2,710 research outputs found

    Security Management Framework for the Internet of Things

    Get PDF
    The increase in the design and development of wireless communication technologies offers multiple opportunities for the management and control of cyber-physical systems with connections between smart and autonomous devices, which provide the delivery of simplified data through the use of cloud computing. Given this relationship with the Internet of Things (IoT), it established the concept of pervasive computing that allows any object to communicate with services, sensors, people, and objects without human intervention. However, the rapid growth of connectivity with smart applications through autonomous systems connected to the internet has allowed the exposure of numerous vulnerabilities in IoT systems by malicious users. This dissertation developed a novel ontology-based cybersecurity framework to improve security in IoT systems using an ontological analysis to adapt appropriate security services addressed to threats. The composition of this proposal explores two approaches: (1) design time, which offers a dynamic method to build security services through the application of a methodology directed to models considering existing business processes; and (2) execution time, which involves monitoring the IoT environment, classifying vulnerabilities and threats, and acting in the environment, ensuring the correct adaptation of existing services. The validation approach was used to demonstrate the feasibility of implementing the proposed cybersecurity framework. It implies the evaluation of the ontology to offer a qualitative evaluation based on the analysis of several criteria and also a proof of concept implemented and tested using specific industrial scenarios. This dissertation has been verified by adopting a methodology that follows the acceptance in the research community through technical validation in the application of the concept in an industrial setting.O aumento no projeto e desenvolvimento de tecnologias de comunicação sem fio oferece múltiplas oportunidades para a gestão e controle de sistemas ciber-físicos com conexões entre dispositivos inteligentes e autônomos, os quais proporcionam a entrega de dados simplificados através do uso da computação em nuvem. Diante dessa relação com a Internet das Coisas (IoT) estabeleceu-se o conceito de computação pervasiva que permite que qualquer objeto possa comunicar com os serviços, sensores, pessoas e objetos sem intervenção humana. Entretanto, o rápido crescimento da conectividade com as aplicações inteligentes através de sistemas autônomos conectados com a internet permitiu a exposição de inúmeras vulnerabilidades dos sistemas IoT para usuários maliciosos. Esta dissertação desenvolveu um novo framework de cibersegurança baseada em ontologia para melhorar a segurança em sistemas IoT usando uma análise ontológica para a adaptação de serviços de segurança apropriados endereçados para as ameaças. A composição dessa proposta explora duas abordagens: (1) tempo de projeto, o qual oferece um método dinâmico para construir serviços de segurança através da aplicação de uma metodologia dirigida a modelos, considerando processos empresariais existentes; e (2) tempo de execução, o qual envolve o monitoramento do ambiente IoT, a classificação de vulnerabilidades e ameaças, e a atuação no ambiente garantindo a correta adaptação dos serviços existentes. Duas abordagens de validação foram utilizadas para demonstrar a viabilidade da implementação do framework de cibersegurança proposto. Isto implica na avaliação da ontologia para oferecer uma avaliação qualitativa baseada na análise de diversos critérios e também uma prova de conceito implementada e testada usando cenários específicos. Esta dissertação foi validada adotando uma metodologia que segue a validação na comunidade científica através da validação técnica na aplicação do nosso conceito em um cenário industrial

    Context-aware Security for Vehicles and Fleets: A Survey

    Get PDF
    Vehicles are becoming increasingly intelligent and connected. Interfaces for communication with the vehicle, such as WiFi and 5G, enable seamless integration into the user’s life, but also cyber attacks on the vehicle. Therefore, research is working on in-vehicle countermeasures such as authentication, access controls, or intrusion detection. Recently, legal regulations have also become effective that require automobile manufacturers to set up a monitoring system for fleet-wide security analysis. The growing amount of software, networking, and the automation of driving create new challenges for security. Context-awareness, situational understanding, adaptive security, and threat intelligence are necessary to cope with these ever-increasing risks. In-vehicle security should be adaptive to secure the car in an infinite number of (driving) situations. For fleet-wide analysis and alert triage, knowledge and understanding of the circumstances are required. Context-awareness, nonetheless, has been sparsely considered in the field of vehicle security. This work aims to be a precursor to context-aware, adaptive and intelligent security for vehicles and fleets. To this end, we provide a comprehensive literature review that analyzes the vehicular as well as related domains. Our survey is mainly characterized by the detailed analysis of the context information that is relevant for vehicle security in the future

    CAPD: A Context-Aware, Policy-Driven Framework for Secure and Resilient IoBT Operations

    Full text link
    The Internet of Battlefield Things (IoBT) will advance the operational effectiveness of infantry units. However, this requires autonomous assets such as sensors, drones, combat equipment, and uncrewed vehicles to collaborate, securely share information, and be resilient to adversary attacks in contested multi-domain operations. CAPD addresses this problem by providing a context-aware, policy-driven framework supporting data and knowledge exchange among autonomous entities in a battlespace. We propose an IoBT ontology that facilitates controlled information sharing to enable semantic interoperability between systems. Its key contributions include providing a knowledge graph with a shared semantic schema, integration with background knowledge, efficient mechanisms for enforcing data consistency and drawing inferences, and supporting attribute-based access control. The sensors in the IoBT provide data that create populated knowledge graphs based on the ontology. This paper describes using CAPD to detect and mitigate adversary actions. CAPD enables situational awareness using reasoning over the sensed data and SPARQL queries. For example, adversaries can cause sensor failure or hijacking and disrupt the tactical networks to degrade video surveillance. In such instances, CAPD uses an ontology-based reasoner to see how alternative approaches can still support the mission. Depending on bandwidth availability, the reasoner initiates the creation of a reduced frame rate grayscale video by active transcoding or transmits only still images. This ability to reason over the mission sensed environment and attack context permits the autonomous IoBT system to exhibit resilience in contested conditions

    Redefining cybersecurity through processual ontology of the cyberspace

    Get PDF
    The way cyberspace is conceptualized in security discourses shapes strategies, tools and possible solutions developed within the ICT security debate. Putting forward processual ontology of cyberspace helps in apprehending the unique dynamics of this new domain arising from the intersection of ICT with social and political phenomena. Cyberspace is presented as a process of data transmission and information cognition/processing in the digital domain. It contains time as an inherent dimension and includes all subjects and objects of this process: data (codes, packets, files, texts), information (structured or operationalized data), human and computer agents (people, software) and communication environment (hardware, protocols). Processual ontology is based on the fact that ICT is a man-made realm with almost unlimited potential to expand, where physical distance is lapsed and bits are the primary matter. This theoretical stance blurs the line between human and non-human agents, dehumanizing the idea of actorness by categorizing both humans and computers as actors. Finally, processual ontology of cyberspace promotes resilience strategies both in the private sector as well as on national and international level

    Supporting the Discovery, Reuse, and Validation of Cybersecurity Requirements at the Early Stages of the Software Development Lifecycle

    Get PDF
    The focus of this research is to develop an approach that enhances the elicitation and specification of reusable cybersecurity requirements. Cybersecurity has become a global concern as cyber-attacks are projected to cost damages totaling more than $10.5 trillion dollars by 2025. Cybersecurity requirements are more challenging to elicit than other requirements because they are nonfunctional requirements that requires cybersecurity expertise and knowledge of the proposed system. The goal of this research is to generate cybersecurity requirements based on knowledge acquired from requirements elicitation and analysis activities, to provide cybersecurity specifications without requiring the specialized knowledge of a cybersecurity expert, and to generate reusable cybersecurity requirements. The proposed approach can be an effective way to implement cybersecurity requirements at the earliest stages of the system development life cycle because the approach facilitates the identification of cybersecurity requirements throughout the requirements gathering stage. This is accomplished through the development of the Secure Development Ontology that maps cybersecurity features and the functional features descriptions in order to train a classification machine-learning model to return the suggested security requirements. The SD-SRE requirements engineering portal was created to support the application of this research by providing a platform to submit use case scenarios and requirements and suggest security requirements for the given system. The efficacy of this approach was tested with students in a graduate requirements engineering course. The students were presented with a system description and tasked with creating use case scenarios using the SD-SRE portal. The entered models were automatically analyzed by the SD-SRE system to suggest the security requirements. The results showed that the approach can be an effective approach to assist in the identification of security requirements
    corecore