
University of Mississippi University of Mississippi

eGrove eGrove

Electronic Theses and Dissertations Graduate School

2019

Raptor Codes for BIAWGN Channel: SNR Mismatch and the Raptor Codes for BIAWGN Channel: SNR Mismatch and the

Optimality of the Inner and Outer Rates Optimality of the Inner and Outer Rates

Hussein Fadhel
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Fadhel, Hussein, "Raptor Codes for BIAWGN Channel: SNR Mismatch and the Optimality of the Inner and
Outer Rates" (2019). Electronic Theses and Dissertations. 1667.
https://egrove.olemiss.edu/etd/1667

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more
information, please contact egrove@olemiss.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eGrove (Univ. of Mississippi)

https://core.ac.uk/display/288063137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://egrove.olemiss.edu/
https://egrove.olemiss.edu/etd
https://egrove.olemiss.edu/gradschool
https://egrove.olemiss.edu/etd?utm_source=egrove.olemiss.edu%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=egrove.olemiss.edu%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
https://egrove.olemiss.edu/etd/1667?utm_source=egrove.olemiss.edu%2Fetd%2F1667&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:egrove@olemiss.edu

RAPTOR CODES FOR BIAWGN CHANNEL: SNR MISMATCH AND OPTIMALITY

OF THE INNER AND OUTER RATES

A Dissertation
presented in partial fulfillment of requirements

for the degree of Doctor of Philosophy
in the Department of Electrical Engineering

The University of Mississippi

by

HUSSEIN FADHEL

May 2019

Copyright HUSSEIN FADHEL 2019
ALL RIGHTS RESERVED

ABSTRACT

Fountain codes are a class of rateless codes with two interesting properties, first, they

can generate potentially limitless numbers of encoded symbols given a finite set of source

symbols, and second, the source symbols can be recovered from any subset of encoded sym-

bols with cardinality greater than the number of source symbols. Raptor codes are the first

implementation of fountain codes with linear complexity and vanishing error floors on noisy

channels. Raptor codes are designed by the serial concatenation of an inner Luby trans-

form (LT) code, the first practical realization of fountain codes, and an outer low-density

parity-check (LDPC) code. Raptor codes were designed to operate on the binary erasure

channel (BEC), however, since their invention they received considerable attention in or-

der to improve their performance on noisy channels, and especially additive white Gaussian

noise (AWGN) channels. This dissertation considers two issues that face Raptor codes on

the binary input additive white Gaussian noise (BIAWGN) channel: inaccurate estimation

of signal to noise ratio (SNR) and the optimality of inner and outer rates. First, for codes

that use a belief propagation algorithm (BPA) in decoding, such as Raptor codes on the

BIAWGN channel, accurate estimation of the channel SNR is crucial to achieving optimal

performance by the decoder. A difference between the estimated SNR and the actual chan-

nel SNR is known as signal to noise ratio mismatch (SNRM). Using asymptomatic analysis

and simulation, we show the degrading effects of SNRM on Raptor codes and observe that

if the mismatch is large enough, it can cause the decoding to fail. Using the discretized den-

sity evolution (DDE) algorithm with the modifications required to simulate the asymptotic

performance in the case of SNRM, we determine the decoding threshold of Raptor codes for

different values of SNRM ratio. Determining the threshold under SNRM enables us to quan-

tify its effects which in turn can be used to reach important conclusions about the effects

ii

of SNRM on Raptor codes. Also, it can be used to compare Raptor codes with different

designs in terms of their tolerance to SNRM. Based on the threshold response to SNRM,

we observe that SNR underestimation is slightly less detrimental to Raptor codes than SNR

overestimation for lower levels of mismatch ratio, however, as the mismatch increases, un-

derestimation becomes more detrimental. Further, it can help estimate the tolerance of a

Raptor code, with certain code parameters when transmitted at some SNR value, to SNRM.

Or equivalently, help estimate the SNR needed for a given code to achieve a certain level of

tolerance to SNRM. Using our observations about the performance of Raptor codes under

SNRM, we propose an optimization method to design output degree distributions of the

LT part that can be used to construct Raptor codes with more tolerance to high levels of

SNRM. Second, we study the effects of choosing different values of inner and outer code rate

pairs on the decoding threshold and performance of Raptor codes on the BIAWGN channel.

For concatenated codes such as Raptor codes, given any instance of the overall code rate R,

different inner (Ri) and outer (Ro) code rate combinations can be used to share the available

redundancy as long as R = RiRo. Determining the optimal inner and outer rate pair can

improve the threshold and performance of Raptor codes. Using asymptotic analysis, we show

the effect of the rate pair choice on the threshold of Raptor codes on the BIAWGN channel

and how the optimal rate pair is decided. We also show that Raptor codes with different

output degree distributions can have different optimal rate pairs, therefore, by identifying

the optimal rate pair we can further improve the performance and avoid suboptimal use of

the code. We make the observation that as the outer rate of Raptor codes increases the

potential of achieving better threshold increases, and provide the reason why the optimal

outer rate of Raptor codes cannot occur at lower values.

iii

Finally, we present an optimization method that considers the optimality of the inner

and outer rates in designing the output degree distribution of the inner LT part of Raptor

codes. The designed distributions show improvement in both the decoding threshold and

performance compared to other code designs that do not consider the optimality of the inner

and outer rates.

iv

ACKNOWLEDGEMENTS

First and most I would like to thank Dr. Lei Cao for his guidance and much appreci-

ated support throughout the program. His knowledge and intelligence always shed light on

the path in my journey to learning. For his kindness, generous guidance and extraordinary

patient encouragement I am genuinely grateful.

My sincerest thanks go to my dissertation prospectus defense committee; Dr. Rama-

narayanan “Vish” Viswanathan, Dr. John N. Daigle, and Dr. Feng Wang. For your time

and kind support I am always grateful.

This work was supported in part by NASA EPSCoR program under the grants

NNX13AB31A and NNX14AN38A.

Last but not the least, I am deeply grateful for all the support and love my family

have graced me with over the years. Their love has always enlightened my path through life

and for that I am forever thankful.

v

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . v

LIST OF FIGURES . vii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

INTRODUCTION . 1

LT and LDPC CODES . 8

RAPTOR CODES . 38

SIGNAL TO NOISE RATIO MISMATCH . 48

DESIGNING SNRM TOLERANT RAPTOR CODES 69

OPTIMAL INNER AND OUTER RATES OF RAPTOR CODES 81

CONCLUSION . 101

BIBLIOGRAPHY . 103

VITA . 107

vi

LIST OF FIGURES

1.1 Structure of Raptor codes. 2

2.1 LT encoding. 10

2.2 LT decoding. 11

2.3 Ideal Soliton distribution for k = 10000. 17

2.4 τ(i) for c = 0.3 and δ = 0.05. 18

2.5 Robust Soliton Distribution. 18

2.6 Tanner graph of the H matrix. 22

2.7 Decoding on Tanner graph. 28

2.8 A Variable Node. 29

2.9 A Check Node. 30

2.10 VN as a repetition decoder. 32

3.1 Graphical representation of Raptor codes. 41

3.2 LT code. 41

3.3 Precode of Raptor codes. 41

3.4 Raptor code. 42

3.5 Decoding graph of Raptor code. 42

3.6 Decoding on the dynamic part. 43

vii

3.7 Decoding on the static part. 43

4.1 BER vs SNR offset. 50

4.2 Variance to mean ratio of the inner decoder. 61

4.3 SNR threshold vs SNR offset with R = 1/3. 65

4.4 SNR threshold vs SNR offset with R = 2/5. 65

4.5 SNR threshold vs SNR offset with R = 1/2. 66

4.6 SNR threshold vs SNR offset with R = 5/9. 66

4.7 SNR threshold vs SNR offset with R = 5/8. 67

4.8 SNR threshold vs SNR offset with R = 5/7. 67

5.1 SNR threshold vs SNR offset of Ω1(x) and Ωo1(x). 72

5.2 SNR threshold vs SNR offset of Ω1(x), Ωo1(x), and Ωo2(x). 72

5.3 SNR threshold vs SNR offset of Ω1(x) and Ωo3(x). 73

5.4 SNR threshold vs SNR offset of Ω1(x) and Ωo4(x). 74

5.5 SNR threshold vs SNR offset of Ω1(x) and Ωo5(x). 75

5.6 Testing the performance of Ωo1(x) at R = 1/3. 76

5.7 Testing the performance of Ωo1(x) at R = 5/7. 76

5.8 BER performance comparison between the optimized distribution and Ω1(x). 77

5.9 Lowest Eb/No values where valid output degree distributions could be found. 78

5.10 SNR threshold vs SNR offset with R = 1/3. LB: lower bound. 78

viii

5.11 SNR threshold vs SNR offset with R = 1/2. LB: lower bound. 79

5.12 SNR threshold vs SNR offset with R = 5/7. LB: lower bound. 79

6.2 Decoding threshold vs code rate pair (Ri, Ro). 82

6.3 Asymptomatic BER curves of the inner decoder. 84

6.4 Intersection of Po
e,tsh with asymptomatic BER curves of the outer LDPC decoder. 85

6.5 Intersection of Po
e,tsh with asymptomatic BER curves of the outer LDPC decoder. 86

6.6 Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω1(x). 87

6.7 Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω2(x). 88

6.8 Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω4(x). 88

6.9 Intersection of Po
e,tsh with asymptomatic BER curves of capacity achieving

outer decoder. 90

6.10 Intersection of Po
e,tsh with asymptomatic BER curves of capacity achieving

outer decoder. 91

6.11 Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and Ω1(x). 92

6.12 Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and Ω2(x). 92

6.13 Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and Ω4(x). 93

6.14 Threshold vs code rate pair (Ri, Ro). 94

6.15 Threshold vs code rate pair (Ri, Ro). 95

6.16 Threshold vs code rate pair (Ri, Ro). 97

6.17 Comparing asymptotic BER performance. 98

6.18 Comparing BER performance at R = 1
2
. 99

6.19 Effects of cycles on decoding, . 100

ix

6.1 Structure of Raptor codes. 81

LIST OF TABLES

3.1 Degree distributions for given values of k source symbols. 47

4.1 Decoding thresholds and equivalent critical BERs of (4, 204) LDPC code under

SNRM. 62

6.1 Regular LDPC codes and their respective rates. 82

6.2 Regular LDPC codes and their respective rates and thresholds. 86

6.3 Critical BERs of capacity achieving codes. 89

x

LIST OF ABBREVIATIONS

AWGN additive white Gaussian noise

BEC binary erasure channel

BER bit error rate

BPA belief propagation algorithm

BPSK binary phase shift keying

BIAWGN binary input additive white Gaussian noise

CN check node

DE density evolution

DDE discretized density evolution

EXIT extrinsic information transfer

FEC forward error correction

GA Gaussian approximation

GF Galois field

LDPC low-density parity-check

LR likelihood ratio

LLR log-likelihood ratio

LT Luby transform

PMF probability mass function

RSD robust Soliton distribution

SNR signal to noise ratio

SNRM signal to noise ratio mismatch

SPA sum-product algorithm

VN variable node

xi

CHAPTER 1

INTRODUCTION

1.1 Background

Fountain codes [1] are a class of rateless codes. For a given block of data of k input

symbols, a rateless code can generate a potentially limitless number of encoded symbols

n, where, the source symbols can be bits or blocks of data. Fountain codes, in general,

have simple encoding and decoding algorithms based on the sparse nature of their coding

graphs, and on the binary erasure channel (BEC) the decoder can recover the original data

by receiving any subset of encoded symbols with cardinality slightly higher than the number

of the source symbols k. Raptor codes [2] are a class of fountain codes, they are an extension

of Luby transform (LT) codes [3] which are the first practical realization of fountain codes.

While LT codes have nonlinear encoding and decoding costs [3] and suffer from relatively

high error floors on noisy channels, Raptor codes overcome these issues by using a linear

block code as a precode to encode source symbols before the inner LT encoder [2]. The

precode can be a concatenation of multiple codes, usually, an LDPC code [4] [5] coupled

with another linear code such as Hamming code [6]. Due to their rateless nature, fountain

codes have the ability to adapt to changes in the channel condition that block codes may

fail in adapting to. Raptor codes combine the advantages of both types of codes, namely

block codes and fountain codes, to produce a class of fountain codes with linear encoding

and decoding costs and the flexibility of rateless codes in adapting channel conditions.

The main structure of Raptor code is a serial concatenation of an outer LDPC code

and an inner LT code as shown in Figure 1.1 below.

Given an instance of the code rate R, the two codes share the available redundancy

1

Figure 1.1. Structure of Raptor codes.

such that any inner code rate Ri and the outer code rate Ro can be chosen as long as the

relationship R = RiRo is held. However, careful design of the inner and outer codes and

selecting the optimal code rate pair (Ri, Ro) must be accomplished in order to optimize the

overall performance of Raptor codes.

Raptor codes were originally designed to operate on the BEC channel [2] and usually

as a part of the application layer. The code offers an impressive universally capacity achieving

performance on the BEC channel. Due to their desired rateless nature and linear complexity,

since the introduction of Raptor code, there have been continuous and numerous efforts to

improve and optimize their performance on noisy channels and in particular the binary input

additive white Gaussian noise (BIAWGN) channel [7–12].

Raptor codes encounter different issues that affect their performance on additive white

Gaussian noise (AWGN) channels which need to be considered in order to achieve successful

and efficient use of Raptor codes. signal to noise ratio mismatch (SNRM) is one issue that

affects codes operating on the AWGN channel. SNRM describes the condition when on the

receiver side of the communication system the value of the signal to noise ratio (SNR) of

the received information is estimated incorrectly. If the estimated channel SNR is higher

than the actual value, this condition is known as SNR overestimation, and if the estimated

channel SNR is less than the actual value, this condition is known as SNR underestimation.

Codes such as LDPC and Raptor codes that use a belief propagation algorithm (BPA), also

known as sum-product algorithm (SPA), are negatively impacted by SNRM because the

incorrectly estimated SNR information is used by the BPA in the decoding process. SNRM

can degrade the decoding process and if the difference between the estimated and actual

SNR is large enough, then, the decoding process will fail completely.

2

Studying and determining the tolerance limits of codes to SNRM and implementing

modifications in their design or algorithms in order to make the codes more tolerant to

SNRM is crucial for successful decoding in cases where mismatch is expected.

Codes that are defined by Tanner graphs [13], such as LDPC and Raptor codes, can

counteract the effects of SNRM through two approaches: (a) using modified versions of the

BP decoding algorithm that do not use the channel SNR information in decoding such as

min-sum [14] or one of its derivatives [15–17], however, this leads to degrade the performance

of such decoding algorithms compared to BP decoding in terms of decoding threshold, i.e.

the minimum SNR value below which the decoder cannot correct all errors and the decoding

performance, (b) using degree distributions that are designed to have higher tolerance to

SNRM, however, although such distributions show higher tolerance to SNRM compared to

other distributions, this causes their performance to be less than optimal when SNRM is not

present [18].

Another factor that affects the performance of Raptor codes on the BIAWGN channel

is the choice of the inner and outer code rates (Ri, Ro). Given an instance of the overall code

rate R, different combinations of the inner and outer rates can be used to produce R = RiRo.

However, due to the specific nature of the error floor of the inner LT code, different code rate

pairs lead to varying performance. Determining the optimal rate pair (Ri, Ro) is another

factor that can aid in optimizing the performance of Raptor codes.

1.2 Motivation and Objective

Considering the desire in the research community and industry to apply Raptor codes

in a wide range of communication systems and scenarios, when operating on the AWGN

channel Raptor codes can face the problem of SNRM. It is known that for codes that use BP

decoding SNRM can considerably degrade the performance, especially when codes operate

close to their threshold, and if the SNRM is high enough, the decoding process can completely

fail. Therefore, the need to study the performance of Raptor codes in the presence of SNRM

3

is evident. One way to quantify the effects of SNRM on codes is to determine the SNR

threshold for each value of SNRM ratio, where the SNRM ratio is defined as the ratio of

estimated SNR to the true channel SNR. This helps identify while operating at a given SNR

how much tolerance to SNRM to be expected. From the other perspective, aiming for a

certain level of SNRM tolerance for the code in use, we can assign the needed SNR. Also,

being able to determine the threshold of Raptor codes for a range of SNRM ratio values can

be used to compare Raptor codes whose output degree distributions are different in terms

of the tolerance to SNRM.

In order to determine the threshold of codes that use the SPA in decoding, includ-

ing Raptor codes, the density evolution (DE) algorithm [19] or less complex, but also less

accurate, algorithms such as Gaussian approximation (GA) [20] or extrinsic information

transfer (EXIT) charts [21] can be used. These algorithms can simulate the asymptotic be-

havior of the SPA and are used to determine the thresholds of the considered codes. Due to

the high complexity of the DE algorithm, GA or EXIT charts are often used in the analysis.

However, in order to use GA or EXIT chart algorithms to simulate the performance of codes

under SNRM, the algorithms must be modified to accommodate the changes that SNRM

introduces to the distribution of the codeword received from the channel [18, 22, 23], while

DE algorithm does not require such large scale modification.

The quantified version of the DE algorithm called discretized density evolution (DDE).

DDE was developed for LDPC codes [24] and Raptor codes [12], and successfully used to

analyze the asymptotic performance and design optimized LDPC and Raptor codes that

operate close to the Shannon limit. Analyzing the suitability of the DDE algorithm to sim-

ulate the asymptotic performance of concatenated codes such as Raptor codes under the

condition of SNRM and identifying the necessary modifications in the algorithm to work

accurately, and then implementing them are crucial steps towards analyzing the asymptotic

performance of Raptor codes under SNRM and designing optimized Raptor codes that are

more tolerant to SNRM.

4

Another aspect of Raptor codes that can be used to optimize the performance is

choosing the optimal inner and outer code rate pair (Ri, Ro). Generally, in the literature,

whether in using or design of Raptor codes, the outer code rate is fixed as a constant

value, usually 50/51, or ignored in the process of searching for optimized output degree

distributions. Fixing the outer rate equal to 50/51 is equivalent to setting the inner and

outer rate pair as (R/(50/51), 50/51), however, it is not always the case that this rate

pair provides the optimal performance for the particular Raptor code in use, or that the

optimization process will return the optimal code possible at it.

Studying the effects of choosing a certain rate pair on the threshold of Raptor codes

helps in determining the optimal inner and outer rates for a given Raptor code, and there-

fore, more efficient utilization of the code. On the other hand, designing output degree

distributions for the inner code that consider the optimality of the inner and outer rates in

the optimization process produces Raptor codes that exhibit further improvement in perfor-

mance and threshold compared to codes designed without considering this issue.

The main objective of our work is to address two issues that Raptor codes encounter

on the BIAWGN channel: (a) SNR mismatch, (b) the optimality of the inner and outer

code rates. We study the asymptotic performance of Raptor codes under SNRM and present

our observations and conclusions about the effects of this condition on Raptor codes. Then,

taking advantage of what we learned about the behavior of Raptor codes in the presence of

SNRM, we propose an optimization approach to design output degree distributions of the

inner LT code that can be used to construct Raptor codes with more tolerance to higher

levels of SNRM. The second issue we consider is the optimality of the inner and outer rate

pair of Raptor codes. Using asymptotic analysis, we demonstrate the effect of inner and

outer rates on determining the decoding threshold. We observe that different Raptor codes

have different optimal rate pairs, therefore, identifying the optimal rate pair for the code in

use is more efficient than using a fixed rate pair for all Raptor codes. Finally, we propose an

optimization method that considers the optimality of the inner and outer rates in the design

5

process and test the performance of our optimized distributions.

1.3 Contributions and Organization

In chapter 2 we discuss the structure of LDPC and LT codes and their encoding

and decoding algorithms. These two codes are serially concatenated to design Raptor codes.

Understanding their structure and properties will help in introducing Raptor codes. Chapter

3 is assigned to discuss Raptor codes, how they are designed, their properties, and their

advantages over other fountain codes.

In chapter 4, we define the concept of SNRM, how it occurs, and how it is mathe-

matically formulated so that its effects on channel codes can be studied. We present a brief

literature review of the effects of SNRM on Turbo and LDPC codes and take a look at the

proposed solutions to design these codes such that they become more tolerant to SNRM.

Then, we turn our attention to study the effects of SNRM on Raptor codes. We review

the DDE algorithm of Raptor codes and show that the DDE algorithm can be used to cor-

rectly simulate the asymptotic performance of BP decoding of Raptor codes under SNRM

condition. We show that BP decoding does not affect the SNRM ratio of the decoded data,

and explain the effect of this property on serially concatenated codes such as Raptor codes.

Having established the groundwork to use the DDE algorithm to study the effects of SNRM

on Raptor codes, we apply few modifications to the algorithm and use it to determine the

decoding threshold of a given Raptor code for a range of SNRM ratio values. The threshold

performance of Raptor codes under SNRM shows that for lower values of mismatch ratio,

SNR underestimation and overestimation have a similar effect on Raptor codes with overes-

timation being slightly more detrimental. For higher values of SNRM, SNR underestimation

is more detrimental compared to overestimation, a property that was previously observed

in LDPC and Turbo codes. Determining the threshold under SNRM of a Raptor code can

be used to estimate how much SNRM tolerance to expect for a given channel SNR value.

Equivalently, it can help in estimating the SNR needed to ensure a certain level of tolerance

6

to SNRM. Also, comparing the thresholds of different Raptor codes for a range of SNRM

ratios, we can recognize which codes are comparably more tolerant to SNRM.

In chapter 5 we formulate a DDE based optimization approach to design Raptor

codes that are more tolerant to SNRM by optimizing the output degree distribution of

the inner LT code. Using our knowledge about the performance and properties of Raptor

codes under SNRM, we devise an optimization program for the special case of SNRM. Our

optimized distributions show improved thresholds and better tolerance at higher levels of

SNRM, however, that comes with a loss in the threshold for lower levels of SNRM and when

no SNRM exists.

In chapter 6 we study the effects of inner and outer code rates choice on Raptor codes.

We study how each rate pair can affect the threshold, and how to determine the optimal

code rate pair for a given Raptor code at a certain instance of the overall code rate. For a

Raptor code with a given output degree distribution, we show how to determine the optimal

rate pair for two cases: assuming the use of a regular LDPC code outer code, and a capacity

achieving outer code. This shows whether the use of a regular LDPC code as it is customary

in literature is optimal or further improvement can be made through the use of better outer

code. We study the effect of relatively high error floors LT codes have on the threshold

of Raptor codes and conclude that choosing higher values of outer rates can help achieve

better thresholds. Finally, we design an optimization algorithm that incorporates choosing

the optimal code rate pair in the optimization process.

7

CHAPTER 2

LT and LDPC CODES

In this chapter we will study the structure of LDPC [4] and LT codes [3]. These two

codes are serially concatenated to form Raptor codes [2]. Introducing these two codes will

help us understand the design and operating principles of Raptor codes discussed in the next

chapter. LT codes are the first practical realization of fountain codes [1]. LT codes have

nonlinear encoding and decoding costs and suffer from relatively high error floors on noisy

channels. Raptor codes overcome these issues by using a series concatenation of a linear

precode C, usually of high rate, with an inner LT code [2]. Fountain codes have the ability

to adapt to changes in the channel characteristics that block codes may fail in adapting

to because of the rateless nature of fountain codes. Raptor codes combine the advantages

of both block and fountain codes to produce a class of rateless codes with linear encoding

and decoding costs and vanishing error floors [8]. The precode of Raptor codes can be a

concatenation of multiple codes, usually, the prominent class of linear block codes known as

LDPC codes [4]- [5] coupled with another code such as Hamming code [6].

2.1 LT Codes

Fountain codes [1] are a class of rateless codes, for a given k source or input symbols,

the code can generate potentially a limitless number n of encoded output symbols, the source

symbols can be bits or block of data of equal size. Fountain codes have simple encoding and

decoding algorithms based on sparse graphs and the decoder can recover the original data

after receiving any subset of encoded symbols with cardinality slightly higher than k, i.e.

the size of the source block, on the BEC channel. Fountain code applications, e.g. LT and

8

Raptor codes, are universally capacity approaching i.e. they approach Shannon’s limit for

any erasure channel.

The name of fountain codes originates from the fact that their encoder can be vi-

sualized as a fountain with endless water drops (output symbols), and a receiving end can

continue collecting these drops until the original file is recovered [25].

Traditional block codes can be inefficient in terms of their use of the available re-

sources, if the communicating devices are unable to detect the channel parameters continu-

ously and choose the code rate accordingly, then, the code rate used can become inefficient,

either using unnecessary redundancy, or using a higher rate than what is necessary to achieve

reliable transmission. This can be more advent with large scale communication such as mul-

ticast or satellite communications where monitoring the condition of every channel to assign

the proper rate is unrealistic. Therefore, the worst case error rate is assumed which may be

wasteful on some channels and still may fail on others due to sudden changes in the channel

characteristics. Fountain codes can deal with such issues more efficiently due to their rateless

nature that can be utilized to adopt to channel condition more dynamically.

LT codes [3] can be used to encode a given source data of size k symbols, where each

symbol can be one bit or an arbitrary l-bit long symbol, such that “each output symbol can

be generated, independently of all other output symbols, on average by O(ln(k/δ)) symbol

operations, and the k original input symbols can be recovered from any k+O(
√
k · ln2(k/δ))

output symbols with probability 1 − δ by on average (k · ln(k/δ)) symbol operations” [3].

Where, δ is the failure probability of the decoder to recover the original data from any k

output symbols, and a symbol operation is either an exclusive-or operation between two

symbols or copying one symbol to another.

2.1.1 LT Encoding

The LT encoding process is fairly easy to describe:

1. Randomly choose the degree d of the output symbol from the output degree distri-

9

bution. The degree of an encoded symbol is the number of input symbols used in

generating the output symbol.

2. Uniformly at random choose d distinct input symbols.

3. The value of the output symbol is exclusive-or of the d input symbols when (d > 1)

and is simply a copy of the input symbol when (d = 1).

The output degree distribution sampled to choose the degree of the output symbols

has a major role in the failure or success of the decoding process of LT codes, and its design

and effects will be further discussed later.

Figure 2.1. LT encoding.

Figure 2.1 is a bipartite graph illustrating a toy example of encoding 5 input symbols

x1, x2, . . , x5 to generate 6 output symbols y1, y2, . . ,y6. For example, output symbol

y1 = x1⊕x2 is a degree-2 output symbol that is connected to two input nodes known as

“neighbors”. y2 = x2 is degree-1 and has only one neighbor.

After transmission, the decoder receives the encoded symbols with added distortion

based on the channel type and its characteristics. The decoder needs to know the degree and

set of neighbors of each output symbol. This information can be delivered to the decoder

by:

• Attaching the degree and set of neighbors of output symbols to the packet carrying

them.

10

• The decoder computing the required information for each output symbol implicitly

based on the timing of reception, or the position of the output symbol relative to the

other symbols.

• Passing a key which can be used as a seed to a pseudo-random generator in order to

reconstruct the degree and set of neighbors of each output symbol. The software used

in our simulations uses this method.

When decoding starts, the decoder knows the degree and set of input symbols used

to construct each output symbol. The decoding objective is finding the correct value of each

input symbol.

Figure 2.2. LT decoding.

2.1.2 LT Decoding

To understand the mechanism in which LT decoding operates we need to keep in mind

that each output symbol of degree d > 1 is the XOR-sum, or addition on Galois field (GF)

F2, of its input symbol neighbors and generating a degree one output symbol is simply the

process of copying a randomly chosen input symbol to the output symbol. Also, for the sake

of simplicity, we consider working on the BEC channel.

When decoding starts, degree one output symbols are released to cover the input

symbol they contains. Now, these input symbols can be subtracted from all the output

symbols that they are a neighbor of, and the degree of each neighbor can be decremented

11

by one since the decoder identified the value of this input symbol. The subtraction is done

by XORing between the corresponding symbols since subtraction is equivalent to addition

on F2. One way to visualize the decoding process from the perspective of bipartite graphs

of LT codes, decoding is the process of removing edges connecting output symbols to source

symbols that have been recovered until an output symbol has one edge left, i.e. it is degree-

1, in which case it contains the value of the source symbol it is connected to and can be

released to the ripple (the set of output symbols reduced to degree one). In Figure 2.2, y2

is a degree one output symbol which can be released to cover x2, which in turn can reduce

y2 to degree-1. This process continues for every output symbol of degree d > 1 until it

decreases to degree 1, in which case it can be released to cover the input symbol it contains

if it has not been covered yet. Having that clarified, we can present two definitions from

Luby’s paper “LT Codes” [3].

Definition 1 (decoder recovery rule): If there is at least one output symbol that has

exactly one neighbor, then, the neighbor can be recovered immediately since it is a copy

of the output symbol. The value of the recovered input symbol is exclusive-ORed into any

remaining output symbols that also have that input symbol as a neighbor, the recovered

input symbol is removed as a neighbor from each of these output symbols and the degree of

each such output symbol is decreased by one to reflect this removal.

Definition 2 (LT process): All input symbols are initially not covered (decoded).

At the first step, all output symbols with one neighbor are released to cover their unique

neighbor. The set of covered input symbols that have not yet been processed is called the

ripple, and thus at this point all covered input symbols are in the ripple. At each subsequent

step, once an input symbol in the ripple is processed, it is removed as a neighbor from all

output symbols it is connected to. Gradually, the output symbols that become reduced to

have exactly one remaining neighbor, will be released to cover the remaining neighbor. Some

of these covered neighbors (input symbols) may have not been previously covered, and will

cause the ripple to grow. On the other hand, other covered input symbols may have already

12

been in the ripple, therefore, will not contribute to any growth in the ripple. The process

stops when the ripple is empty and will be considered failed, if there is at least one input

symbol that could not be covered. The process succeeds if all input symbols are covered by

the end.

Definition 3 introduces the term (ripple) which is the set of degree one released output

symbols, or covered input symbols which have not been processed yet, i.e., have not been

subtracted from neighboring output symbols yet. From the definition, we can understand

the significance of the ripple in the success of the decoding process. If the ripple is empty

before recovering all input symbols, then the decoding process fails. At the same time, it is

advantageous to keep the size of the ripple small in order to avoid having redundant input

symbols covered in the ripple. These requirements can be satisfied by proper analysis and

careful design of the output degree distribution.

2.1.3 Design and Analysis of the Degree Distribution

Definition 4 (degree distribution): For all d, ρ(d) is the probability that an output

symbol has degree d [3].

The design of the degree distribution has the following two objectives:

1. Ensure the success of the LT process using as few output symbols as possible.

2. Keep the average degree of output symbols as small as possible.

Using the degree distribution ρ(1) = 1 which corresponds to choosing degree one for

all output symbols, and encoding is done by simply choosing an input symbol at random

and copying its value to the output symbol. The probability analysis of this case shows that

an average of k · ln k
δ

output symbols are needed to cover all input symbols at the decoder

side with a probability of success 1− δ. From this we can infer that for any distribution the

sum of the degrees needed to recover k input symbols needs to be in the order of k · ln k
δ
, i.e.

the average degree of the output symbols needs to be in the order of ln k
δ
.

13

Before going into the details of the degree distribution ρ(i), we first analyze the prob-

ability of releasing an output symbol of degree i when L input symbols remain unprocessed.

Below, we state the definition of the degree release probability as given in [3].

Definition 5 (degree release probability): Let q(i, L) be the probability that an output

symbol of degree i is released when L input symbols remain unprocessed, then q(i, L) is :

• q(1, k) = 1 for i = 1

• For i = 2, ...k, for all L = k − i+ 1, ..., 1,

i(i− 1) · L ·
∏i−3

j=0 k − (L+ 1)− j∏i−1
j=0 k − j

(2.1)

• For all other i and L, q(i, L) = 0.

Definition 5 (overall release probability): Let r(i, L) be the probability that an output

symbol is chosen to be of degree i and is released when L input symbols remain unprocessed,

i.e., r(i, L) = ρ(i)∆q(i, L). Let r(L) be the overall probability that an output symbol is

released when L input symbols remain unprocessed, i.e., r(L) =
∑

i r(i, L). Where, ρ(i) is

the output degree distribution.

The significance of the release probability will become evident later when we discuss

the importance of the size of the ripple. Also, we will be able to value the importance of the

degree distribution ρ(i) in the LT process in terms of keeping the ripple at a desirable size.

2.1.4 Ideal Soliton Distribution

The name Soliton distribution comes from the analogy to the Soliton wave, a wave

that travels at a constant speed while maintaining its amplitude due to its unique property

of perfect balance between dispersion and refraction. A similar property is required in the

output degree distribution in terms of keeping the ripple at a desirable size by ensuring that

input symbols are added to the ripple at the same rate they are processed.

14

When designing the degree distribution there are two properties that impose the

constraints in light of which the degree distribution is chosen :

1. Keep the ripple size small enough in order to avoid covering input symbols already in

the ripple to avoid unnecessary redundancy.

2. Keep the ripple size large enough in order to ensure the ripple does not disappear

before recovering all input symbols.

Analytically, the ideal Soliton distribution performs ideally in terms of the total num-

ber of output symbols needed to recover the source data and desirable ripple size, however,

this distribution performs very poorly in practice for reasons we will be able to understand

after some analysis.

Recall that the ripple is of the set of released output symbols which have not been

processed yet, hence, it is directly affected by the release probability of the encoding process,

which depends on the degree distribution ρ(i). The release probability is equal to r(i, L) =

ρ(i) · q(i, L)

Using the argument, above we can use the analyses of the release probability as a

tool to determine the expected size of the ripple using the Ideal Soliton distribution.

uniform release probability r(L):

For the Ideal Soliton distribution, r(L) = 1/k for all L = k, . . . , 1.

Using the value of the release probability given above we can calculate the expected

number of output symbols released, i.e., the ripple size, of the LT process for the Ideal Soliton

distribution as:

k · r(L) = k ·
k−L+1∑
i=1

r(i, L) = 1. (2.2)

Assuming an ideal case, one output symbol is released for every input symbol pro-

cessed, and exactly k output symbols are sufficient to recover k input symbols. However,

15

the ideal case is far from the actual case. The Ideal Soliton distribution performs very

poorly in practice because the expected ripple size is one, and any variance can cause the

ripple to decrease to zero, and cause the decoding process to fail. However, the ideal Soliton

distribution gives an insight into the type of behavior required from the output degree distri-

bution, and in fact, the Ideal Soliton distribution is modified to produce the robust Soliton

distribution (RSD).

2.1.5 Robust Soliton Distribution

The modified distribution is designed based on two objectives: (1) the expected ripple

size remains large enough throughout the decoding process, and (2) ripple size is not larger

than necessary in order to avoid redundancy. The Robust Soliton distribution introduces

two new parameters, δ, and c. Where, δ is the allowable failure probability of the decoder

to recover the source data from any K output symbols, and c is a constant c > 0.

The Robust Soliton distribution modifies the release probability so that the expected

size of the ripple is about ln(k
δ

√
k) by analogy to the case of a random walk of length k,

where, the probability of deviating from the mean by more than ln(k
δ

√
k) has an upper bound

of δ.

Definition 7 (Robust Soliton distribution): The Robust Soliton distribution µ(i) is

defined as follows. Let S = c · ln(k/δ)
√
k for some suitable constant c > 0. Define

τ(i) =


S/ik for i = 1, ..., k/S − 1

S ln(S/δ)/k for i = k/S

0 for i = k/S + 1, ..., k

To obtain the robust Soliton distribution µ(i), add τ(i) to the Ideal Soliton distribu-

tion ρ(i) and normalize as follows:

• β =
∑k

i=1 ρ(i) + τ(i)

16

• for all i = 1, ..., k, µ(i) = (ρ(i) + τ(i))/β.

Figure 2.3. Ideal Soliton distribution for k = 10000.

Figure 2.3 illustrates the probability mass function of the Ideal Soliton distribution for

k = 10000. The additional parameter τ(i) is shown in Figure 2.4 below. The small elevation

in the beginning ensures that there are enough degree-1 output symbols for decoding to

start, and the spike at k/S increases the probability that every source symbol is covered.

Figure 2.5 illustrates the Robust Soliton distribution for k = 10000, c = 0.3, and δ = 0.05.

The discussion above gives us an idea about the importance of the output degree

distribution used and its role in the success or failure of the recovering process of input

symbols. The output degree distribution of LT and Raptor codes play a significant role in

determining their asymptotic and finite performance. Careful design of the output degree

distribution is needed in order to achieve the desired performance.

17

Figure 2.4. τ(i) for c = 0.3 and δ = 0.05.

Figure 2.5. Robust Soliton Distribution.

18

2.2 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes are a class of linear block codes with near-

capacity performance on a large set of data transmission channels, surpassing Turbo codes

on many channels [19]. LDPC codes were discovered by Gallager and presented in detail

in his doctoral dissertation in 1960 [4] but remained ignored until 1981 when Tanner used

bipartite graphs to generalize and introduce a graphical representation of LDPC codes,

and this representation was eventually named as Tanner graph [13]. LDPC codes were

rediscovered in the 1990s by MacKay and Neal [26], [5]. The LDPC codes suggested by

Mackay and Neal are slightly different from Gallager’s. Mackay and Neal reported based on

empirical results that Gallager’s work is superior [27].

2.2.1 Representations of LDPC Codes

Introducing the representations of LDPC codes can help understand both the math-

ematical basis, and encoding and decoding algorithms used to implement LDPC codes.

Without loss of generality we will consider only binary LDPC codes with arithmetic on F2.

2.2.1.1 Matrix Representation:

We start our discussion with a brief definition of linear codes:

Linear Codes: A linear error-correcting code can be represented by an K×N binary matrix

G called the generator matrix, such that a K-bit binary message s can be encoded as a N -bit

vector:

t = sG mod 2.

LDPC codes are usually represented by their parity-check matrices H of size M ×K,

where, M = N −K and H is the null space of the K×N Generator matrix G. A quick look

at the dimensions of the two matrices can reveal that their row dimensions sum up to N

which is the dimension of the vector space to which the vector subspaces H and G belong.

LDPC codes are linear block codes with sparse or low-density parity-check matrices, and this

19

property is an important attribute when it comes to finding good implementable decoders.

Before going forward we give a few definitions first:

Definition 1: The weight of a binary vector or matrix is equal to the number of 1’s in it. The

overlap between the two vectors is the number of 1s in common between them. The density

of a source of random bits is the expected fraction of 1’s it contains. A vector is considered

to be sparse if its density is less than 0.5. A vector is very sparse if its density vanishes as

its length increases. Low-density can be a vague term but usually, a density of or less than

0.01 would be considered low.

The design code rate of the LDPC code is usually calculated as:

R = 1− M

N
=
K

N
.

A source message s of size 1×K is encoded as a 1×N codeword, t = sG mod 2, where

G(K×N) is the generator matrix of the LDPC code. When the codeword t is transmitted, the

channel noise n is added, and the received codeword will be:

r = (sG+ n) mod 2.

The task of the decoder is to deduce s given; the received codeword r, the assumed

noise properties of the channel, and the code structure which is assumed known to both

the encoder and decoder. An optimal decoder is supposed to return the message s which

maximizes the posterior probability:

p(r|s,G)p(s|G)

p(r|G)
=
p(r|s,G)p(s)

p(r|G)
.

2.2.1.2 Graphical Representation

LDPC codes can be graphically represented by Tanner graphs [13]. Tanner graphs

are bipartite graphs. A bipartite graph denoted by G = (U, V,E),0 is a graph whose vertices

20

(nodes) are decomposed into two disjoints sets U and V , such that every edge e in the set

of edges E connects a vertex in U and a vertex in V , and no two nodes in the same set are

connected.

The two types of vertices or nodes in a Tanner graph are the variable node (VN)

which corresponds to the coded bits, and the check node (CN) which correspond to the

constraint bits. Before going further into the details of Tanner graphs, we present some

information about the construction of the Parity-check matrix H which a Tanner graph

provides a graphical representation of.

The parity-check matrix H is a (N − K) × N low density matrix on which the

actual decoding is performed. When designing LDPC codes usually the parity-check matrix

is constructed first with the desirable characteristics in the code, and then, the generator

matrix G is generated based on the fact that the H matrix is a vector subspace on F2, and

G is its dual subspace

GHT = 0 mod 2.

There are different methods to generate parity-check matrices, and below we present

a number of easy to follow methods as given in [27]:

1. Matrix H is generated by starting from an all-zero matrix, and then randomly flipping

g not necessarily distinct bits in each column.

2. Matrix H is generated by randomly creating weight g columns.

3. Matrix H is generated with weight g per column, and (as near as possible) uniform

weight per row.

4. Matrix H is generated with a weight of g per column, and uniform weight per row,

and no two columns having overlap greater than 1.

5. Matrix H is further constrained so that its bipartite graph has large girth.

21

6. Matrix H = [H1|H2] is further constrained, or slightly modified so that H2 is an

invertible matrix.

More on the new terms and concepts introduced above will be presented later.

Back to our main discussion, a Tanner graph is constructed as follows: an edge

connects a CN i to a VN j if the element hij in the parity-check matrix H is equal to 1.

Suppose that we have the parity-check matrix below with R = K
N

= 1
2
, column weight wc = 2

and row weight wr = 4:

H =



1 1 1 0 1 0 0 0 0 0

1 0 0 1 0 0 0 1 1 0

0 0 1 0 0 1 1 1 0 0

0 1 0 1 0 0 1 0 0 1

0 0 0 0 1 1 0 0 1 1


,

then the Tanner graph corresponding to this H matrix would be as shown in Fig-

ure 2.6:

Figure 2.6. Tanner graph of the H matrix.

In Figure 2.6, if we look at variable node 1 (v1) we can see that it is connected to

check nodes 1 and 2, now, if we examine the H matrix we can observe that elements h11 and

h21 are equal to 1. Also if we check node 1 (c1), we can see it has four edges connected to

v1, v2, v3 and v4, now, if we go back to the H matrix we can observe that h11 = h12 = h13

22

= h14 = 1.

Tanner graphs of LDPC codes can help in visualizing and understanding the iterative

decoding process of LDPC codes as follows:

Each of the nodes acts as a locally operating processor and each edge acts as a channel to

communicate information from a given node to each of its neighbors (neighbors of a node

are the nodes which share an edge with it). The exchanged information is generally of

probabilistic nature describing the amount of certainty about the values of the bits assigned

to variable nodes, this information is generally represented as a likelihood ratio (LR), or the

numerically more stable log-likelihood ratio (LLR). The decoding is initiated by N LLRs

computed from the (1×N) received codeword and passed to the variable nodes. Then, the

decoder works in an iterative fashion, where, at each iteration check nodes receive LLRs

passed from neighboring variable nodes, process the information, then, pass the appropriate

information back to each of the neighboring variable nodes which utilize the new information

from their different neighboring check nodes to reach a decision about their corresponding

bit values. The iterations continue until a correct codeword is found, or a predetermined

maximum number of iterations is reached.

Now, we turn our attention to another topological aspect of LDPC codes that affect

the performance of iterative decoders of LDPC codes. Cycles are a structural characteristic

of LDPC parity-check matrices. A cycle in Tanner graph is a sequence of edges which form

a closed path that begins and ends at the same node. Cycles can degrade the performance

of the iterative decoder. As shown in Figure 2.6, we can see a cycle starting and ending at

v10 by following the arrows. The length of a cycle equals the number of edges forming the

cycle, and the minimum cycle length in a graph is called the girth of the graph. A desired

property in Tanner graphs of LDPC codes is that the girth approaches infinity. However, for

most practical code lengths such condition is not attainable, e.g., the girth of the graph in

Figure 2.6 is equal to 6. The shortest cycle has a length equal to four and manifests itself in

a parity-check matrix as four 1’s in the four corners of a rectangular sub-matrix. Notice that

23

steps three and four in our example method given in the beginning to create an H matrix are

an effort to eliminate or reduce the number of cycles in the parity-check matrix. Applying

cycle-eliminating algorithms to H matrices is a common practice, and the software used in

our simulations uses a procedure to eliminate cycles of length four in the H matrix. Cycles

force the decoder to operate locally in some portions of the graph (around the elements of

the cycle), and therefore, a globally optimum solution is impossible [28].

LDPC codes can be regular, irregular, or partially regular. Regular LDPC codes have

a parity-check matrix with constant row and column weights. The Tanner graph shown in

Figure 2.6 is regular, each VN has degree 2, i.e., it is connected to two neighbors via two

edges, and each CN is degree 4. Irregular LDPC codes have varying row and column weights,

and their row and column or CN and VN degree distributions can be expressed by degree

distribution polynomials ρ(x) and λ(x), as shown below, respectively.

ρ(x) =
dc∑
d=1

ρdx
d−1,

where, ρd is equal to the fraction of edges connected to degree-d CNs, and dc is the maximum

CN degree in the graph.

λ(x) =
dv∑
d=1

λdx
d−1,

where, λd is equal to the fraction of edges connected to degree-d variable nodes, and dv is

the maximum VN degree in the graph.

The regular Tanner graph in Figure 2.6 can be represented by the polynomials:

ρ(x) = x3, and λ(x) = x.

24

The number of edges in a graph can be calculated as :

E =
N∫ 1

0
λ(x)dx

=
M∫ 1

0
ρ(x)dx

.

Finally, partially regular LDPC codes have column and row weights that can be divided into

sets of different weights.

Irregular LDPC codes can outperform regular LDPC codes, and exhibit performance

extremely close to the Shannon limit [19]. It was also shown in [19] that the performance

of irregular LDPC codes further approaches channel capacity as the block length increases.

The same paper also, shows that irregular LDPC codes can outperform the state-of-the-art

Turbo codes for different code lengths.

As Shannon suggested, finding good codes which can achieve or approach the channel

capacity is a problem of finding codes with random nature and large block lengths. However,

finding optimal decoders is also a requirement, and all these requirements have complexity

as an inevitable byproduct.

2.2.2 Encoding of LDPC Codes

The encoding process of LDPC codes is generally straightforward. Given a soure

message s of size (1×K), and a (K ×N) Generator matrix G, then the encoded codeword:

t = sG mod 2.

LDPC codes can be systematic, or non-systematic. In systematic codes, the source

message s is a part of the encoded word, and the other part is the added redundancy. In

systematic LDPC codes the Generator matrix has the form:

G = [IK |PK×M].

25

The above form can be reached by transforming the parity-check matrix H into the form

H = [hM×K |IM] using Gaussian elimination and matrix manipulation, where, M = N −K.

Knowing the property that GHT = 0 we can follow:

[
IK P

] hT

ITM ,

 = 0,

IKh
T + PIM = 0 mod 2,

P IM = −IKhT mod 2,

P = hT .

The last step comes as the additive inverse of an element a on F2 is itself. For the

procedure above, matrix rank M is assumed for H.

As the Generator matrix G = [IK P], then, it is trivial that the first K symbols or

bits of the codeword will be the (1 ×K) source message s. The added N −K redundancy

is equal to sP , where, P is the K ×M parity-check matrix. In non-systematic LDPC codes,

G is simply the dual space of the H matrix, and after decoding the original source message

s of size (1×K) needs to be extracted from the decoded (1×N) block.

The complexity of the encoding process depends on the density of (i.e., the number

of 1’s) in the G matrix. The complexity grows in O(N2), where, N is the block length of the

encoded message. LDPC codes further approach the capacity of the channel as the block

length N increases. Considering the desire for larger block lengths and the dense nature of

the G matrix, the encoding complexity can become an issue when designing LDPC codes,

therefore, there have been many attempts to design LDPC codes with lower encoding and

decoding complexities [14] [29] [30].

26

2.2.3 Decoding of LDPC Codes

The decoding problem as stated in [26] is: given the received message r = (t+n)mod 2,

where, t = sG is the transmitted message, and n is a sparse random vector with density

equal to the channel error rate, and given that H is the dual space of G, then, the decoding

problem becomes finding the most probable n that satisfies:

nHT = z mod2,

where, z = Hr. In other words, taking advantage of the fact that H and G are the bases of

two dual subspaces, then, if t = sG is a vector in the vector subspace whose basis is G, then,

tHT = 0. A received vector r such that rHT 6= 0 implicates that the message was distorted

by an added noise vector n,

rHT = (t+ n)HT = tHT + nHT = nHT ,

then, the decoding problem is obviously finding t by finding the error vector n.

2.2.3.1 The Sum-Product Algorithm

The SPA was developed to perform iterative decoding on the parity-check matrix H.

It was introduced by Gallager along with LDPC codes in his doctoral dissertation in 1963 [4],

and it was rediscovered by Mackay and Neal in 1990s [5]. The sum-product algorithm is also

called belief propagation algorithm BPA, the name comes from Bayesian inference literature,

where, the algorithm was derived independently [31]. We can think of the Tanner graph as

a belief or Bayesian network where every bit is the parent of g check nodes and every check

node is the child of r bits.

SPA is a symbol wise MAP decoding algorithm. The objective of the SPA is to

compute APP that a specific bit in the transmitted codeword t = [t0 t1 . . . tn−1] is equal

to 1, given, the received word y = [y0 y1 . . . yn−1]. Without loss of generality, we focus on

27

Figure 2.7. Decoding on Tanner graph.

decoding a bit tj by calculating the APP:

Pr(tj = 1|y).

Considering that we have two competing hypotheses for the value of tj, namely, 1 and 0, we

turn our attention to compute the likelihood ratio (LR):

l(tj|y) =
Pr(tj = 0|y)

Pr(tj = 1|y)
,

which can be put in the more numerically stable log-likelihood ratio (LLR) form:

L(tj|y) = log

(
Pr(tj = 0|y)

Pr(tj = 1|y)

)
,

where, log is assumed to be the natural logarithm.

SPA is a message passing algorithm that operates by conveying information between

check nodes and variable nodes of a Tanner graph. In order to understand the SPA we need

to be able to answer the following questions:

• What are the roles of check nodes and variable nodes in the decoding process?

• What is the nature of the information exchanged between check nodes and variable

nodes?

28

• What effects do the structural properties of the Tanner graph impose on the BPA?

In a Tanner graph, there are N variable nodes and each one of these nodes corresponds

to a bit in the (1 × N) received codeword to be decoded. VNs act as local processors that

add the LLRs values passed to them from the channel, and the neighboring CNs to reach

the most plausible decision about the value of the bit it represents.

Figure 2.8. A Variable Node.

In a Tanner graph, there are also M CNs that correspond to the M parity bits added

by the encoder. Each CN acts as a local processor that receives LLRs form its neighboring

VNs, processes the information, and then, passes the appropriate conclusion to each of its

neighbors.

SPA algorithm is a message passing decoding algorithm. The term ”message passing”

refers to the process of a collection of low complexity decoders working in a distributed

fashion. In SPA, VNs and CNs work cooperatively in an iterative fashion to reach estimates

of the likelihood ratio L(tj|y) for j = 0 to N −1. In the first half of every iteration, each VN

processes the LLRs it received from neighboring CNs and passes the extrinsic information to

each of its neighboring CNs. In the second half of the iteration, every CN processes the LLRs

it received from neighboring VNs and passes the extrinsic information to every neighboring

29

VN.

Figure 2.9. A Check Node.

Message passing algorithm introduces the concepts of extrinsic and intrinsic informa-

tion. MPA imposes the constraint of exchanging only extrinsic information between nodes,

the concept of extrinsic information is that a node does not pass any information to another

if the other node possesses the information. In the case of SPA, a node Ni does not pass

LLRq to Nj, if LLRq was originally passed from Nj, because LLRq is considered intrinsic in-

formation to Nj. A message passing decoding algorithm cannot be claimed to be optimal if

cycles exist in the Tanner graph. Cycles provide a path through which intrinsic information

can travel and reach the originating nodes, i.e., the nodes that sent them. Although there

exist many procedures to remove cycles from graphs in general, or from Tanner graphs in

the case of parity-check matrices, most practical codes are suboptimal in the sense that they

contain cycles. However, message passing decoding algorithms perform very well for properly

designed codes and reach error rates deemed as acceptable for the majority of applications.

From the discussion above, we can understand the reason to desire Tanner graphs with the

largest girth possible.

Before discussing the SPA decoding used in LDPC codes, we study the operations

of VNs and CNs with more detail so that we can follow the steps of the algorithm more

thoroughly.

30

VNs as Repetition Decoders

A repetition decoder bases its decision on the majority rule. Given a repetition code

that repeats every bit d times, then, every bit bi in the source word is transmitted n times,

and the decoder decision will be 1 or 0 based on the majority in the received d bits. Similarly,

the decoder can reach the same decision with soft information, i.e., probabilistic information.

For a binary repetition code that transmits every bit t for n times over a memory-less channel,

and r is the received n-vector. A MAP on t can be reached by computing:

L(t|r) = log

(
Pr(c = 0|r)
Pr(c = 1|r)

)
.

Assuming Pr(t = 0) = Pr(t = 1):

L(t|r) = log

(
Pr(t = 0, r)Pr(r)

Pr(t = 1, r)Pr(r)

)
,

L(t|r) = log

(
Pr(r|t = 0)Pr(t = 0)

Pr(r|t = 1)Pr(t = 1)

)
,

L(t|r) = log

(
Pr(r|t = 0)

Pr(r|t = 1)

)
,

L(t|r) = log

(∏n−1
i=0 Pr(ri|t = 0)∏n−1
i=0 Pr(ri|t = 1)

)
,

L(t|r) =
n−1∑
i=0

log

(
Pr(ri|t = 0)

Pr(ri|t = 1)

)
,

=
n−1∑
i=0

L(ri|x).

Where, L(ri|x) is the LLR of the received bit or ri. The MAP decoder of the repetition

31

code adds the individual LLRs, and a majority decision is reached such that tl = 1 if

L(tl|r) < 0, and 0 otherwise.

A VN node in a Tanner graph is a repetition decoder in the sense that, at the last

iteration of decoding it adds the LLRs it receives from all its neighboring CNs, and the

channel according to the equation:

Lj→i = Lj +
∑

i′∈N(j)

Li′→j, (2.3)

and depends on the value of Lj→i to reach a decision on the value of tj.

Figure 2.10. VN as a repetition decoder.

During decoding a variable-node VNj passes extrinsic information Lj→i to a CNi

according to the equation:

Lj→i = Lj +
∑

i′∈N(j)−(i)

Li′→j (2.4)

In equation 2.4 above, we can notice that VNj excludes Li→j when it is calculating

Lj→i so that no intrinsic information is passed. Lj is the LLR computed from yj which is

the received symbol from the channel using the equation:

32

Lj = L(tj|y) = log

(
Pr(tj = 0|yj)
Pr(tj = 1|yj)

)
. (2.5)

Below, we give the probabilities and channel LLRs used for the BEC, BSC, and BIAWGN

channels.

BEC Channel:

Assuming t is the transmitted vector, tj ∈ {0, 1}, y is the received codeword, and

yj ∈ {1, 0, e}, where, e stands for an erasure, and b ∈ 0, 1:

Pr(tj = b|yj) =


1 when yj = b,

0 when yj = b′,

1/2 when yj = e.

Where, b′ is the complement of b, applying the above probabilities to equation 2.5 gives:

L(tj|yj) =


∞ yj = 0,

−∞ yj = 1,

0 yj = e.

BSC Channel:

Assuming yj ∈ {1, 0}, and the channel error rate or transition probability ε = Pr(yj =

b′|tj = b):

Pr(tj = b|yj) =

 1-ε yj = b,

ε yj = b′.

And

L(tj|yj) = (−1)yj log

(
1− ε
ε

)
.

BIAWGN Channel:

Let yj = xj + nj, where, xj = (−1)vj such that xj = +1 and (−1) for vj = 0 and (1),

respectively. nj is Gaussian channel noise N (0, σ2), and the value of σ or an estimate must

be known to the decoder in order to calculate the LLR as:

33

L(tj|yj) =
2yj
σ2
.

CNs as Single Parity Codes

A single parity code (SPC) of length n on F2 is a linear code which consists of n− 1

information bits, and a single parity-check bit. The value of the parity check bit is equal to

the mod 2 sum of the n − 1 information bits, thus, the generated codeword always sums to

0mod 2, and has an even number of 1’s.

Parity-check bits added by the LDPC code follow the same logic. Keeping this struc-

ture in mind, when we design SPC decoder. Suppose a codeword c of size (1×n) is encoded

using SPC, and we receive the codeword r which was transmitted over some channel. With-

out loss of generality, we choose bit cb to decode by conditioning on the received vector r,

and the fact that for the received vector r to be correct it must have an even weight:

ĉb = arg max
x∈0,1

Pr(cb = x|r, SPC).

Therefore,

Pr(cb = 0|r, SPC) = Pr(c0, c1, . . . , cb−1, cb+1, . . . , cn−1 have an even number of 1s|r)

=
1

2
+

1

2

n−1∏
l=1, 6=b

(1− 2Pr(cl = 1|rl))

This can be rewritten as:

2Pr(cb = 0|r, SPC) = 1 +
n−1∏
l=1,6=b

(1− 2Pr(cl = 1|rl)) (2.6)

Where, Pr(cl = 0|r, SPC) + Pr(cl = 1|r, SPC) = 1, then, we can rewrite 2.6 as:

34

1− 2Pr(cb = 1|r, SPC) =
n−1∏
l=1,6=b

(1− 2Pr(cl = 1|rl)) (2.7)

Using the relation between binary random variables 1− 2p1 = tanh(1
2

log(p0
p1

)) we rewrite 2.7

as:

tanh

(
1

2

Pr(cb = 0|r, SPC)

Pr(cb = 1|r, SPC)

)
=

n−1∏
l=1, 6=b

tanh

(
1

2

Pr(cl = 0|rl)
Pr(cl = 1|rl)

)
(2.8)

We already have defined log(p0
p1

) as the Log-Likelihood Ratio (LLR) and applying this

to 2.8 gives:

tanh

(
1

2
L(cb|r, SPC)

)
=

n−1∏
l=0, 6=b

tanh

(
1

2
L(cl|rl)

)

L(cb|r, SPC) = 2 tanh−1

(
n−1∏
l=1,6=b

tanh

(
1

2
L(cl|rl)

))
(2.9)

The MAP decoder of the SPC code makes decisions based on the outcome of 2.9 such

that ĉ = 1, if L(cb|r, SCP) < 0, and ĉ = 0 otherwise.

Li→j = 2 tanh−1

 n−1∏
j‘∈N(i)−(j)

tanh

(
1

2
Lj‘→i

) (2.10)

The MAP decoder described above was developed for SPC codes. However, the CNs

in a Tanner graph can apply (2.9) to process the LLR values it receives from the VNs it is

connected to since every CN and the VNs connected to it adhere to the constraint of SPC

code, i.e., their sum is equal to 0mod2. Li→j in (2.10) is the value of the extrinsic LLR a

CNi sends to its neighboring VNs. The notation j‘ ∈ N(i)− (j) refers to the fact that when

computing LLRi→j a CNi processes the LLRs sent to form all neighboring VNs except j so

that only extrinsic information is sent.

35

Sum-Product Algorithm

Having discussed the sum-product algorithm, and investigated the operations per-

formed at each iteration in terms of: 1) type of messages communicated in the BPA, and the

rules that control this message exchanging process between check nodes and variable nodes,

2) the local operations performed by the VNs and CNs to process these message, below we

summarize the SPA as given in [28] p. 220:

1. Initialization: For all j, initialize Lj according to 2.5 for the appropriate channel model.

Then, for all i, j for which hij = 1, set Lj→i = Lj.

2. CN update: Compute outgoing CN messages Li→j for each CN using 2.10

Li→j = 2 tanh−1

 n−1∏
j‘∈N(i)−(j)

tanh

(
1

2
Lj‘→i

)
and then transmit to the VNs.

3. VN update: Compute outgoing VN messages Lj→i for each VN using Equation 2.3

Lj→i = Lj +
∑

i′∈N(j)−(i)

Li′→j

and then transmit to the CNs.

4. LLR total: For j = 0, 1, . . . , n− 1 compute:

Lj→i = Lj +
∑

i′∈N(j)

Li′→j

5. Stopping criteria: For j = 0, 1, . . . , n− 1, set

v̂j =

 1 if Ltotal
j < 0,

0 else,

36

to obtain v̂. If v̂HT = 0 or the number of iterations equals the maximum limit,stop;

else, go to Step 2.

37

CHAPTER 3

RAPTOR CODES

Raptor codes are an extension of LT codes [3], they are the first implementation of

fountain codes with linear encoding and decoding costs. LT codes like other fountain codes,

have a non-linear encoding and decoding costs and suffer from high error floors. The moti-

vation that led to the invention of Raptor codes was to provide fast encoding and decoding

algorithms with linear complexity and vanishing error floor for rateless codes. Raptor codes

are forward error correction (FEC) codes that provide application-layer protection against

packet losses. They were proposed by Amin Shokrallahi in late 2000 and filed for a patent

in 2001. All variations of Raptor codes outperform LT codes in terms of computational cost

and decoding performance. Raptor codes, also, have better over-head failure performance in

comparison to LT codes [32].

3.1 Design of Raptor Codes

In order to better understand the design of Raptor codes we need to understand the

factors which led to proposing Raptor codes as an extended version of LT codes.

Let Ω0,Ω1, . . . ,Ωk denote the probability distribution on 0, 1..., k ,such that, Ωi is equal to

the probability of the value i being chosen. This distribution is typically represented by a

generator polynomial Ω(x):

Ω(x) =
k∑
i=0

Ωix
i = 1.

where, Ω0 = 0 but it is kept for notational convenience. This notation above can be used to

represent the output degree distribution of LT codes in the following manner: the polynomial

Ω(x) can be used to denote the probability distribution on a vector space Fk2. Given a

38

fountain code such as LT code, where, Ω(x) denotes the Robust Soliton Distribution, this

code can be defined by its two parameters (k,Ω(x)). Encoding is the process of the linear

mapping Fk2 → FN2 , where, N can potentially be an infinite number, however, in practice

it is some finite number. Considering the above notation, the encoding process proceeds as

follows: for a given source block of k symbols, (x1, . . . , xk), every output symbol is generated

independently by sampling the degree distribution Ω(x) for a degree d, and then, uniformly

at random a vector v of weight d is chosen from the vector space Fk2, and the output symbol

is computed as
∑k

i=1 vixi.

An LT code (k,Ω(x)) possesses a reliable decoding algorithm if the algorithm can

recover all k input symbols from any set of size n > k of output symbols, with error prob-

ability at most 1/kc, where c is a positive constant. The decoding graph of LT codes is a

bipartite graph with k input (variable) nodes on one side representing the source symbols,

and n output (check) nodes on the other sides representing the collected output symbols by

the receiver side. The error probability of the decoder is lower-bounded by the probability

that there exists uncovered input symbols since it is not possible to identify input symbols

that did not participate in the encoding process. This leads to a lower bound on the number

of edges in the graph in the order of ck log(k). Considering that the average encoding cost of

LT codes is the expected number of operations needed to generate an output symbol, then,

the encoding cost of LT codes is at least in the order of log(k), or as stated in [3] O(ln(k/δ)).

For the desirable case of the number of output symbols sufficient for successful decoding (n)

that approaches k, output symbols need to have an average weight of log(k).

In order to analyze the decoding cost, we assume a BEC channel, and Maximum

Likelihood (ML) decoding, which would be equivalent to Gaussian elimination. With the

assumptions above, the decoding process becomes equivalent to solving a consistent system

(a system that has a solution) of n linearly independent equations corresponding to the

collected output bits for the values of input bits (x1, · · · , xk). For the system above to be

solvable its corresponding (n× k) matrix must have a full rank. The cost of solving such a

39

matrix is O(nk2) operations which means that the average decoding cost per source symbol

is O(nk). In [3] it is stated that LT codes the average decoding cost is O(k · ln(k/δ)).

From the discussion above, we find that LT codes have a non-constant average en-

coding and decoding costs per source block. On the other hand, Raptor codes designed

in [2] have the following properties; for a given source block of k symbols, and overhead

ε > 0 Raptor codes have an average number of O(log(1/ε)) symbol operations per generated

output symbol, and an average decoding cost of O(k · log(1/ε)) per source block with failure

probability of 1/ka, for a positive constant a > 1 that is independent of ε. The advantage

of Raptor codes in terms of computational complexity is clear.

The reason it is difficult to construct LT codes with a constant average degree is that

the decoding graph needs at least k log(k) edges in order to ensure all input symbols are

covered otherwise there is a high probability that a fraction of the input symbols would not

be covered. The solution proposed by Raptor codes to solve this issue is to precode the

input symbols by a traditional erasure correcting code C, and then, apply an LT code with

a constant average output degree to the symbols generated by the precode C.

Raptor codes can be parameterized by (k, C,Ω(x)), where, k denotes the number of

input symbols, the precode C is linear block code of dimensions (k, n), and typically the

precode used for Raptor codes is a regular high rate LDPC code, so henceforth we use the

terms precode, and LDPC code interchangeably, and Ω(x) is the degree distribution of the

LT part. The encoding process starts with the precode encoding the k input and adding a

relatively small redundancy of (m − k) symbols to produce m > k symbols known as the

intermediate symbols. The intermediate symbols are used to generate the output symbols by

the LT code part.

Below, we give a toy example in order to describe the mechanism in which Raptor

codes operate, and how the encoding process proceeds:

In Figure 3.2, the input symbols x1, . . . ,x6 are encoded using an LT code. We can

40

Figure 3.1. Graphical representation of Raptor codes.

observe that x2 was not covered by the LT code, and hence, it will not be recovered by the

decoder.

Figure 3.2. LT code.

Now, we apply Raptor code to the same input set, first, we encode the input symbols

by a precode such that two redundancy symbols z1, and z2 are added as shown in Figure 3.3

below.

Figure 3.3. Precode of Raptor codes.

Next, we apply an LT code to the input symbols x1, . . . , x6 in addition to z1, and z2

which are collectively called intermediate symbols. The code graph will be as illustrated by

Figure 3.4. Despite the fact that x2 was not covered by the LT code but it was covered by

the precode, and it can be recovered in the LDPC decoding part of Raptor codes.

41

Figure 3.4. Raptor code.

3.2 Decoding of Raptor Codes

Figure 3.5. Decoding graph of Raptor code.

The decoding graph of a length n Raptor code is a bipartite graph that consists of n

nodes on one side called the input nodes, they represent the n output symbols of the LDPC

code, where the objective of the decoding process is to identify their correct values. On the

other side, there are m + n − k nodes, that are called the output nodes, and they can be

divided into two sets.

One set consists of the m output bits or symbols collected from the channel and each

node in this set is connected to the input nodes of which it is a neighbor, and its value is

equal to the sum of their values. This set is named as the dynamic set. The name dynamic

comes as this part of the graph depends on the particular set of m encoding symbols collected

by the decoder. The dynamic set corresponds to the LT code part of Raptor codes.

The other set of n − k nodes are called the static set and it corresponds to the

n − k parity-check bits added by the LDPC code. Remember that the decoding graph is

42

reconstructed at the decoder side based on information passed by the encoder.

Typically, the decoder starts the decoding process on the dynamic part and after a

pre-fixed number of iterations, it shifts to decoding on the static part. Decoding on the

dynamic part is actually an LT decoding process, and decoding on the static part is an

LDPC decoding process on the parity-check matrix H of the precode of the Raptor code.

The inner workings of each phase are governed by the rules, and procedures related to each

code as given in sections 2.1 and 2.2.

Figure 3.6. Decoding on the dynamic part.

Figure 3.7. Decoding on the static part.

Raptor codes are a concatenation of two codes; LDPC, and LT codes. It is necessary

for the two codes to be interfaced properly and in a careful manner. The n symbols we collect

from the channel are output symbols of Raptor codes which were encoded by the LT code

part before transmission. As we mentioned earlier, decoding starts on the dynamic part of

the decoding graph which corresponds to the LT-decoding part of the Raptor decoder. As the

43

belief-propagation algorithm (BPA) proceeds, messages from output nodes to input nodes

(ml
o,i) and from input nodes to output node (ml

i,o) are conveyed back and forth according

to rules and constraints of BPA algorithm. For more on BPA check section 3.3.1. During

the decoding process, the output nodes act as local single parity-check (SPC) decoders, they

process ml
i,os, which are LLRs. They receive and send ml

o,i to their neighboring input nodes

by applying the equation:

tanh

(
ml
o,i

2

)
= tanh

(
Zo
2

)
·
∏
i‘ 6=i

tanh

(
ml
i‘,o

2

)
,

where, Zo is the channel LLR of every output bit o. It is computed from the value of the

corresponding symbol received from the channel using equation 2.5.

Input nodes act as local Repetition processors. They receive LLRs from neighboring

output nodes (ml
o,i), and apply equation 3.1 to compute the extrinsic information (ml+1

i,o)

they pass to the output nodes they are connected to,

ml+1
i,o =

∑
o′ 6=o

ml
o′,i (3.1)

After a preset maximum number of iterations decoding stops on the dynamic part of

the graph, and every input node computes its total LLR as
∑

omo,i. Next decoding on the

static, or LDPC part of the graph starts. Decoding is initiated by input nodes passing their

LLRs computed in the dynamic phase of decoding as channel LLR to the LDPC decoder,

and again input nodes act as repetition decoders while the nodes of the static set act as SPC

decodes. After a maximum number of iterations has been reached, or a stopping criterion

has been met, decoding stops, and the decoder declares a value for each bit of the input bits.

The decoded m bits are the output of the LDPC code part, and the LDPC decoder part

returns estimates of the k source bits.

44

3.3 The Output Degree Distribution

In Raptor codes the Robust Soliton distribution is not used as the output degree dis-

tribution for the LT code part, instead as shown in [2] a new degree distribution is developed

based on heuristic analysis which leads to optimized degree distributions for different values

of source data size k.

The analysis is performed on the dynamic (LT) part of the decoding graph. Before

going further into the analysis we need to define few parameters of the graph that are used

in the analysis. wi is the probability that a randomly chosen edge is connected to a degree

i output node, and w(x) =
∑

iwix
i−1. Ωi is the probability that a randomly chosen output

node is of degree i, and Ω(x) =
∑k

i=1 Ωix
i. ιi is the probability that a randomly chosen

edge is connected to a degree i input node, and ι(x) =
∑

i ιix
i. The following relations exist

between the parameters:

w(x) =
Ω′(x)

Ω′(1)
,

ι(x) , eα(x−1). (3.2)

Assuming belief propagation decoding, we view the decoding process from a binary

perspective, i.e., the messages exchanged are 0 or 1 for the sake of simplifying the analysis.

An input node sends a message 1 to a neighboring output node if its value has been recovered,

and an output node sends a message 1 to an input node if it has identified its value and vice

versa.

Let pi denote the probability that a randomly chosen edge carries a message 1 from an output

node at iteration i, then we have the recursion:

pi+1 = w(1− ι(1− pi)) (3.3)

This comes from the and-or tree analysis argument [33] that an input node (VN)

needs to receive at least one message of value 1 to be decoded which makes the probability

to be decoded 1 − (1 − pi)
din , where, din is the degree of the input node, while, for an

45

output node (CN) to send a 1 to a neighbor it needs to receive message 1 from all the other

neighbors. Then, the probability of a CN sending a message 1 becomes (1− (1−pi)din)dout−1.

Now, we define ui as the probability that an input symbol is recovered at iteration

i. ui is equal to 1 − (1 − pi)d since an input symbol is recovered if it receives a message 1

from any of its neighboring d output nodes. In terms of the decoding graph this probability

is written as 1− ι(1− pi). Applying 3.2 we get:

1− ι(1− pi) = 1− e−αpi = ui, (3.4)

and

pi =
− ln(1− ui)

α
, (3.5)

where, ui+1 = e−αpi+1 . Taking a look at equations (3.3) and (3.4) we can express ui+1 as:

ui+1 = 1− e−αw(ui). (3.6)

Equation 3.6 implies that having a fraction-x of recovered symbols at some iteration

i, then, in the next iteration (i + 1) the fraction increase to 1 − e−αw(x), i.e., an increase

of 1 − x − e−αw(x). If decoding is performed on k(1 + ε) output symbols, then we have

w(x) = (1 + ε)Ω′(x)/α, and the expected fraction of input symbols in the input ripple is:

1− x− e−Ω′(x)(1+ε) (3.7)

hence the expected input ripple size is equal to:

k(1− x− e−Ω′(x)(1+ε)) (3.8)

The derivation above is based on heuristic assumptions but it does not affect the

findings because after reaching candidate degree distributions the error probability of the

LT-decoder is computed for each distribution.

46

From Luby’s analysis in [34] the concept of keeping the expected ripple size equal

to, or larger than c
√

(1− x)k for a positive constant c is adapted. Using this boundary

condition on equation 3.8 for some ε, δ, and k leads to:

1− x− e−Ω′(x)(1+ε) ≥ c
√

(1− x)/k,

where, x ∈ [0, 1− δ] and:

Ω′(x) ≥
− ln(1− x− c

√
(1− x)/k)

1 + ε
. (3.9)

where, ε is the overhead, and δ is the fraction of intermediate symbols that are not recovered.

By discretizing the interval [0, 1 − δ] and requiring the above inequality to hold on

the discretization points, we obtain linear inequalities in the unknown coefficients of Ω(x).

The optimized degree distributions are for the values of k shown in Table 3.1, δ = 0.01, the

overhead ε used in the optimization process, and a is the average degree of output symbols.

Table 3.1. Degree distributions for given values of k source symbols.

k 65536 80000 100000 120000
Ω1 0.007969 0.007544 0.006495 0.004807
Ω2 0.493570 0.493610 0.495044 0.496472
Ω3 0.166220 0.166458 0.168010 0.166912
Ω4 0.072646 0.071243 0.067900 0.073374
Ω5 0.082558 0.084913 0.089209 0.082206
Ω8 0.056058 0.041731 0.057471
Ω9 0.037229 0.043365 0.050162 0.035951
Ω18 0.001167
Ω19 0.055590 0.045231 0.038837 0.054305
Ω20 0.010157 0.015537
Ω65 0.025023 0.018235
Ω66 0.003135 0.010479 0.016298 0.009100
Ω67 0.017365 0.010777
ε 0.038 0.035 0.028 0.02
a 5.87 5.91 5.85 5.83

47

CHAPTER 4

SIGNAL TO NOISE RATIO MISMATCH

On AWGN channels, SNR mismatch is a condition that occurs when the estimated

SNR on the receiver side is not equal to the actual channel SNR. Without loss of generality,

we will restrict our discussion to the BIAWGN channel and binary codes. Also, we assume

binary phase shift keying (BPSK) modulation with the mapping 0 → +1 and 1 → −1.

Given a BIAWGN channel with input x = ±1, the output of the channel can be described

as y = x+n, where, n ∼ N (0, σ2) is the channel noise with mean zero and variance (power)

equal to σ2, and such that y ∼ N (x, σ2). On the receiver side, ideally, the channel noise

power will be estimated correctly as σ2 and the SNR per bit is computed as:

γ =
Eb
No

=
1

2Rσ2
,

where, R is the code rate. However, if the noise power is erroneously estimated as σe 6= σ2,

then, we will obtain

γe =
Eb
No,e

=
1

2Rσ2
e

6= γ,

where, γe is the incorrectly estimated SNR. The difference or ”mismatch” between the true

γ and inaccurately estimated γe SNRs is the reason behind the term signal to noise ratio

mismatch (SNRM).

On the BIAWGN channel, the ith bit is transmitted as xi and received from the

channel as yi. For decoders using BP decoding, every channel output yi is translated into

its equivalent LLR as

LLRi =
p(yi|x = 1)

p(yi|x = −1)
=

2yi
σ2
.

48

After that, the LLR values of the received codeword is relayed to the decoding algorithm.

If the value of the channel noise power σ2 is inaccurately estimated as σ2
e 6= σ2, then this

leads to giving the BP decoder incorrect LLR values of received information, i.e., for yi the

decoder receives LLRi = 2yi/σ
2
e instead of LLRi = 2yi/σ

2. The BPA algorithm performs

optimally when perfect knowledge of the channel characteristics is available, on the other

hand, SNRM degrades the performance of BPA and can lead to complete decoding failure if

the mismatch is high enough.

In order to study the topic of SNRM we need to quantify its parameters; the degree

of mismatch, the changes in the LLR messages exchanged during BP decoding, and the

effects SNRM has on the decoding threshold and performance parameters such as bit error

rate (BER). We start by defining the SNRM ratio η:

η =
γe
γ

=

1
2Rσ2

e

1
2Rσ2

=
σ2

σ2
e

. (4.1)

When η is expressed in dB, it is called SNR offset (Υ),

Υ = 10 log10(γe)− 10 log10(γ) (4.2)

SNRM can be classified into two types:

1. SNR overestimation which occurs when γe > γ, or equivalently σ2
e < σ2.

2. SNR underestimation which occurs when γe < γ, or equivalently σ2
e > σ2.

4.1 SNRM Effects on Channel Codes

SNRM can affect any code that uses the channel SNR information in the decoding

process such as Turbo, LDPC, or Raptor codes. The performance of Turbo and LDPC codes

with BP decoding under SNR mismatch has been studied [18,22,35,36] and it was found that

both codes are affected adversely at both positive and negative values of SNR offset, namely,

49

under SNR overestimation and underestimation. For Turbo and LDPC codes, it has been

found that SNR underestimation is more detrimental compared to overestimation. Different

approaches were proposed to mitigate the effects of SNRM on Turbo codes operating on

the BIAWGN channel as can be seen in [37–39]. For LDPC codes, to handle the issue

of SNR mismatch, some methods depend on modifying the decoding mechanism such as

min-sum [14] or one of its derivatives [15–17]. These codes do not use the channel SNR

information in decoding and depend only on the value of each symbol (y) observed directly

from the channel. Other LDPC codes are designed by searching for degree distributions that

are more tolerant to SNR mismatch at the cost of some degradation in the performance of

the code when no SNR mismatch is present [18].

It is not difficult to check the degrading effects of SNRM on Raptor codes. Figure

4.1 shows the BER performance of a Raptor code with k = 8000, a (4,204) LDPC precode,

and output distribution 4.24 given in [2]. The BER performance is shown for overall code

rates 1/3, 1/2, and 5/7 with Eb/No = 0.5 dB, 1.25 dB, and 2.5 dB, respectively. As the SNR

offset varies from -5 dB of underestimation to 0 dB (perfect noise power estimation i.e. no

SNRM), and to 5 dB of overestimation. The degrading effects of SNR mismatch are clear

and we can observe that if SNR mismatch is high enough, the decoding process collapses.

Figure 4.1. BER vs SNR offset.

50

Next, we turn our attention to study the effects of SNRM on Raptor codes, how it

affects the performance, and how to design SNRM tolerant Raptor codes.

4.2 LLR Distribution Under SNRM

As it is customary for memoryless symmetric channels we assume an all-zero codeword

was transmitted, i.e., yi ∼ (1, σ2) for the sake of simplifying the analysis. Since LLR = 2y/σ2

we have:

E[LLR] =
2

σ2
E[y] =

2

σ2
,

Var(LLR) = Var(
2y

σ2
) =

4σ2

σ4
=

4

σ2
.

The LLR values of received bits follow the Gaussian distribution N (2
σ2 ,

4
σ2). This

distribution has the property of the variance to mean ratio being equal to 2, and such a

distribution is known as consistent in the literature [19]. However, if the channel noise

power is incorrectly estimated as σ2
e 6= σ2, the channel LLR will be computed as LLR =

2y/σ2
e and this will lead to

E[LLR] =
2

σ2
e

E[y] =
2

σ2
e

,

Var(LLR) = Var(
2y

σ2
e

) =
4σ2

σ4
e

.

With SNRM present, the LLR values will follow the distribution N (2
σ2
e
, 4σ2

σ4
e

), instead

of N (2
σ2 ,

4
σ2), which is not consistent because the variance to mean ratio is not equal to 2

anymore, but rather, to 2σ2/σ2
e = 2η, and such a distribution is called inconsistent.

51

4.3 DDE of Raptor Codes Under SNR Mismatch

The performance and properties of codes that use the belief propagation algorithm

(BPA), also known as sum-product algorithm (SPA), in the decoding process can be ex-

amined using the density evolution (DE) algorithm [19]. DE algorithm can simulate the

evolution of an initial distribution in a bipartite graph on which BP decoding is run, where,

the initial message distribution describes the message received from the channel. A quan-

tized version of DE discretized density evolution (DDE) was introduced in [24] to offer a less

complex yet still accurate version of DE. DDE simply assumes a discretized SPA algorithm,

where, all the messages exchanged in decoding are quantized with quantization step equal

to ∆ and restricted to a range of values [−Lq,−Lq + ∆, . . . ,+Lq]. The quantization step is

defined as ∆ = 2Lq/2
nb , where nb is the number of quantization bits. In order to discretize

the messages a quantization operator Q is used as follows. Let Q(x) be the quantized value

of x, then the quantization operator Q is defined as:

Q(x) =



⌊
x
∆

+ 1
2

⌋
∆, if x ≥ ∆

2⌈
x
∆
− 1

2

⌉
∆, if x ≥ −∆

2

0, otherwise;

(4.3)

In order to study the performance of LT and Raptor codes in the presence of SNR

mismatch, we will use DDE of Raptor codes proposed in [12], after implementing the needed

modification as we will mention later. We assume tandem decoding for Raptor codes, where,

the inner LT decoder receives the LLR values of output symbols collected from the channel

and runs for Iin iterations, and then, passes the LLR values of intermediate symbols com-

puted during this stage to be used as the initial LLRs in the outer LDPC decoder which will

run for another Io iterations.

52

4.3.1 Sum Product Decoding

As discussed earlier, in SP decoding the LLR message from jth check node to ith

variable node is denoted as Lcjvi , and from ith VN to jth CN node as Lvicj , and are calculated

as

Lcjvi = 2 tanh−1

((
tanh(

Lcj
2

)

)∏
i′ 6=i

tanh(
Lvi′cj

2
)

)
, (4.4)

Lvicj = Lvi +
∑
j′ 6=j

Lcj′vi , (4.5)

where, the product in (4.4) is over all the VNs connected to CN j other than VN i, and the

sum in (4.5) is over all the CNs connected to VN i other than CN j. Lvi and Lcj are the

channel LLR values of VN i and CN j, respectively.

Assuming a non-systematic Raptor code, for the inner decoder Lvi is equal to zero

∀ i = 1, . . .m. The collected output symbols act as CNs and intermediate symbols as VNs

and decoding is performed according to (4.4) and (4.5). After Iin iterations, the LLR of the

ith VN of the inner LT decoder is computed as

Li,in =
∑
j

Lcjvi . (4.6)

Then, the LLR values Li,in ∀ i = 1, . . . ,m are passed as initial LLRs to the outer decoder.

For the outer decoder, intermediate symbols act as VNs and the check nodes are given by

the precode in use. Lcj = 0 ∀ 1, . . . ,m − k, and iterations proceed according to (4.4) and

(4.5) before concluding the decoding process by computing the final LLR for each VN of the

outer decoder as

Li,out = Li,in +
∑
j

Lcjvi . (4.7)

At this point, the SP algorithm is finished and Li,out is used to decide on estimate for each

of the k source bits.

53

4.3.2 DDE of Raptor Codes

According to the decoding sequence above, a DDE algorithm for Raptor codes can

be devised which consists of two stages: inner and outer DDE [12]. Considering a Raptor

code (k, C,Ω(x)), where k is the number of source symbols, C is the precode which is an

LDPC code in our case, with the variable and check node edge distributions λo(x) and

ωo(x), respectively. Λ(x) and Ω(x) are the input and output node degree distributions of the

inner LT decoder, while, λ(x) and ω(x) are their respective edge distributions. The DDE

algorithm starts by computing the initial or channel probability mass function (PMF) of

the quantized LLR interval [−Lq,+Lq] according to the distribution N (2
σ2 ,

4
σ2), where, σ2 is

the noise power of the BIAWGN channel considered. Let v̄ and ū be the quantized versions

of VN to CN Q(Lvc) and CN to VN Q(Lcv) randomly chosen messages, respectively. Also,

let pv̄ and pū be the PMFs of v̄ and ū, respectively, i.e. the PMFs of exchanged quantized

messages during our assumed discretized SPA decoding. The PMF pv̄ of degree dv VN is

computed as

pv̄ = pū0
dv − 1⊗ pū, (4.8)

where, pū0 is the PMF of quantized channel LLR of VNs. The PMF pū of degree dc CN is

computed as:

pū = R(pv̄0 ,R(pv̄, . . . ,R(pv̄, pv̄))) = R(pv̄0 ,Rdc−1pv̄), (4.9)

where, pv̄0 is the PMF of quantized channel LLR of CNs. In order to compute 4.9 we define

function Γ(a, b) = Q
(
2 tanh−1(tanh(a/2) tanh(b/2))

)
, where a and b are quantized values.

Then, if R(a, b) = τ∆, the PMF of R(a, b) = pτ is computed as:

pτ = R(a, b) =
∑

(i,j):τ∆=Γ(i∆,j∆)

pa[i]pb[j] (4.10)

As provided in [12], given a bipartite graph with edge distributions λ(x) and ω(x) we

54

have fω(p) = ω1pv̄0 +
∑dc

j=2 ωj
(
R(pv̄0 ,R(j−1)p)

)
and fλ(p) = λ1pū0 +

∑dv
i=2 λi

(
pū0
⊗

(i−1⊗ p)
)

as the equations that define the evolution of PMFs of LLR messages at a CN following (4.4)

and a VN following (4.5), respectively.

Assuming a non-systematic Raptor code (k, C,Ω(x)), the Raptor DDE algorithm

starts by passing the PMF of channel LLR, i.e., pv̄0 to the inner or LT part of DDE algorithm.

The inner DDE runs (4.11) for Iin iterations:

p
(l)
ū,in = fω

(
fλ(p

(l−1)
ū,in)

)
. (4.11)

After that, the PMF of the decision rule of the inner decoder is computed as

PD̄ =
dv∑
i=1

Λi

(
i⊗p

(Iin)
ū

)
.

Then, PD̄ is passed as initial PMF pū0 to the outer or LDPC part of the DDE algorithm

which runs (4.12) for l = Io iterations.

plv̄,o = fλo
(
fωo(p

l−1
v̄,o)
)

(4.12)

p
(Io)
ū,o is extracted from 4.12 and used to compute the decision rule PMF of the outer decoder

as PD̄ =
∑dv

i=0 Λi

(
pū0

i⊗p
(Io)
ū,o

)
. PD̄ is used to compute the final BER of decoded data as in

(4.13), where t represents the quantized LLR values.

Pē =
∑
t

PD̄(t) ∀ t ≤ 0. (4.13)

55

4.3.3 SPA Processing of Inconsistent Distributions

LLR values of channel output with SNRM are described by the distributionN (2
σ2
e
, 4σ2

σ4
e

)

instead of N (2
σ2 ,

4
σ2). As we have discussed before, the LLR distribution N (2

σ2 ,
4
σ2) is called

consistent because it has the property Var(LLR) = 2 E[LLR]. Such distributions describe

the LLR values of all-zero codewords transmitted through a channel with perfect noise

estimation. For channels with SNRM, LLR values follow the distribution N (2
σ2
e
, 4σ2

σ4
e

) which

is called inconsistent because:

Var(LLR) =
σ2

σ2
e

× E[LLR] = 2ηE[LLR]

A question that needs to be answered is whether BP decoding changes the variance

to mean ratio as the decoder iterates between the VN and CN processors. The answer to

this question tells us whether the output LLR values of the decoder still suffer from the

same value of SNR mismatch as the input LLRs and the implications this has on serially

concatenated codes such as Raptor codes, i.e., will the SNRM effects reach the outer decoder

part?

In [19] it was proved that if the initial distribution of LLR is symmetric, then the

evolution of distributions of LLR messages across the decoding graph is symmetric. The

keyword here is symmetric, because the authors define a symmetric distribution as follows:

Let u denote LLR values, then, the probability density function of u, i.e., f(u) is symmetric

if:

f(u) = euf(−u). (4.14)

For a Gaussian random variable x with mean µ and variance θ, i.e. x ∼ N (µ, θ), such as u,

the relationship of (4.14) is a result of the fact that:

f(x)

f(−x)
= exp(

2µx

θ
). (4.15)

56

Then, for variables with consistent distributions, i.e. θ = 2µ, e.g. u ∼ N (2
σ2 ,

4
σ2) we have:

f(x)

f(−x)
= exp(x),

f(u)

f(−u)
= exp(u). (4.16)

Equation (4.16) is a test to check if an LLR distribution is symmetric or not, and as

we will see below it is also a test to check whether a distribution is consistent, i.e., suffers

from SNRM or not. The proof in [19] that a distribution that follows (4.16) will keep its

symmetric properties as the BPA iterates between CNs and VNs can also be interpreted as

a proof that the consistency properties will be held as well.

On the other hand, for inconsistent LLR distributions that we get from channels with

SNRM we denote LLR values as um ∼ N (2
σ2
e
, 4σ2

σ4
e

). In this case we have:

f(um)

f(−um)
= exp

(
2µum
θ

)
= exp

(
2(2

σ2
e
)um

4σ2

σ4
e

)
= exp(

um
σ2

σ2
e

) = exp(
um
η

). (4.17)

From (4.17), we conclude that for inconsistent distributions we have the relationship:

f(um) = e
um
η f(−um). (4.18)

Equation (4.18) creates a discrepancy with (4.16). It also invokes the question that if a

distribution following (4.18) still keeps it symmetry and inconsistency (SNRM ratio value)

properties through the BP decoding process. The authors in [19] provide a proof which can

also be viewed as a test to check if an initial distribution of LLR, which we denote as P0(u),

is symmetric and also prove that such a distribution keeps its symmetry and consistency

properties throughout the BPA algorithm. We show the proof below because we will use it

later for the inconsistent case.

57

Let u denote LLR values:

L(y) = u = log

(
p(y|x = 1)

p(y|x = −1)

)
= log

(
p(−y|x = −1)

p(−y|x = 1)

)
= −L(−y),

and the value of y can be extracted from u using the inverse function L−1(u).

eu =
p(y|x = 1)

p(y|x = −1)
.

Therefore,

euP0(−u) = eup
(
y ∈ L−1(−u)|x = 1

)
= eup

(
−y ∈ L−1(u)|x = 1

)
= eup

(
y ∈ L−1(u)|x = −1

)
=

p (y ∈ L−1(u)|x = 1)

p (y ∈ L−1(u)|x = −1)
p
(
y ∈ L−1(u)|x = −1

)
= p

(
y ∈ L−1(u)|x = 1

)
= P0(u)

We follow the same steps to check if LLR distributions under SNRM which have the

property f(um) = e
u
η f(−um) exhibit the same symmetry properties as LLR distributions

with no SNRM. However, before proceeding we need to clarify two points. First, since

for LLR with no SNRM u = 2y/σ2, and for LLR with SNRM um = 2y/σ2
e , we have the

relationship

um
u

=
σ2

σ2
e

= η.

Second, it is crucial to understand that the probability of um = 2y/σ2
e is equal to

the probability of u = 2y/σ2 because the true probability of receiving um corresponds to

p(y|x = 1) with y ∼ N (1, σ2) and not the miscalculated y ∼ N (1, σ2
e) due to mismatch.

58

Therefore, we also have:

P0(um) = p(y|x = 1).

Taking all the above into consideration:

eumP0(−um) = e
um
η p
(
y ∈ L−1(−u)|x = 1

)
= e

um
η p

(
−y ∈ L−1(

um
η

)|x = 1

)
,

(4.19)

eumP0(−um) = e
um
η p

(
y ∈ L−1(

um
η

)|x = −1

)
. (4.20)

For simplicity, let α = um
η

and then we can rewrite (4.20) as:

eumP0(−um) = eαp
(
y ∈ L−1(α)|x = −1

)
,

=
p (y ∈ L−1(α)|x = 1)

p (y ∈ L−1(α)|x = −1)
p
(
y ∈ L−1(α)|x = −1

)
,

= p
(
y ∈ L−1(α)|x = 1

)
,

re-substituting α:

eumP0(−um) = p

(
y ∈ L−1(

um
η

)|x = 1

)
,

= p
(
y ∈ L−1(u)|x = 1

)
,

= P0(um).

From the discussion and analysis above we conclude that LLR values under SNRM

satisfy the symmetry condition in the sense defined in [19], and therefore, keep their symme-

try properties including SNRM ratio value throughout the BP decoding process. For exam-

ple, considering the variable node processor where LLR values are added, and equivalently

distributions are convoluted, the convolution of symmetric distributions is symmetric [19].

Let f and g be two symmetric distributions of LLR values with SNRM that satisfy

59

4.18, then:

∞∫
−∞

f(x− y)g(y)dy =

∞∫
−∞

e
x−y
η f(y − x)e

y
η f(−y)dy = e

x
η

∞∫
−∞

f(−x− y)g(y)dy. (4.21)

A similar approach can be used to show that check node processors keep the sym-

metry properties of LLR values with SNRM. Based on the discussion above, we reach three

conclusions:

1. For LLR densities f(u) = e
u
η f(−u), u, η ∈ R is a broader condition of symmetry for

LLR densities on BIAWGN channel which includes LLR densities with SNRM as well.

2. For input LLR with SNRM ratio equal to η, the ratio is kept throughout the message

passing algorithm and the output LLR has the same SNRM ratio η. This means that

for serially concatenated codes, e.g. Raptor codes, SNRM effects reach the outer code.

3. For concatenated codes, this means that the degradation in performance or threshold

comes from both the inner and outer codes.

Figure 4.2 below shows the empirically computed variance to mean ratio of LLR

messages of the LT part of the DDE algorithm. The curves show the variance to mean ratio

progress for three cases of initial SNRM: (a) Υ = −3 dB i.e. η = 0.5, (b) Υ = 0 dB i.e.

η = 1, and (c) Υ = 3 dB i.e. η = 2. As expected, once all the check nodes start to produce

non-zero messages, the variance to mean ratio stabilizes to the same value as of the initial

(channel) LLR distribution, and the same ratio is kept as decoding iterations proceed. Since

the decision LLR values of the inner decoder are passed as initial LLR values to the outer

LDPC decoder, this supports our earlier conclusion that the SNRM effects reach the outer

decoder.

60

Figure 4.2. Variance to mean ratio of the inner decoder.

4.4 Modifying DDE for Distributions with SNRM

Having introduced the DDE algorithm of Raptor codes, we turn our attention to

study how the asymptotic performance of BP decoding will react to input LLR values with

SNRM ratio η. Examining the DDE algorithm we described, we observe that the algorithm

can be modified to work with densities representing LLRs with SNRM ratio η by replacing

the input distribution to the DDE algorithm from (2
σ2 ,

4
σ2) representing LLRs with no SNRM

to (2
σ2
e
, 4σ2

σ4
e

) corresponding to input LLR with SNRM ratio η = σ2/σ2
e .

In order to understand the effects of SNR mismatch on a Raptor code (k, C,Ω(x)) we

need to quantify its performance under a given value of SNR offset Υ. One way to quantify

the performance of Raptor codes on the BIAWGN channel is to determine the SNR decoding

threshold. SNR decoding threshold is defined as the infimum of all SNR values such that

the BER converges to zero as the number of iterations approaches infinity. Using the DDE

algorithm, we can determine the SNR threshold as the infimum of all SNR values such that

4.13 converges to zero.

61

Equivalently, as was shown in [12], for a serially concatenated code such as Raptor

code, the threshold can be defined as infimum of all SNR values such that the decoded BER

of the inner decoder converges to a value known as the critical BER of the outer decoder

as the number of iterations approaches infinity. The critical BER of the outer decoder can

be calculated by determining its threshold σotsh, then, the critical BER can be computed as

Q(1
σotsh

).

σotsh =

(
1

2RoEo
tsh

) 1
2

(4.22)

P o
e,tsh = Q

(
1

σotsh

)
(4.23)

where, Eo
tsh(Ro) is the Eb/No threshold of the outer LDPC code with rate Ro. Applying this

approach to determine the threshold of Raptor codes in the case of SNRM requires further

attention, because for each value of SNR offset the decoding threshold, and hence, the critical

BER (P o
e,tsh) of the outer code will be different. Assuming we use a regular (4, 204) LDPC

code as the outer code, in Table 4.1 we give the threshold and corresponding P o
e,tsh values

for the SNR offset (Υ) values shown.

SNR offset (Υ) Threshold P o
e,tsh

-5 0.3220 9.495 ×10−4

-4 0.3401 1.6 ×10−3

-3 0.3555 2.5 ×10−3

-2 0.3681 3.3 ×10−3

-1 0.3737 3.73 ×10−3

0 0.3750 3.8 ×10−3

1 0.3735 3.7 ×10−3

2 0.3717 3.6 ×10−3

3 0.37 3.45 ×10−3

4 0.3695 3.4 ×10−3

5 0.36711 3.2 ×10−3

Table 4.1. Decoding thresholds and equivalent critical BERs of (4, 204) LDPC code under
SNRM.

62

We used both methods to determine the threshold of Raptor codes under SNRM

and the results are almost identical with a maximum difference of 0.003 dB. From another

perspective, this also further confirms our previous observation that SNRM affects both the

inner and outer decoder of Raptor codes.

Next, we will use the modified DDE algorithm to study the asymptotic performance

of Raptor codes under different values of SNRM ratios and investigate if it is possible to

design SNRM tolerant Raptor codes.

4.4.1 SNRM Effects on the Threshold

As in [22] we define α(Υ) to be the Eb/No threshold for an SNR offset value Υ. In

order to reach more general conclusions, we considered four different example distributions

to study the effects of SNRM on the threshold of Raptor codes. As shown below, the

distributions are Ω1(x), Ω3(x) and Ω4(x) from [2], [40] and [11], respectively. Ω2(x) varies

for each instance of the code rates tested and can be found in [12].

Ω1(x) = 0.007969x+ 0.49357x2 + 0.1662x3 + 0.072646x4 + 0.082558x5 + 0.056058x8

+ 0.037229x9 + 0.05559x19 + 0.025023x65 + 0.003135x66

(4.24)

Ω3(x) = 0.0082x+ 0.5019x2 + 0.043x3 + 0.2365x4 + 0.0067x5 + 0.0911x8 + 0.0398x14

+ 0.0108x30 + 0.0273x33 + 0.0347x197

(4.25)

Ω4(x) = 0.0791x+ 0.4560x2 + 0.1916x3 + 0.0564x4 + 0.0449x5 + 0.0252x8 + 0.0376x9

+ 0.0825x19 + 0.0165x65 + 0.0102x66

(4.26)

63

Figures 4.3, 4.4, 4.5,4.6,4.7, and 4.8 show the SNR threshold of the distributions

above for SNR offset Υ = [−5, 5] dB, and for code rates 1/3, 2/5, 1/2, 5/9, 5/8, and 5/7,

respectively.

Examining the figures below, we observe that as |Υ| increases the Eb/No threshold

increases. Higher values of Eb/No help the SP decoding algorithm to encounter the effects

of SNRM, however, this is accomplished through different mechanisms for underestimation

(Υ < 0) and overestimation (Υ < 0). For Υ < 0, the estimated noise power is larger than

the true noise power i.e. σ2
e > σ2 and the computed LLR values are less than their true

values. Higher Eb/No helps reduce the fraction of received bits with flipped sign which is

equal to Q(1/σ), and also helps by reducing the fraction of lower LLR values, i.e. the values

highly impacted by SNR underestimation, by concentrating the received channel output y

around +1 and away from 0, leading to counteracting the effects of underestimation. For

Υ > 0, the estimated σ2
e < σ2 and the computed LLR values are higher than their true val-

ues. This gradually turns the decoder into a BEC channel decoder with a fraction of Q(1/σ)

undetected erroneous bits. Therefore, higher Eb/No values help in counteracting the effects

of SNR overestimation by mainly reducing the fraction Q(1/σ) of undetected erroneous bits.

64

Figure 4.3. SNR threshold vs SNR offset with R = 1/3.

Figure 4.4. SNR threshold vs SNR offset with R = 2/5.

65

Figure 4.5. SNR threshold vs SNR offset with R = 1/2.

Figure 4.6. SNR threshold vs SNR offset with R = 5/9.

66

Figure 4.7. SNR threshold vs SNR offset with R = 5/8.

Figure 4.8. SNR threshold vs SNR offset with R = 5/7.

67

From what we learned so far, we also can observe the following:

• As |Υ| increases, SNR underestimation becomes more degrading compared to overes-

timation.

• In the region around Υ = 0 and approximately within a distance of 3 dB in both

directions, the response is almost symmetric with a slightly less degradation on the

underestimation part.

• There is an inverse relationship between the performance of a code at Υ = 0, and

higher values of |Υ|. This is more obvious for lower rates, i.e. 1/3 and 1/2.

• Output distribution 4.24 seems to provide the best average performance between the

tested distributions. On the other hand, Ω2(x) seems to offer the lowest SNR threshold

for no mismatch and lower values of |Υ|.

These observations will give helpful insights when designing SNRM tolerant output

distributions for the inner LT part of Raptor codes.

68

CHAPTER 5

DESIGNING SNRM TOLERANT RAPTOR CODES

In the previous chapter, we studied the performance of Raptor codes in the presence

of SNRM for different output degree distributions and code rates. We observed that the

performance of Raptor codes under SNRM is considerably affected by the output distribu-

tion used by the inner (LT) decoder and that some distributions have better performance

compared to the others. This suggests the question if it is possible to design output degree

distributions that can be used to construct Raptor codes with higher tolerance to SNRM.

To answer this question, we formulated our search for SNRM tolerant output degree distri-

butions in the form of an optimization problem. Below, we give the details of setting up the

optimization program.

5.1 Optimization for the SNRM Case

As we learned, for Raptor codes and high enough |Υ|, SNR underestimation (Υ < 0)

is more detrimental compared to SNR overestimation (Υ > 0). The threshold at some

Υ = −a, i.e., α(−a) has the property that α(−a) ≥ α(x), x ∈ (−a, a]. Therefore, improving

the threshold performance at Υ = −a is expected to result in improvement for Υ ∈ [−a, a].

Therefore, if we are interested in designing a Raptor code that is more tolerant to SNRM

within the range [−a, a], we set up the optimization problem such that the channel is assumed

to have SNR offset of Υ = −a. A similar approach was successfully applied to LDPC codes

in [18].

69

5.1.1 Objective

The objective is: Design an output degree distribution (Ω(x)) s.t. for a given SNR

offset Υ, P
(l)
e defined in 4.13 goes to zero at the minimum Eb/No possible.

5.1.2 Formulating the Optimization

In order to optimize a Raptor code (k, C,Ω(x)) at an instance of the realized code

rate R, we fix the outer code C as a regular LDPC code (4, 204) with rate Ro = 50/51, and

therefore, the inner code is assigned the rate Ri = R/Ro. Regarding the SNRM side of the

problem, we fix the SNR offset (Υ) at the desired value, and compute the equivalent SNRM

ratio η = 10(Υ/10) = σ2/σ2
e . Then, we incorporate into the optimization by using the initial

distribution N (2
σ2η,

4
σ2η

2) instead of the N (2
σ2 ,

4
σ2) used when perfect SNR estimation is

assumed. This reduces the optimization problem to optimizing the output degree distribution

Ω(x).

The optimization problem: for the fixed parameters given above, the output degree

distribution of the inner LT code is optimized as described in the objective above. The

constraints are: (a) Ωi ≥ 0∀i ∈ [1, k], (b)
∑k

i=1 Ωi = 1, (c) ω(1 − λ(1 − x)) > x∀x ∈ (0, 1).

The first and second constraints provide the conditions necessary for a valid distribution.

The third condition ensures successful decoding on the LT part and recovery of all input

symbols. Also, since Ω1(x) shows the best performance on average considering all the tested

distributions, we use it as the initial distribution.

5.1.3 Results

Running the optimization program for a code rate half, and at three points of SNR

offset Υ = −5 dB, −3 dB, and -2 dB, We obtained the distributions Ωo1(x), Ωo2(x), and

Ωo3(x) given below, respectively.

70

Ωo1(x) = 0.071892x1 + 0.41454x2 + 0.16x3 + 0.16322x4 + 0.07298x5 + 0.0079x6

+ 0.00765x7 + 0.0055x8 + 0.00307x9 + 0.0028x10 + 0.00166x11 + 0.002x14

+ 0.016547x15 + 0.025x19 + 0.0102x20 + 0.013785x30 + 0.008x40 + 0.009x50

+ 0.00369x60

(5.1)

Ωo2(x) = 0.007837x1 + 0.512x2 + 0.1905x3 + 0.074644x5 + 0.1067x6 + 0.066017x15

+ 0.015253x19 + 0.026983x70

(5.2)

Ωo3(x) = 0.00799x1 + 0.49123x2 + 0.1812x3 + 0.043467x4 + 0.10232x5 + 0.024349x6

+ 0.002872x7 + 0.00101x8 + 0.025133x10 + 0.041566x11

+ 0.033736x12 + 0.04514x40

(5.3)

5.1.4 Performance Comparison

Figure 5.1 shows the Eb/No threshold for Υ = [−5, 5] dB of Raptor code with the

distribution Ωo1(x) compared to the threshold of the initial distribution (4.24) used in the

optimization. The output distribution Ωo1(x) is optimized for Υ = −5, and the gain achieved

at points Υ = −5 dB, and 5 dB is 0.3 and 0.6 dB, respectively. However that comes at a

cost for the threshold at Υ = 0 dB of 0.2 dB increase. Also, we notice that the gain achieved

at higher values of Υ i.e. around Υ = −5, and 5 dB comes at a cost for the threshold in the

region of Υ = 0 dB, specifically for Υ ∈ [−3, 2.5] dB.

The Eb/No threshold response of Ωo1(x) to SNR offset led us to try and improve the

performance within the region Υ ∈ [−3, 3] dB. Ωo1(x) is optimized for relatively high value

of Υ = −5 dB which leads to degrading the threshold at lower values of Υ. Therefore, Ωo2(x)

was optimized for Υ = −3 dB. As can be observed in Figure 5.2, the gain in threshold at

higher values values of Υ is less compared to Ωo1(x), however, the loss for lower values of Υ

is less as well.

71

Figure 5.1. SNR threshold vs SNR offset of Ω1(x) and Ωo1(x).

Figure 5.2. SNR threshold vs SNR offset of Ω1(x), Ωo1(x), and Ωo2(x).

72

Trying to optimize the output degree distribution for lower values of SNR offset such

as Υ = −2, offers no considerable change in the performance, e.g., Ωo3(x) was optimized for

Υ = −2 dB and the threshold response can be seen in Figure 5.3.

Figure 5.3. SNR threshold vs SNR offset of Ω1(x) and Ωo3(x).

The optimized output distributions Ωo4(x) and Ωo5(x) were obtained by optimizing

at realized code rates 1/3 and 5/7, respectively, and with Υ = −5 dB. Figures 5.4 and 5.5

show the threshold versus offset graphs of Raptor codes with the optimized distributions and

Ω1(x). The behavior of the codes is similar to that we previously saw with Ωo1(x).

Ωo4(x) = 0.010885x1 + 0.5742x2 + 0.2173x3 + 0.011625x4 + 0.008830x5

+ 0.004450x7 + 0.020398x8 + 0.024381x9 + 0.032298x10 + 0.026729x11

+ 0.020295x12 + 0.013272x13 + 0.029369x70

(5.4)

73

Ωo5(x) = 0.007674x1 + 0.516220x2 + 0.213390x3 + 0.00082x4 + 0.061620x5

+ 0.060650x6 + 0.021417x7 + 0.012584x8 + 0.044843x9 + 0.022504x20

+ 0.038279x12

(5.5)

Figure 5.4. SNR threshold vs SNR offset of Ω1(x) and Ωo4(x).

74

Figure 5.5. SNR threshold vs SNR offset of Ω1(x) and Ωo5(x).

The performance of the optimized output distributions at code rate instances other

than the rate they are optimized at is another aspect we tested. This shows the impact of

the variation in the code rate on the optimized distribution. Figures 5.6 and 5.7 show the

performance of Ωo1(x) optimized for R = 1/2 at code rates 1/3 and 5/7. As can be seen,

for high values of SNR offset the optimized distribution still performs better than other

distributions.

Figure 5.8 shows the comparison of BER performance between the distributions

Ω1(x), and Ωo1(x). The code parameters are; k = 10000, a regular (4, 204) LDPC precode,

and realized code rate half. For high levels of SNRM, the optimized distribution outperforms

other distributions which enables Raptor codes to have higher tolerance to SNRM.

75

Figure 5.6. Testing the performance of Ωo1(x) at R = 1/3.

Figure 5.7. Testing the performance of Ωo1(x) at R = 5/7.

76

Figure 5.8. BER performance comparison between the optimized distribution and Ω1(x).

5.1.5 Limits of the Decoding Threshold

As can be seen in Figure 5.3, when optimizing within the range Υ ∈ [−2, 2] dB, the

achievable gain in decoding threshold is very limited. This suggests that a lower bound for

the Eb/No threshold achievable at each value of Υ can be found by searching for valid output

distributions that can be used to design Raptor codes capable of successful decoding, at the

lowest Eb/No possible. The search process can be accomplished using the optimization

program described earlier. For a Raptor code with outer code fixed as a (4, 204) LDPC

code, Figure 5.9 shows the lower bounds on Eb/No values we found by using this approach.

Applying the Eb/No lower bound curves we obtained in Figure 5.9 to the tested and optimized

distributions we previously obtained the decoding thresholds, we obtain the curves shown in

Figures 5.11, 5.10, 5.12 and for the code rates R = 1/3, 1/2, and 5/7, respectively.

77

Figure 5.9. Lowest Eb/No values where valid output degree distributions could be found.

Figure 5.10. SNR threshold vs SNR offset with R = 1/3. LB: lower bound.

78

Figure 5.11. SNR threshold vs SNR offset with R = 1/2. LB: lower bound.

Figure 5.12. SNR threshold vs SNR offset with R = 5/7. LB: lower bound.

79

Determining such a lower bound gives us a general evaluation of the decoding thresh-

olds of Raptor codes under SNRM.

Finally, considering the various output degree distributions of Raptor codes we ex-

amined, and the distribution we designed in order to offer better tolerance to high levels of

SNRM, we can arrive at few conclusions. Optimizing the degree distributions for the pur-

pose of improving the decoding threshold and performance at higher values of SNR offset (Υ)

comes at a cost to the performance when no SNRM is present and lower values of Υ as can be

seen in Figures 5.1, 5.2, and 5.4. In channels where high levels of SNRM are likely to appear

our optimized distributions can outperform other distributions as can be seen in 5.1, 5.4.

However, the output distribution given in [2] offers better performance on average among

the distributions we tested. By comparing the asymptotic performance of Raptor code we

provided in our work and the asymptotic performance of irregular LDPC codes given in [18],

we observe that Raptor and irregular LDPC codes have a similar response to SNRM in the

case of SNR underestimation, while, irregular LDPC codes offer better performance in the

case of SNR overestimation.

80

CHAPTER 6

OPTIMAL INNER AND OUTER RATES OF RAPTOR CODES

Raptor codes are serially concatenated codes consisting of an inner LT code with

output distribution Ω(x), and an outer code that is usually a regular LDPC code. The inner

code is rateless and thus the inner rate Ri can potentially change to any value in the range

[0, 1]. On the other hand, the outer code rate Ro is usually fixed and fulfilled by the outer

code. At any instant, the overall realized rate of a Raptor code is R = RiRo.

Figure 6.1. Structure of Raptor codes.

Any instance of the overall code rate R can be realized by different inner and outer

code rate pairs (Ri, Ro) as long as R = RiRo. In other words, for a Raptor code different

outer codes can be used in the design. Given a Raptor code with output distribution Ω(x)

of the inner code, the rate pair chosen play a significant role in determining the performance

and threshold. For the sake of demonstration, given a Raptor code with inner code output

distribution Ω1(x) of (4.24), an LDPC outer code with node degrees (dv, dc), and overall code

rate R = 0.5, if we determine the Eb/No thresholds of the code for the rate pairs (Ri, Ro)

given below, such that each outer code rate is realized by the corresponding node degrees

given in Table 6.1.

(Ri, Ro) = {(0.5/0.75, 0.75), (0.5/0.8, 0.8), (0.5/0.85, 0.85), (0.5/0.9, 0.9)

, (0.5/0.925, 0.925), (0.5/0.95, 0.95), (0.5/0.96, 0.96), (0.5/0.9, 0.97)

, (0.5/0.9, 0.98), (0.5/0.99, 0.99)}.

81

Ro (dv, dc)
0.99 (4,400)
0.98 (4,204)
0.9699 (4,133)
0.96 (4,100)
0.95 (4,80)
0.9245 (4,53)
0.9 (4,40)
0.8519 (4,27)
0.8 (4,20)
0.75 (4,16)

Table 6.1. Regular LDPC codes and their respective rates.

Then, we obtain the decoding thresholds shown in Figure 6.2 for each rate pair. In Figure 6.2,

for the sake of simplicity, only the outer code rate is indicated but since the overall realized

code rate R is defined as R = 0.5, then, the inner rate can be inferred as Ri = 0.5/Ro.

Figure 6.2. Decoding threshold vs code rate pair (Ri, Ro).

Figure 6.2 shows that for the Raptor code with parameters specified above, the opti-

mal rate pair in the set given above is (0.5/0.98, 0.98) since the minimum Eb/No threshold

can be achieved with this pair. Therefore, a question to be asked is that given a Raptor code

with a fixed output distribution, what is the best rate pair to use? Also for some instance

82

of R and given the set of all rate pairs (Ri, Ro) s.t. R = RiRo, what is the optimal output

degree distribution Ω(x) and rate pair combination? Before trying to answer these questions

we turn to a more restricted one, given an overall rate R and a fixed output distribution

Ω(x), what is the effect of a given rate pair on the threshold and how the optimal rate pair

that achieves the lowest Eb/No threshold is decided?

6.1 Effect of Rate Pair Choice on Raptor Codes

Assume we are given a Raptor code with output degree distribution Ω(x), an outer

code C, and some overall rate R. Choosing an outer code with rate Ro leads to fixing the

Eb/No threshold value for the outer decoder. We denote the decoding threshold as Eo
tsh(Ro)

in order to signify that we consider as a function of the outer rate chosen. For concatenated

codes such as Raptor codes, the threshold of the outer code can be translated into an

equivalent BER known as the critical BER which we denote as (Po
e,tsh) [12]. The value of

Po
e,tsh can be calculated as follows

σotsh(Ro) =

(
1

2RoEo
tsh(Ro)

) 1
2

,

P o
e,tsh = Q

(
1

σotsh(Ro)

)
.

where σotsh(Ro) is the decoding threshold equivalent to Eo
tsh(Ro) but expressed in terms of

the channel noise parameter.

Unless the inner the decoder can reduce the BER of the received codeword at its

output to a value Pi
e,out ≤ Po

e,tsh, the outer decoder cannot reduce the BER at its output

below a constant value c > 0. Therefore, the Eb/No threshold value of a Raptor code is

defined as the minimum Eb/No at which the output BER of the inner decoder Pi
e,out is equal

to Po
e,tsh.

From the discussion above we can conclude that given a Raptor code, for every outer

83

code with rate Ro, there is a corresponding BER (Po
e,tsh) that the inner decoder with rate

(Ri = R/Ro) must produce at its output with as much channel Eb/No as necessary. This

leads to different rate pairs having different Eb/No thresholds as we can see in Figure 6.2.

6.2 Decoding Threshold of Raptor Codes

The inner decoder of Raptor codes is an LT code. This code exhibits relatively

high error floors and sharp waterfall region curves. These factors play an important role

in determining the threshold of Raptor codes as we will see below. Figure 6.3 shows the

asymptotic BER curves of the inner (LT) decoder with output distribution (4.24), overall

rate R = 0.5, and for the inner rates shown on the figure.

Figure 6.3. Asymptomatic BER curves of the inner decoder.

Assuming we couple the inner code corresponding to Figure 6.3 above with a regular

LDPC outer code such that each outer rate Ri = {0.99, 0.98, 0.97, 0.96} is realized by the

corresponding code from Table 6.2. The Eb/No threshold value at each rate pair (Ri, Ro)

84

from the set:

{(0.5/0.99, 0.99), (0.5/0.98, 0.98), (0.5/0.97, 0.97), (0.5/0.96, 0.96)}

can be determined as shown in Figure 6.4. The threshold is reached when the output BER

of the inner code (Pi
e,out) reaches (intersects with) the horizontal line representing the critical

BER (Po
e,tsh) of the corresponding outer code. Comparing the thresholds at the rate pairs

tested, (0.5/0.98, 0.98) returns the best (lowest) Eb/No threshold.

Figure 6.4. Intersection of Po
e,tsh with asymptomatic BER curves of the outer LDPC decoder.

85

R (dv, dc) Eo
tsh(Ro) dB P o

e,tsh

0.99 (4,400) 6.2694 1.89 ×10−3

0.98 (4,204) 5.595 3.81 ×10−3

0.9699 (4,133) 5.1487 5.87 ×10−3

0.96 (4,100) 4.8207 7.89 ×10−3

0.95 (4,80) 4.5613 9.89 ×10−3

0.9245 (4,53) 4.0433 1.52 ×10−2

0.9 (4,53) 3.6700 2.03 ×10−2

0.8519 (4,27) 3.6700 3.09 ×10−2

0.8 (4,20) 2.6857 4.24 ×10−2

0.75 (4,16) 2.3591 5.40 ×10−2

Table 6.2. Regular LDPC codes and their respective rates and thresholds.

Examining a Raptor code with another output distribution, Figure 6.5 below shows

the asymptomatic inner code BER curves of a rate half Raptor code with output distribution

Ω2(x) of (6.1), and their intersection points with the critical BER of the outer decoder for

each of the (Ri, Ro) rate pairs shown. We can observe that the rate pair (0.5/0.98, 0.98)

proves to be the best choice.

Figure 6.5. Intersection of Po
e,tsh with asymptomatic BER curves of the outer LDPC decoder.

86

Ω2(x) = 0.00967x+ 0.45025x2 + 0.20937x3 + 0.02332x4 + 0.14735x5

+ 0.11249x11 + 0.04755x40

(6.1)

Figures 6.6, 6.7, and 6.8 illustrate the thresholds of Raptor codes with the distribu-

tions Ω1(x) of (4.24), Ω2(x) of (6.1), and Ω4(x) of (4.26), respectively, for the rate pairs

shown. The outer code rates are realized by the LDPC codes given in Table 6.2. Each figure

shows the thresholds for three instances of the overall code rate R = 1/3, 1/2, and 5/7. For

the first two codes and for all three instances of the code rate R tested, the optimal pair is

(R/0.98, 0.98) since it is the rate pair that leads to the lowest SNR threshold, while, for the

third code it is (R/0.99, 0.99). Only the outer code rate is indicated on the figures since the

inner rate can be inferred as Ri = R/Ro.

Figure 6.6. Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω1(x).

87

Figure 6.7. Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω2(x).

Figure 6.8. Decoding threshold vs code rate pair (Ri, Ro) with output distribution Ω4(x).

88

6.3 The Optimal Rate Pair with a Capacity Achieving Outer Code

Given a Raptor code with a fixed output distribution Ω(x), overall rate R, and a

set of rate pairs (Ri, Ro) such that each Ro is realized by a fixed regular LDPC code we

were able to determine the optimal rate pair in a given set. Next, we add another de-

gree of freedom to our problem by removing the condition that each Ro is realized by

a specific LDPC code. Instead, we assume we can use a capacity-achieving outer code

with a rate of Ro. We will restrict our search for the optimal rate pair to the discrete set

{(R/0.99, 0.99), (R/0.98, 0.98) . . . (R/0.96, 0.96)}, however, the same approach can be easily

extended to more refined search space.

In order to find the optimal rate pair assuming a capacity achieving outer code, we

start by extracting the critical BER for each rate Ro as follows

σocap =

(
1

2RoEo
cap(Ro)

) 1
2

, (6.2)

P o
e,cap = Q

(
1

σocap

)
. (6.3)

Where, Eo
cap(Ro) is the Shannon SNR limit for rate Ro. Table 6.3 shows the Shannon Eb/No

thresholds and the corresponding critical BERs (P o
e,cap) for the rates listed.

R Eo
tsh(Ro) dB P o

e,cap

0.99 6.015 2.5 ×10−3

0.98 5.31 4.9 ×10−3

0.9699 4.85 7.5 ×10−3

0.96 4.484 1.01 ×10−3

0.95 4.195 1.27 ×10−3

0.9245 3.628 1.95 ×10−2

0.9 3.205 2.62 ×10−2

0.8519 2.564 3.98 ×10−2

0.8 2.042 5.48 ×10−2

0.75 1.628 6.98 ×10−2

Table 6.3. Critical BERs of capacity achieving codes.

Assuming a capacity achieving outer code, we can determine the asymptotically op-

89

timal code rate pair for a given output distribution. This answers the question whether for

a given output distribution Ω(x) the rate pair we use is asymptotically optimal or improve-

ment is possible. In order to determine the optimal rate pair (Ri, Ro), we rely on the same

method we used earlier with the difference that we use critical BERs corresponding to the

Shannon limit thresholds (P o
e, cap) given in Table 6.3 rather than the LDPC code thresholds

given in Table 6.2. We consider two example cases with an overall rate of R = 1/2. For

the distribution (4.24) and as shown in Figure 6.9 below, we can see that the asymptotically

optimal rate pair is (0.5/0.99, 0.99) with a threshold Eb/No = 0.48 dB. This leaves some

room for improvement from the earlier case, where, a regular LDPC outer code was used

and the optimal rate pair was (0.5/0.98, 0.98) with threshold Eb/No = 0.51 dB.

Figure 6.9. Intersection of Po
e,tsh with asymptomatic BER curves of capacity achieving outer

decoder.

On the other hand, for a Raptor code with output distribution (6.1) as we can see in

Figure 6.10 the asymptotically optimal code rate pair is (0.5/0.98, 0.98) which is the same

optimal rate pair when a regular LDPC code is used as the outer code.

90

Figure 6.10. Intersection of Po
e,tsh with asymptomatic BER curves of capacity achieving outer

decoder.

Figures 6.11, 6.12, and 6.13 below show the thresholds of Raptor codes with a capacity

achieving outer code, and with the output distributions (4.24), (6.1), and (4.26), respectively,

for the rate pairs shown. Each figure shows the thresholds for three instances of the overall

code rate R = 1/3, 1/2, and 5/7. As expected, for the tested distributions the threshold

improves as the outer code improves. We also observe that the optimal rate for the output

distributions Ω2(x) and Ω4(x) stays the same, while, for Ω1(x) it changes to (R/0.99, 0.99).

91

Figure 6.11. Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and
Ω1(x).

Figure 6.12. Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and
Ω2(x).

92

Figure 6.13. Decoding threshold vs code rate pair (Ri, Ro) with optimal outer code and
Ω4(x).

6.4 Asymptotically Optimal Rate Pairs

Raptor codes are generally designed based on the assumption that the outer code is

a regular LDPC code despite the fact that irregular LDPC codes can offer better thresholds

and performance. The reason for that can be explained using Figure 6.14 below, where the

Eb/No thresholds of a capacity-achieving code and regular LDPC codes with node degrees

(4, b 4
1−Re) are compared.

As can be observed, for high rates the difference between the thresholds of a regu-

lar and a capacity-achieving code is much less than the difference for lower rates, which

implies that for an irregular LDPC code the thresholds are even closer for high rates.

Therefore, using a regular outer code comes with an acceptably small sacrifice in perfor-

mance compared to the gain in computational complexity. For lower rates, the thresh-

old of regular LDPC codes moves away from the channel capacity limit, while irregu-

lar codes can reach extremely close to the channel limit [24]. The implication of this

when LDPC codes are used as outer codes is that as the outer rate decreases the criti-

93

Figure 6.14. Threshold vs code rate pair (Ri, Ro).

cal BER of irregular codes increases faster than of regular codes. This leads to the ques-

tion of whether using irregular outer codes can cause the optimal outer rate for Raptor

codes to occur at lower rates. In order to answer this question, for each of the rate pairs

{(0.5/0.99, 0.99), (0.5/0.98, 0.98), (0.5/0.97, 0.97), (0.5/0.95, 0.95), (0.5/0.9,

0.9), (0.5/0.8, 0.8), (0.5/0.75, 0.75)} we determined the minimum Eb/No threshold at which

an output degree distribution that can be used to design a functioning Raptor code exists

as given in Figure 6.15.

As can be seen in Figure 6.15, even if a capacity achieving outer code is used to design

Raptor codes, the optimal performance will still be provided by higher rates. Figure 6.15

shows that as the outer rate increases, the threshold of Raptor codes improves. The reason

for this behavior can be explained using Figures 6.4, 6.5, 6.9, and 6.10, whereas the outer rate

increases, the waterfall region shifts to the left and the prospect of a lower SNR threshold

improves. LT codes are very sensitive to changes in the overhead, and this behavior explains

why the optimal outer rate of Raptor codes cannot occur at lower rates.

94

Figure 6.15. Threshold vs code rate pair (Ri, Ro).

95

6.5 Designing Optimized Raptor Codes

Given a set of outer code rates Ro = {Ro1, Ro2, . . . , Roκ} and a set of inner code rates

Ri = {Ri1, Ri2, . . . , Riκ}, where Ri = R/Ro. In an ideal case, if Ro1 > Ro2 > · · · > Roκ, and

equivalently Ri1 < Ri2 < · · · < Riκ, the best (lowest) Eb/No threshold can be provided by

the pair (Ri1, Ro1). This is because the BER curve with the lowest SNR will be provided

by the inner decoder with a rate of Ri1. Therefore, aiming to design Raptor codes by using

the highest outer rate possible increase the potential for achieving a lower (better) SNR

threshold. Based on this observation, we propose an optimization method that considers

the optimality of the inner and outer rates in designing the output distribution of Raptor

codes. Other optimization and design methods we found in the literature fix the outer code

rate to a constant value, usually 50/51, or ignore it in the process of searching the space of

distributions for the optimized output distributions. The proposed optimization algorithm

starts with the highest possible outer rate and hence the lowest inner rate, returns the

optimized distribution and calculates its threshold. Next, the outer rate is decreased by a

value of 0.01 and the output distribution is optimized for the new inner rate. This process

continues as long the newfound distribution has a lower SNR threshold.

6.5.1 Formulating the Optimization

The objective is: design an output degree distribution such that P
(l)
e defined in (4.13)

goes to zero at the minimum Eb/No value possible for each given rate pair (Ri, Ro).

For a given instance of the overall code rate R, the outer code is fixed as a regular

LDPC code with rate Ro and fulfilled by its equivalent code in Table 6.2. The output degree

distribution of the inner LT code is optimized as described in the objective above. The

constraints are: (a) Ωi ≥ 0∀i ∈ [1, k], (b)
∑k

i=1 Ωi = 1, (c) ω(1 − λ(1 − x)) > x∀x ∈ (0, 1).

The first and second constraints provide the conditions necessary for a valid distribution.

The third condition ensures successful decoding on the LT part and recovery of all input

symbols.

96

6.5.2 Optimized Distributions

Considering the outer rate Ro = 0.99 as the highest rate possible, we ran the opti-

mization algorithm for three instances of the realized code rate R = 1/2, 5/7, and 1/3 and

obtained the output distributions Ωo1(x), Ωo2(x), and Ωo3(x), respectively.

Ωo1(x) = 0.010231x1 + 0.44309x2 + 0.23276x3 + 0.085498x5 + 0.064981x6

+ 0.047326x7 + 0.001434x8 + 0.05186x15 + 0.033444x19 + 0.029376x70

Ωo2(x) = 0.0105240x+ 0.46261x2 + 0.23760x3 + 0.017284x5 + 0.163260x6

+ 0.048895x15 + 0.032601x19 + 0.02723x70

Ωo3(x) = 0.009416x+ 0.433130x2 + 0.190730x3 + 0.076959x4 + 0.115320x5

+ 0.029014x10 + 0.095242x11 + 0.050189x40

As can be seen in Figure 6.16, the optimal rate pair for the optimized distributions

is (R/0.99, 0.99).

Figure 6.16. Threshold vs code rate pair (Ri, Ro).

97

6.5.3 Performance Comparison

Compared to the distributions designed in [12], which provide the lowest SNR thresh-

olds we found in the literature for Raptor codes, the optimized distributions reduce (improve)

the SNR decoding thresholds about 0.05 dB. Figure 6.17 shows the asymptotic BER perfor-

mance of Raptor codes with our optimized output distribution compared with the output

distributions Ω2(x), Ω5(x), and Ω6(x) given in [12], and Ω1(x) given in [2]. The optimized

distributions can improve upon the performance of Raptor code compared to degree distri-

butions that do not consider the inner and outer rate optimality in the design process.

Figure 6.17. Comparing asymptotic BER performance.

Ω2(x) = 0.00967x+ 0.45025x2 + 0.20937x3 + 0.02332x4 + 0.14735x5 + 0.11249x11 + 0.04755x40

Ω5(x) = 0.00959x1 + 0.47527x2 + 0.19096x3 + 0.04689x4 + 0.12159x5 + 0.02441x10 + 0.08605x11

+ 0.05186x15 + 0.04523x40

Ω6(x) = 0.00896x1 + 0.44293x2 + 0.13185x3 + 0.21253x4 + 0.00602x5 + 0.14513x10 + 0.0525x40

98

For overall realized code rate R = 0.5, Figure 6.18 show the decoded BERs of a

Raptor code with the optimized output distribution Ωo1(x) operating at its optimal rate

pair (0.5/0.99, 0.99) compared to that of a Raptor code with distribution Ω2(x) operating

at its optimal rate pair (0.5/0.98, 0.98). The advantage of supplying the inner code with

lower rate i.e. higher redundancy by using the rate pair (R/0.99, 0.99) can be observed in

the better performance Ωo1(x) offers.

Figure 6.18. Comparing BER performance at R = 1
2
.

Using higher outer code rates can lead to an increase in the number of cycles in the

decoding graph of the outer LDPC code. Figure 6.19 shows the BER performance of a

Raptor code at realized code rate half and with the output distribution Ωo1(x) and (4, 400)

LDPC outer code. The curves demonstrate the performance in two cases: (a) cycles are

allowed to form freely in the decoding graph of the LDPC code, and (b) a cycle removing

algorithm is used by the LDPC code that removes cycles while maintaining the rank of the

parity check matrix. The curves indicate that the general impact of cycles on the decoding

performance of the optimized codes is noticeable, though not significant.

99

Figure 6.19. Effects of cycles on decoding, .

We used our proposed optimization approach in designing Raptor codes that are

meant to improve the decoding threshold and performance on the BIAWGN channel, with

no constraints on the output degree distributions and Poisson input degree distributions.

However, the approach can be extended to other channels, and output degree distributions

that are designed for specific applications such as unequal error protection, cooperative

networks, etc.

100

CHAPTER 7

CONCLUSION

Channel codes that use belief propagation decoding on the BIAWGN channel such

as Raptor codes need an accurate estimation of the channel SNR. When the estimated SNR

is not equal to the true channel SNR, this condition is known as SNR mismatch and it can

degrade the performance of the decoder or cause it to completely fail if the mismatch is

high enough. We studied the effects of SNRM on Raptor codes. We started by studying the

suitability of the DDE algorithm to simulate the behavior of Raptor codes under SNRM and

applied the required modifications for the algorithm to correctly simulate the BP decoder of

Raptor codes in the presence of SNRM. Using DDE, we determined the decoding threshold

of Raptor codes for different values of SNR offset. We tested different output distributions

and at multiple instances of the realized code rate in order to reach more accurate and

general conclusions. Determining the threshold gave us a means to quantify the effects of

SNRM on Raptor codes. We observed that SNR underestimation is slightly less detrimental

to BP decoding compared to SNR overestimation for lower levels of mismatch, however,

as the mismatch increases underestimation becomes more detrimental, a property that was

previously observed in LDPC and Turbo codes. Determining the threshold can be used to

estimate how much SNRM tolerance to expect for a given channel SNR value. Equivalently,

it can help in estimating the SNR needed to ensure a certain level of tolerance to SNRM.

Also, comparing the thresholds of different Raptor codes for a range of SNRM ratios, we can

recognize which codes are comparably more tolerant to SNRM. By comparing the asymptotic

performance of Raptor codes and irregular LDPC codes, we observed that they have a similar

response to SNRM in the case of SNR underestimation, while, irregular LDPC codes offer

101

better performance in the case of SNR overestimation. Taking advantage of what we learned

from the effects of SNRM on Raptor codes, we proposed an optimization method to design

output degree distributions of the LT part that can be used to construct Raptor codes with

more tolerance to high levels of SNRM. In channels with high levels of SNRM, our optimized

distributions can outperform other distributions. However, the output distribution given

in [2] offers, on average, the better performance among the distributions we tested and

optimized.

Another aspect of Raptor codes that can be used to improve the performance is using

optimal inner and outer rates. Using DDE based asymptotic analysis, we showed the effect

of the rate pair choice on the decoding threshold of Raptor codes and how the optimal rate

pair is decided. Testing Raptor codes with different output distributions, we showed that

each code can have a different optimal rate pair. Using the optimal rate pair we can further

improve the performance and avoid suboptimal use of Raptor codes in terms of inner and

outer rates. Also, using asymptotic analysis we reached the conclusion that even by using a

capacity achieving outer code, the optimal outer rate of Raptor codes cannot occur at lower

values. Finally, we proposed an optimization method that considers the optimality of the

code rate pair. The designed distributions show improvement in both the decoding threshold

and performance compared to other code designs that do not consider the optimality of the

inner and outer rates.

102

BIBLIOGRAPHY

103

BIBLIOGRAPHY

[1] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A digital
fountain approach to reliable distribution of bulk data. In Proceedings of the ACM
SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, SIGCOMM, pages 56–67. ACM, 1998.

[2] A. Shokrollahi. Raptor codes. IEEE Transactions on Information Theory, 52(6):2551–
2567, June 2006.

[3] M. Luby. LT codes. In Foundations of Computer Science. Proceedings. The 43rd Annual
IEEE Symposium on, pages 271–280, 2002.

[4] R. G. Gallager. Low density parity-check codes. Cambridge, MA: MIT Press, 1963.

[5] D. MacKay and R. Neal. Good codes based on very sparse matrices. Proc. 5th IMA
Conf., Cryptography and Coding (Lecture Notes in Computer Science). Berlin, Ger-
many: Springer-Verlag, 1025:100–111, 1995.

[6] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, April 1950.

[7] R. Palanki and J. S. Yedidia. Rateless codes on noisy channels. in Proc. IEEE Int.
Symp. Inform. Theory, June–July, page 37, Jun. 2004.

[8] O. Etesami and A. Shokrollahi. Raptor codes on binary memoryless symmetric channels.
IEEE Transactions on Information Theory, 52(5):2033–2051, May 2006.

[9] Z. Cheng, J. Castura, and Y. Mao. On the design of Raptor codes for binary-input
Gaussian channels. IEEE Transactions on Communications, 57(11):3269–3277, Nov
2009.

[10] S. H. Kuo, Y. L. Guan, S. K. Lee, and M. C. Lin. A design of physical-layer raptor
codes for wide SNR ranges. IEEE Communications Letters, 18(3):491–494, March 2014.

[11] A. Kharel and L. Cao. Improved fountain codes for BI-AWGN channels. In 2017 IEEE
Wireless Communications and Networking Conference (WCNC), pages 1–6, March
2017.

[12] A. Kharel and L. Cao. Analysis and design of physical layer Raptor codes. IEEE
Communications Letters, PP(99):1–1, 2017.

104

[13] R. M. Tanner. A recursive approach to low complexity codes. EEE Trans. Information
Theory, 27(9):533–547, Sep. 1981.

[14] F. Zarkeshvari J. Zhao and A. Banihashemi. On implementation of min-sum algorithm
and its modifications for decoding low-density parity-check (LDPC) codes. IEEE Trans.
Commun., 53(4):549–554, Apr. 2005.

[15] V. Savin. Self-corrected min-sum decoding of LDPC codes. In 2008 IEEE International
Symposium on Information Theory, pages 146–150, July 2008.

[16] and R. M. Tanner and C. Jones and. Improved min-sum decoding algorithms for ir-
regular LDPC codes. In Proceedings. International Symposium on Information Theory,
2005. ISIT 2005., pages 449–453, Sep. 2005.

[17] L. Yuan. Performance of min-sum for decoding fountain codes over biawgn channels.
In 2012 8th International Conference on Wireless Communications, Networking and
Mobile Computing, pages 1–4, Sep. 2012.

[18] H. Saeedi and A. H. Banihashemi. Design of irregular LDPC codes for BIAWGN chan-
nels with SNR mismatch. IEEE Transactions on Communications, 57(1):6–11, January
2009.

[19] T. Richardson A. Shokrollahi and R. Urbanke. Design of capacity-approaching irregular
low-density parity-check codes. IEEE Trans. Inform. Theory, 47:619–637, Feb. 2001.

[20] Sae-Young Chung, T. J. Richardson, and R. L. Urbanke. Analysis of sum-product de-
coding of low-density parity-check codes using a gaussian approximation. IEEE Trans-
actions on Information Theory, 47(2):657–670, Feb 2001.

[21] S. ten Brink. Convergence behavior of iteratively decoded parallel concatenated codes.
IEEE Transactions on Communications, 49(10):1727–1737, Oct 2001.

[22] H. Saeedi and A. H. Banihashemi. Performance of belief propagation for decoding LDPC
codes in the presence of channel estimation error. IEEE Transactions on Communica-
tions, 55(1):83–89, Jan 2007.

[23] L. Yuan, J. Pan, and L. Yuan. Performance analysis for decoding lt codes over bi-
awgn channels with snr mismatch. In 2017 9th International Conference on Wireless
Communications and Signal Processing (WCSP), pages 1–6, Oct 2017.

[24] Sae-Young Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of
low-density parity-check codes within 0.0045 db of the Shannon limit. IEEE Commu-
nications Letters, 5(2):58–60, Feb 2001.

[25] D. Mackay. Fountain codes. IEEE Proc. Commnications, 152(2), Dec. 2005.

[26] D. MacKay. Good error-correcting codes based on very sparse matrices. IEEE Trans.
Inform. Theory, 45:399–431, Mar. 1999.

105

[27] David J.C. MacKay and Radford M. Neal. Good codes based on very sparse matrices.
Cryptography and coding: 5th IMA conference, pages 100–111, Dec. 1995.

[28] William E. Ryan and Shu Lin. Channel Codes:Classical and Modern. Cambridge Uni-
versity press, 2009.

[29] T. J. Richardson and R. Urbanke. Efficient encoding of low-density parity-check codes.
IEEE Trans. Inform. Theory, 47:638–656, Feb. 2001.

[30] Y. Li M. Yang and W. Ryan. Design of efficiently encodable moderate-length high-rate
irregular LDPC codes. IEEE Trans. Commun., 52:564–571, Apr. 2004.

[31] J. Pearl. Probabilistic Reasoning in Intelligent Systems. San Mateo, CA, Morgan Kauf-
mann, 1988.

[32] M. Watson T. Stockhammer M. Luby, A. Shokrollahi and L. Minder. Rap-
torq forward error correction scheme for object delivery. In Available at
http://tools.ietf.org/html/draft-ietf-rmtbb-fec-raptorq-03, Aug. 2010.

[33] M. Mitzenmacher M. Luby and A. Shokrollahi. Analysis of random processes via and-
or tree evaluation. in Proc. 9th Annu. ACM-SIAM Symp. Discrete Algorithms, San
Francisco,CA, page 364–373, Jan. 1998.

[34] M. Luby. A note on the design of degree distributions. unpublished, 2001.

[35] T. A. Summers and S. G. Wilson. SNR mismatch and online estimation in turbo
decoding. IEEE Transactions on Communications, 46(4):421–423, April 1998.

[36] M. A. Jordan and R. A. Nichols. The effects of channel characteristics on Turbo code
performance. In Military Communications Conference, 1996. MILCOM ’96, Conference
Proceedings, IEEE, volume 1, pages 17–21 vol.1, Oct 1996.

[37] S. Asoodeh. New stopping criterion for Turbo code in the presence of SNR mismatch.
In International Congress on Ultra Modern Telecommunications and Control Systems,
pages 182–186, Oct 2010.

[38] Chun Ling Kei and Wai Ho Mow. A class of switching Turbo decoders against severe
SNR mismatch. In Proceedings IEEE 56th Vehicular Technology Conference, volume 4,
pages 2197–2200 vol.4, Sept 2002.

[39] M. El-Khamy, Jinhong Wu, Jungwon Lee, H. Roh, and Inyup Kang. Near-optimal Turbo
decoding in presence of SNR estimation error. In 2012 IEEE Global Communications
Conference (GLOBECOM), pages 3737–3742, Dec 2012.

[40] S. Jayasooriya, M. Shirvanimoghaddam, L. Ong, and S. J. Johnson. Analysis and design
of Raptor codes using a multi-edge framework. IEEE Transactions on Communications,
65(12):5123–5136, Dec 2017.

106

VITA

Hussein Fadhel graduated top of his class with B.Sc. degree in electronics and control

engineering from the technical college, Kirkuk, Iraq in 2007 and he worked there after gradu-

ation as a teaching assistant at the labs of the electronics and control engineering department

from 2008 to 2010. In 2010 he was awarded a Fulbright scholarship to pursue M.S. degree

in electrical engineering and joined the University of Mississippi, USA in August 2010. He

received M.S. in engineering science with the emphasis in telecommunications in May 2012.

After that he returned to his job at the technical college, Kirkuk, Iraq and worked as an in-

structor from 2012 to 2104. Then, started his Ph.D. program at the University of Mississippi,

USA in January 2015 and earned a Ph.D. in engineering science - electrical engineering in

May 2019. During his Ph.D. program, he worked as a teaching assistant, research assistant,

and lab instructor at the department of electrical engineering.

107

	Raptor Codes for BIAWGN Channel: SNR Mismatch and the Optimality of the Inner and Outer Rates
	Recommended Citation

	tmp.1569246484.pdf.heBI1

