TRELLISES AND TRELLIS-BASED
DECODING ALGORITHMS FOR
LINEAR BLOCK CODES

Part 3

Shu Lin and Marc Fossorier

April 20, 1998

https://core.ac.uk/display/42768906?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Vs PR R e
7

Y/ v

1 2 AN ITERATIVE DECODING ALGORITHM
FOR LINEAR BLOCK CODES BASED ON A
LOW-WEIGHT TRELLIS SEARCH

For long linear block codes, maximum likelihood decoding based on full code
trellises would be very hard to implement if not impossible. In this case, we may
wish to trade error performance for the reduction in decoding complexity. Sub-
optimum soft-decision decoding of a linear block code based on a low-weight
subtrellis can be devised to provide an effective trade-off between error per-
formance and decoding complexity. This chapter presents such a suboptimal
decoding algorithm for linear block codes. This decoding algorithm is iterative
in nature and based on an optimality test. It has the following important fea-
tures: (1) a simple method to generate a sequence of candidate codewords, one
at a time, for test; (2) a sufficient condition for testing a candidate codeword
for optimality; and (3) a low-weight subtrellis search for finding the most likely
(ML) codeword.

221

222 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

12.1 GENERAL CONCEPTS

A simple low-cost decoder, such as an algebraic decoder, is used to generate a
sequence of candidate codewords iteratively one at a time using a set of test
error patterns based on the reliability information of the received symbols.
When a candidate is generated, it is tested based on an optimality condi-
tion. If it satisfies the optimality condition, then it is the most likely (ML)
codeword and decoding stops. If it fails the optimality test, a search for the
ML codeword is conducted in a region which contains the ML codeword. The
search region is determined by the current candidate codeword (or codewords)
and the reliability of the received symbols. The search is conducted through a
purged trellis diagram for the given code using a trellis-based decoding algo-
rithm. If the search fails to find the ML codeword, a new candidate is generated
using a new test error pattern (or any simple method), and the optimality test
and search are renewed. The process of testing and searching continues until
either the ML codeword is found or all the test error patterns are exhausted
(or a stopping criterion is met) and the decoding process is terminated.

The key elements in this decoding algorithm are:
(1) Generation of candidate codewords,

(2) Optimality test,

(3) A search criterion,

(4) A low-weight trellis diagram,

(5) A search algorithm, and

(6) A stopping criterion.

12.2 OPTIMALITY CONDITIONS

Suppose C is used for error control over the AWGN channel using BPSK
signaling. Let ¢ = (c1,¢2,...,cn) be the transmitted codeword. For BPSK
transmission, ¢ is mapped into a bipolar sequence £ = (z1,22,...,zN) With
z; = (2ci— 1) € {£1} for 1 < i < N. Suppose z is transmitted and r =
(r1,72,...,7n) isreceived at the output of the matched filter of the receiver. Let

AN ITERATIVE DECODING ALGORITHM 223

z = (z1,22,...,2n) be the binary hard-decision. received sequence obtained
from = using the hard-decision function given by

{ 1 forr>0
Z; =

0 forr;<0 (12.1)

for 1 € i < N. We use |r;| as the reliability measure of the received symbol
r; since this value is proportional to the log-likelihood ratio associated with the
symbol hard-decision, the larger the magnitude the greater its reliability.

For any binary N-tuple u = (uj,uz,...,un) € {0,1}¥, the correlation
between u and the received sequence r is given by

N

M(u,r) 23 ri (2u; - 1) , (12.2)

=1

It follows from (12.1) and (12.2) that
N
M(z,7) = Irl 2 ¢, (12.3)
=1

and for any v € {0,1}¥,
M(z,v) > M(u,r).

Define the following index sets:

Do(u) £ {i:u;=2zandl<i< N}, (12.4)
Di(u) £ {i:u;#2zandl1<i< N}
= {1,2,...,N}\Dq(1). (12.5)
Let
n(u) £ |Dy(u)]. (12.6)
Consider
N

M(u,r) = Er,-(Zu,-—-l)

i=1

= Z ri(2u; — 1)+ Z ri(2u; — 1)

i€Do(u) i¢ Dy(u)

224

Let

TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

= Y n@u-1)-) rn(2a-1)

i€ Do(u) i€Dy(u)
N
= Zr.-(2z.--—1)—2 Z ri(2z; - 1)
i=1 i€ Dy (u)
= M(zr)-2 > Irl. (12.7)
1€ Dy (u)
L(u,r) & Z Iril - (12.8)
1€ Dy (u)

Then, M(u,t) can be expressed in terms of M(z,r) and L(u,r) as follows:

M(u,r) = M(z,7) — 2L(u,r). (12.9)

L(u,r) is called the correlation discrepancy of u.
From (12.9), the MLD can be stated in terms of the correlation discrepancies
of codewords as follows: The decoder computes the correlation discrepancy

L(c,r) for each codeword ¢ € C, and decode 7 into the codeword ¢, for

which

L(copt, 1) = zréng L(e, 7). (12.10)

From (12.10), we see that if there exists a codeword ¢ for which

- < - =A: .
L(c’,r)<afc",r) cein L(e, 1),

then ¢* = copt. It is not possible to determine a(c™,r) without evaluating

L(c,r) for all ¢ € C. However, if it is possible to determine a tight lower

bound on a(c™,), then we have a sufficient condition for testing the opti-

mality of a candidate codeword.

Suppose ¢ is a candidate codeword for testing. The index set Do(c) consists

of N — n(c) indices. Order the indices in Do(c) as follows:

DQ(C) = {kl,st--‘,kN—n(c)} (1211)

such that for 1 <1 < j < N —n(c),

Ire.| < Ire, | (12.12)

AN ITERATIVE DECODING ALGORITHM 225
Let Dt(,j)(c) denote the set of first j indices in the ordered set Dg(c), i.e.,
D (c) & {ky, ks, ..., kj}. (12.13)

For j €0, Df,j)(c) £ @ and for j > N —n(c), D((,jé(c) £ Dy(c).
Let W = {0,w;,w3,...,wn} be the weight profile of code C and w; be the
k-th smallest non-zero weight in W. Define

s 2 we—n(c, (12.14)
Glows) & > inl, (12.15)
ieDY"*(¢)
and
R(c,we) £ {c' € C:d(c,c) < wi}, (12.16)

where d(c’, c) denotes the Hamming distance between ¢’ and c.
Theorem 12.1 For a codeword ¢ in C and a ncnzero weight w;, € W, if
L{ce,7) < Gle,wy), (12.17)

then the optimal solution cope is in the region R{c,ws) {75].
Proof: Let ¢’ be a codeword in C\R(c,wy), i.e.,

d(c’,c) > ws. (12.18)

We want to show that L(c,r) < L(¢',r). Let ng; and n;y be defined as

not 2 |Do(c) N Dy(c")], (12.19)
Mo £ ID]_(C) nDo(CI)I . (1220)
Since
d(c’,c) = ng1 + nip > Wk, (12.21)
we have
ngy 2 wg—njo
> wp-— IDl(Cl

wi — n(c). (12.22)

226 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES
From (12.19) and (12.22), we find that
IDi(e)l 2 |Do(c) N Dy(c)]
> w, —n(c). (12.23)
It follows from (12.19), (12.22) and (12.23) that

L) = 3 I

i€Dy(c’)

> Y In
ieD{* ="V (¢)
= Ge;ws)
> L(e,r). (12.24)

Eq.(12.24) implies that the most likely codeword ¢, must be in the Region
R(c,wk).
JAYA

Given a codeword ¢, Theorem 12.1 simply defines a region in which ¢opt can
be found. It says that c,pe is among those codewords in C that are at distance

wy_1 or less from the codeword ¢, i.e.,
d(c1 copt) S Wg-1. (1225)

If wi_, is small, we can make a search in the region R(c,w:) to find cope. If
Wi—1 I8 too big, then it is better to generate another candidate codeword ¢’ for
testing and hopefully the search region R(c',w;) is small.

Two special cases are particularly important:

(1) If k =1, the codeword ¢ is the optimal MLD codeword ¢,p.

(2) If & = 2, the optimal MLD codeword copt is either ¢ or a nearest
neighbor of c.

Corollary 12.1 Let c€ C.
(1) If L(c,r) € G(e,w1), then ¢ = copt.-

(2) If L(c,r) > G(c,wy) but L(c,r) € G(c,ws), then cop: is at a distance
not greater than the minimum distance dgy = w, from ¢. FaVaN

AN ITERATIVE DZCODING ALGORITHM 227

The first part of Corollary 12.1 provides a sufficient condition for optimality of
a codeword. The second part of Corollary 12.1 gives the condition that c,p is
either a nearest neighbor of a tested codeword or the tested codeword itself.
We call G(c,w;) and G(c,wz) the optimality and nearest neighbor test
thresholds, respectively. They will be used in an iterative decoding algorithm
for testing. The sufficient condition on optimality given in Corollary 12.1 was
first derived by Taipale and Pursley [94].

12.3 GENERATION OF CANDIDATE CODEWORDS AND TEST
ERROR PATTERNS

The iterative decoding algorithm to be presented depends on the generation of
a sequence of candidate codewords with a simple :ow-cost decoder. There are a
number of ways of generating these candidate codewords. The simplest way is
to use a set of probable test error patterns to modify the hard-decision received
vector z and then decode each modified received sequence with an algebraic
decoder. The test error patterns are generated in the decreasing likelihood
order, one at a time. The most probable test error pattern is generated first
and the least probable one is generated last. When a test error pattern e is
generated, the sum e + z is formed. Then the :lgebraic decoder decodes the
modified received vector e + z into a candidate codeword c for optimality test
based on the two sufficient conditions given in Corollary 12.1.

Let p be a positive integer not greater than N. Let @, denote the set of the
p least reliable positions of the received sequence r. Let E denote the set
of 27 binary error patterns of length N with errors confined to the positions in
Qp. The set E forms the basic set of test error patterns. The error patterns
in E are more likely to occur than the other -rror patterns. In the Chase
decoding algorithm-II [14], p = |dn /2] is chosen and E consists of 2l4#/2] test
error patterns where dy is the minimum distar ce of the code to be decoded
and |dg /2] denotes the largest integer equal to or less than dy /2. Using this
set of test error patterns, Chase proved that his decoding algorithm achieves
asymptotically optimum error performance. In tl.e iterative decoding algorithm
to be presented in the next section, the same tasic set of test error patterns
will be used for generating candidate codewords.

228 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

For a test error pattern e € E, let dec(e) denote the decoded codeword of the
algebraic decoder with e + z as the input vector. In case of a decoding failure
(it may occur in a bounded distance-t decoder), let dec(e) £ (+) (undefined).
In this case, the next test error pattern ¢’ € E is generated for decoding. A
test error e € E, is said to be decodable if dec(e) # (). Two decodable
error patterns, e and €’ in E are said to be equivalent if dec(e) = dec(e’) #
(#). Let e be a decodable error pattern in E and let Q(e) denote the set
of all test error patterns in E which are equivalent to e. Q(e) is called the
equivalence class containing e, and a test error pattern in Q(e) is chosen as
the class representative. Since all the test error patterns in an equivalence class
generate the same candidate codeword, only the class representative should be
used. How to partition E into equivalence classes and generate equivalence class
representatives affects the efficiency of any decoding algorithm that utilizes test
patterns.

Let E,., denote the set of all representatives of the equivalence classes of
E. Then every decodable error pattern in E.., generates a distinct candidate
codeword for testing. To construct E,., for a given received sequence r, pre-
processing is needed before decoding. This preprocessing of E is effective only
if it is simpler than an algebraic decoding operation. An effective procedure
for generating test error patterns in Ey, is presented in [75].

12.4 AN ITERATIVE DECODING ALGORITHM

This decoding algorithm is iterative in nature and devised based the reliability
measures of the received symbols. It consists of the following key steps:

(1) Generate a candidate codeword c by using a test error pattern in Eie,,.

(2) Perform the optimality test or the nearest neighbor test for each gener-
ated candidate codeword c.

(3) If the optimality test fails but the nearest neighbor test succeeds, a search
in the region R(c,w,) is initiated. The search is conducted through the
minimum-weight subtrellis, Tiin(c), centered around ¢ using a trellis-
based decoding algorithm, say Viterbi or RMLD algorithms.

AN ITERATIVE DECODING ALGORITHM 229

(4) If both optimality and nearest neighbor tests fail, a new test error pat-
tern in E,,, is generated for the next decoding iteration.

Suppose the optimal MLD codeword has not deen found at the end of the
(7 = 1)-th decoding iteration. Then the j-th decoding iteration is initiated. Let
Chest and L(Cpest,) denote the best codeword and its correlation discrepancy
that have been found so far and are stored in a buffer memory. The j-th
decoding iteration consists of the following steps:

Step 1: Fetch e; from E;., and decode e; + z into a codeword c € C. If the
decoding succeeds, go to Step 2. Otherwise, go to Step 1.

Step 2: If L(c,r) < G(e,wy), Copr = ¢ and stop the decoding process. Oth-
erwise, go to Step 3.

Step 3: If L(¢,r) < G(c,wz), search Tnin(c) to find cope and stop the de-
coding process. Otherwise, go to Step 4.

Step 4: If L(c,7) < L(Cuest, 7), replace Cpest b ¢ and L(cpest,) by L(c, 7).
Otherwise, go to Step 5.

Step 5: If j < |E;wp|, g0 to Step 1. Otherwise search Ty,in(Chest) and output
the codeword with the least correlation discrepancy. Stop.

The decoding process is depicted by the flow diagram shown in Figure 12.1.
The only case for which the decoded codeworc may not be optimal is the
output from the search of Ty (Chest). It is impcrtant to point out that when
a received vector causes the decoding algorithm to perform 219%#/2) iterations
without satisfying the sufficient conditions for op:imality, optimum decoding is
not guaranteed. Most of the decoding errors occiir in this situation. The main
cause of this situation is that the number of errors caused by the channel in
the most reliable N — |dy /2] positions is larger than |(dy — 1)/2].

125 COMPUTATIONAL COMPLEXITY

We assume that the algebraic decoding complexity is small compared with
the computational complexity required to proce:s the minimum-weight trellis.
The computational complexity is measured only in terms of real operations,

230 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

z = hard decision on received vector r compute
syndrome 8 of 2, Lyeqe = 00

1
{1z s equal to 07 >— yes o Copt =2 |- Stop |
I
[Generate first test pattern e in Eiep |

[Algebraically decode (z + €) to get c|
—C
[Compute index sets Do(c), Di(c) |
[Sort elemegtl of Do(c) |
[Compute L{c,r),]G(c; w,), G(c; wa)

{Is Lic,r) < Glesun)? > yes ["Copt =€ }—{ Stop |

Search Tpin(c) centered around ¢
to obtain optimum Copt

T L{c, v} < Lbcst, then set Chear = ¢ and

Lpes =1L(c,r). earch Tmin(Cbest) centered around
{ All test patterns in Erep tmp yes

—®

Generate next test pattern e | _Stop |
from Fiep\Erep.tmp

(Ts Lic,7) < Gleiuz)? 2+

Chess and return codeword having
minimum discrepancy with r

Figure 12.1. Flowchart of the Iterative Decoding Algorithm with minimum weight trellis
search, where Eiep vup denotes the set of those representative test error patterns that have

been generated.

AN ITERATIVE DECODING ALGORITHM 231

(real additions and comparisons). This number is a variable depending on the
SNR. Let C,a« denote the worst case maximum number of real operations
required at any SNR. Then Cpax can be computed by analyzing the flowchart
of Figure 12.1.

Let Ap denote the fixed number of real operations required in sorting the
components of the received vector in increasing order of reliability. Let Ajqqp
denote the number of real operations required in:

(1) computing the index sets D,(c) and Dy(c);

(2) computingthe correlation discrepancy L(c, r), the optimality test thresh-
old G(c,w,), and the nearest neighbor test threshold G(c, w;); and

(3) comparing L(c,r) with G(c,w1), G(c,w2) and L(cyest, 7).

Let A(Tiin) denote the fixed number of real operations required to search
through the minimum-weight trellis Ti,,;,,(¢). Then

Cmax = AO + |En-p| ¢ Aloop + A(T‘miu) S AO + 2th/2J ° Aln()p + A(Tlmin). (1226)

Let C,,ax denote the upper bound on C,,,a, given by (12.26). Note that Crnax
is independent of SNR. Table 12.1 shows the decoding complexities for some
well known codes. Also given in the table are the zomplexities of the minimum-
weight subtrellises and full trellises, A(Tn,in) anc A(T), of the codes in terms
of real operations to be performed. The Viterbi algorithm is used for searching
through the subtrellises and full trellises of the codes. We see that A(Tp;,) is
much smaller than A(T), especially for codes of length 64 or longer. Consider
the (64, 45) extended BCH code. Viterbi decoding based on the full code trellis
requires 4, 301, 823 real operations to decode a re« eived sequence of 64 symbols.
However, the worst-case maximum number of real operations required by the
iterative decoding based on the minimum-weigkt trellis is upper bounded by
57,182 while A(T,in) = 48,830. We see that th=re is a tremendous reduction
in decoding complexity. Table 12.1 also lists the average number |E;.,| of test
error pattern representatives for each code at bit-error-rate (BER) of 1075. We
see that |E,,| is much smaller than |E], the siz: of the basic set of test error
patterns.

232 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

Table 12.1. Complexity of the minimum-weight trellis iterative decoding algorithm.

C.“ N". IEICP|

Code A(T)|A(Twmin)| L]| €max|OBER|@BER|OBER
=10"%|=10"%|=10-%

Golay(23,12,7) 2,559] 1,415|/3 || 2,767 <50 <1 2
RM(32,16,8) 4,016 1,543 4 5,319 10 0.7 2
ex-BCH(32,21,6) 30,156 5,966| 16 6,350 25 0.35 2
RM(32,26,4) 1,295 1,031) 8 1,951 <10 0.1 1
RM(64,22,16) 131,071} 11,039} 4 ||146,719| 5,000) 29
ex-BCH(64,24,16)| 524,287 11,039| 4 1{146,719| 4,000 1.8 20
RM(64,42,8) 544,640 8,111} 8 || 16,495 310 1.3 2
ex-BCH(64,45,8) 4,301,823 48,830| 8 || 57,182 275 0.72 1
ex-BCH(64,51,6) 448,520| 50,750/ 8 || 52,760 200 0.45 1
RM(64,57,4) 6,951 3,079| 8 5,151 <1 0.09 2

L: Number of section in trellis.
Nave: Average number of iterations.

|Eep|: Average size of the set of representatives of equivalence classes in E.

The average computational complexity of the iterative decoding algorithm
can also be analyzed based on the decoding flowchart shown in Figure 12.1.
Define the following event:

(1) For1<:< 2|Erer| let B; denote the event that the condition L{c,7) <
G(c; w1) holds for the first time during the i-th iteration;

(2) For 1 <i < 2Bl let C; denote the event that the condition G(c, w1} <
L(c,7) < G{c;wy) is satisfied during the i-th decoding iteration;

(3) Let B2 Uy;B;, C £ UyCiand £ 2 BucC\(B1uC(); and

(4) Let D denote the event that neither B nor C occurs during the |Eyep|
runs through the decoding loop and the decoding process is terminated.

Let J be the average number of iterations preceding the event £. Let Pr(X)
denote the probability of event X. Then the average number of real operations,
denoted Chve, required to decode a received word using the above iterative
decoding algorithm is a function of the average size of the test error pattern

AN ITERATIVE DECODING ALGORITHM 233
set E.,, denoted M, and is given by

Cawve = Ao+ (Pr(B))+ Pr(C1))Aicop + (£r(C) + Pr(D))A(Tumin)
+ Pr(D)MAoop + Pr(E)(J + 1) Ajocp. (12.27)

The probabilities of the above events can be estimated using the Monte-Carlo
simulation technique [86).

The average computational complexity of the iterative decoding algorithm
is very small compared to the worst-case upper bound Cpax and the computa-
tional complexity A(T') by using the full code trellis with the Viterbi algorithm,
as shown in Table 12.1. For example, consider the (64,45,8) extended BCH
code. At SNR = 2 dB, the average number of real operations required to de-
code a received sequence of 64 symbols is 40,000 compared to Cuax = 57,182
and A(T) = 4,301,823. At SNR =5 dB, Caye = 750.

12.6 ERROR PERFORMANCE

Since the iterative decoding algorithm uses the Chase algorithm-II to generate
candidate codewords for optimality test and miaimum-weight trellis search,
it may be regarded as an improved Chase algo-ithm-II and hence achieves
asymptotically optimal error performance with a faster rate. An upper bound
on the block error probability can be found in [101]. Simulation results show
that the iterative decoding algorithm achieves near-optimum error performance
and significantly outperforms the Chase algorithm-II.

The iterative decoding algorithm has been simulated for all the codes given
in Table 12.1. For RM codes, majority-logic decoding is used for generating
candidate codewords and otherwise a bounded distance-t decoding algorithm
is used. The bit error rates of some codes listed in Table 12.1 are shown
in Figures 12.2(a)-12.6(a) and their average computational complexities and
average numbers of decoding iterations are showr: in Figures 12.2(b)-12.6(b).

Consider the (32,16,8) extended primitive BCH code (also an RM code).
The iterative decoding algorithm achieves pract cally the same error perfor-
mance as the optimum MLD as shown in Figure 12.3(a). To achieve a bit error
rate of 107°, it requires a SNR of 5.6 dB. We also see that the iterative decoding
algorithm achieves a 0.55 dB coding gain over the Chase decoding algorithm-1I
at the bit error rate 10~°. While the Chase decoding algorithm-1I requires 16

234 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

10°!
10-2

1073

107%

Bit Error Probability
3

—&— Uncoded BPSK
—8— (23,12,7) Golay Opt
—x— (23,12.7) Golay lter
-2 0 2 4 6 8 10 12
Eb/No in dB

-
o
|

o

,.
<
!,

(a) Bit error probability

4 1
10 —m— Average real operations/block 0

—5— Average no. of iterations

Average real operations/block
—
=)
()
—
suotjelajl jo ‘ou 3FerAy

1 0.1
1 0 1 2 3 4 5 6 7T

Eb/No in dB

(b} Average computational complexity and average numbers of
decoding iterations

Figure 12.2. Error performance and computational complexity of the iterative decoding
algorithm for Golay (23,12, 7) code.

AN ITERATIVE DZCODING ALGORITHM 235

10!
—&— Uncoded BPSK

2 —=— (32,18,8) BCH Iter
10~

—
9
fad

Bit Error Probability
3

10°%
10-¢
(32,16,8) BCH Opt
10_1 — (32,16,8) Chase Alg II .
0 2 4 6 8 10 12
Eb/No in dB
(a) Bit error probability
10° 10
~
g >
-% 104 s
g ®
8 %
b 3
i :
& g
3 107 o
g 10 \gﬂ 5
G o
g 10! . S
4 —&— Average real operations/block)
< —&— Average no. of iterations
1 0.1
0 1 2 3 4 5 6 7
Eb/No in dB

(b) Average computational complexity and average numbers of
decoding iterations

Figure 12.3. Error performance and computational cc mplexity of the iterative decoding
algorithm for (32, 16, 8) extended primitive BCH code.

236 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

107!
—@— Uncoded BPSK
—8- (64,22,16) RM Iter
102
2
£ 10-3
fal
=]
St
Ao 1074
St
=]
=
b [
/| 10°°
-
/M
10-8
—— (64,22,16) RM Opt
10-1== (64,22,16) Chase Alg 11 .
0 2 4 6 8 10 12
Eb/No in dB
(a) Bit error probability
10 —@— Average real operations/block 1000
3 —&— Average no. of iterations
2 >
fial
= s
g 2
§ 100 &
- =
5, 3
g 10 e,
= -
e 10 &
% =3
: :
g [
<
10® 1
1 2 3 4 5 6 7

Eb/No in dB

(b) Average computational complexity and average numbers of

decoding iterations

Figure 12.4. Error performance and computational complexity of the iterative decoding
algorithm for the (64,22, 16) RM code.

AN ITERATIVE DECODING ALGORITHM 237

10!
—#— Uncoded BPSK
2 ~—8— (64,24,16) BCH Iter

z 10
& 10-3
0
[~]
e
A 104
St
&
M 10-°
&

10-¢

—— (64,24,16) BCH-w2-weight search
10-7 -—v— (64,24,16) BCH Opt _ X)

o 2 4 6 & 10 12
Eb/No in dB

(a) Bit error probability

108 1000

—&— Average real operations/block
——x— Average real operations/block w2-weight search

\s\s 10

Average real operations/block
—
=
'S
suoiieIal Jo ‘ou aferary

—&— Average no. of iterations
—=v— Average no. of iterations w2-wei;ht sharch

102 0.1
0 1 2 3 4 5 6 7 8

Eb/No in dB

(b) Average computational complexity and average numbers of
decoding iterations

Figure 12.5. Error performance and computational cc mplexity of the iterative decoding
algorithm for the (64, 24, 16) extended BCH code.

238 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

1 (————=F"T(s1,42,8) RM Tter
—s— {64,42,8) RM w2-weight search
10~! —v— (64,42,8) RM Opt Opt
3 10
8
-3
210
A
b oan-4
e 10
e
K .
& 107°
m
10-%%.
—@&— Uncoded BPSK
10-7 —v— Chase Alg 1l .

0 2 4 6 8 10 12
Eb/No in dB

(a) Bit error probability

—&— Average no. of iterations

—— Average no. of iterations
w2-weight search

Average real operations/block
suoijeIal Jo ou afeldny

10!
—@— Average real operations/block
10° —a— Average real operations/block w2-weight search 0.1
1 2 3 4 5 6 7 8 9
Eb/No in dB

(b) Average computational complexity and average numbers of
decoding iterations

Figure 12.6. Error performance and computational complexity of the iterative decoding
algorithm for the (64, 42,8) RM code.

AN ITERATIVE DECODING ALGORITHM 239

decoding operations, the iterative decoding algorithm takes only one decoding
operation (or iteration) on average at the BER of = 10~%.

For all simulated codes of length 64 except the extended Hamming code,
the iterative decoding algorithm loses less than 0.5 dB with respect to optimal
MLD decoding at the BER of 10~%. However, the iterative decoding algo-
rithm yields a drastic reduction in computational complexity compared with
the optimal Viterbi decoding based on the full trellis of the code. As shown in
Figures 12.6(a) and 12.6(b), for the (64, 42, 8) RM code, the performance degra-
dation of the iterative decoding algorithm compared with the optimum Viterbi
decoding based on the full trellis of the code is 0.5 dB at the BER of 107, The
SNR required to achieve a BER of 10~° by the iterative decoding algorithm is
5.9 dB. At this SNR, the average number of real operations required to decode
a received word is about 25, however, the optin:al Viterbi decoding based on
the full trellis diagram of the code requires 544, 540 real operations. This is a
tremendous reduction in computational complexity with a small degradation
in error performance. The average number of iterations required to complete
the decoding at this SNR of 5.9 dB is 0.6. At the BER of 1074, the iterative
decoding algorithm achieves a gain of 1.1 dB over the Chase algorithm-II with
an average of 400 real operations and an average of 1.2 decoding iterations.

The error performance of the iterative decodig algorithm can be improved
by using a larger search region for the optimal MI.D solution c,p.. For example,
we may use the region R(c,w;) which consiste of all the codewords at the
distances w; (minimum distance) and w; (next to minimum distance) from
the current tested codeword for searching cop. In the case that G(c,w,) <
L(e,7) £ G(c,w3), the decoder searches the purged trellis diagram T,,,(c)
centered around c for finding cope, where T, (¢) consists of ¢ and all the paths
of the overall trellis diagram of the code which are at distances v, and w; from
¢. We call this search the w;-weight trellis searcl. Of course, the improvement
is achieved with some additional computational complexity.

Consider the (64,24,16) extended BCH code. The w,-weight trellis search
achieves practically optimum performance of ML.D as shown in Figure 12.5(a).
It recovers the 0.6 dB loss in performance basec on the minimum-weight trel-
lis search. The SNR required to achieve the B!IR of 107° is 4.2 dB. At this
SNR, the average number of real operations anc: the average number of itera-

240 TRELLISES AND TRELLIS-BASED DECODING ALGORITHMS FOR LINEAR BLOCK CODES

tions for decoding a received sequence are about 6,000 and 2, respectively as
shown in Figure 12.5(b). The maximum number of real operations required
for the improved decoding algorithm is 175,232. At the same BER of 107%,
the minimum-weight trellis search algorithm requires an average of 5,000 real
operations and 15 iterations. We see that 0.6 dB gain in performance over
the minimum-weight trellis search algorithm is achieved at the expense of a
modest additional complexity. If the modified algorithm with a larger search
region is applied to the (64,42,8) RM code, a 0.3 dB coding gain over the
minimum-weight trellis search algorithm at the BER of 10-% is achieved with
a very modest additional computational complexity on average as shown in
Figure 12.6(a) and 12.6(b).

12.7 SHORTCOMINGS

The above iterative decoding algorithm is very simple and provides good error
performance with large reduction in decoding complexity. However, it has sev-
eral major shortcomings and for long codes, there is a significant performance
degradation compared to MLD for low to medium SNRs. First, the algebraic
decoder used in the algorithm may fail to decode the modified hard-decision
received sequence to generate a candidate codeword for testing. Therefore, the
decoding algorithm may have a decoding failure. Second, some test error pat-
terns may result in the same candidate codeword and hence useless decoding it-
erations unless some preprocessing is done to rule out or reduce the repetitions.
Third, there is no guarantee that the candidate codewords are generated in the
order of increasing improvement, i.e., the next generated candidate codeword
has larger correlation metric than the previous ones. This may result in unnec-
essary decoding iterations and prevent a fast decoding convergence. Fourth,
the sufficient conditions for optimality and nearest neighbor tests are based on
only the current candidate codeword, and information from previously tested
candidate codewords is not being used. This information may help to narrow
down the search of the ML codeword and reduce the possibility that it slips
through the test without being detected. Finally, the performance degradation
is large for codes whose minimum weight codewords do not span the codes.
For example, the minimum weight codewords of the extended (64,24,16) BCH

AN ITERATIVE DECODING ALGORITEM 241

code do not span the code and their is a 0.6 dB coding gain loss compared to
MLD at the BER of 1075,

