15 research outputs found

    An Optimal Backoff Time-Based Internetwork Interference Mitigation Method in Wireless Body Area Network

    Get PDF
    When multiple Wireless Body Area Networks (WBANs) are aggregated, the overlapping region of their communications will result in internetwork interference, which could impose severe impacts on the reliability of WBAN performance. Therefore, how to mitigate the internetwork interference becomes the key problem to be solved urgently in practical applications of WBAN. However, most of the current researches on internetwork interference focus on traditional cellular networks and large-scale wireless sensor networks. In this paper, an Optimal Backoff Time Interference Mitigation Algorithm (OBTIM) is proposed. This method performs rescheduling or channel switching when the performance of the WBANs falls below tolerance, utilizing the cell neighbour list established by the beacon method. Simulation results show that the proposed method improves the channel utilization and the network throughput, and in the meantime, reduces the collision probability and energy consumption, when compared with the contention-based beacon schedule scheme

    Particle Swarm Optimization for Interference Mitigation of Wireless Body Area Network: A Systematic Review

    Get PDF
    Wireless body area networks (WBAN) has now become an important technology in supporting services in the health sector and several other fields. Various surveys and research have been carried out massively on the use of swarm intelligent (SI) algorithms in various fields in the last ten years, but the use of SI in wireless body area networks (WBAN) in the last five years has not seen any significant progress. The aim of this research is to clarify and convince as well as to propose a answer to this problem, we have identified opportunities and topic trends using the particle swarm optimization (PSO) procedure as one of the swarm intelligence for optimizing wireless body area network interference mitigation performance. In this research, we analyzes primary studies collected using predefined exploration strings on online databases with the help of Publish or Perish and by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) way. Articles were carefully selected for further analysis. It was found that very few researchers included optimization methods for swarm intelligence, especially PSO, in mitigating wireless body area network interference, whether for intra, inter, or cross-WBAN interference. This paper contributes to identifying the gap in using PSO for WBAN interference and also offers opportunities for using PSO both standalone and hybrid with other methods to further research on mitigating WBAN interference

    Towards Efficient and Enhanced Wireless Coexistence in the Unlicensed Spectrum

    Get PDF
    The 3rd Generation Partnership Project (3GPP) is developing the fifth generation (5G) of wireless broadband technology and has identified the unlicensed spectrum as a principal item on the plan of action. Listen-Before-Talk (LBT) has been recognized as the starting development point for the channel access scheme of future 5G New Radio-Unlicensed (NR-U) networks. Recent technical reports suggest that all sub-7 GHz unlicensed spectrum is targeted for 5G NR-U operation, including the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. Literature is inundated with research on Wi-Fi and LBT-based long-term evolution License-Assisted Access (LTE-LAA) wireless coexistence analysis. While a treasure trove of radio spectrum has been approved for license-exempt use in the 6 GHz band, industry and standard organizations must make sure it is well utilized by enhancing their coexistence schemes. A proper assessment of the homogeneous LBT deployment is imperative under the new use cases and regulatory circumstances. The work presented herein aimed to fill the gap and underline the importance of improving channel access mechanisms in next-generation wireless systems. The research in this dissertation first analyzed the LBT channel access scheme and analytically evaluated its performance in terms of a metrics set, such as effective channel utilization, collision probability, mean access delay, and temporal fairness among coexisting nodes. Outcomes of the developed analytical model revealed inefficiencies in various cases. For example, high priority classes generally hinder overall effective channel utilization, exhibit a high collision rate, and incur long latencies compared to lower priorities; and low priority classes sustain longer delays in class-heterogeneous scenarios. The developed framework was then utilized to investigate wireless coexistence in a 5G-enabled intensive care unit, employing remote patient monitoring over 5G NR-U. A modified LBT scheme is then proposed in this work to enhance overall channel efficiency in homogeneous LBT deployments by reducing the collision probability among coexisting stations based on the analytical investigation of the LBT mechanism. It is expected that low-power, narrowband frequency hoppers will be allowed to operate in the 6 GHz spectrum based on recent European Communications Committee (ECC) mandates, which raises speculation around coexistence with incumbent radio access technologies (RATs). To address the potential operation of cellular LBT in the 2.4 GHz and frequency hopping systems in the 5- and 6-GHz bands, the coexistence of Bluetooth Low Energy (BLE) 5 and LBT was investigated empirically in an anechoic chamber. The mutual impact was explored by means of throughput, packet error rate, and interframe delays. Empirical evaluation results demonstrated how BLE throughput dropped as the intended-to-unintended signal ratio decreased and the way in which LBT classes exhibited a diminishing effect as the class priority descended. Long Range BLE physical layer (PHY) was found to sustain longer gap times (i.e., delay) than the other two PHYs; however, the LR PHY showed less susceptibility to interference. Results also demonstrated that low data rate BLE PHYs hindered LBT throughput performance since they correspond to longer airtime durations

    Cognitive Radio Systems

    Get PDF
    Cognitive radio is a hot research area for future wireless communications in the recent years. In order to increase the spectrum utilization, cognitive radio makes it possible for unlicensed users to access the spectrum unoccupied by licensed users. Cognitive radio let the equipments more intelligent to communicate with each other in a spectrum-aware manner and provide a new approach for the co-existence of multiple wireless systems. The goal of this book is to provide highlights of the current research topics in the field of cognitive radio systems. The book consists of 17 chapters, addressing various problems in cognitive radio systems

    Proceedings of the Third Edition of the Annual Conference on Wireless On-demand Network Systems and Services (WONS 2006)

    Get PDF
    Ce fichier regroupe en un seul documents l'ensemble des articles accéptés pour la conférences WONS2006/http://citi.insa-lyon.fr/wons2006/index.htmlThis year, 56 papers were submitted. From the Open Call submissions we accepted 16 papers as full papers (up to 12 pages) and 8 papers as short papers (up to 6 pages). All the accepted papers will be presented orally in the Workshop sessions. More precisely, the selected papers have been organized in 7 session: Channel access and scheduling, Energy-aware Protocols, QoS in Mobile Ad-Hoc networks, Multihop Performance Issues, Wireless Internet, Applications and finally Security Issues. The papers (and authors) come from all parts of the world, confirming the international stature of this Workshop. The majority of the contributions are from Europe (France, Germany, Greece, Italy, Netherlands, Norway, Switzerland, UK). However, a significant number is from Australia, Brazil, Canada, Iran, Korea and USA. The proceedings also include two invited papers. We take this opportunity to thank all the authors who submitted their papers to WONS 2006. You helped make this event again a success

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms
    corecore