
p

4 _

TRELLISES AND TRELLIS-BASED

DECODING ALGORITHMS FOR

LINEAR BLOCK CODES

Part 3

Shu Lin and Marc Fossorier

April 20, 1998

https://ntrs.nasa.gov/search.jsp?R=19990014065 2020-06-15T22:02:47+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42768906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

/ji,'_/ "_ '-" _f

///,,",/

12
AN ITERATIVE DECODING ALGORITHM

FOR LINEAR BLOCK CODES BASED ON A

LOW-WEIGHT TRELLIS SEARCH

For long linear block codes, maximum likelihood decoding based on full code

trellises would be very hard to implement if not impossible. In this case, we may

wish to trade error performance for the reduction in decoding complexity. Sub-

optimum soft-decision decoding of a linear block code based on a low-weight

subtrellis can be devised to provide an effective trade-off between error per-

formance and decoding complexity. This chapter presents such a suboptimal

decoding algorithm for linear block codes. This decoding algorithm is iterative

in nature and based on an optimality test. It has the following important fea-

tures: (1) a simple method to generate a sequence of candidate codewords, one

at a time, for test; (2) a sufficient condition for testing a candidate codeword

for optimality; and (3) a low-weight subtrellis search for finding the most likely

(ML) codeword.

221

222 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMSFOR LINEAR BLOCK CODES

12.1 GENERAL CONCEPTS

A simple low-cost decoder, such as an algebraic decoder, is used to generate a

sequence of candidate codewords iteratively one at a time using a set of test

error patterns based on the reliability information of the received symbols.

When a candidate is generated, it is tested based on an optimality condi-

tion. If it satisfies the optimality condition, then it is the most likely (ML)

codeword and decoding stops. If it fails the optimality test, a search for the

ML codeword is conducted in a region which contains the ML codeword. The

search region is determined by the current candidate codeword (or codewords)

and the reliability of the received symbols. The search is conducted through a

purged trellis diagram for the given code using a trellis-based decoding algo-

rithm. If the search fails to find the ML codeword, a new candidate is generated

using a new test error pattern (or any simple method), and the optimality test

and search are renewed. The process of testing and searching continues until

either the ML codeword is found or all the test error patterns are exhausted

(or a stopping criterion is met) and the decoding process is terminated.

The key dements in this decoding algorithm are:

(1) Generation of candidate codewords,

(2) Optimality test,

(3) A search criterion,

(4) A low-weight trellis diagram,

(5) A search algorithm, and

(6) A stopping criterion.

12.2 OPTIMALITY CONDITIONS

Suppose C is used for error control over the AWGN channel using BPSK

signaling. Let c = (cz,c2,... ,cN) be the transmitted codeword. For BPSK

transmission, c is mapped into a bipolar sequence z = (zl,z2,... ,ZN) with

z_ = (2c_- 1) E {:kl} for 1 < i < N. Supposez is transmitted and r =

(rz, r2,..., rN) is received at the output of the matched filter of the receiver. Let

AN ITERATIVE DECODING ALGORITHM 223

z = (zt,z2,..., ZN) be the binary hard-decision received sequence obtained

from r using the hard-decision function given by

I1 for ri > 0zi = 0 for rl <_ 0
(12.1)

for I < i < N. We use]ri[as the reliability measure of the received symbol

ri since this value isproportional to the log-likelihood ratio associated with the

symbol hard-decision, the larger the magnitude the greater itsreliability.

For any binary N-tuple u = (ux,u2,... ,uN) E {0, 1} N, the correlation

between u and the received sequence r is given b¢

N

(2ui- 1). (12.2)
i---!

It follows from (12.1) and (12.2) that

N

M(z,r) = _ Ir_l >_c, (12.3)

i=l

and for any u E {0, 1) N,

M(z, r) > M(u, r).

Define the following index sets:

Do(u) _ {i:ui=zi and 1 <i< N},

Dl(u) _ {i:ui#ziandl <i<N}

= {1, 2,..., N}kOo('_).

Let

n(u) "= IDx(u)l.

(12.4)

(12.5)

(12.6)

Consider

M(u,r)

N

= I)
i=l

= E ri(2ui--1)+ _ ri(2ui-- 1)

iEDo(u} i_ Dr(u)

224 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

Let

= _ ,,(2_,- 1)- __, _,(2,,- 1)
iEDo(u) iEDi(u)

N

i=l iEDt(u)

: M(_,,.)-2 _ Ir,I.
iEDl(u)

(12.z)

L(u,r)_ Z I,',1. (12.8)
iEDl(u)

Then, M(u, r) can be expressed in terms of MCz, r) and L(u, r) as follows:

M(u,r) = MCz, r) - 2L(u,r). (12.9)

L(u, r) is called the correlation discrepancy of u.

From (12.9), the MLD can be stated in terms of the correlation discrepancies

of codewords as follows: The decoder computes the correlation discrepancy

L(c,r) for each codeword c E C, and decode r into the codeword Copt for

which

L(c,,pt, r) = min L(c, r). (12.10)
¢Ec

From (12.10), we see that if there exists a codeword c" for which

L(c',r) < a(c',r) _= min L(c,r),
cGC,c_c"

then c" = Copt. It is not possible to determine a(c',r) without evaluating

L(c,r) for all c E C. However, if it is possible to determine a tight lower

bound on a(c', r), then we have a sufficient condition for testing the opti-

mality of a candidate codeword.

Suppose c is a candidate codeword for testing. The index set Do(c) consists

of N - n(c) indices. Order the indices in Do(c) as follows:

D0(c) = {kl, k2,..., kN-,(:}} (12.11)

such that for 1 < i < j _< N - n(c),

I,k.I< I% I. (12.12)

ANITERATIVE DECODING ALGORITHM 225

Let D(oj) (c) denote the set of first j indices in the ordered set Do(c), i.e.,

Do_J_(c)-_{k_,_,...,_). (12.13)

For j _< 0, D_J)(c) & 0 and for j > N - n(c), Do(J_(c) & Do(c).

Let W = {0,wl,w2,..., win} be the weight profile of code C and we be the

k-th smallest non-zero weight in W. Define

se A_ we- n(c), (12.14)

G(c, we) _ E !ri[, (12.15)

,_ D_o". }{_)

and

R(c,w_) _ {c' E C: d(cl, C) < we}, (12.16)

where d(d, c) denotes the Hamming distance between c' and c.

Theorem 12.1 For a codeword c in C and a nonzero weight wk E W, if

L(c,r) <_ G(c,w_), (12.17)

then the optimal solution Copt is in the region R(c,w_) [75].

Proof: Let c' be a codeword in C\R(c, we), i.e.,

d(c', c) > we. (12.18)

We want to show that L(c, r) < L(c', r). Let nol and nlo be defined as

nol A [Do(c)ND1(c')l, (12.19)

nlo _ [Dl(c) nDo(c')l. (12.20)

Since

we have

d(c', c) = n01 + nlo ___-k, (12.21)

r$o I >_ We -- nl0

__ we-- [Dl(Cil

= _ - n(_). (12.22)

226 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

From (12.19)and (12.22),we findthat

ID_(_')I_> lDo(_)nD_(=')l

>_ _ -.(_). (12.23)

Itfollowsfrom (12.19),(12.22)and (12.23)that

L(c',r)= _ I,,I

ieD_oTM -"{'))(c)

> L(c,r). (12.24)

Eq.(12.24)impliesthat the most likelycodeword e.optmust be in the Region

R(c,,o_).
A/x

Given a codeword c, Theorem 12.1 simply defines a region in which Copt can

be found. It says that Copt is among those codewords in C that axe at distance

wk-1 or less from the codeword c, i.e.,

d(c,Co,,,)< wk-1. (12.2s)

If w_-i is small, we can make a search in the region R(c, wk) to find copt. If

w,-1 is too big, then it is better to generate another candidate codeword c' for

testing and hopefully the search region R(c', wt) is small.

Two special cases are particularly important:

(1) If k = 1, the codeword c is the optimal MLD codeword C-opt.

(2) If k = 2, the optimal MLD codeword Copt is either c or a nearest

neighbor of c.

Corollary 12.1 Let c E C.

(1) If L(c,r) < G(c, ml), then c = copt.

(2) If L(c,r) > G(c, ml) but L(c,r) < G(c, w2), then c.opt is at a distance

not greater than the minimum distance dH = wl from c. /xA

AN ITEFL_,TIVE DECODING ALGORITHM 227

The first part of Corollary 12.1 provides a sufficient condition for optimality of

a codeword. The second part of Corollary 12.1 gives the condition that c.opt is

either a nearest neighbor of a tested codeword or the tested codeword itself,

We call G(c, tol) and G(c, w2) the optimality and nearest neighbor test

thresholds, respectively. They will be used in an iterative decoding algorithm

for testing. The sufficient condition on optimality given in Corollary 12.1 was

first derived by Taipale and Pursley [94].

12.3 GENERATION OF CANDIDATE CODEWORDS AND TEST

ERROR PATTERNS

The iterative decoding algorithm to be presented depends on the generation of

a sequence of candidate codewords with a simple _ow-cost decoder. There are a

number of ways of generating these candidate codewords. The simplest way is

to use a set of probable test error patterns to modify the hard-decision received

vector z and then decode each modified received sequence with an algebraic

decoder. The test error patterns are generated in the decreasing likelihood

order, one at a time. The most probable test ezror pattern is generated first

and the least probable one is generated last. V_hen a test error pattern e is

generated, the sum e + z is formed. Then the _.lgebraic decoder decodes the

modified received vector e + z into a candidate ¢odeword c for optimality test

based on the two sufficient conditions given in Corollary 12.1.

Let p be a positive integer not greater than N_ Let Qp denote the set of the

p least reliable positions of the received sequence r. Let E denote the set

of 21' binary error patterns of length N with errors confined to the positions in

Qp. The set E forms the basic set of test error patterns. The error patterns

in E are more likely to occur than the other ,:rror patterns. In the Chase

decoding algorithm-II [14], p = [dx/2J is chosen and E consists of 2LaH/2J test

error patterns where dH is the minimum distar ce of the code to be decoded

and [dH/2J denotes the largest integer equal to or less than dill2. Using this

set of test error patterns, Chase proved that hi_ decoding algorithm achieves

asymptotically optimum error performance. In tl Leiterative decoding algorithm

to be presented in the next section, the same [asic set of test error patterns

will be used for generating candidate codewords.

228 TRELLISESANDTRELLIS-BASEDDECODINGALGORITHMSFORLINEARBLOCKCODES

For a testerrorpatterne E E, letdec(e)denote the decoded codeword ofthe

algebraicdecoder with e + z as the input vector.In case ofa decoding failure

(itmay occur in a bounded distance-tdecoder),letdec(e) _- (,)(undefined).

In thiscase,the next testerror pattern et E E isgenerated for decoding. A

testerrore E E, issaid to be decodable ifdec(e) _ (*). Two decodable

errorpatterns,e and e_in E are said to be equivalent ifdec(e) = dec(e')

(*). Let e be a decodable error pattern in E and let Q(e) denote the set

of alltesterror patterns in E which are equivalentto e. Q(e) iscalledthe

equivalence class containinge,and a testerrorpattern inQ(e) ischosen as

the classrepresentative.Sinceallthe testerrorpatternsinan equivalenceclass

generatethe same candidate codeword, only the classrepresentativeshould be

used. How topartitionE intoequivalenceclassesand generateequivalenceclass

representativesaffectsthe efficiencyofany decoding algorithm thatutilizestest

patterns.

Let Er_p denote the set of allrepresentativesof the equivalenceclassesof

E. Then every decodable errorpattern in Er_p generatesa distinctcandidate

codeword for testing.To construct Er_p for a given receivedsequence r, pre-

processingisneeded beforedecoding. This preprocessingofE iseffectiveonly

ifitissimpler than an algebraicdecoding operation. An effectiveprocedure

forgeneratingtesterrorpatterns in Er_p ispresentedin [75].

12.4 AN ITERATIVE DECODING ALGORITHM

This decoding algorithm is iterative in nature and devised based the reliability

measures of the received symbols. It consists of the following key steps:

(1) Generate a candidate codeword c by using a test error pattern in Erep.

(2) Perform the optimality test or the nearest neighbor test for each gener-

ated candidate codeword c.

(3)If the optimality test fails but the nearest neighbor test succeeds, a search

in the region R(c, w2) is initiated. The search is conducted through the

minimum-weight subtrellis, Tmi,(c), centered around e using a trellis-

based decoding algorithm, say Viterbi or RMLD algorithms.

ANITERATIVEDECODINGALGORITHM 229

(4) If both optimality and nearest neighbor tests fail, a new test error pat-

tern in Erep is generated for the next decoding iteration.

Suppose the optimal MLD codeword has not _een found at the end of the

(j - 1)-th decoding iteration. Then the j-th decoding iteration is initiated. Let

Cbe,t and L(cbe,t, r) denote the best codeword and its correlation discrepancy

that have been found so far and are stored in a buffer memory. The j-th

decoding iteration consists of the following steps:

Step 1: Fetch ej from Erep and decode ej + z into a codeword c E C. If the

decoding succeeds, go to Step 2. Otherwise, go to Step 1.

Step 2: If L(c,r) _< G(c, wl), Copt = c and stop the decoding process. Oth-

erwise, go to Step 3.

Step 3: If L(c, r) _< G(c, w2), search Tmi=(c) co find C.opt and stop the de-

coding process. Otherwise, go to Step 4.

Step 4: IfL(c,r) < L(c_,e._t,r), replace cb_._t b:'c and L(cbe.,t,r) by L(c,r).

Otherwise, go to Step 5.

Step 5: If j < lEt,i,], go to Step 1. Otherwise _earch Tmin(cb_t) and output

the codeword with the least correlation discrepancy. Stop.

The decoding process is depicted by the flow diagram shown in Figure 12.1.

The only case for which the decoded codeword may not be optimal is the

output from the search of Tmi,(Cbest). It is imp_ rtant to point out that when

a received vector causes the decoding algorithm to perform 2tau/2] iterations

without satisfying the sufficient conditions for optimality, optimum decoding is

not guaranteed. Most of the decoding errors occ,lr in this situation. The main

cause of this situation is that the number of erlors caused by the channel in

the most reliable g - Ldu/2J positions is larger than [(dn - 1)/2J.

12.5 COMPUTATIONAL COMPLEXITY

We assume that the algebraic decoding compl,_xity is small compared with

the computational complexity required to proce t s the minimum-weight trellis.

The computational complexity is measured only in terms of real operations,

230 TRELLISES AND TRELLIS-BASED DECODING ALGOR ITHMS FOR LINEAR BLOCK CODES

[Start I
I

z = hard decision on received vector r compute Isyndrome S of ZI Lh_.t = I
I _,es

< h m equal to O? >
I

[Generate first test pattern e in E, ep]

"1
[Algebraicall), decode (z + e) to get c[

< Is c =• (,)? > yes
I

I Compute index sets Do(e),D,(c) [
I

[Sort element, of Do(e)]

[Compute L(c,r), G(c; w,), G(c; w=)l

< Is L(c,r):i G(c;w,)?)
I

i I

'1 c..t=z H St°p [

.®

yes .{ Cop,=c _ Stop I
i

Search Train (c) centered around c I

to obtain optimum cope I
IfLC_,,)< L_....thenset_o.,,= c and[

Lbe,t = L(c_ r). I Search Tml. (C:bett) centered around

< All test patterns m Erep.tmp Chest and return codeword having

o (_) minimum discrepancy with r

Generate next test pattern e [I Stop]
] from E,_p\E,,.p trap I

1

Figure 12.1. Flowchart of the herative Decoding Algorithm with minimum weight trellis

search, where Erep,tmp denotes the set of those representative test error patterns that have

been generated.

AN ITERATIVE DECODING ALGORITHM 231

(real additions and comparisons). This number is a variable depending on the

SNR. Let CmAx denote the worst case maximum number of real operations

required at any SNR. Then Um.x can be computed by analyzing the flowchart

of Figure 12.1.

Let A0 denote the fixed number of real operations required in sorting the

components of the received vector in increasing ¢,rder of reliability. Let Aloop

denote the number of real operations required in:

(1) computing the index sets DI(c) and Do(c);

(2) computing thecorrelationdiscrepancyL(c,r),the optimalitytestthresh-

old G(c, ml),and the nearestneighbor testthresholdG(c, *02);and

(3) comparing L(c,r) with G(c, wx), G(c, w2) and L(ebest,r).

Let A(Tmin) denote the fixed number of real operations required to search

through the minimum-weight trellis Tmi,(c). Then

C,,_,x = Ao + I ..pl A oop+ _ A0 + 2 td"/2J • Aloop + A(T,,i,_). (12.26)

Let C'm_x denote the upper bound on C, given by (12.26). Note that Ca,_x

is independent of SNR. Table 12.1 shows the decoding complexities for some

well known codes. Also given in the table are the :omplexities of the minimum-

weight subtrellises and full trellises, A(T,,,_n) anc A(T), of the codes in terms

of real operations to be performed. The Viterbi algorithm is used for searching

through the subtrellises and full trellises of the codes. We see that A(Tmin) is

much smaller than A(T), especially for codes of length 64 or longer. Consider

the (64, 45) extended BCH code. Viterbi decoding based on the full code trellis

requires 4,301,823 real operations to decode a re, eived sequence of 64 symbols.

However, the worst-case maximum number of r_al operations required by the

iterative decoding based on the minimum-weigl_t trellis is upper bounded by

57, 182 while A(T_nln) = 48,830. We see that there is a tremendous reduction

in decoding complexity. Table 12.1 also lists the average number IE_pl of test

error pattern representatives for each code at bit-error-rate (BER) of 10 -s. We

see that]E,_pl is much smaller than IE], the siz ._of the basic set of test error

patterns.

232 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

Table 12.1. Complexity of the mlnimum-weight trellis iterative decodinK algorithm.

Code A(T) A(Tmi.)

Golay(23,12, 7) 2,559 1,415

RM(32, 16,8) 4,016 1,543

ex-BCH(32,21,6) 30,156 5,966

RM(32,26,4) 1,295 1,031

RM(64,22,16) 131,071 11,039

ex-BCH(64,24, 16) 524,287 11,039

RM(64,42,8) 544,640 8,111

ex-BCH(64,45,8) 4,301,823 48,830

ex-BCH(64,51,6) 448,520 50,750

RM(64, 57,4) 6,951 3,079

L: Number of section in trellis.

N_vc: Average number of iterations.

C,, A',,. IE,,pl
L _.,_ OBER OBER OBER

= 10 -'_ I= 10-" = 10 -r'

3 2,767 < 50 < 1 2

4 5,319 10 0.7 2

16 6,350 25 0.35 2

8 1,951 < 10 0.1 1

4 146,719 5,0001 5 29

4 146,719 4,000 1.8 20

8 16,495 310 1.3 2

8 57,182! 275 0.72 1

8 52,760 200 0.45 1

8 5,151 < 1 0.09 2

IErevl: Average size of the set of representatives of equivalence classes in E.

The averagecomputational complexity of the iterativedecoding algorithm

can also be analyzed based on the decoding flowchartshown in Figure 12.1.

Define the followingevent:

(I) For I < i < 2IE''rl,letBi denote the event that the condition L(c,r) i

G(c; wz) holds forthe firsttime during the i-thiteration;

(2) For 1 < i < 2 IE-rl, let C_ denote the event that the condition G(c, wz) <

L(c, r) <_ G(c; w2) is satisfied during the i-th decoding iteration;

(3) Let B _ Uv_Bi, C _ UviCi and E A B U C \ (Bz UCz); and

(4) Let Z) denote the event that neither B nor C occurs during the [Erep]

runs through the decoding loop and the decoding process is terminated.

Let J be the average number of iterations preceding the event £. Let Pr(X)

denote the probability of event X. Then the average number of real operations,

denoted Cave, required to decode a received word using the above iterative

decoding algorithm is a function of the average size of the test error pattern

ANITEIL_,TIVEDECODING ALGORITHM 233

set Er,p, denoted M, and is given by

Ca,, = Ao + (Pr(B1) + Pr(Cl))Aioop + (Pr(C) + Pr(D))A(Tmin)

+ Pr(D)MAIoop 4- Pr(£)(J 4- 1)AIo_p. (12.27)

The probabilities of the above events can be estimated using the Monte-Carlo

simulation technique [86].

The average computational complexity of the iterative decoding algorithm

is very small compared to the worst-case upper bound (_m_x and the computa-

tional complexity A(T) by using the full code trellis with the Viterbi algorithm,

as shown in Table 12.1. For example, consider the (64,45,8) extended BCH

code. At SNR = 2 dB, the average number of real operations required to de-

code a received sequence of 64 symbols is 40,000 compared to C,,_x = 57, 182

and A(T) = 4,301,823. At SNR = 5 dB, C,,e = 750.

12.6 ERROR PERFORMANCE

Since the iterative decoding algorithm uses the Chase algorithm-II to generate

candidate codewords for optimality test and mi'fimum-weight trellis search,

it may be regarded as an improved Chase algo:ithm-II and hence achieves

asymptotically optimal error performance with a faster rate. An upper bound

on the block error probability can be found in [101]. Simulation results show

that the iterative decoding algorithm achieves near-optimum error performance

and significantly outperforms the Chase algorithm-II.

The iterative decoding algorithm has been sim.dated for all the codes given

in Table 12.1. For RM codes, majority-logic decoding is used for generating

candidate codewords and otherwise a bounded d istance-t decoding algorithm

is used. The bit error rates of some codes listed in Table 12.1 are shown

in Figures 12.2(a)-12.6(a) and their average computational complexities and

average numbers of decoding iterations are showr_ in Figures 12.2(b)-12.6(b).

Consider the (32, 16,8) extended primitive BCH code (also an RM code).

The iterative decoding algorithm achieves pract cally the same error perfor-

mance as the optimum MLD as shown in Figure]2.3(a). To achieve a bit error

rate of 10 -s, it requires a SNR of 5.6 dB. We also _ee that the iterative decoding

algorithm achieves a 0.55 dB coding gain over the Chase decoding algorithm-II

at the bit error rate 10 -s. While the Chase decoding algorithm-II requires 16

234 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

e_

10-I

10-2

10-3

10-4

i0 -r,

10-6

10-7
-2

(23,12,7) Gol,*y Opt

(23,12,7) Gol&y. [ter

0 2 4 6

Eb/No in dB

8 i0 12

(a)Bit error probability

¢J
0

.2
=

o

.<

104

103

102

101

I0
--m- Average real operations/block

Average no. of iterations

m

0 I 2 3 4 5 6

Eb/No in dB

1 0.1
-1 7

<

0

o

(b) Average computational complexity and average numbers of

decoding iterations

Figure 12.2. Error performance and computational complexity of the iterative decoding

algorithm for Golay (23, 12, 7) code.

AN ITERATIVE D _,COD1NG ALGORITHM 23.5

10-I_
I _ --=- Un_od,dSPSK

% \
P.

(32,1e,81 BCH Op

10_7 --,r- (32,16,8) Chase Als [I

0 2 4 6 8 10 12

Eb/No in dB

(a) Bit error probability

r_

.9
e_

e_
0

¢¢

_J
¢0

_J

i0 _ 10

104

103

102

i0_
--II-- Average real operations/blockX'x,i m

Average no. of iterations
i i i ! i

1 2 3 4 5 6

Eb/No in dB

0.1

¢:

O

0

(b) Average computational complexity and average numbers of

decoding iterations

Figure 12.3. Error performance and computational c(mplexity of the iterative decoding

algorithm for I32, 16,8) extended primitive BCH code.

236 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

r_
.o.

10-z

10-2

10-3

10-4,

10-s

10-6

10-7
0

_ Uncoded BPSK

--8- (64,22,16) RM Iter

,

---w-- (64,22.16) Chase Alg II
! , i , : : : : : : ;

2 4 6 8 10

Eb/No in dB

12

(a) Bit error probability

o
..q

.o
tO

o=

_u0
tO

lOs

104

103

Average real operations/block

-tB-- Average no. of iterations

I000

:>

:J
100

0

e,*

* i i i i 1

2 3 4 5 6 7

Eb/No in dB

(b) Average computational complexity and average numbers of

decoding iterations

Figure 12.4. Error performance and computational complexity of the iterative decoding

algorithm for the (64, 22, 16) RM code.

AN ITERATIVE DECODING ALGORITHM 237

I0-I

10-2

I0
o

Ch 10-4
t_

o
1o-s

._

ca
10-e

10-7
0

-'4k- Uuco4ed BPSK
,16) BCH Iter

--r- (64,24,16) BCH._3.weisbt_

--'X-.(64,24,1g)BCI-IOpt . .

2 4 6 8 i0 12

Eb/No in dB

(a) Bit error probability

_o
..o

.o

Q)

o=

_J

v

<

106

lOs

104

10 3

1000
--m-- Average real operations/block

---T-- Average real operations/block w 2-weight search

Z 212922°"
i i i 1 i

0 1 2 3 4 5 6

Eb/No in dB

>.
¢:,

loo

O

lO

_°

1 _"'-
0

10 2 0.1
7 8

(b) Average computational complexity and average numbers of

decoding iterations

Figure 12.5. Error performance and computational ccmphxity of the iterative decoding

algorithm for the (64, 24, 16) extended BCH code.

238 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

lO-Zl _--.- (s4,4_,.} Rw opt Opt

\ \

10-_l ..--7-c.h_xlsu. : . ; : : :
0 2 4 6 8 I0 12

Eb/No in dB

{a) Biterrorprobability

O

O

_0

>

<

I0_
__ @ Average no. of iterations

---w- Average no. of iterations

10 4 2-weight search

102

102

101

-"gl--Average real operations/block All

100 j--r- Averal_e real opeTatlons/.block w_-wei_ht searc h

2 3 4 5 6 7 8

Eb/No in dB

(b) Average computational complexity and average numbers of

decoding iterations

10

0.1
9

>

t_

9

=

Figure 12.6. Error performanceand computational complexity of the iterative decoding

algorithm for the (64,42, 8) RM code.

AN ITERATIVE DECODING ALGORITHM 239

decoding operations,the iterativedecoding algorithm takesonly one decoding

operation (or iteration)on average at the BER of - 10-s.

For allsimulated codes of length 64 except the extended Hamming code,

the iterativedecoding algorithm loseslessthan 0.5 dB with respectto optimal

MLD decoding at the BER of 10-s. However, the iterativedecoding algo-

rithm yieldsa drasticreduction in computational complexitycompared with

the optimal Viterbidecoding based on the fulltrellisofthe code. As shown in

Figures12.6(a)and 12.6(b),forthe (64,42,8) RM code,the performance degra-

dation of the iterativedecoding algorithm compared with the optimum Viterbi

decoding based on the fulltrellisofthe code is0.5dB at the BER of 10-6. The

SNR required to achievea BER of 10-° by the it_rativedecoding algorithm is

5.9dB. At thisSNR, the average number ofrealoperationsrequiredto decode

a received word isabout 25, however, the optin,alViterbidecoding based on

the fulltrellisdiagram ofthe code requires544,640 realoperations.This isa

tremendous reduction incomputational complexity with a small degradation

in error performance. The average number ofiterationsrequiredto complete

the decoding at thisS_NR of 5.9 dB is0.6. At the BER of 10-4, the iterative

decoding algorithm achievesa gain of 1.idB over the Chase algorithm-Ifwith

an average of 400 real operations and an averag_ of 1.2 decoding iterations.

The error performance of the iterative decodi lg algorithm can be improved

by using a larger search region for the optimal MI,D solution copt. For examp]e,

we may use the region R(c, w3) which consist., of all the codewords at the

distances wt (minimum distance) and w2 (nex_ to minimum distance) from

the current tested codeword for searching Copt. In the case that G(c, w2) <

L(c,r) <_ G(c,w_), the decoder searches the purged trellis diagram T,v_(c)

centered around c for finding C-opt, where T,,, 3(c) consists of c and all the paths

of the overall trellis diagram of the code which axe at distances wl and w2 from

c. We call this search the w2-weight trellis search. Of course, the improvement

is achieved with some additional computational complexity.

Consider the (64, 24, 16) extended BCH code. The w2-weight trellis search

achieves practically optimum performance of MLD as shown in Figure 12.5(a).

It recovers the 0.6 dB loss in performance based on the minimum-weight trel-

lis search. The SNR required to achieve the B_'_R of 10 -_ is 4.2 dB. At this

SNR, the average number of real operations an¢i the average number of itera-

240 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMSFOR LINEAR BLOCK CODES

tions for decoding a received sequence are about 6,000 and 2, respectively as

shown in Figure 12.5(b). The maximum number of real operations required

for the improved decoding algorithm is 175,232. At the same BER of 10 -s,

the minimum-weight trellis search algorithm requires an average of 5,000 real

operations and 15 iterations. We see that 0.6 dB gain in performance over

the minimum-welght trellis search algorithm is achieved at the expense of a

modest additional complexity. If the modified algorithm with a larger search

region is applied to the (64,42,8) RM code, a 0.3 dB coding gain over the

minimum-weight trellis search algorithm at the BER of 10 -_ is achieved with

a very modest additional computational complexity on average as shown in

Figure 12.6(a) and 12.6(b).

12.7 SHORTCOMINGS

The above iterative decoding algorithm is very simple and provides good error

performance with large reduction in decoding complexity. However, it has sev-

eral major shortcomings and for long codes, there is a significant performance

degradation compared to MLD for low to medium SNRs. First, the algebraic

decoder used in the algorithm may fail to decode the modified hard-decision

received sequence to generate a candidate codeword for testing. Therefore, the

decoding algorithm may have a decoding failure. Second, some test error pat-

terns may result in the same candidate codeword and hence useless decoding it-

erations unless some preprocessing is done to rule out or reduce the repetitions.

Third, there is no guarantee that the candidate codewords are generated in the

order of increasing improvement, i.e., the next generated candidate codeword

has larger correlation metric than the previous ones. This may result in unnec-

essary decoding iterations and prevent a fast decoding convergence. Fourth,

the sufficient conditions for optimality and nearest neighbor tests are based on

only the current candidate codeword, and information from previously tested

candidate codewords is not being used. This information may help to narrow

down the search of the ML codeword and reduce the possibility that it slips

through the test without being detected. Finally, the performance degradation

is large for codes whose minimum weight codewords do not span the codes.

For example, the minimum weight codewords of the extended (64, 24, 16) BCH

AN ITERATIVE DECODING ALGORITHM 241

code do not span the code and their is a 0.6 dB coding gain loss compared to

MLD at the BER of 10 -5.

