18,302 research outputs found

    An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles

    Get PDF
    Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost

    Least costly energy management for series hybrid electric vehicles

    Full text link
    Energy management of plug-in Hybrid Electric Vehicles (HEVs) has different challenges from non-plug-in HEVs, due to bigger batteries and grid recharging. Instead of tackling it to pursue energetic efficiency, an approach minimizing the driving cost incurred by the user - the combined costs of fuel, grid energy and battery degradation - is here proposed. A real-time approximation of the resulting optimal policy is then provided, as well as some analytic insight into its dependence on the system parameters. The advantages of the proposed formulation and the effectiveness of the real-time strategy are shown by means of a thorough simulation campaign

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A nonlinear model predictive control (NMPC) for the thermal management (TM) of Plug-in Hybrid Electric Vehicles (PHEVs) is presented. TM in PHEVs is crucial to ensure good components performance and durability in all possible climate scenarios. A drawback of accurate TM solutions is the higher electrical consumption due to the increasing number of low voltage (LV) actuators used in the cooling circuits. Hence, more complex control strategies are needed for minimizing components thermal stress and at the same time electrical consumption. In this context, NMPC arises as a powerful method for achieving multiple objectives in Multiple input- Multiple output systems. This paper proposes an NMPC for the TM of the High Voltage (HV) battery and the power electronics (PE) cooling circuit in a PHEV. It distinguishes itself from the previously NMPC reported methods in the automotive sector by the complexity of its controlled plant which is highly nonlinear and controlled by numerous variables. The implemented model of the plant, which is based on experimental data and multi- domain physical equations, has been validated using six different driving cycles logged in a real vehicle, obtaining a maximum error, in comparison with the real temperatures, of 2C. For one of the six cycles, an NMPC software-in-the loop (SIL) is presented, where the models inside the controller and for the controlled plant are the same. This simulation is compared to the finite-state machine-based strategy performed in the real vehicle. The results show that NMPC keeps the battery at healthier temperatures and in addition reduces the cooling electrical consumption by more than 5%. In terms of the objective function, an accumulated and weighted sum of the two goals, this improvement amounts 30%. Finally, the online SIL presented in this paper, suggests that the used optimizer is fast enough for a future implementation in the vehicle.Accepted versio

    Phase 1 of the near term hybrid passenger vehicle development program

    Get PDF
    In order to meet project requirements and be competitive in the 1985 market, the proposed six-passenger vehicle incorporates a high power type Ni-Zn battery, which by making electric-only traction possible, permits the achievement of an optimized control strategy based on electric-only traction to a set battery depth of discharge, followed by hybrid operation with thermal primary energy. This results in a highly efficient hybrid propulsion subsystem. Technical solutions are available to contain energy waste by reducing vehicle weight, rolling resistance, and drag coefficient. Reproaching new 1985 full size vehicles of the conventional type with hybrids of the proposed type would result in a U.S. average gasoline saving per vehicle of 1,261 liters/year and an average energy saving per vehicle of 27,133 MJ/year

    Predictive control for energy management in all/more electric vehicles with multiple energy storage units

    Get PDF
    The paper describes the application of Model Predictive Control (MPC) methodologies for application to electric and hybrid-electric vehicle drive-train formats incorporating multiple energy/power sources. Particular emphasis is given to the co-ordinated management of energy flow from the multiple sources to address issues of extended vehicle range and battery life-time for all-electric drive-trains, and emissions reduction and drive-train torsional oscillations, for hybrid-electric counterparts, whilst accommodating operational constraints and, ultimately, generic non-standard driving cycles

    Phase 1 of the near term hybrid passenger vehicle development program. Appendix B: Trade-off studies, volume 1

    Get PDF
    Tradeoff study activities and the analysis process used are described with emphasis on (1) review of the alternatives; (2) vehicle architecture; and (3) evaluation of the propulsion system alternatives; interim results are presented for the basic hybrid vehicle characterization; vehicle scheme development; propulsion system power and transmission ratios; vehicle weight; energy consumption and emissions; performance; production costs; reliability, availability and maintainability; life cycle costs, and operational quality. The final vehicle conceptual design is examined
    • 

    corecore