1,903 research outputs found

    A review of optimization approaches for controlling water-cooled central cooling systems

    Get PDF
    Buildings consume a large amount of energy across all sectors of society, and a large proportion of building energy is used by HVAC systems to provide a comfortable and healthy indoor environment. In medium and large-size buildings, the central cooling system accounts for a major share of the energy consumption of the HVAC system. Improving the cooling system efficiency has gained much attention as the reduction of cooling system energy use can effectively contribute to environmental sustainability. The control and operation play an important role in central cooling system energy efficiency under dynamic working conditions. It has been proven that optimization of the control of the central cooling system can notably reduce the energy consumption of the system and mitigate greenhouse gas emissions. In recent years, numerous studies focus on this topic to improve the performance of optimal control in different aspects (e.g., energy efficiency, stability, robustness, and computation efficiency). This paper provides an up-to-date overview of the research and development of optimization approaches for controlling water-cooled central cooling systems, helping readers to understand the new significant trends and achievements in this area. The optimization approaches have been classified as system-model-based and data-based. In this paper, the optimization methodology is introduced first by summarizing the key decision variables, objective function, constraints, and optimization algorithms. The principle and performance of various optimization approaches are then summarized and compared according to their classification. Finally, the challenges and development trends for optimal control of water-cooled central cooling systems are discussed

    Optimal chiller loading in dual-temperature chilled water plants for energy saving

    Get PDF
    Buildings account for almost 40% of global energy consumption. Due to the high energy consumption of chilled water plants, various studies have optimized chiller loading in plants with multiple chillers for energy conservation. However, few studies have optimized dual-temperature chiller plants, even though better energy efficiency could be achieved than that of typical single-temperature chiller plants. This paper proposes two optimal control strategies for dual-temperature chilled water plants, strategy B and strategy C. Strategy B optimizes the cooling load distribution of the chillers in each group by adjusting the cooling load ratio of each chiller. Under this strategy, the energy consumption of the chiller plant for the entire cooling season was reduced by 10.1%. Meanwhile, strategy C optimizes the cooling load distribution among chillers in the same chiller group and between two chiller groups, by simultaneously adjusting the temperature setpoint of the air leaving the primary cooling coils and the partial load ratio of each chiller. By considering both the impact of the chilled water loop and the air handling process, strategy C achieved greater energy saving (16.4%) for the entire cooling season. In hot summer months, the energy savings arise mainly from optimization of the cooling load distribution among chillers in each chiller group, as this optimization accounts for 63–68% of the total savings. In moderate months, optimizing the cooling load distribution among chillers in the same group and optimizing the distribution between two chiller groups account for nearly the same proportion of the total energy savings

    Energy-efficient HVAC systems: Simulation-empirical modelling and gradient optimization

    Full text link
    This paper addresses the energy saving problem of air-cooled central cooling plant systems using the model-based gradient projection optimization method. Theoretical-empirical system models including mechanistic relations between components are developed for operating variables of the system. Experimental data are collected to model an actual air-cooled mini chiller equipped with a ducted fan-coil unit of an office building located in hot and dry climate conditions. Both inputs and outputs are known and measured from field monitoring in one summer month. The development and algorithm resulting from the gradient projection, implemented on a transient simulation software package, are incorporated to solve the minimization problem of energy consumption and predict the system's optimal set-points under transient conditions. The chilled water temperature, supply air temperature and refrigerant mass flow rate are calculated based on the cooling load and ambient dry-bulb temperature profiles by using the proposed approach. The integrated simulation tool is validated by using a wide range of experimentally collected data from the chiller in operation. Simulation results are provided to show possibility of significant energy savings and comfort enhancement using the proposed strategy. © 2012 Elsevier B.V

    Computational intelligence techniques for HVAC systems: a review

    Get PDF
    Buildings are responsible for 40% of global energy use and contribute towards 30% of the total CO2 emissions. The drive to reduce energy use and associated greenhouse gas emissions from buildings has acted as a catalyst in the development of advanced computational methods for energy efficient design, management and control of buildings and systems. Heating, ventilation and air conditioning (HVAC) systems are the major source of energy consumption in buildings and an ideal candidate for substantial reductions in energy demand. Significant advances have been made in the past decades on the application of computational intelligence (CI) techniques for HVAC design, control, management, optimization, and fault detection and diagnosis. This article presents a comprehensive and critical review on the theory and applications of CI techniques for prediction, optimization, control and diagnosis of HVAC systems.The analysis of trends reveals the minimization of energy consumption was the key optimization objective in the reviewed research, closely followed by the optimization of thermal comfort, indoor air quality and occupant preferences. Hardcoded Matlab program was the most widely used simulation tool, followed by TRNSYS, EnergyPlus, DOE–2, HVACSim+ and ESP–r. Metaheuristic algorithms were the preferred CI method for solving HVAC related problems and in particular genetic algorithms were applied in most of the studies. Despite the low number of studies focussing on MAS, as compared to the other CI techniques, interest in the technique is increasing due to their ability of dividing and conquering an HVAC optimization problem with enhanced overall performance. The paper also identifies prospective future advancements and research directions

    Towards displacing domestic air conditioning in KSA, an assessment of hybrid cooling strategies integrated with 'Fabric First' passive design measures

    Get PDF
    Reducing energy use and CO2 emissions to curb global warming and climate change are the greatest challenges now facing mankind. The vast majority of energy generated from fossil fuels is burned to run vehicles, fuel power stations and cool or heat homes. Saudi Arabia, the world's largest producer and exporter of petroleum, currently consumes almost three times higher than the world average energy use and hence; ranked ninth among nations for CO2 emissions. Among all fossil energy consumers, residential buildings use almost half of the Saudi's prime energy sources and are responsible for almost 50% of the emitted CO2. In such a hot climate region, air conditioning (AC) of dwellings is by far the major consumer representing 69% of domestic energy use and drives peak loading. Future projections predict a continuous increase in energy use as the majority of existing buildings are poorly designed for the prevailing climate, leading to excessive use of mechanical AC. Therefore, it is crucial for Saudi Arabia to consider a horizon where hydrocarbons are not the dominant energy resource. The adoption of energy efficiency measures and low carbon cooling strategies may have the potential to displace a substantial percentage of oil currently used to run conventional AC plants. Therefore, the current study investigates the viability of 'fabric first' intelligent architectural design measures, in combination with hybrid ground cooling pipes integrated with black-body radiant night cooling systems, with a specific purpose to displace AC systems and decrease the carbon footprint while sustaining year-round thermal comfort. The interrogation of this hypothesis was addressed in three stages. The first stage was to generate a baseline analysis of the thermo-physical and energy performance of a typical residential block in Jeddah. The second stage involved developing an alternative low energy cooling approach that could handle high ambient temperatures. The task involved designing ground pipe ventilation integrated with high emissivity blackbody radiator to displace AC systems. The design of such 'hybrid' system required a parametric analysis combined with testing prototypes in field trials to establish actual ground temperatures at various depths and black body emissivity ranges under different sky conditions. This hybrid system became the subject of numerical modelling and simulation using DesignBuilder software in conjunction with EnergyPlus simulation engine. The third stage was to assess the simulation results and validate the cooling efficiency and cost-effectiveness of the hybrid system compared to the baseline. The preliminary results of prototype thermal simulation and field trials suggest that 'fabric first' passive designs and measures (PDMs), combined with night hydronic radiant cooling (HRCS) and supply ventilation via ground pipes (GPCS), can negate the necessity for a standard AC system by displacing over 80% of cooling demand and lower the carbon footprint of a typical housing block by over 75%. Such passive and hybrid system applications also have a remarkably short payback period with energy savings offsetting the capital costs associated with building thermo-physical enhancement.Reducing energy use and CO2 emissions to curb global warming and climate change are the greatest challenges now facing mankind. The vast majority of energy generated from fossil fuels is burned to run vehicles, fuel power stations and cool or heat homes. Saudi Arabia, the world's largest producer and exporter of petroleum, currently consumes almost three times higher than the world average energy use and hence; ranked ninth among nations for CO2 emissions. Among all fossil energy consumers, residential buildings use almost half of the Saudi's prime energy sources and are responsible for almost 50% of the emitted CO2. In such a hot climate region, air conditioning (AC) of dwellings is by far the major consumer representing 69% of domestic energy use and drives peak loading. Future projections predict a continuous increase in energy use as the majority of existing buildings are poorly designed for the prevailing climate, leading to excessive use of mechanical AC. Therefore, it is crucial for Saudi Arabia to consider a horizon where hydrocarbons are not the dominant energy resource. The adoption of energy efficiency measures and low carbon cooling strategies may have the potential to displace a substantial percentage of oil currently used to run conventional AC plants. Therefore, the current study investigates the viability of 'fabric first' intelligent architectural design measures, in combination with hybrid ground cooling pipes integrated with black-body radiant night cooling systems, with a specific purpose to displace AC systems and decrease the carbon footprint while sustaining year-round thermal comfort. The interrogation of this hypothesis was addressed in three stages. The first stage was to generate a baseline analysis of the thermo-physical and energy performance of a typical residential block in Jeddah. The second stage involved developing an alternative low energy cooling approach that could handle high ambient temperatures. The task involved designing ground pipe ventilation integrated with high emissivity blackbody radiator to displace AC systems. The design of such 'hybrid' system required a parametric analysis combined with testing prototypes in field trials to establish actual ground temperatures at various depths and black body emissivity ranges under different sky conditions. This hybrid system became the subject of numerical modelling and simulation using DesignBuilder software in conjunction with EnergyPlus simulation engine. The third stage was to assess the simulation results and validate the cooling efficiency and cost-effectiveness of the hybrid system compared to the baseline. The preliminary results of prototype thermal simulation and field trials suggest that 'fabric first' passive designs and measures (PDMs), combined with night hydronic radiant cooling (HRCS) and supply ventilation via ground pipes (GPCS), can negate the necessity for a standard AC system by displacing over 80% of cooling demand and lower the carbon footprint of a typical housing block by over 75%. Such passive and hybrid system applications also have a remarkably short payback period with energy savings offsetting the capital costs associated with building thermo-physical enhancement

    Electricity cost saving comparison due to tariff change and ice thermal storage (ITS) usage based on a hybrid centrifugal-ITS system for buildings: A university district cooling perspective

    Get PDF
    AbstractIn this paper, the case study of a district cooling system of a university located in a South East Asia region (lat: 01°29′; long: 110°20′E) is presented. In general, the university has high peak ambient temperature of around 32–35°C coupled with high humidity of about 85% during afternoon period. The total electricity charge for the Universiti Malaysia Sarawak Campus is very high amounting to more than $314,911 per month. In this paper, a few district cooling schemes are investigated to provide “what-if analysis” and in order to minimize the overall electricity charges. Few scenarios designed for the application of centrifugal with and without ice-thermal storage (ITS) systems on the buildings were investigated. It was found that, due to the local tariff status, marginally saving can be achieved in the range of 0.08–3.13% if a new tariff is adopted; and a total of further saving of 1.26–2.43% if ITS is operated. This marginally saving is mainly due to the local tariff conditions and lower local temperature range (ΔT) which are less favorable as compared with those reported in the literature elsewhere

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit

    Self-optimizing Control of Cooling Tower for Efficient Operation of Chilled Water Systems

    Get PDF
    The chilled-water systems, mainly consisting of electric chillers and cooling towers, are crucial for the ventilating and air conditioning systems in commercial buildings. Energy efficient operation of such systems is thus important for the energy saving of commercial buildings. This paper presents an extremum seeking control (ESC) scheme for energy efficient operation of the chilled-water system, and presents a Modelica based dynamic simulation model for demonstrating the effectiveness of the proposed control strategy. The simulated plant consists of a water-cooled screw chiller and a mechanical-draft counter-flow wet cooling tower. The ESC scheme takes the total power consumption of the chiller compressor and the tower fan as feedback, and uses the fan speed setting as the control input. The inner-loop controllers for the chiller operation include two proportional-integral (PI) control loops for regulating the evaporator superheat and the chilled water temperature. Simulation was conducted on the dynamic simulation model of the whole plant including the screw chiller and the cooling tower for different scenarios. The simulation results demonstrated the effectiveness of the proposed ESC strategy in searching for the optimal tower fan speed set-point under tested circumstances, and the potential for energy saving is also evaluated

    Solar thermal heating and cooling. A bibliography with abstracts

    Get PDF
    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics
    • …
    corecore