11,173 research outputs found

    Computational statistics using the Bayesian Inference Engine

    Full text link
    This paper introduces the Bayesian Inference Engine (BIE), a general parallel, optimised software package for parameter inference and model selection. This package is motivated by the analysis needs of modern astronomical surveys and the need to organise and reuse expensive derived data. The BIE is the first platform for computational statistics designed explicitly to enable Bayesian update and model comparison for astronomical problems. Bayesian update is based on the representation of high-dimensional posterior distributions using metric-ball-tree based kernel density estimation. Among its algorithmic offerings, the BIE emphasises hybrid tempered MCMC schemes that robustly sample multimodal posterior distributions in high-dimensional parameter spaces. Moreover, the BIE is implements a full persistence or serialisation system that stores the full byte-level image of the running inference and previously characterised posterior distributions for later use. Two new algorithms to compute the marginal likelihood from the posterior distribution, developed for and implemented in the BIE, enable model comparison for complex models and data sets. Finally, the BIE was designed to be a collaborative platform for applying Bayesian methodology to astronomy. It includes an extensible object-oriented and easily extended framework that implements every aspect of the Bayesian inference. By providing a variety of statistical algorithms for all phases of the inference problem, a scientist may explore a variety of approaches with a single model and data implementation. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU GPL.Comment: Resubmitted version. Additional technical details and download details are available from http://www.astro.umass.edu/bie. The BIE is distributed under the GNU GP

    New insight on galaxy structure from GALPHAT I. Motivation, methodology, and benchmarks for Sersic models

    Get PDF
    We introduce a new galaxy image decomposition tool, GALPHAT (GALaxy PHotometric ATtributes), to provide full posterior probability distributions and reliable confidence intervals for all model parameters. GALPHAT is designed to yield a high speed and accurate likelihood computation, using grid interpolation and Fourier rotation. We benchmark this approach using an ensemble of simulated Sersic model galaxies over a wide range of observational conditions: the signal-to-noise ratio S/N, the ratio of galaxy size to the PSF and the image size, and errors in the assumed PSF; and a range of structural parameters: the half-light radius rer_e and the Sersic index nn. We characterise the strength of parameter covariance in Sersic model, which increases with S/N and nn, and the results strongly motivate the need for the full posterior probability distribution in galaxy morphology analyses and later inferences. The test results for simulated galaxies successfully demonstrate that, with a careful choice of Markov chain Monte Carlo algorithms and fast model image generation, GALPHAT is a powerful analysis tool for reliably inferring morphological parameters from a large ensemble of galaxies over a wide range of different observational conditions. (abridged)Comment: Submitted to MNRAS. The submitted version with high resolution figures can be downloaded from http://www.astro.umass.edu/~iyoon/GALPHAT/galphat1.pd

    Statistical Modelling of Fishing Activities in the North Atlantic

    Get PDF
    This paper deals with the issue of modeling daily catches of fishing boats in the Grand Bank fishing grounds. We have data on catches per species for a number of vessels collected by the European Union in the context of the North Atlantic Fisheries Organization. Many variables can be thought to influence the amount caught: a number of ship characteristics (such as the size of the ship, the fishing technique used, the mesh size of the nets, etc.), are obvious candidates, but one can also consider the season or the actual location of the catch. In all, our database leads to 23 possible regressors, resulting in a set of 8:4£106 possible linear regression models. Prediction of future catches and posterior inference will be based on Bayesian model averaging, using a Markov Chain Monte Carlo Model Composition (MC3) approach. Particular attention is paid to the elicitation of the prior and the prediction of catch for single and aggregated observations.
    • …
    corecore