764 research outputs found

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    Efficient computation and communication management for all-pairs interactions

    Get PDF
    Big data continues to grow in size for all sciences. New methods like those proposed are needed to further reduce memory footprints and distribute work equally across compute nodes both in local HPC systems and rented cluster resources in the cloud. Modern infrastructures have evolved to support these big data computations and that includes key pieces like our internet backbones and data center networks. Many optical networks face heterogeneous communication requests requiring topologies to be efficient and fault tolerant. The all-pairs problem requires all elements (computation datasets or communication nodes) to be paired with all other elements. These all-pairs problems occur in many research fields and have significant impacts, which has led to their continued interest. We proposed using cyclic quorum sets to efficiently manage all-pairs computations. We proved these sets have an all-pairs property that allows for minimal data replication and for distributed, load balanced, and communication-less computation management. The quorums are O(NP)O\left(\frac{N}{\sqrt{P}}\right) in size, up to 50% smaller than dual NP\frac{N}{\sqrt{P}} array implementations, and significantly smaller than solutions requiring all data. Scaling from 16 to 512 cores (1 to 32 compute nodes) and using real dataset inputs, application experiments demonstrated scalability with greater than 150x (super-linear) speedup and less than 1/4th the memory usage per process. Cyclic quorum sets can provided benefits to more than just computations. The sets can also provide a guarantee that all pairs of optical nodes in a network can communicate. Our evaluation analyzed the fault tolerance of routing optical cycles based on cyclic quorum sets. With this method of topology construction, unicast and multicast communication requests do not need to be known or even modeled a priori. In the presence of network single-link faults, our simulated cycle routing had greater than 99% average fault coverage. Hence, even in the presence of a network fault, the optical networks could continue operation of nearly all node pair communications. Lastly, we proposed a generalized RR redundant cyclic quorum set. These sets guarantee all pairs of nodes occur at least RR times. When applied to routing cycles in optical networks, this technique provided almost fault-tolerant communications. More importantly, when applied using only single cycles rather than the standard paired cycles, the generalized RR redundancy technique almost halved the necessary light-trail resources while maintaining the fault tolerance and dependability expected from cycle-based routing. \section*{Problem Description} Big Data in recent years has become a focal point for science and commerce. As datasets grow larger, traditional methods and algorithms are challenged on whether they are able to truly scale. This has led to phrases like, swimming in sensors, drowning in data. Our work addresses some of the challenges facing a particular type of big data interaction. The interaction considered requires all elements in a set to interact with all other elements in the set. The all-pairs interaction is a general computation or communication problem that occurs frequently and can be as simple as considering the shaking of hands by all attendees to a party. More formally there is set ENE_N, where there are NN elements indexed 00 to (N−1)\left(N-1\right). EN={e0,e1,...,eN−1} E_N = \left\lbrace e_0, e_1, ... , e_{N-1} \right\rbrace The elements in this general formulation can be simple, single communication node or single item data structures, e.g., ENE_N could simply be all nodes in a network or be a large array of NN values. Or, elements can be complex data structures with many fields / values. Fields are not restricted to a single data type either, as many big data problems can rely on heterogeneous datasets. The all-pairs interaction considers all possible pairs of elements, (N2)\binom{N}{2}. {(e0,e1),(e0,e2),...,(e0,eN−1),(e1,e2),(e1,e3),...,(e1,eN−1),...,(eN−2,eN−1)}\left\lbrace \left(e_0,e_1\right), \left(e_0,e_2\right), ... , \left(e_0,e_{N-1}\right), \left(e_1,e_2\right), \left(e_1,e_3\right) , ... , \left(e_1, e_{N-1}\right) , ... , \left(e_{N-2},e_{N-1}\right) \right\rbrace While the simple hand shake example could be considered a symmetric interaction. e_i \leftrightarrow e_j , i The all-pairs interaction can be more generally represented by two separate interactions to better represent the computational or communication complexity in those problems where the all-pairs operation is not commutative. \[ e_i \rightarrow e_j, i \[ e_i \leftarrow e_j, i The computational complexity of this general algorithmic form is not daunting. \[\binom{N}{2} = \frac{\left( N-1\right) N}{2} = O\left( N^2\right) In fact, even for pair computations that do not have the commutative property, the complexity is unchanged. In general, polynomial O(N2)O\left(N^2\right) computations are considered highly computationally scalable. When performing an all-pairs data interaction on the big data scale sizes, while the computational complexity theoretically is manageable, the data management becomes complex. The problem definition inherently requires access to the entire dataset, such that every data element can be paired and processed with every other data element in the set. When the datasets exceed a system\u27s memory size, this presents a challenge, which our methods address. \section*{Solution Approach} For efficiency and distributed control, it is common in distributed systems and algorithms to group nodes into intersecting sets referred to as quorum sets. Our management techniques rely on the established quorum set theories for their efficiencies and management. We then proved an all-pairs property of cyclic quorum sets, which is central to guaranteeing that all-pairs of elements (nodes or data) are able to interact in the system. The all-pairs data computation problem requires all data elements to be paired with all other data elements. These all-pairs problems occur in many science fields, which has led to their continued interest. Our research addresses the memory and computation time challenges of the general all-pairs big data interaction computations through the use of memory efficient computation management techniques. Proposed were methods using distributed computing to share the computational workload. Although the problem definition requires every data element to have access to and interact with the entire dataset, our cyclic quorum set techniques relax this restriction in distributed systems. This computation management is used to reduce memory resource requirements per node and enable big data scalability. Implementation evaluation of a large bioinformatics application demonstrated scalability on real datasets with linear and at times super-linear speedups. Reductions in memory requirements per node allowed for processing larger datasets that would not have been feasible on a single node either due to memory or time requirements. Similar cyclic quorum set techniques were used to address efficient and fault tolerant communication routing challenges in optical networking. Cycle-based optical network routing, whether using SONET rings or p-cycles, provide the sufficient reliability in networks. Light-trails forming a cycle in the network allow broadcasts within a cycle to be used for efficient multicast communications. Using the proven ``all-pairs\u27\u27 property of cyclic quorum sets, we could guarantee all pairs of nodes will occur in one or more quorums, so efficient, arbitrary unicast communication can occur between any two nodes. Efficient broadcasts to all network nodes are possible by a node broadcasting to all quorum cycles to which it belongs (O(N)O\left(\sqrt{N}\right).) We analyzed node pair communications in networks, specifically, the fault tolerance aspects of using cyclic quorum sets to route cycles. Observed was better than 99% average single fault coverage and some node pair communications were protected by more than one cycle. Exploiting this redundant node pair protections revealed even greater resource efficiencies. Common cycle routing techniques will use pairs of cycles to achieve both routing and fault-tolerance, which uses substantial resources and creates the potential for underutilization. Instead, when we intentionally designed cyclic quorum sets with RR redundant pairs of nodes and utilized the RR redundancy within the quorum cycles to replace the pair of cycles with just a single cycle, we saw network resource usage almost halved. Our analysis of several networks showed R=2R=2 redundant single cycles had 96.60 - 99.37% single link fault coverage, while reducing resource usage by 42.9 - 47.18% on average. Increasing redundancy to R=3R=3 redundant cycles maintained a 93.23 - 99.34% average fault coverage even with two simultaneous link faults and used 38.85 - 42.39% fewer resources on average

    Exploration and Design of Power-Efficient Networked Many-Core Systems

    Get PDF
    Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.Siirretty Doriast

    A survey of flooding, gossip routing, and related schemes for wireless multi- hop networks

    Get PDF
    Flooding is an essential and critical service in computer networks that is used by many routing protocols to send packets from a source to all nodes in the network. As the packets are forwarded once by each receiving node, many copies of the same packet traverse the network which leads to high redundancy and unnecessary usage of the sparse capacity of the transmission medium. Gossip routing is a well-known approach to improve the flooding in wireless multi-hop networks. Each node has a forwarding probability p that is either statically per-configured or determined by information that is available at runtime, e.g, the node degree. When a packet is received, the node selects a random number r. If the number r is below p, the packet is forwarded and otherwise, in the most simple gossip routing protocol, dropped. With this approach the redundancy can be reduced while at the same time the reachability is preserved if the value of the parameter p (and others) is chosen with consideration of the network topology. This technical report gives an overview of the relevant publications in the research domain of gossip routing and gives an insight in the improvements that can be achieved. We discuss the simulation setups and results of gossip routing protocols as well as further improved flooding schemes. The three most important metrics in this application domain are elaborated: reachability, redundancy, and management overhead. The published studies used simulation environments for their research and thus the assumptions, models, and parameters of the simulations are discussed and the feasibility of an application for real world wireless networks are highlighted. Wireless mesh networks based on IEEE 802.11 are the focus of this survey but publications about other network types and technologies are also included. As percolation theory, epidemiological models, and delay tolerant networks are often referred as foundation, inspiration, or application of gossip routing in wireless networks, a brief introduction to each research domain is included and the applicability of the particular models for the gossip routing is discussed

    Optimal placement of relay nodes over limited positions in wireless sensor networks

    Get PDF
    This paper tackles the challenge of optimally placing relay nodes (RNs) in wireless sensor networks given a limited set of positions. The proposed solution consists of: 1) the usage of a realistic physical layer model based on a Rayleigh block-fading channel; 2) the calculation of the signal-to-interference-plus-noise ratio (SINR) considering the path loss, fast fading, and interference; and 3) the usage of a weighted communication graph drawn based on outage probabilities determined from the calculated SINR for every communication link. Overall, the proposed solution aims for minimizing the outage probabilities when constructing the routing tree, by adding a minimum number of RNs that guarantee connectivity. In comparison to the state-of-the art solutions, the conducted simulations reveal that the proposed solution exhibits highly encouraging results at a reasonable cost in terms of the number of added RNs. The gain is proved high in terms of extending the network lifetime, reducing the end-to-end- delay, and increasing the goodput

    Protection and restoration algorithms for WDM optical networks

    Get PDF
    Currently, Wavelength Division Multiplexing (WDM) optical networks play a major role in supporting the outbreak in demand for high bandwidth networks driven by the Internet. It can be a catastrophe to millions of users if a single optical fiber is somehow cut off from the network, and there is no protection in the design of the logical topology for a restorative mechanism. Many protection and restoration algorithms are needed to prevent, reroute, and/or reconfigure the network from damages in such a situation. In the past few years, many works dealing with these issues have been reported. Those algorithms can be implemented in many ways with several different objective functions such as a minimization of protection path lengths, a minimization of restoration times, a maximization of restored bandwidths, etc. This thesis investigates, analyzes and compares the algorithms that are mainly aimed to guarantee or maximize the amount of remaining bandwidth still working over a damaged network. The parameters considered in this thesis are the routing computation and implementation mechanism, routing characteristics, recovering computation timing, network capacity assignment, and implementing layer. Performance analysis in terms of the restoration efficiency, the hop length, the percentage of bandwidth guaranteed, the network capacity utilization, and the blocking probability is conducted and evaluated

    Resource Allocation in Communication and Social Networks

    Get PDF
    abstract: As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.Dissertation/ThesisPh.D. Computer Science 201
    • …
    corecore