27 research outputs found

    eHealth technology in forensic mental healthcare:Recommendations for achieving benefits and overcoming barriers

    Get PDF
    While eHealth technologies such as web-based interventions, mobile apps, and virtual reality have the potential to be of added value for forensic mental healthcare, there is a gap between this potential and the current situation in practice. The goal of this study was to identify recommendations to bridge this gap. In total, 21 semi-structured interviews and 89 questionnaires were conducted in a Dutch forensic mental healthcare sample consisting of professionals, patients, and eHealth experts. Based on the broad range of identified recommendations, it can be concluded that attention should be paid to the characteristics of professionals, patients, technology, and the organization throughout the development, implementation and evaluation of eHealth

    Towards an effective and empathetic student support system in an open and distance education and e-learning environment : a case study from a developing country context

    Get PDF
    Faced with the influx of emerging technologies, educators must continuously equip themselves with the necessary skills to effectively impact on today’s learners. Central to successful curriculum reform and student retention is the realisation that educators need to engage in continuous professional development, to meet the learners’ needs. The purpose of this research study is to explore and study how educators’ skills, knowledge and experience in e-learning can contribute to the successful achievement of the institution’s and students’ educational goals and to the design of a quality support system in an ODeL environment in a developing country. A mixed-method research approach was adopted. The target population was the University of South Africa (Unisa) academic staff members who enrolled for an elearning programme with the University of Maryland University College (UMUC) between the year 2012 and 2014. Convenience non-probability sampling was used and a total of 60 candidates were invited to participate in the study. Most of the participants pointed to the empathetic support they received from the relevant UMUC staff and also indicated that they are now ready to create an empathetic learning environment for their own students at Unisa. It is the premise of this paper that academics cannot impart and/or transfer what they do not have or know to learners and it gives recommendations on striving towards an effective empathetic students support in distance education and e-learning continuous professional development to effectively impact on today’s learners. The importance of pace, assignment due dates, use of rubrics, turnaround time for feedback, built-in support, and appropriate assessment strategies are also key findings in the report.Educational StudiesM. Ed. (Open and Distance Learning (ODL

    Efficient integration of software components for scientific simulations

    Get PDF
    Abstract unavailable please refer to PD

    Measurement-Driven Simulation of Complex Engineering Systems

    Full text link

    Semantic connections : explorations, theory and a framework for design

    Get PDF

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data

    Optimal and scalable management of smart power grids with electric vehicles

    Get PDF

    Practical and continuous luminance distribution measurements for lighting quality

    Get PDF

    Practical and continuous luminance distribution measurements for lighting quality

    Get PDF

    Automatic Segmentation of the Mandible for Three-Dimensional Virtual Surgical Planning

    Get PDF
    Three-dimensional (3D) medical imaging techniques have a fundamental role in the field of oral and maxillofacial surgery (OMFS). 3D images are used to guide diagnosis, assess the severity of disease, for pre-operative planning, per-operative guidance and virtual surgical planning (VSP). In the field of oral cancer, where surgical resection requiring the partial removal of the mandible is a common treatment, resection surgery is often based on 3D VSP to accurately design a resection plan around tumor margins. In orthognathic surgery and dental implant surgery, 3D VSP is also extensively used to precisely guide mandibular surgery. Image segmentation from the radiography images of the head and neck, which is a process to create a 3D volume of the target tissue, is a useful tool to visualize the mandible and quantify geometric parameters. Studies have shown that 3D VSP requires accurate segmentation of the mandible, which is currently performed by medical technicians. Mandible segmentation was usually done manually, which is a time-consuming and poorly reproducible process. This thesis presents four algorithms for mandible segmentation from CT and CBCT and contributes to some novel ideas for the development of automatic mandible segmentation for 3D VSP. We implement the segmentation approaches on head and neck CT/CBCT datasets and then evaluate the performance. Experimental results show that our proposed approaches for mandible segmentation in CT/CBCT datasets exhibit high accuracy
    corecore