and disadvantages?).

The parameters (dc, d
1
v, . . . , d

r
v) in the CU-SC-LDPC construction admit any set of

natural numbers and thus give greater flexibility in constructing codes of desired

rates at each level and thus provides the ability to match the capacity of the effective

AMGN channel with a greater accuracy. But on the flip side this results in higher
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degree profiles, as explained in example 36, and hence making the decoding more

complex. Whereas in the case of VC-SC-LDPC construction, the parameters only

admit sets of the form (dv, q1dc, q2dc, . . . , qrdc), qi ∈ N, which is not very flexible when

it comes to matching a given rate-tuple. But as we seen in examples 36 and 39,

in certain specific cases of desired rates, VC-SC-LDPC offers nested sequence of

codes of considerably low complex degree profiles compared to the CU-SC-LDPC

construction.

Remark 51 (Comparison with LDPC lattices). LDPC codes have been adopted as

underlying codes for constructing lattices in [39] where the so-called LDPC lattices

have been proposed and analyzed. Our SC-LDPC lattices differ from LDPC lattices

in the following ways. Firstly, LDPC lattices are constructed based on Construction-

D′ [28] in contrast to Construction-D adopted here. Secondly, our decoding algorithm

is a multistage BP decoding which only works over F2, on the contrary, since con-

structed based on Construction-D′, LDPC lattices have to consider BP algorithm on

the joint Tanner graph [40] (i.e., joint decoding). Last but not least, since there are

no analytical evidence that LDPC codes under BP decoding would achieve capac-

ity, LDPC lattices have not been shown Poltyrev-good to the best of our knowledge

while for the proposed SC-LDPC lattices, Theorems 48 and 49 serves as constructive

evidence.

IV.B.4 Design and simulation results

In this subsection, we explain the design of SC-LDPC lattices that approach the

Poltyrev limit with examples. Before the design principles let us analyze the decoding

error probability.

Let the number of levels required be r + 1, with r coded levels using nested

SC-LDPC codes and the last level being uncoded using the Zn2r lattice. The design
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criteria depend mainly on the target error probability and the dimension of the

lattice. For illustration let the target block error probability be ≈ 10−4 and the

number of dimensions be n = 2 × 105. As we use multistage decoding the average

probability of decoding error P(Λ, σ2) can be union bounded by the sum of block error

probabilities at individual levels. Assuming the constituent SC-LDPC code at each

level is operating below the BP threshold[22], the average probability of decoding

error of the lattice is dominated by the performance of the last (uncoded) level since

the class of LDPC codes have a very sharply decaying error probability profiles below

the BP threshold. Let’s recall that P(Zn2r , σ2) is the block error probability for the

last level. Similar to (IV.22), using union bound,

P(Zn2r , σ2
r+1) ≤ nP(Z2r , σ

2) = n

(
2Q

(
0.5

σr+1

))
. (IV.23)

Plugging in the values of n and the target error probability in (IV.23) gives us

σr+1 = 0.0804. Now moving to the next level i.e., level r, σr = 2σr+1 = 0.1608.

The capacity of the effective AMGN channel observed in this level of the multi-stage

decoding is CAMGN(σ2
r) = 0.9923, see Fig. IV.3. For the details on computing the

capacity of the AMGN channel see [29]. Similarly proceeding, σr−1 = 2σr = 0.3217,

CAMGN(σ2
r−1) = 0.5726, σr−2 = 2σr−1 = 0.6434, CAMGN(σ2

r−2) = 0.0242. Observe

that the capacity for level r − 2 is almost zero which renders coding for this level

unnecessary albeit at the cost of a very small increase in VNR (due to the rate loss)

of 0.145dB (= 20 log10 20.0242). Hence r = 2 i.e., two coded levels suffice. We use

(30, 14, 3) CU-SC-LDPC ensemble with L = 32, w = 4 for the first two levels and Zn4

lattice for the last level which results in nested SC-LDPC codes of rates 0.5333 and

0.9 (0.49 and 0.89 including rate-loss due to boundary effects of coupling) matching

closely the capacities of first two levels i.e. 0.5726 and 0.99.
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Figure IV.3: Channel capacity of the additive mod-2 Gaussian noise channel

Simulation results

Due to symmetry in the lattice the all-zero lattice point is assumed to be trans-

mitted. Instead of plotting the symbol error rate, we focus on determining the

thresholds of the resulting lattice under BP decoding. We estimate the BP threshold

from simulations by determining the maximum noise variance for which no codeword

errors are observed, at each coded level, in simulation of 10 consecutive codewords

each of length 2 × 105. We calculate the maximum variance σ2
max for which all the

levels of the lattice can be decoded given by σmax = min(σBP
1 , 2σBP

2 , σ3), where σBP
1

and σBP
2 are the respective BP thresholds for the two SC-LDPC codes and σ2

3 is the

noise variance at which the uncoded level achieves the target error probability. The
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(dc, d
1
v, d

2
v) (L,w) σmax VNR∗(dB) VNRrate-loss(dB)

(30,14,3) (32,4) 0.3184 1.14 1.347
(60, 27, 3) (64, 9) 0.3203 0.57 0.951
(60, 26, 3) (72, 12) 0.3200 0.482 0.927
(60, 42, 3) (72, 12) 0.3975 0.203 1.02

Table IV.1: Density evolution (DE) thresholds for SC-LDPC lattice ensembles under
BP decoding for various degree profiles. The gap from the respective Poltyrev limits,
computed without considering rate loss from termination, are also given.

VNR threshold is then calculated for the given rates and σmax. Thus obtained BP

thresholds σBP
1 , σBP

2 for the above codes are 0.3142 and 0.2161 respectively which

results in a VNR of 1.14dB (1.46dB with rate loss due to termination). The DE

predicted values are 0.3184 and 0.21836. We observe that the BP thresholds are

very close to DE thresholds. i.e., the parameters are large enough to assume that

the BP thresholds can be approximated by DE thresholds. Therefore it is reasonable

to calculate the VNR thresholds using the DE thresholds. For various SC-LDPC

ensembles Table. IV.1 gives us the VNR thresholds i.e., the VNRs achievable for

respective target error probabilities which are computed using the DE thresholds.

Note that the Poltyrev limit is zero dB, thus making the VNR threshold and the

gap from Poltyrev limit equivalent. The gap to the Poltyrev limit is primarily due

to the fact that there is a mismatch between the capacity of the equivalent channel

and the rates that are obtainable for the proposed CU-SC-LDPC ensemble.

In the above design, if we target a error probability per dimension of 10−6 instead,

that gives us σr+1 = 0.0999, capacities for the subsequent levels CAMGN(σ2
r) = 0.9507,

CAMGN(σ2
r−1) = 0.3223 and CAMGN(σ2

r−2) = 0.0024. Pair of nested codes from

(60, 42, 3) CU-SC-LDPC ensemble gives us rates 0.3 and 0.95 resulting in better

matching of the rates (negligible rate loss). The resulting DE thresholds are within

0.203dB from Poltyrev limit. This is reported in the last row in the table. [Couple
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of lines - Broadly justifying the VC-SC-LDPC construction] Observe that for these

parameters we can use a (60, 4, 3) VC-SC-LDPC ensemble with the same parameters

of (L = 72, w = 12) gives us codes of rates 0.25 and 0.95. Although this results in a

slight VNR-loss due to the relatively poor mismatching of rates, in this case BP de-

coding is carried out on a (3, 4) Tanner graph instead of a (42, 60) which considerably

reduces the complexity of decoding.

IV.C Application: Interference channel

IV.C.1 Problem statement

We consider the 3 user Gaussian interference channel (IC) consisting of 3 trans-

mitters, 3 receivers, and 3 independent messages originally considered in [15], where

message Wj originates at transmitter j and is intended for receiver j, ∀j ∈ J ,

{1, 2, 3}. The output observed at the receiver j is given by

yj = xj +
3∑

k=1,k 6=j

hjkxk + zj, ∀j ∈ J (IV.24)

where xj is the transmitted signal at jth transmitter, hjk are the channel parameters

for the cross links, and zj ∼ N (0, σ2·I) is the AWGN noise. If the channel parameters

for all the cross links are equal we refer to such model as symmetric IC. The channel

input signals are subjected to the power constraint 1
n

∑n
i=1E [‖xj‖2] ≤ P .

For a 2-user symmetric Gaussian interference channel (IC) it was shown in [12]

that, in the very strong interference regime, the capacity region for the IC is as if

there is no interference at all. For this symmetric model, a simple extension of the

very strong interference condition for the 2 user IC to the 3 user one is given by [15]

β2 ≥ ((1 + P )2 − 1) (1 + P )

2P
. (IV.25)
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Sridharan et al. in [15] introduced the idea of lattice alignment where each user

uses a lattice code and each receiver first decodes the total interference (aligned due

to lattice structure) observed and then decodes the desired message. For this case,

they derived a tighter condition on β in order for the interference to be decoded first.

This is based on lattice coding, independent of the number of users, and is given by

β2(σ) ≥ β∗
2

(σ) ,
(P + σ2)2

Pσ2
(IV.26)

If (IV.26) is satisfied, each user can achieve a capacity of 1
2

log(1 + P
σ2 ) [15]. Equiv-

alently, for a given rate R, maximum noise variance under which the rate can be

achieved is given by

σ2
max =

P

22R − 1
. (IV.27)

IV.C.2 Applying the proposed lattices

Encouraged by the Poltyrev-limit achieving property of the proposed lattice en-

sembles under BP decoding, we use SC-LDPC lattice codes for the symmetric Gaus-

sian IC in the very strong interference region. Let ΛSC be the SC-LDPC lattice

defined in (IV.3) with r = 2. We define the SC-LDPC lattice code CSCL based on

ΛSC using hypercube shaping:

CSCL = {λ mod Zn4 : λ ∈ Λ} (IV.28)
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Figure IV.4: System flow for the 3-user Symmetric Gaussian Interference channel at
receiver 1.

where n is the dimension of ΛSC . Let codeword cj ∈ CSCL at transmitter j be

cj =

k1∑
i=1

αjigi + 2

k2∑
i=1

βjigi mod Zn4 αji, βji ∈ {0, 1} (IV.29)

=

k1∑
i=1

αjigi + 2

k2∑
i=1

βjigi − 4kj, for some kj ∈ Zn (IV.30)

where "+" denotes addition in Rn. Each codeword cj ∈ CSCL ⊂ {0, 1, 2, 3}n is

modulated to x̃j , 1.5n − cj such that x̃j ∈ A , {−1.5,−0.5,+0.5,+1.5}n. At

transmitter j, a dither vector dj uniformly distributed among B , [−2, 2) is added

to obtain the transmitted signal xj given by

xj = x̃j + dj mod Zn4 , (IV.31)

where the mod operation is over B instead of [0, 4). The dither vector achieves

the purpose of randomizing the interference and helps in treating the undesired

components of the received signal as additive uncorrelated noise. It can be seen that

xj is uniformly distributed over B and the average power of the transmitted signal

at each transmitter is 1.33.
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IV.C.3 Decoding

Before looking at the general case let us consider the symmetric Gaussian IC

i.e h12 = h13. Without loss of generality let us consider receiver 1. The system

schematic from the perspective of receiver 1 is given in Fig. IV.4. The input to the

multistage decoder at receiver 1 is given by

ỹ1 ,
y1

h12

− d2 − d3 + 1.5n + 1.5n

= c2 + c3 +
1

h12

(x1 + z1) .

Note that c2, c3 ∈ CSCL ⊂ Λ and hence c2 + c3 ∈ Λ.

c2 + c3 =

k1∑
i=1

(α2i + α3i)gi + 2

k2∑
i=1

(β2i + β3i)gi + 4k2 + 4k3

=

k1∑
i=1

(α2i ⊕ α3i)gi + 2

k2∑
i=1

(c1i ⊕ β2i ⊕ β3i)gi + 4k23

where c1i = 0.5 (α2i + α3i − α2i ⊕ α3i), c2i = 0.5 (c1i + β2i + β3i − c1i ⊕ β2i ⊕ β3i) are

carryovers from first and second levels respectively and k23 = k2+k3+
∑k2

1 c2igi ∈ Zn.

The key here is that c1i, c2i ∈ {0, 1} which lets us apply multi-stage BP decoding.

Using multi-stage decoder described in Section IV.B, one can directly decode the

lattice point x2 + x3(interference), subtract it and decode the desired signal.

The decoding scheme above extends to the case when one channel gain is an

integer multiple of the other. For example, let h13 = Kh12 where K =
∑l−1

0 ai2
i ∈
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Z, ai ∈ {0, 1}. In this case, input to the multi-stage decoder is

ỹ1 ,
y1

h12

− d2 −Kd3 + 1.5n +K1.5n

= c2 +Kc3 +
1

h12

(x1 + z1) .

where c2 +Kc3 is a lattice point and is given by

k1∑
i=1

(α2i ⊕ a0α3i)gi + 2

k2∑
i=1

(c1i ⊕ β2i ⊕ a0β3i ⊕ a1α3)gi + 4k

for some k ∈ Zn.

IV.C.4 Simulation results for symmetric IC

In this section we present simulation results for the symmetric Gaussian IC and

compare them with the bounds given in [15]. We choose a pair of nested codes from

the (30, 18, 3) CU-SC-LDPC ensemble with spatial-coupling parameters (L,w) =

(32, 4). We fix σ = σmax (such that in absence of interference, desired signal can

be decoded successfully) and we analyze the bit error probability in decoding the

interference versus the channel gain β. We observe that within 0.396dB of the very

strong interference regime given by (IV.26) we are able to decode the interference

with a bit error probability of less than 10−6. Note that the main bottle neck in error

performance in decoding the interference is the last i.e., the uncoded level whereas in

decoding the desired signal (after the interference is decoded and subtracted), within

σmax, arbitrarily small error rates can be achieved since no uncoded level needs to be

decoded.

In Fig. IV.5, we plot the achievable rate as a function of P/σ2 for the desired

user for r = 4. It can be seen that the achievable rate with the lattice code has a

gap of roughly 1.53 dB from the corresponding Shannon limit at high rates. This is
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Figure IV.5: The gap between the Shannon capacity and the achievable sum-rate of a
4-level Construction-D lattice code(hypercube shaping) under multi-stage decoding.
The DE thresholds, along with comparison with BP thresholds for n = 2× 105, for
various SC-LDPC lattice codes with a maximum check node degree of 60 are also
given.

the shaping loss due to hypercube shaping. The DE thresholds with the proposed

SC-LDPC codes is also shown in the plot and it can be seen that the DE thresholds

are very close to the achievable rates.

97



V. COMPRESSED SENSING∗

V.A Introduction

The classical problem of compressed sensing involves estimating a signal x, which

is sparse in some basis, from a noisy measurement signal y of smaller dimension

compared to x. Formally, let

y = Ax + w,

where x is an N -dimensional vector, A is a knownM×N matrix commonly referred

to as measurement matrix and w is additive noise. The unknown signal x is known

to be sparse in some basis and we denote the sparsity of x by K. If there is no

noise, then we refer to it as the noiseless setting. It is known that if K � N

we can recover the unknown signal in significantly fewer number of measurements

compared to N . Particularly in this chapter we focus on recovering the support of

x defined as supp(x) := {i : xi 6= 0, i ∈ [N ]} where x = [x1, . . . , xi . . . , xN ]T and

[N ] := {1, 2, . . . , N}. For a given scheme, given the reconstruction vector x̂, we

consider the probability of failure of support recovery which can be defined as

PF := Pr(supp(x̂) 6= supp(x)).

For the support recovery problem, under noisy settings, Wainwright [41] showed

information theoretically that O
(
K log(N

K
)
)
number of measurements is necessary

and sufficient for asymptotically reliable recovery.
∗ c© 2016 IEEE. Reprinted, with permission, from A. Vem, N. T. Janakiraman, K. R. Narayanan,

“Sub-linear time compressed sensing for support recovery using left and right regular sparse-graph
codes", Information Theory Workshop, Sept. 2016.
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In [16] (and in the expanded version in [4]), Li, Pawar and Ramchandran have

considered the compressed sensing problem of recovering the support of a K-sparse,

N -dimensional signal fromM linear and noisy measurements. Based on sparse-graph

codes with a left-regular degree profile and a peeling decoder, they have proposed

an elegant design of the measurement matrix and a recovery algorithm. They have

proposed two designs - the first design requires M = O(K logN) measurements and

a near-linear O(N logN) decoding complexity, whereas the second design requires

M = O(K logN) measurements with a sub-linear O(K logN) decoding complexity.

In this chapter[42], we show that the bounds on the measurement complexity

reported in [16, 4] can be improved by considering left-and- right-regular sparse-graph

based sensing matrices. We show that only O
(
K log N

K

)
measurements are required

when K = O(N δ), for any 0 ≤ δ < 1, to recover the support with the optimal sub-

linear time decoding complexity. This matches the information-theoretic lower bound

on the number of measurement required for asymptotically-reliable recovery [41].

Also, through simulations we demonstrate that the proposed scheme has superior

performance compared to [4].

The literature on compressed sensing is vast and it is difficult to provide a com-

parison with several of the existing results in the literature due to different error

performance metrics being used for different versions of the problem. Nevertheless,

it should be pointed out that the use of left and right regular bipartite graphs as

choice for sensing matrix has been proposed in [43] and the measurement complexity

has been shown to be only O
(
K log N

K

)
. However, the decoding complexity is near-

linear O(N log N
K

). We achieve a similar measurement complexity but with optimal

computational complexity of O(K log N
K

). Also unlike in [43] the sensing matrix in

this chapter is constructed based on a tensor-product construction and the decoding

algorithm is based on identifying singletons and peeling them off.
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For the information-theoretic lower bound in [41] to hold, the non-zero elements in

x should have a sufficiently large minimum absolute value. In view of this condition,

similar to [16, 4], we assume that all the non-zero elements of x belong to the set

{Aeiθ : A ∈ A, θ ∈ Θ} where A := {Amin + ρl}L1
l=0,Θ := {2πl/L2}L2

l=0 for finite but

arbitrarily large integers L1 and L2.

V.B Prior work

In this section, we review the construction of the measurement matrixA proposed

by Li, Pawar and Ramchandran in [16] and [4], and also summarize their key results.

To keep the discussion simple, we omit certain details and refer readers to the original

work [16] (and the expanded version [4]).

The measurement matrix is constructed using a combination of a sparse-graph

code defined by the R × N coding matrix H = [h1,h2, · · · ,hN] ∈ {0, 1}R×N and a

P × N bin-detection matrix S = [s1, s2, · · · , sN]. The coding matrix H defines a

bipartite graph G with N left (variable) nodes, representing the N -length signal x,

and R right (check) nodes representing the measurements y = [y1,y2, · · · ,yR]. Let

qi, i ∈ [R], be the number of non-zero variable nodes connected to ith check node.

Assume an “oracle" that solves the 1-sparse problem by examining each check node

observations and classifies it as a zero-ton(qi = 0), singleton(qi = 1) or a multi-

ton(qi > 1), and also identifies the position k̂ and value x̂k̂ of the participating

variable node if it is a single-ton. Once a singleton is identified the corresponding

variable node’s contribution is peeled off from other participating check nodes and

this process creates new single-tons. The decoding process continues until there are

no more singletons. The decoding is successful if all the K non-zero elements of x

are recovered at the end of decoding.

The RP ×N measurement matrix A withM = RP measurements is constructed
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by taking the row tensor product � of H and S given by

A = H � S := [h1 ⊗ s1,h2⊗s2, · · · ,hN⊗sN]

where ⊗ is the standard Kronecker product.

For the noisy setting, they have proposed three designs for S which essentially

performs the role of the oracle in identifying a single-ton at each check node. These

designs are RandomNoisy with near-linear decoding complexity, BinaryNoisy and

FourierNoisy each with sub-linear decoding complexity. The bin-detection matrix S

for the three settings are as follows:

• RandomNoisy: Ensemble of P ×N matrices S = [Si,j]P×N where Si,j s are i.i.d.

sub-gaussian entries with zero mean and unit variance.

• FourierNoisy : S = [S0S1 · · ·SP−1]T, where Sp consists of Q = O(log1/3N)

consecutive 2p-dyadically spaced rows from the N ×N DFT matrix.

• BinaryNoisy: S = f(C) where CP×N is a binary codebook(or subset of a code-

book) of a linear code with block length P , f : {0, 1}q →M is a modulation

scheme that maps CP×N to SP
q
×N . For e.g., for QAM q = 2 andM = {±1±i}.

The following theorems from [4] summarize their key results.

Theorem 52 ([4] Sub-linear Time Noisy Recovery). In the presence of i.i.d. Gaus-

sian noise with zero mean and variance σ2, given any K-sparse signal x with xk ∈ X

for k ∈ supp(x), our noiseless recovery schemes achieve a vanishing failure probability

PF → 0 asymptotically in K and N with

M T

Fourier noisy O(K log1.3N) O(K log1.3N)

Binary noisy O(K logN) O(K logN)
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where M and T are measurement cost and computational complexity respectively.

Theorem 53 ([4] Near-linear Time Noisy Recovery). In the presence of i.i.d. Gaus-

sian noise with zero mean and variance σ2, given any K-sparse signal x with xk ∈ X

for k ∈ supp(x), the RandomNoisy scheme achieves a vanishing failure proba-

bility PF → 0 asymptotically in K and N with a measurement complexity of

M = O(K logN) and computational complexity of T = O(N logN).

V.C Proposed scheme

The main difference between [4] and our approach is that we replace the left l-

regular ensemble of graphs corresponding to the coding matrix H described in Sec

V.B by left and right (l, r)-regular ensemble of graphs.

Definition 54 (Left and right regular graph ensemble). Let GNreg,reg

(
R, l, lN

R

)
denote

the ensemble of left and right regular bipartite graphs with N variable nodes and R

check nodes, where each variable node k ∈ [N ] is connected to l check nodes and

each check node j ∈ [R] is connected to lN
R

left nodes.

In the design considerations of bin detection matrix, we now have only r = lN
ηK

=

O
(
N
K

)
variable nodes connected to each check node and thus we require only a bin

detection matrix S with O(N
K

) columns. For the bin detection matrix designs in

Sec. V.B we know from [4] that to differentiate between a zero-ton, singleton and a

multi-ton successfully with probability approaching 1 asymptotically in N
K

we only

require log(N
K

) rows in S. We choose the bin detection matrix to be similar to the

RandomNoisy, FourierNoisy, BinaryNoisy designs but with dimensions P ′×r where

P ′ = O
(
log(N

K
)
)
.

We know from the modern coding theory that to peel off K unknown variable

nodes successfully from the bipartite graph we need ηK number of check nodes for
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some η > 1. So we choose the number of check nodes R = ηK. A matrix H is chosen

at random from this ensemble GNreg,reg

(
ηK, l, lN

ηK

)
and used as the coding matrix.

The measurement matrixA for the proposed construction withHR×N = [h1,h2, · · · ,hN]T

and SP′×r = [s1, s2, · · · , sr] is given by ARP ′×N = H� S, where � is the new tensor-

ing operation, which is slightly different from the row-tensor operation used in Sec

V.B and is defined as

ARP ′×N = H� S =



h1 � S1

h2 � S2

...

hR � SR


where,

Si = [0, · · · , s1,0, · · · , s2, · · · ,0, sr, · · · ,0], (i ∈ [R]), where 0 is an all-zero column

vector of length P ′ placed in positions j where hij = 0 and the column vectors sk,

k ∈ [r] are placed sequentially in the positions j where hij = 1. We illustrate the

new tensoring operation � via Example 55.

Example 55. Let

H =



1 0 0 1 0 1

0 1 1 0 1 0

1 1 0 1 0 0

0 0 1 0 1 1


denote an adjacency matrix from the ensemble G6

reg,reg (4, 2, 3). We choose P ′ =
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dlog2 re = 2 and let SP ′×r be defined as

S =

+1 −1 −1

−1 +1 −1


Then, the measurement matrix A with M = P ′R = 8 measurements is given by

A = H � S =



+1 0 0 −1 0 −1

−1 0 0 +1 0 −1

0 +1 −1 0 −1 0

0 −1 +1 0 −1 0

+1 −1 0 −1 0 0

−1 +1 0 −1 0 0

0 0 +1 0 −1 −1

0 0 −1 0 +1 −1



V.D Improved bounds

With our proposed construction of the measurement matrix, Theorem 52 and

Theorem 53 can be sharpened to the following new theorems.

Theorem 56 (Sub-linear Time Noisy Recovery). In the presence of i.i.d. Gaussian

noise with zero mean and variance σ2, given any K-sparse signal x with xk ∈ X

for k ∈ supp(x), our noisy recovery schemes achieve a vanishing failure probability

PF → 0 asymptotically in K and N with

M T

Fourier noisy O
(
K log1.3 N

K

)
O
(
K log1.3 N

K

)
Binary noisy O

(
K log N

K

)
O
(
K log N

K

)
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Theorem 57 (Near-linear Time Noisy Recovery). In the presence of i.i.d. Gaussian

noise with zero mean and variance σ2, given any K-sparse signal x with xk ∈ X for

k ∈ supp(x), the RandomNoisy scheme achieves a vanishing failure probability PF →

0 asymptotically in K and N with a measurement complexity of M = O
(
K log N

K

)
and computational complexity of T = O

(
N log N

K

)
.

Proof. The bin detection matrix and the decoding methods employed to identify

a singleton are identical to that of [4] except that P = O(logN) is replaced by

P ′ = O
(
log(N

K
)
)
. Hence the probability of error for the bin detection algorithm can

be analyzed exactly as in [4] with P ′ replaced by P and thus can be shown to be

exponentially decaying in P ′. For this particular choice of P ′ the probability of error

for the bin detection part vanishes asymptotically in N
K
. Therefore for K sub-linear

in N all it remains to be shown is that the GNreg,reg

(
R, l, lN

R

)
ensemble with peeling

process fails with a vanishing error probability PF asymptotically in K and N . For

choice of l ≥ 3, Theorem 64 gives us this required result and that completes the

proof.

V.E Proofs

In this section we consider a GNreg,reg(R, l, lN
R

) ensemble and show that this ensemble

with the oracle based peeling decoder fails to recover all the variable nodes with a

probability of at most O
(

1
K

)
. Although it appears this can be achieved directly by

using a capacity achieving spatially-coupled LDPC ensemble and use the existing

results, there are two main obstacles to this:

• In traditional LDPC codes and peeling decoder over binary erasure channel,

the input to the decoder is the channel output corresponding to N variable

(bit) nodes and the check nodes on the right are mere parity checks whose sum

modulo 2 is zero. Whereas in our problem the values corresponding to the
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N variable nodes on the left need to be evaluated by the decoder given the

values corresponding to the R check nodes (the real sum of the variable nodes

connected) are non-zero and form input to the decoder.

• In traditional LDPC case a constant fraction ε of these N variable nodes are

erased by the channel and usually the emphasis is on analyzing the performance

of peeling decoder asymptotically in N or R when rate=1− R
N

is fixed. But in

our case the fraction of the nodes erased = 1 − K
N
, where K, sub-linear in N ,

is usually of the form K = N δ, tend to one and the rate of the code= 1− R
N

=

1− ηNδ

N
tend to one asymptotically in N .

Consider a left and right regular LDPC code GLDPC(N, l, r) whereN is the number

of variable nodes on the left and l, r are the regular left and right degrees respectively.

Let P(i)
BEC(y) be the degree distribution of the number of check nodes after iteration

i of peeling decoder given y is the channel output. And similarly GNreg,reg(R, l,
lN
R

) be

the graph corresponding to the parity check matrix in the support recovery problem

and P(i)
SR(z) be the degree distribution of the check nodes on the right after iteration

i of the oracle-based peeling decoder, given z is the support recovery equivalent of

syndrome corresponding to x i.e., z = Hx where the operations are over the real

field.

Note that in the peeling decoder, we peel off one degree-1 check node and the

variable node connected to it from the graph in each iteration. In the LDPC-BEC

problem we remove all the variable nodes that are not erased by the channel and

the resulting graph is input to the decoder. Similarly in the case of support recovery

problem we consider the oracle based peeling decoder in [4] and we analyze the

pruned -graph where we remove all the zero variable nodes from the original graph

and input to the decoder.
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Lemma 58 (Equivalence to LDPC-BEC). Whenever y and z satisfy

z = Hx such that S := |supp(x)| = |{i : yi = E}|

where E denotes erasure, then P(i)
BEC(y) = P(i)

SR(z) ∀i.

Proof. Define Sc = [1 : N ]\S. In the case of LDPC codes on BEC we peel off all

non-erased variable nodes corresponding to Sc and input the resulting graph to the

peeling decoder. Similarly in the case of bipartite graph in support recovery problem

we peel off all the zero nodes corresponding to Sc and we input the resulting graph

to oracle based peeling decoder. From this point onward the peeling decoders are

identical and thus we have our result.

Thus by considering a BEC of erasure probability ε = K
N

we can equivalently

consider peeling decoder of LDPC codes on BEC channel and use various existing

results.

Lemma 59. The evolution of the left and right degree distribution as the peeling

decoder progresses can be given by

L̃l(y) = ykl,

R̃1(y) = rεyl−1[y − 1 + (1− εyl−1)r−1]

R̃i(y) =

(
r

i

)
(εyl−1)i(1− εyl−1)r−1, i ≥ 2

where ε = K
N

and r = lN
ηK

. Note that the curve corresponding to L̃i(y)(R̃i(y))

for y ∈ [0, 1] gives the expected number of degree i variable nodes (check nodes)

normalized with respect to K (ηK).

107



Proof. As we showed in Lemma. 58 the peeling decoder for an LDPC on BEC chan-

nel and oracle based peeling decoder for CS are identical upto the residual degree

distributions at each iteration. Hence we can use the result for LDPC codes [22,

Theorem 3.107] with equivalent channel erasure probability ε = K
N
.

Definition 60 (BP Threshold). We define the BP threshold, ηBP to be the minimum

value of η for which there is no non-zero solution for the equation:

y = lim
N
K
→∞

1−
(

1− Kyl−1

N

) lN
ηK

= 1− e
−lyl−1

η

in the range y ∈ [0, 1].

Lemma 61. [22, Theorem 3.107] If η > ηBP then with probability at least 1 −

O

(
K1/6e

−
√
Kl

(lr)3

)
the peeling decoder of a specific instance progresses until the number

of residual variable nodes in the graph has reached size γK where γ is an arbitrary

positive constant.

Definition 62 (Expander Graphs). A bipartite graph with K left nodes and regular

left degree l is called a (γ, 1/2)− expander if for all subsets S of left nodes with

|S| ≤ γK, the right neighborhood of S denoted by N (S) satisfies |N (S)| > l|S|/2.

Lemma 63. Consider a left and right regular ensemble GNreg,reg(ηK, l,
Nl
ηK

), then the

pruned graph resulting from any given K-sparse signal x is a (γ, 1/2)-expander with

probability at least 1−O
(

1
Kl−2

)
for a sufficiently small constant γ > 0.

Proof. The proof is similar to the proof used in [4] with minor modifications. Let

Ev denote the event that a subset Sv of variable nodes on the left with size v has at
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most l|Sv|/2 neighbors whose probability can be computed as

Pr(Ev) ≤
(
K

v

)(
ηK

lv/2

)(
vl

2ηK

)lv
(V.1)

≤ cvl/2
( v
K

)v(l/2−1)

(V.2)

where c = le2

2η
is a constant. In (V.1) we upper bound the probability of Ev via union

bound over all possible size v subsets on the left and size lv/2 subsets on the right.

In (V.2) we use the inequality
(
a
b

)
≤ (ae/b)b and we assume l ≥ 2 to simplify the

constant factor. Then we union bound over all subsets of size upto the remaining

nodes γ∗K where we choose γ∗ =
(
4cl
) −1
l−2

γ∗K∑
v=2

Pr(Ev) ≤
γ∗K∑
v=2

(
cl
( v
K

)l−2
)v/2

= O

(
1

K l−2

)

Thus we showed that asymptotically in K, the left and right regular graphs are good

expander graphs with probability atleast 1−O(1/K l−2).

Theorem 64. Consider the ensemble GNreg-reg(ηK, l,
Nl
ηK

), the oracle based peeling

decoder peels off all the variable nodes in the pruned graph in ηK iterations with

probability at least 1−O
(
1/K l−2

)
.

Proof. Lemma 61 shows us that the peeling decoder fails to peel off till the residual

graph has γN variable nodes remaining with an exponentially low probability. Then

in Lemma 63 we show that the left regular graphs are good expanders with a proba-

bility of atleast 1−O(1/K l−2) and hence the remaining γN nodes can be peeled off

with high probability. Thus the overall probability of failure will be dominated by
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small stopping sets which can be upper bounded by O(1/K l−2).

V.F Numerical results

In this section we provide the empirical performance of our scheme in the noisy

setting. We fix the parameters K = 50 and N = 105. For a given SNR we generate

a K-sparse signal at random and perform the support recovery for this signal over

200 sensing matrices sampled from the proposed construction. Specifically, supp(x)

is chosen uniformly at random from [N ] and the non-zero values in x are chosen

uniformly at random from the set {+1,−1}. We sample the coding matrix H from

the ensemble GNreg,reg(R = 2K, l = 4, r = 2N
K

) for each simulation. For the bin

detection matrix we consider the BinaryNoisy scheme and we use two classes of codes:

convolutional codes and (12,24) Golay code with QAM modulation. In the case of

convolutional codes we consider (12, n) truncated convolutional code corresponding

to rates 1
2
, 1

4
and 1

8
with a constraint length of 8 which results in n = 24, 48 and 96

respectively. This gives bin detection matrix dimensions of 12× r, 24× r and 48× r

where r = 4000 is the right degree of the graph corresponding to H. For the singleton

identification Viterbi soft decision decoding is considered for convolutional codes

whereas a hard decision syndrome decoding is considered for Golay code resulting

in a decoding complexity of O
(
K log

(
N
K

))
. We observe from Fig. V.1 that the

Golay code based construction with M = 1300 has similar performance and the

convolutional code based construction with M = 2400 has better performance when

compared to that of M = 9600 BinaryNoisy scheme with sub-linear time complexity

decoder of LPR[16].
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Figure V.1: Probability of Success for our construction (blue curves) with Bina-
ryNoisy scheme using convolutional codes(conv) and Golay code with sub-linear time
decoding complexity of O(K log N

K
).And we compare the performance with that of

BinaryNoisy scheme by Li, Pawar and Ramachandran (LPR) (red curve) [4] with
sub-linear decoding complexity of O (K logN).
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V.G Conclusion

In this chapter we considered the support recovery problem in compressed sensing

and proposed a sensing matrix construction based on left-and-right regular sparse-

graph ensemble. It was shown that the proposed construction, using an order optimal

measurement complexity of O(K log N
K

), recovers the support of the sparse signal

with asymptotically vanishing error probability in optimal sub-linear time complexity

of O(K log N
K

).
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VI. GROUP TESTING

VI.A Introduction

The problem of Group Testing (GT) refers to testing a large population of N

items for K defective items (or sick people) where grouping multiple items together

for a single test is possible. The output of the test is negative if all the grouped items

are non-defective or else the output is positive. In the scenario when K � N , the

objective of GT is to design the testing scheme such that the total number of tests

m to be performed is minimized.

This problem was first introduced to the field of statistics by Dorfman [17] during

World War II for testing the soldiers for syphilis without having to test each soldier

individually. Since then group testing has found application in wide variety of prob-

lems like clone library screening, non-linear optimization, multi-access communica-

tion etc.., [44] and fields like biology[45], machine learning[46], data structures[47]

and signal processing[48]. A comprehensive survey on group testing algorithms, both

combinatorial and probabilistic, can be found in [44, 49, 50].

In the literature on Group Testing, three kinds of reconstruction guarantees have

been considered: combinatorial, probabilistic and approximate. In the combinatorial

designs for the GT problem, the probability of recovery for any given defective set

should be equal to 1 whereas in the probabilistic version one is interested in recovering

all the defective items with high probability (w.h.p) i.e., with probability approaching

1 asymptotically in N and K. Another variant of the probabilistic version is that the

probability of recovery is required to be greater than or equal to (1− ε) for a given

ε > 0. For the approximate recovery version one is interested in only recovering a

(1− ε) fraction of the defective items (not the whole set of defective items) w.h.p.
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For the combinatorial GT the best known lower bound on the number of tests re-

quired is Ω(K2 logN
logK

) [51, 52] whereas the best known achievability bound isO(K2 logN)

[53, 54]. Most of these results were based on algorithms relying on exhaustive

searches thus have a high computational complexity of atleast O(K2N logN). Only

recently a scheme with efficient decoding was proposed by Indyk et al., [55] where

all the defective items are guaranteed to recover using m = O(K2 logN) tests in

poly(K) · O(m log2m) +O(m2) time.

If we consider the probabilistic version of the problem, it was shown in [49, 50]

that the number of tests necessary is Ω(K log N
K

) which is the best known lower bound

in the literature. And regarding the best known achievability bound Mazumdar [56]

proposed a construction that has an asymptotically decaying error probability with

O(K log2 N
logK

) tests. For the approximate version it was shown [50] that the required

number of tests scale as O(K logN) and to the best of our knowledge this is the

tightest bound known.

In [5] authors Lee, Pedarsani and Ramchandran proposed a testing scheme based

on left-regular sparse-graph codes and a simple iterative decoder based on thepeeling

decoder, which are popular tools in channel coding [22], for the non-adaptive group

testing problem. They refer to the scheme as SAFFRON(Sparse-grAph codes Framewrok

For gROup testiNg), a reference which we will follow through this document. The

authors proved that using SAFFRON scheme m = cεK logN number of tests are

enough to identify atleast (1 − ε) fraction of defective items (the approximate ver-

sion of GT) w.h.p. The precise value of constant cε as a function of the required

error floor ε is also given. More importantly the computational complexity of the

proposed peeling based decoder is only O(K logN). They also showed that with

m = c ·K logK logN tests i.e. with an additional logK factor, the whole defective

set (the probabilistic version of GT) can be recovered with an asymptotically high
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probability of 1−O(K−α).

Our contributions

In this work[57], we propose a non-adaptive GT scheme that is similar to the

SAFFRON but we employ left-and-right-regular sparse-graph codes instead of the

left-regular sparse-graph codes and show that we only require cεK log N`
cεK

number of

tests for an error floor of ε in the approximate version of the GT problem. Although

the testing complexity of our scheme has the same asymptotic order O(K logN) as

that of [5], which as far as we are aware is the best known order result for the required

number of tests in the approximate GT, it provides a better explicit upper bound of

Θ(K log N
K

) with optimal computational complexityO(K log N
K

) and also a significant

improvement in the required number of tests for finite values of K,N . Following the

approach in [5] we extend our proposed scheme with the singleton-only variant of the

decoder to tackle the probabilistic version of the GT problem. In Sec. VI.E we show

that for m = c · K logK log N
K

tests i.e. with an additional logK factor the whole

defective set can be recovered w.h.p. Note that the testing complexity of our scheme

is only logK factor away from the best known lower bound of Ω(K log N
K

) [49] for

the probabilistic GT problem. We also extend our scheme to the noisy GT problem,

where the test results are corrupted by noise, using an error-correcting code similar to

the approach taken in [5]. We demonstrate the improvement in the required number

of tests due to left-and-right-regular graphs for finite values of K,N via simulations.

VI.B Problem statement

Formally the group testing problem can be stated as following. Given a total

number of N items out of which K are defective, the objective is to perform m

different tests and identify the location of theK defective items from the test outputs.

For now we consider only the noiseless group testing problem i.e., the result of each
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test is exactly equal to the boolean OR of all the items participating in the test.

Let the support vector x ∈ {0, 1}N denote the list of items in which the in-

dices with non-zero values correspond to the defective items. A non-adaptive testing

scheme consisting of m tests can be represented by a matrix A ∈ {0, 1}m×N where

each row ai corresponds to a test. The non-zero indices in row ai correspond to the

items that participate in ith test. The output corresponding to vector x and the

testing scheme A and can be expressed in matrix form as:

y = A� x

where � is the usual matrix multiplication in which the arithmetic multiplications

are replaced by the boolean AND operation and the arithmetic additions are replaced

by the boolean OR operation.

VI.C Review: SAFFRON

As mentioned earlier the SAFFRON scheme [5] is based on left-regular sparse

graph codes and is applied for non-adaptive group testing problem. In this section

we will briefly review their testing scheme, iterative decoding scheme (reconstruction

of x given y) and their main results. The SAFFRON testing scheme consists of

two stages: the first stage is based on a left-regular sparse graph code which pools

the N items into M non-disjoint bins where each item belongs to exactly ` bins.

The second stage comprises of producing h testing outputs at each bin where the h

different combinations of the pooled items (from the first stage) at the respective bin

are defined according to a universal signature matrix. For the first stage the authors

consider a bipartite graph with N variable nodes (corresponding to the N items) and

M bin nodes. Each variable node is connected to ` bin nodes chosen uniformly at

random from theM available bin nodes. All the variable nodes (historically depicted
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on the left side of the graph in coding theory) have a degree `, hence the left-regular,

whereas the degree of a bin node on the right is a random variable in the range

[0 : N ].

Definition 65 (Left-regular sparse graph ensemble). Let G`(N,M) be the ensem-

ble of left-regular bipartite graphs where for each variable node the ` right node

connections are chosen uniformly at random from the M right nodes.

Let TG ∈ {0, 1}M×N be the adjacency matrix corresponding to a graph G ∈

G`(N,M) i.e., each column in TG corresponds to a variable node and has exactly

` ones. Let the rows in matrix TG be given by TG = [tT1 , t
T
2 , . . . , t

T
M ]T . For the

second stage let the universal signature matrix defining the h tests at each bin be

U ∈ {0, 1}h×N . Then the overall testing matrix A := [AT
1 , . . . ,A

T
M ]T where Ai =

U diag(ti) of size h×N defines the h tests at ith bin. Thus the total number of tests

is m = M × h.

The signature matrix U in a more general setting with parameters r and p can

be given by

Ur,p =



b1 b2 · · · br

b1 b2 · · · br

bπ1
1

bπ1
2
· · · bπ1

r

bπ1
1

bπ1
2
· · · bπ1

r

· · · ...

bπp−1
1

bπp−1
2

· · · bπp−1
r

bπp−1
1

bπp−1
2

· · · bπp−1
r



(VI.1)

where bi ∈ {0, 1}dlog2 re is the binary expansion vector for i and bi is the complement

of bi. πk = [πk1 , π
k
2 , . . . , π

k
r ] denotes a permutation chosen at random from symmetric
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group Sr. Henceforth Ur,p will refer to either the ensemble of matrices generated over

the choices of the permutations πk for k ∈ [1 : p− 1] or a matrix picked uniformly at

the random from the said ensemble. The reference should be sufficiently clear from

the context. In the SAFFRON scheme the authors employed a signature matrix from

Ur,p with r = N and p = 3 thus resulting in a U of size h×N with h = 6 log2N .

Decoding

Before describing the decoding process let us review some terminology. A bin is

referred to as a singleton if there is exactly one non-zero variable node connected

to the bin and similarly referred to as a double-ton in case of two non-zero variable

nodes. In the case where we know the identity of one of them leaving the decoder

to decode the identity of the other one, the bin is referred to as a resolvable double-

ton. And if the bin has more than two non-zero variable nodes attached we refer

to it as a multi-ton. First part of the decoder which is referred to as bin decoder

will be able to detect and decode exactly the identity of the non-zero variable nodes

connected to the bin if and only if the bin is a singleton or a resolvable double-ton.

If the bin is a multi-ton the bin decoder will detect it neither as a singleton nor a

resolvable double-ton with high probability. The second part of the decoder which

is commonly referred to as peeling decoder [16], when given the identities of some

of the non-zero variable nodes by the bin decoder, identifies the bins connected to

the recovered variable nodes and looks for newly uncovered resolvable double-ton

in these bins. This process of recovering new non-zero variable nodes from already

discovered non-zero variable nodes proceeds in an iterative manner (referred to as

peeling off from the graph historically). For details of the decoder we refer the reader

to [5].

The overall group testing decoder comprises of these two decoders working in
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conjunction as follows. In the first and foremost step, given the m tests output, the

bin decoder is applied on theM bins and the set of variable nodes that are connected

to singletons are decoded and output. We denote the decoded set of non-zero variable

nodes as D. Now in an iterative manner, at each iteration, a variable node from D

is considered and the bin decoder is applied on the bins connected to this variable

node. The main idea is that if one of these bins is detected as a resolvable double-ton

thus resulting in decoding a new non-zero variable node. The considered variable

node in the previous iteration is moved from D to a set of peeled off variable nodes

P and the newly decoded non-zero variable node in the previous iteration, if any,

will be placed in set D and continue to the next iteration. The decoder is terminated

when D is empty and is declared successful if the set P equals the set of defective

items.

Remark 66. Note that we are not literally peeling off the decoded nodes from the

graph because of the non-linear OR operation on the non-zero variable nodes at

each bin thus preventing us in subtracting the effect of the non-zero node from the

measurements of the bin node unlike in the problems of compressed sensing or LDPC

codes on binary erasure channel.

Now we state the series of lemmas and theorems from [5] that enabled the authors

to show that their SAFFRON scheme with the described peeling decoder solves

the group testing problem with c · K logN tests and O(K logN) computational

complexity.

Lemma 67 (Bin decoder analysis). For a signature matrix Ur,p as described in

(VI.1), the bin decoder successfully detects and resolves if the bin is either a singleton

or a resolvable double-ton. In the case of the bin being a multi-ton, the bin decoder

declares a wrong hypothesis of either a singleton or a resolvable double-ton with a
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probability no greater than 1
rp−1 .

Proof. This result was proved in [5] for the choice of parameters r = N and p = 3.

The extension of the result to general r, p parameters is straight forward.

For convenience the performance of the peeling decoder is analyzed independently

of the bin decoder i.e., a peeling decoder is considered which assumes that the bin

decoder is working accurately which will be referred to as oracle based peeling decoder.

Another simplification is that a pruned graph is considered where all the zero variable

nodes and their respective edges are removed from the graph. Also the oracle based

peeling decoder is assumed to decode a variable node if it is connected to a bin node

with degree one or degree two with one of them already decoded, in an iterative

fashion. Any right node with more than degree two is untouched by this oracle

based peeling decoder. It is easy to verify that the original decoder with accurate

bin decoding is equivalent to this simplified oracle based peeling decoder on a pruned

graph.

Definition 68 (Pruned graph ensemble). Let the pruned graph ensemble G̃l(N,K,M)

be the set of all bipartite graphs obtained from removing a random N − K subset

of variable nodes from a graph from the ensemble G`(N,M). Note that graphs from

the pruned ensemble have K variable nodes.

Before we analyze the pruned graph ensemble let us define the right-node degree

distribution (d.d) of an ensemble as R(x) =
∑

iRix
i where Ri is the probability that

a right-node in any graph from the ensemble has degree i. Similarly the edge d.d

ρ(x) =
∑

i ρix
i−1 is defined where ρi is the probability that a random edge in the

graph is connected to a right-node of degree i. Note that the left-degree distribution

is regular (i.e. L(x) = x`) even for the pruned graph ensemble and hence is not

specifically discussed.
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Lemma 69 (Edge d.d of Pruned graph). For the pruned ensemble G̃`(N,K,M), it

was shown that in the limit K,N →∞, ρ1 = e−λ and ρ2 = λe−λ where λ = `/cε for

M = cεK for any constant cε.

Lemma 70. For the pruned graph ensemble G̃`(N,K,M) the oracle-based peeling

decoder fails to peel off atleast (1−ε) fraction of the variable nodes with exponentially

decaying probability if M ≥ cεK where the required cε and ` for various values of ε

are given in Table. VI.1.

Proof. Instead of reworking the whole proof here from [5], we will list the main steps

involved in the proof which we will use further along. Let pj be the probability that

a random defective item is not identified at iteration j of the decoder, in the limit

N and K → ∞. Then one can write the density evolution (DE) equations relating

pj+1 to pj as

pj+1 = [1− (ρ1 + ρ2(1− pj))]`−1 .

For this DE, we can see that 0 is not a fixed point and hence pj 9 0 as j → ∞.

Therefore numerically optimizing the values of cε and ` such that limj→∞ pj ≤ ε gives

the optimal values for cε and ` given in Table. VI.1. It was also shown [5, 22] that

for such sparse graph systems the actual fraction of the undecoded variable nodes

deviates from the average undecoded fraction of the variable nodes given by the DE

with exponentially low probability.

Combining the lemmas and remarks above, the main result from [5] can be sum-

marized as below.

Theorem 71. A random testing matrix from the SAFFRON scheme with m =

6cεK log2N tests recovers atleast (1−ε) fraction of the defective items w.h.p of atleast
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ε 10−3 10−4 10−5 10−6 10−7 10−8 10−9

c1(ε) 6.13 7.88 9.63 11.36 13.10 14.84 16.57
` 7 9 10 12 14 15 17

Table VI.1: Constants for various error floor values

1 − O( K
N2 ). The computational complexity of the decoding scheme is O(K logN).

The constant cε is given in Table. VI.1 for some values of ε.

VI.D Proposed scheme

The main difference between the SAFFRON scheme described in Sec. VI.C and

our proposed scheme is that we use a left-and-right-regular sparse-graph instead of

left-regular sparse-graph in the first stage for the binning operation.

Definition 72 (Left-and-right-regular sparse graph ensemble). We define G`,r(N,M)

to be the ensemble of left-and-right-regular graphs where the N` edge connections

from the left andMr(= N`) edge connections from the right are paired up according

to a permutation π chosen at random from SN`.

Let TG ∈ {0, 1}M×N be the adjacency matrix corresponding to a graph G ∈

G`,r(N,M) i.e., each column in TG corresponding to a variable node has exactly `

ones and each row corresponding to a bin node has exactly r ones. And let the

universal signature matrix be U ∈ {0, 1}h×r chosen from the Ur,p ensemble. Then

the overall testing matrix A := [AT
1 , . . . ,A

T
M ]T where Ai ∈ {0, 1}h×N defining the h

tests at ith bin is given by

Ai = [0, . . . ,0,u1,0, . . . ,u2,0, . . . ,ur], where (VI.2)

ti = [0, . . . , 0, 1, 0, . . . , 1, 0, . . . , 1].
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Note that Ai is defined by placing the r columns of U at the r non-zero indices of

ti and the remaining are padded with zero columns. We can observe that the total

number of tests for this scheme is m = M × h where h = 2p log2 r.

Example 73. Let us look at an example for (N,M) = (6, 3) and (`, r) = (2, 4).

Then the adjacency matrix TG of a graph G ∈ G2,4(6, 3) and a signature matrix

U ∈ {0, 1}4×3 for p = 1 and log2 r = 2 are given by

TG =


1 1 0 1 0 1

0 1 1 1 1 0

1 0 1 0 1 1

U =



0 0 1 1

0 1 0 1

1 1 0 0

1 0 1 0


.

Then, the measurement matrix A with m = 2pMdlog2 re = 12 tests is given by

A =



0 0 0 1 0 1

0 1 0 0 0 1

1 1 0 0 0 0

1 0 0 1 0 0

0 0 0 1 1 0

0 0 1 0 1 0

0 1 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 1

0 0 1 0 0 1

1 0 1 0 0 0

1 0 0 0 1 0
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`

...N vars

r ≤ N

... c1K bins
π

U ∈ {0, 1}c log N×N

logN tests

M = Θ(K logN)

`

...N vars

r = N`
c1K

... c1K bins
π

U ∈ {0, 1}c log r×r

log r tests

M = Θ(K log N
K

)

Figure VI.1: Illustration of the main differences between SAFFRON [5] on the left
and our regular-SAFFRON scheme on the right. In both the schemes the peeling
decoder on sparse graph requires Θ(K) bins. But for the bin decoder part, in SAF-
FRON scheme the right degree is a random variable with a maximum value of N and
thus requires Θ(logN) tests at each bin. Whereas our scheme based on right-regular
sparse graph has a constant right degree of Θ(N

K
) and thus requires only Θ(log N

K
)

tests at each bin. Thus we can improve the number of tests from Θ(K logN) to
Θ(K log N

K
).

Definition 74 (Regular-SAFFRON). Let the ensemble of testing matrices be G`,r(N,M)×

Ur,p where a graph G from G`,r(N,M) and a signature matrix U from Ur,p are chosen

at random and the testing matrix A is defined according to Eq. (VI.2). Note that

the total number of tests is 2pM log2 r where r = N`
M
.

For the regular-SAFFRON testing ensemble defined in Def. 74, we employ the

iterative decoder described in Sec. VI.C. Similar to the SAFFRON scheme we will

analyze the peeling decoder and the bin decoder separately and union bound the

total error probability of the decoding scheme. As we have already mentioned the

analysis of just the peeling decoder part can be carried out by considering a simplified

oracle-based peeling decoder on a pruned graph with only the non-zero variable nodes

remaining.

Definition 75 (Pruned graph ensemble). We will define the pruned graph ensemble
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G̃`,r(N,K,M) as the set of all graphs obtained from removing a random N−K subset

of variable nodes from a graph from left-and-right-regular sparse-graph ensemble

G`,r(N,M).

Note that graphs from the pruned ensemble have K variable nodes with a degree

` whereas the right degree is not regular anymore.

Lemma 76 (Edge d.d of pruned graph). For the pruned graph ensemble G̃`,r(N,K,M)

it can be shown in the limit K,N →∞ and K = o(N) that the edge d.d coefficients

approach ρ1 = e−λ and ρ2 = λe−λ where λ = `/c for the choice of M = cK, c being

some constant.

Proof. We will first derive R(x) for the pruned graph ensemble and then use the

relation ρ(x) = R′(x)
R′(1)

[22] to derive the edge d.d. Note that all the bin nodes have a

uniform degree r before pruning. In the pruning operation we are removing a N −K

subset of variable nodes at random which means from the bin node perspective,

in an asymptotic sense, this is equivalent to removing each connected edge with a

probability 1−β where β := K
N
. Under this process the right-node d.d can be written

as

R1 = rβ(1− β)r−1, and similarly (VI.3)

Ri =

(
r

i

)
βi(1− β)r−i ∀i <= r

thus giving us R(x) = (βx+ (1− β))r. This gives us

ρ(x) =
rβ(βx+ (1− β))r−1

rβ

= (βx+ (1− β))r−1.
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Thus we can compute that ρ1 = (1−β)r−1 and ρ2 = (r−1)β(1−β)r−2. ForM = cK

we evaluate these quantities in the limit K,N →∞ as

lim
K,N→∞

ρ1 = lim
K,N→∞

(
1− K

N

)N`
cK
−1

= e−λ where λ =
`

c

Similarly we can show limK,N→∞ ρ2 = λe−λ.

Note that even if our initial ensemble is left-and-right-regular the pruned graph

ensemble has asymptotically the same degree distribution as in the SAFFRON

scheme where the initial ensemble is left-regular.

Lemma 77. For the pruned graph ensemble G̃`,r(N,K,M) the oracle-based peeling

decoder fails to peel off atleast (1−ε) fraction of the variable nodes with exponentially

decaying probability for M = cεK where `, cε for various ε is given in Table. VI.1.

Proof. We showed in Lemma. 76 that, in the limit of K,N → ∞, the edge degree

distribution coefficients ρ1 and ρ2 approach the same values as in the SAFFRON

scheme (see Lem. 69). Now we follow the exact same approach as that of Lem. 70

where the limiting values of ρ1 = e−λ and ρ2 = λe−λ are used in the DE equations

to show that for the given values of ` and cε limj→∞ pj ≤ ε.

Theorem 78. Let p ∈ Z such that K = o(N1−1/p). A random testing matrix

from the proposed regular SAFFRON ensemble G`, N`
cεK

(N, cεK) ×U N`
cεK

,p with m =

c ·K log2
c2N
K

tests recovers atleast (1− ε) fraction of the defective items w.h.p. The

computational complexity of the decoding scheme is O(K log N
K

). The constants are

c = 2pcε, c2 = `
cε

where ` and cε for various values of ε are given in Table. VI.1.

Proof. It remains to be shown that for the proposed regular SAFFRON scheme the

total probability of error vanishes asymptotically in K and N . Let E1 be the event of
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oracle-based peeling decoder terminating without recovering atleast (1−ε)K variable

nodes. Let E2 be the event of the bin decoder making an error during the entirety

of the peeling process and Ebin be the event of one instance of bin decoder making

an error. The total probability of error Pe can be upper bounded by

Pe ≤ Pr(E1) + Pr(E2)

≤ Pr(E1) +K` Pr(Ebin)

∈ O
(

Kp

Np−1

)

where the second inequality is due to the union bound over a maximum of K`

(number of edges in the pruned graph) instances of bin decoding. The third line is

due to the fact that Pr(E1) is exponentially decaying in K (see Lemma. 77) and

Pr(Ebin) = ( cεK
N`

)p−1 (see Lemma. 67 and Def. 74)

VI.E Total recovery: Singleton-only variant

In this section we will look at the proposed regular-SAFFRON scheme but with

a decoder that uses only the singleton bins. To elaborate, the only difference is in

the decoder which is not iterative in this framework and recovers the variable nodes

connected to only the singleton bin nodes and terminates. We will refer to this

scheme as singleton-only regular-SAFFRON scheme. The trade-off is that we can

now recover the whole defective set instead of just a large fraction of the defective

items with an additional logK factor tests. Since we do not need to be able to

recover resolvable double-tons we only need 2 log2 r number of tests at each bin i.e.

we choose p = 1 for the signature matrix in Eqn. (VI.1).

Theorem 79. Let K = o(N). For M = cαK logK and (`, r) = (cα logK, N
K

) a

random testing matrix from the regular SAFFRON ensemble G`,r(N,M)×Ur,1 with
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m = 2cαK logK log2
N
K

tests the singleton-only decoder fails to recover all the non-

zero variable nodes with a vanishing probability of O(K−α) where cα = e(1 + α).

Proof. First we observe that for the choice of (`, r) = (cα logK, N
K

) number of bins

M = N`
r

= cαK logK and the number of tests in each bin is 2 log2
N
K
. From Lem.

67 we know that a singleton bin is guaranteed to be decoded by the bin decoder.

Thus it is enough if we show that for this choice for the number of bins M all the

variable nodes in the pruned graph are connected to atleast one singleton bin w.h.p

of 1−O(K−α).

In the pruned graph ensemble, for any particular variable node, the probability

that any of the ` connected bit nodes are not a singleton can be given by (1− R1)`

where R1 is the probability that a bin node in the pruned graph ensemble is a

singleton. In the limit K,N →∞ the value of R1 approaches (from Eq. VI.3)

R1 = lim
K,N→∞

rβ(1− β)r−1

= lim
N
K
→∞

(
1− K

N

)N
K
−1

= e−1

By using union bound over all the K variable nodes in the pruned graph, the prob-

ability Pe that the singleton-only decoder fails to recover a defective item can be

128



bounded by

Pe ≤ K(1−R1)`

= O
(
K(1− e−1)e(1+α) logK

)
= O

(
Ke−e

−1e(1+α) logK
)

= O
(
K−α

)
.

In third line we used (1− x) ≤ e−x.

VI.F Robust group testing

In this section we extend our scheme to the group testing problem where the test

results can be noisy. Formally, the signal model can be described as

y = A� x + w,

where w ∈ {0, 1}N is an i.i.d. noise vector distributed according to Bernoulli distri-

bution with parameter 0 < q < 1
2
and the addition is over binary field.

Testing scheme

In [5] for the robust group testing problem, the signature matrix used for noiseless

group testing problem is modified using an error control code such that it can handle

singletons and resolvable doubletons in the presence of noise. The binning operation

as defined by the bipartite graph is exactly identical to that of noiseless case. We

describe the modifications to the signature matrix and the bin detection decoding

scheme as given in [5] for the sake of completeness and then state the performance

bounds for our scheme for the noisy group testing problem.

Let Cn be a binary error-correcting code with the following definition:
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• Let the encoder and decoder functions be f : {0, 1}n → {0, 1} nR and g :

{0, 1} nR → {0, 1}n respectively where R is the rate of the code.

For ease of analysis and tight upper bound for the number of tests we will use random

codes and the optimal maximum-likelihood decoder which gives us the properties:

• There exists a sequence of codes {Cn} with the rate of each code being R

satisfying

R < 1−H(q)− δ = 1 + q log2 q + q log2 q − δ (VI.4)

for any arbitrary small constant δ such that the probability of error Pr (g(x + w) 6= x) <

2−κn for some κ > 0. In Eqn. VI.4, q := 1− q.

Even though the computational complexity of using random codes is exponential in

block length of the code since the block length for our application is O(log N
K

) and

hence we have an overall computational complexity of O(N). But in practice one can

use any of the popular error-correcting codes such as spatially-coupled LDPC codes

or polar codes which are known to be capacity achieving [31, 58] whose computational

complexity is linear in block length.

The modified signature matrix U′r,p can be described via Ur,p given in Eq. (VI.1)
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and encoding function f for Cn where n = dlog2 re as follows:

U′r,p :=



f(b1) f(b2) · · · f(br)

f(b1) f(b2) · · · f(br)

f(bπ1
1
) f(bπ1

2
) · · · f(bπ1

r
)

f(bπ1
1
) f(bπ1

2
) · · · f(bπ1

r
)

· · · ...

f(bπp−1
1

) f(bπp−1
2

) · · · f(bπp−1
r

)

f(bπp−1
1

) f(bπp−1
2

) · · · f(bπp−1
r

)



(VI.5)

Then the overall testing matrix A is defined in identical fashion to the definition

in Sec. VI.C for the case of noiseless case except that U will be replaced by U′

in Eqn. (VI.5). Formally it can be defined as A := [AT
1 , . . . ,A

T
M1

]T where Ai =

U′ diag(ti) where the binary vectors ti are defined in Sec. VI.C.

Decoding

The decoding scheme for the robust group testing, similar to the case of noiseless

case, has two parts with the peeling part of the decoder identical to that of the

noiseless case whereas the bin detection part differs slightly with an extra step of

decoding for the error control code involved.

Given the test output vector at a bin y = [yT01,y
T
02,y

T
11, . . . ,y

T
(p−1)2]T , the bin

detection for the noisy case can be summarized as following: The decoder ∀i ∈ [0 :

p − 1] applies the decoding function g(·) to the first segment yi1 in each section i

and obtains the location li whose binary expansion is equal to the error-correcting

decoder output g(yi1). The decoder then declares the bin as a singleton if πil0 = li ∀i.

Similarly given that one of the variable nodes connected to the bin is already

decoded to be non-zero, the resolvable double-ton decoding can be summarized as
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following. Let the location of the already recovered variable node in the bin (origi-

nally a double-ton) be l0 then the test output can be given as



y01

y02

y11

...

yp2


= ul0 ∨ ul1 + w =



f(bl0)

f(bl0)

f(bπ1
l0

)

...

f(bπpl0
)


∨



f(bl1)

f(bl1)

f(bπ1
l1

)

...

f(bπpl1
)


+



w01

w02

w11

...

wp2


where the location of the second non-zero variable node l1 needs to be recovered.

Given y = ul0 ∨ul1 +w and ul0 , the first segments of each section in ul1 +w can be

recovered since for each segment of ul0 either the vector f(bπkl0
) or it’s complement

is available. Once the first section f(bπil1
) + w of each segment i is recovered, we

apply singleton decoding procedure and rules as described above.

Lemma 80 (Robust Bin Decoder Analysis). For a signature matrixU′r,p as described

in (VI.5), the robust bin decoder misses a singleton with probability no greater than
p
rκ
. The robust bin decoder wrongly declares a singleton with probability no greater

than 1
rpκ+p−1 .

Proof. Let Ei be the event that the error-control decoder g(yi1) commits an error at

section i. From Eqn. (VI.4) we know that Pr(Ei) = 2−κ log r = r−κ. The robust bin

decoder misses a singleton if the error-control decoder g(yi1) commits an error at any

one section. Thus the probability of missing a singleton can be upper bounded by

applying union bound over all the sections i ∈ [0 : p− 1] giving the required result.

Consider a singleton bin and let the event where the robust bin decoder outputs

a singleton hypothesis but the wrong index be Ebin. This event happens when the

error-control decoder commits an error and outputs the exact same wrong index
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at each and every section. We assume that given the error-control decoder makes

an error, the output is uniformly random among all the remaining indices. Thus

Pr(Ebin) can be upper bounded by 1
rκ

( 1
r1+κ )p−1 which upon simplification gives us

the required result.

The fraction of missed singletons can be compensated by usingM(1+ p
rκ

) instead

ofM such that the total number of singletons decoded will beM(1+ p
rκ

)(1− p
rκ

) ≈M .

Theorem 81. Let p ∈ Z such that K = o
(
N1−1/p

)
. The proposed robust regular

SAFFRON scheme using m = c ·K log2
N`
cεK

tests recovers atleast (1− ε) fraction of

the defective items w.h.p. where c = 2pβ(q)cε and β(q) = 1/R.

Proof. Similar to the noiseless case the total probability of error Pe is dominated by

the performance of bin decoder.

Pe ≤ Pr(E1) +K` Pr(Ebin)

= Pr(E1) +O
(

Kp+pκ

Np−1+pκ)

)
= O

(
N (p−1)(1+κ)

Np−1+pκ)

)
∈ O(N−κ)

where the second line is due to Lem. 80 and the third line is due to the fact that

Pr(E1) is exponentially decaying in K and K ≤ N (p−1)/p for large enough K,N .
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VI.G Simulation results

In this section we will evaluate the performance of the proposed regular-SAFFRON

scheme via Monte Carlo simulations and compare it with the results of SAFFRON

scheme provided in [5] for both the noiseless and noisy models.

Noiseless group testing

As per Thm. 78 the proposed regular SAFFRON scheme requires only 6cεK log N`
cεK

tests as opposed to 6cεK logN tests of SAFFRON scheme to recover (1− ε) fraction

of defective items with a high probability. We demonstrate this by simulating the

performance for the system parameters summarized below.

• We fix N = 216 and K = 100

• For ` ∈ {3, 5, 7} we vary the number of bins M = cK.

• In Eqn. VI.1 the parameter p = 2 is chosen for matrix U

• Thus the bin detection size is h = 6 log2
N`
cK

• Hence the total number of tests m = 6cK log2

(
N`
cK

)
The results are shown in Fig. VI.2. We observe that there is clear improvement

in performance for the proposed regular SAFFRON scheme when compared to the

SAFFRON scheme for each ` ∈ {3, 5, 7}.

Noisy group testing

Similar to the noiseless group testing problem we simulate the performance of

our robust regular-SAFFRON scheme and compare it with that of the SAFFRON

scheme. For convenience of comparison we choose our system parameters identical

to the choices in [5]. The system parameters are summarized below:
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Figure VI.2: MonteCarlo simulations for K = 100, N = 216. We compare the SAF-
FRON scheme [5] with the proposed regular SAFFRON scheme for various left de-
grees ` ∈ {3, 5, 7}. The plots in blue indicate the SAFFRON scheme and the plots in
red indicate our regular SAFFRON scheme based on left-and-right-regular bipartite
graphs.

• N = 232, K = 27. We fix ` = 12,M = 11.36K

• BSC noise parameter q ∈ {0.03, 0.04, 0.05}

• In Eqn. VI.1 the parameter p = 1 is chosen for matrix U
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• Thus the bin detection size is h = 4 log2
N`
M

The results are shown in Fig. VI.3. Note that for the above set of parameters the

right degree r = N`
M
≈ 26. We choose to operate in field GF (27) thus giving us a

message length of 4 symbols. For the choice of code we use a (4+2e, 4) Reed-Solomon

code for e ∈ [0 : 8] thus giving us a column length of 4 × 7(4 + 2e) bits at each bin

and the total number of tests m = 28M(4 + 2e).

VI.H Conclusion

We addressed the Group Testing problem of identifying K defective items out

of N items and proposed a new construction for the testing matrix based on left-

and -right-regular sparse-graph codes. It was shown that this improves the test-

ing complexity upon the previous results for the approximate version of the Group

Testing problem and achieves asymptotically vanishing error probability under sub-

linear time, order optimal, computational complexity. It was also shown that the

proposed scheme with a variant of the original decoder has a testing complexity

that is only logK factor away from the lower bound for the probabilistic version of

the Group Testing problem with order optimal computational complexity. In the

non-asymptotic regime, it was demonstrated through numerical simulations that the

proposed scheme improves upon the existing sparse-graph based schemes in terms of

the number of tests required to achieve a fixed target error probability.
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Figure VI.3: MonteCarlo simulations for K = 128, N = 232. We compare the SAF-
FRON scheme with the proposed regular-SAFFRON scheme for a left degree ` = 12.
We fix the number of bins and vary the rate of the error control code used. The
plots in blue indicate the SAFFRON scheme[5] and the plots in red indicate the
regular-SAFFRON scheme based on left-and-right-regular bipartite graphs.
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VII. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis we provided solutions to some problems in massive multiple access

and sparse signal recovery using tools from coding theory. However we believe that

there are a wide variety of applications with huge potential in applying these coding

theory tools. Below, we list some of the questions that emanate from this thesis

that need to be pursued and also a few potential applications of the solution designs

discussed.

• Consider the compressed sensing problem studied in Ch. II:

~y = A~b +~z,

where the non-zero elements of the T -sparse vector ~b are all equal to one and

the sparsity is very small, T ∈ [1 : 10]. This specific compressed sensing

problem is not extensively studied in the literature for the non-asymptotic

regime. Although we derived some new bounds on T -disjunctive codes as an

application for the sensing matrix, a full characterization of the sensing matrix

suitable for this problem warrants further study.

• In Ch. III, given a probability distribution for the repetition pattern of each

user in the random multiple access problem, analytic expressions to compute

the error probability of peeling decoder are derived. Based on these analytic

expressions, an iterative linear programming optimization technique based on

first order approximations to error probability, similar to [3], need to be studied.

Through this approach distributions can be found which, for number of users

n = 1000, can potentially achieve values of throughput larger than the current
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best known value ≈ 80% .

• In Ch. IV lattice construction based on nested linear spatially coupled LDPC

code ensembles is proposed. It was shown that the proposed lattices are op-

timal for the unconstrained AWGN channel i.e., Poltyrev-good. Given such

Poltyrev-good lattices, it was shown recently [59, 60] that applying appropriate

discrete Gaussian shaping over the lattice so that the power constraint is sat-

isfied, the capacity of the power constrained AWGN channel can be achieved.

The optimality of the low complexity multi-level decoding considered for the

proposed SC-LDPC lattices in Ch. IV, under the discrete Gaussian shaping

needs to be studied. If this issue can be resolved affirmatively, the capacity of

the three user symmetric interference channel can be achieved by the proposed

lattices, overcoming the demonstrated 1.53dB gap in Sec. IV.C.4, due to hyper

cube shaping.

• In Chapters V & VI we modified the earlier sensing schemes due to Ramchan-

dran et al., by replacing the left-regular with left-and-right-regular bipartite

graphs. This not only enabled us to derive sharper results in the asymptotic

regime matching the lower bounds but also demonstrated improved perfor-

mance in the non-asymptotic regime. A thorough comparison, in terms of

the measurement and computational complexities, with the popular schemes

in the literature for support recovery and group testing, particularly in the

non-asymptotic regime needs to be undertaken.
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