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Abstract. This paper deals with the issue of modeling daily catches of fishing boats in the Grand
Bank fishing grounds. We have data on catches per species for a number of vessels collected by the
European Union in the context of the North Atlantic Fisheries Organization. Many variables can be
thought to influence the amount caught: a number of ship characteristics —such as the size of the
ship, the fishing technique used, the mesh size of the nets, etc.—, are obvious candidates, but one can
also consider the season or the actual location of the catch. In all, our database leads to 23 possible
regressors, resulting in a set of 8.4× 106 possible linear regression models. Prediction of future catches
and posterior inference will be based on Bayesian model averaging, using a Markov Chain Monte Carlo
Model Composition (MC3) approach. Particular attention is paid to the elicitation of the prior and
the prediction of catch for single and aggregated observations.
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“Fishing conflicts ara among the most visible of a new set of international
security and diplomatic concerns caused by environmental degradation and
resource depletion.” [J. Friedland: “Catch of the Day: Fish Stories these
Days are Tales of Depletion and Growing Rivalry,” The Wall Street Journal,
front page article, 25/11/97]

1. INTRODUCTION

The mismanagement of the world fisheries is one of the most important global
environmental problems that we face today. In the early 90’s, according to the
United Nations Food and Agriculture Organization (FAO), around 70% of the
world’s conventional species of fish were “fully exploited, overexploited, depleted,
or in the process of rebuilding as a result of depletion” (FAO, 1995). Nine of the
world’s 17 major fisheries are in serious decline, and four others are classified as
‘commercially depleted’ by the FAO (Tibbets, 1994). By far, the largest single
pressure on commercial fisheries is overexploitation, which occurs mostly due to
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the free open access to fishery resources. This lack of property rights then results
in a tragedy of the commons (Hardin, 1968).

The North Atlantic Fisheries Organization (NAFO) is one of several inter-
national organizations that tries to alleviate overexploitation through voluntary
cooperation. The NAFO was established in 1978 to contribute to the optimal
exploitation and rational use of fisheries resources in the Grand Bank outside
Canada’s exclusive economic zone. Countries which are members of the NAFO
(Bulgaria, Canada, Cuba, European Union -EU-, Federation of Russian States,
Iceland, Japan, Letonia, Lithuania, Norway, Poland and Romania) assign quotas
among themselves and grant inspection rights to each other. At present, there
are three inspection ships —two Canadian and one belonging to the EU— that
board vessels of member states and register the information in their logbooks. In
addition, signatory countries’ ships report (through the so-called “hails”) their
entry and exit of the different zones of the fishing grounds. Finally, there are
two daily flights over the Grand Bank and the Flemish Cap made by inspection
airplanes with the purpose of locating and identifying all ships fishing in the area
(also including vessels from non-signatory countries).

However, boarding ships on high seas to verify catch is expensive and disrupts
their operations. Furthermore, ships from non-signatory countries can not be
inspected. It then becomes important to construct models that allow for catch
prediction and monitoring conditional on the information from aerial sightings
and hails, ship characteristics and other variables (such as month of the year).
Improvement of the monitoring activities is crucial for the effectiveness of coop-
erative organizations such as NAFO. In addition, our model allows us to study
how ship characteristics influence catch —correcting for other factors. The latter
might provide useful information for regulatory measures and guidelines related to
issues like net size, optimal size of the fleet, etc. An excellent introduction to the
use of quantitative methods in fisheries research is given by Hilborn and Walters
(1992).

This paper proposes a statistical model for daily catch per species of fish based
on linear regression combined with a certain probability of zero catch. We work
within a Bayesian framework and formally treat the uncertainty concerning the
choice of regressors through model averaging, using posterior model probabilities
as weights. In view of the large number of potential models, a Monte Carlo
Markov chain is generated over the model space, following the MC3 methodology
of Madigan and York (1995). Particular attention is paid to the choice of the
prior, since we wish to combine a relative lack of prior information with feasible
numerical calculations. Finally, efficient coding is seen to result in a software that
can easily deal with problems of practically relevant dimensions.

Section 2 describes the data collected by the EU, while Section 3 introduces the
statistical model, as well as model averaging. Posterior and predictive inference
is discussed in Section 4, along with some details of the prior elicitation and the
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numerical implementation. The empirical results are presented in Section 5 and a
final section concludes.

2. THE DATA

The original data were gathered by the inspection vessels of the EU operating on
the Grand Bank fisheries. These vessels board the fishing boats and record basic
characteristics of the ship and the fishing equipment, as well as the quantities
caught of different species and where and when this catch was effectuated. They
use the ship’s logs to collect all the information accumulated since the last time
the ship was boarded. All data correspond to 1993 and the first half of 1994,
leading to 6806 observations corresponding to a particular ship at a given day.
More information about the data and the way they are collected can be found in
Ferreira and Tusell (1996). Figure 1 shows a map of the area in question. All
available information relates to zones 3L, 3M, 3N and 3O.

In the recorded data, there are separate entries for ship type (6 categories),
whether the ship was fishing alone or in a pair (2 categories), and the fishing
technique (5 categories). Since the recorded data seem to be less than reliable in
the exact categories of ship type (it is, e.g., not always correctly indicated whether
a stern trawler has a freezer or not, and the same ships seem to change categories
often), and there are some logical redundancies in these data (e.g., a pair trawl
can only be used by ships fishing in a pair), we combine these three categorical
variables into one single variable, with four levels, corresponding to the fishing
technique used.

The dependent variable is the live weight of fish caught. Table 1 summarizes the
regressors that we can possibly use. These include four categorical variables: the
country where the vessel is registered, denoted by nationality (3 levels), fishing
technique (4 levels), zone (4 levels) and month of the year (12 levels). Each of
these variables is handled through dummies taking the values zero or one (with
the possible exception of zone, as shall be described below). As the model will
include an intercept, we retain one reference level for each of them. In addition,
we have four continuous variables, namely net size measured in mm., length of
vessel measured in m., gross registered tonnage (GRT) and engine kW. Table 1
indicates the empirical distribution of each of the categorical variables, and the
means and standard deviations of each continuous variable, calculated over the
sample of 6806 ship-days.

Table 2 lists the five most important species caught on the Grand Bank and has
one category for all the other species (“rest”). Every time we observe a ship, we
observe its daily catches for all six species. A look at the data tells us that a ship’s
catch on any given day often does not include all six species. More in particular,
the 6806 observed ship-days give us 6806 × 6 = 40, 836 observations of catch per
species, and 24,738 of these are zeros. This important aspect of the data should
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Fig. 1. The Grand Bank and adjoining areas.
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Table 1. Data Used
Regressor Description % Observations

1 Danish vessel 0.4

2 Spanish vessel 81.5

ref. Portuguese vessel 18.1

3 drift gillnet 3.6

4 anchored gillnet 1.4

5 otter trawl 79.6

ref. otter trawl pair 15.4

6 zone 3L 34.6

7 zone 3M 25.7

8 zone 3N 35.0

ref. zone 3O 4.7

9 January 4.9

10 February 10.7

11 March 15.0

12 April 12.1

13 May 14.0

14 June 9.5

15 July 7.0

16 August 7.7

17 September 8.0

18 October 7.0

19 November 3.5

ref. December 0.6

Mean Std

20 net size mm. 125.99 7.02

21 length vessel m. 51.57 13.41

22 GRT 749.93 449.41

23 engine kW 1174.97 505.19

Table 2. Fish Species
Sp. Description % zeros % of catch

1 Atlantic cod (Gadus morhua) 88.33 9.80

2 Halibut (Hippoglossus reinhardtius)m 18.50 62.40

3 Redfish (Sebastes spp.) 85.73 11.73

4 Grenadier (Macrurus rupestris) 43.20 3.80

5 Skate (Raja spp.) 55.44 8.97

6 rest 72.27 3.30

not be overlooked, and, hence, we shall model these zero catches explicitly. This
feature of the data seems to have been ignored by Ferreira and Tusell (1996), who
analyse the same data set. Table 2 also lists the percentage of zero observations
per species and the fraction of the total live weight that each species constitutes.
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In dealing with this data set, a few other issues arise:
(i) Sometimes a ship is on the fishing grounds but is unable to do any fishing, due,

e.g., to bad weather conditions. This is reflected in the data through a variable
called: “# of fishing days”. If this variable takes a value, say K, bigger than
one, it means that the previous K − 1 days the ship was on the fishing grounds
but could not fish. Thus, catch should be recorded as zero for all species during
those K − 1 days, whereas the amount registered in the logbook should be
assigned to the Kth day.

(ii) Another issue relates to the zone where the fish is caught. If a ship is in, e.g., 2
different zones during the same day, the logbook registers 2 entries on that day,
each of them reflecting the amount of fish caught in that particular zone. Since
we want to model the catch per ship per day, we shall sum (for each of the 6
species) the amount caught over all the zones visited. Then, in the explanatory
variables, instead of imputing 1 for one of the zones, we assign the value 1/(#
of zones visited) to each of the zones visited. Although this is not fully precise,
multiple zones in the same day occurs only very rarely in our dataset (1.2% of
the observations).

Regarding the six different species mentioned in Table 2, there are different models
that we could think of:

(i) We could model the total catch per ship-day, without separating per species.
This would mean that for each ship, we sum the catch over all six species
(leading to 6,806 observations in all). In the data, the total amount of catch is
now always positive except when (# of fishing days)> 1, which occurs in 8.2%
of the observations. The fact that the data on the total amount of catch seems
to be more reliable that its decomposition by species, is an advantage of such a
modeling strategy. Nevertheless, for policy purposes, a model that can predict
for each of the species seems more useful.

(ii) We could model catch per ship-day per species, by considering a single regression
model and introducing a separate individual effect for each of the species, as in
Ferreira and Tusell (1996). We remark that the total amount of observations
is now 6806 × 6 = 40, 836 since zero catches should not be neglected. The
drawback of this model is that it seems somewhat unreasonable to assume that
the explanatory variables affect all the species in the same way, and the species
are only distinguished by a difference in the intercept. In the sequel, we shall
present strong data evidence against such an assumption. Therefore, the next
alternative seems the most interesting:

(iii) We consider a separate model for each of the species, and make inference for
each of the species according to its corresponding model. Thus, we have five
models (one for each of the Species 1-5, whereas we chose not to model the
heterogeneous “rest” category) with 6,806 observations per model. This is the
approach that we will follow here and, from now on, we will always implicitly re-
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fer to a model for a given species. In the subsequent discussion we will, however,
not explicitly indicate this fact in order to avoid cluttering the notation.
Given our modeling aims in (iii), there are two distinct issues of relevance to the

analysis. Firstly, we could ask which fish species are targeted by ships with certain
characteristics in a certain location and period, and, secondly, the influence of all
these variables on the actual quantities caught of both targeted and non-targeted
species could be of interest. However, the available data do not allow us to model
these aspects separately, and, thus, we shall model them simultaneously. Since
the ultimate aim is to predict the actual quantities caught, this might not be an
unreasonable strategy.

3. THE STATISTICAL MODEL

3.1. The sampling model

The observations will be denoted by si, i = 1, . . . , n (n = 6, 806 in our problem),
and we define s = (s1, . . . , sn)′. Clearly, si ≥ 0 for all i. From the consider-
ations explained in Section 2, it seems clear that any reasonable model should
take account of the fact that there is a positive probability of zero catch. Thus,
we model si = 0 with probability ω ∈ (0, 1). For the case where si > 0 (which
receives probability 1 − ω in our model), we assume a linear regression structure
for yi ≡ log(si) with Normal error term. As mentioned by Ferreira and Tusell
(1996), modeling yi through linear regression seems rather natural since it implies
multiplicative effects of the regressors on the actual catch si. See also Hilborn
and Walters (1992, chap. 4). Assuming an intercept and considering the k = 23
variables listed in Table 1, leaves us with 2k (i.e., 8, 388, 608) possible models de-
pending on whether we choose to include or exclude a certain regressor from the
model (while always including an intercept). Let us denote one such model by Mj ,
j = 1, . . . , J (J = 2k) and by M the space of all these models, i.e.,

M = {Mj : j = 1, . . . , J}. (3.1)

Under model Mj , we assume independent observations with the following distri-
bution:

Psi|ω,α,β,σ,Mj
=
{

Dirac at 0 with probability ω,
Lognormal

(
α+ z′i(j)β(j), σ

2
)

with probability 1− ω. (3.2)

The notation in (3.2) means that si takes the value 0 with probability ω, whereas
with probability 1−ω the observable si > 0 and log(si) follows a Normal distribu-
tion with mean α+ z′i(j)β(j) and variance σ2. In general, we will have a sample of
n observations from (3.2), of which a certain number, say Q, will be positive. For
notational convenience, we shall assume that the first Q observations are positive
and denote by y = (y1, . . . , yQ)′ the Q-dimensional vector with components given
by yi = log(si).
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Throughout, α denotes the intercept and β the k-dimensional vector of all
possible regression coefficients. Under model Mj , the distribution of a positive
response si only depends on kj (0 ≤ kj ≤ k) of the k possible explanatory variables,
which we group in a vector zi(j). The corresponding Q×kj design matrix, assumed
of full column-rank, is given by Zj = (z1(j), . . . , zQ(j))′. Without loss of generality,
we assume that

ι′QZj = 0, for all j, (3.3)

where ιQ is the Q-dimensional vector of ones, so that the intercept is orthogonal to
all the regressors. This implies that the regressors are taken in terms of deviations
around the mean and is immediately achieved by substracting the corresponding
sample means. Thus, the intercept α can be interpreted as a typical value for the
log catch, given that the latter is positive. Finally, the k−kj regression coefficients
irrelevant under model Mj are grouped in a vector β(∼j).

As was indicated in Section 2, there are two types of regressors: categorical
variables (nationality, fishing technique, zone and month), which will be handled
through dummy variables taking the values zero or one (with the possible exception
of zone): one variable for each category, minus one which corresponds to the
reference case. Secondly, we have continuous explanatory variables (net size, length
of vessel, GRT, engine kW), which will be transformed to logarithms. All of
these variables are subsequently demeaned, leading to a design matrix Zj that
verifies (3.3). The coefficient βl corresponding to a categorical variable has the
following interpretation: exp(βl) is the ratio between the median catch with the
corresponding dummy equal to one and the median catch in the reference category.
The regression coefficients corresponding to continuous variables are unequivocally
interpreted as elasticities, i.e., the relative percentage change in median catch as
a consequence of a 1% relative change in the continuous regressor.

3.2. The prior under model Mj

In order to conduct Bayesian inference, we need to complement our sampling
assumptions with a prior distribution for the parameters in the model.

The sampling distribution under model Mj is given in (3.2). For the parameters
in this model, ω, α, β(j) and σ, we specify a prior distribution that incorporates
minimal prior information while leading to analytical tractability. Fernández, Ley
and Steel (1997) provides details about this prior and its consequences for model
selection and prediction.

For ω, the probability of zero catch, we take a Beta prior distribution with
probability density function (hereafter denoted by p.d.f.):

p(ω) = fB(ω|a0, b0) ∝ ωa0−1(1− ω)b0−1I(0,1)(ω), (3.4)

regardless of the model Mj . On the intercept α and the scale parameter σ, which
are present in all the models, we assume the usual non-informative distributions,
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respectively defined through
p(α) ∝ 1, (3.5)

and
p(σ) ∝ σ−1, (3.6)

again regardless of the model Mj . For the vector β(j), which groups the relevant
regression coefficients under model Mj , we assume the prior

p(β(j)|σ,Mj) = f
kj
N

(
β(j)|0, σ2(g0jZ

′
jZj)

−1
)
, (3.7)

i.e., a kj-variate Normal distribution with zero mean and covariance matrix σ2(g0jZ
′
jZj)

−1,
where g0j > 0. This is similar in spirit to the g-prior introduced in Zellner (1986),
and essentially says that the prior precision is a fraction g0j of that of the sample.
Finally, model Mj implicitly assumes that the explanatory variables outside zi(j)
do not matter, which corresponds to taking a Dirac prior distribution for β(∼j) at
the (k − kj)-dimensional vector of zeros:

Pβ(∼j)|Mj
= Dirac(0,...,0). (3.8)

The overall prior structure under Mj is given by the product (3.4)− (3.8).
We remark that the only hyperparameters to elicit in this prior are three pos-

itive scalars: a0, b0 and g0j . Subsection 4.3 will comment on these issues more
in detail. Having fully specified this prior distribution, we can immediately con-
duct Bayesian inference under model Mj , by combining this distribution with the
sampling model in (3.2). Since this prior distribution closely resembles a natural
conjugate, computing the posterior and predictive distributions is quite simple, as
shall be explained in Section 4.

3.3. Model averaging

So far we have considered one single model Mj from the space of all possible
modelsM in (3.1), thus neglecting the fact that there is model uncertainty. From
a Bayesian perspective, this uncertainty causes no trouble and can be treated in
a coherent fashion by specifying a prior distribution on the model space M. We
therefore complete our model (3.2)− (3.8) by specifying a distribution over M:

P (Mj) = ej , j = 1, . . . , J, (3.9)

where ej ≥ 0 for all j and
∑J
j=1 ej = 1. Again, {ej : j = 1, . . . , J} are prior

hyperparameters that we have to choose.
Note that (3.2) − (3.9) define a hierarchical Bayesian model, with 2 levels of

hierarchy in the prior:

(i) Firstly, in (3.2) we have specified the distribution of the observables si given a
model Mj and the parameters ω, α, β, σ.
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(ii) Secondly, through (3.4)− (3.8), we specify the prior distribution of the param-
eters ω, α, β, σ in each given model Mj .

(iii) Finally, (3.9) gives the prior probabilities of each of the models.

The posterior distribution of any quantity of interest, say ∆, is now given by

P∆|s = P∆|s,Mj
with probability P (Mj |s), j = 1, . . . , J (3.10)

i.e., a mixture of the posterior distributions of ∆ under each of the models, with
mixing probabilities corresponding to the posterior model probabilities. If the
posterior distribution of ∆ under model Mj corresponds to some density function
p(∆|s,Mj), we can alternatively restate (3.10) as

p(∆|s) =
J∑
j=1

p(∆|s,Mj)P (Mj |s). (3.11)

Thus, Bayesian inference provides a coherent framework for treating model un-
certainty, leading to an inferential procedure which averages over the inferences
resulting from each of the individual models. Madigan and Raftery (1994) find
in a series of empirical applications that, in the presence of model uncertainty,
Bayesian model averaging leads to the best predictive performance, as measured
by a logarithmic scoring rule. In a decision-theory context, mixing over mod-
els can be shown to be optimal under predictive squared error loss, provided the
set of models considered is exhaustive [see also Min and Zellner (1993)]. For loss
structures depending on observables or on parameters, Osiewalski and Steel (1993)
remark that mixing over models is required to calculate posterior expected loss.
We shall, thus, follow this approach and consider model averaging rather than one
single model.

Applying Bayes’ theorem, the posterior probability of model Mj is given by

P (Mj |s) =
ls(Mj)P (Mj)∑J
h=1 ls(Mh)P (Mh)

, (3.12)

where P (Mj) = ej from (3.9) and ls(Mj), the likelihood of model Mj , is obtained
as the likelihood from (3.2), i.e.,

ls(ω, α, β(j), σ,Mj) ∝ ωn−Q(1− ω)QfQN (y|αιQ + Zjβ(j), σ
2IQ), (3.13)

with y as defined after (3.2) and IQ the Q-dimensional identity matrix, with the
parameters integrated out using their prior distribution in (3.4)−(3.7). This leads
to

ls(Mj) ∝
(

g0j

g0j + 1

)kj/2
G
−(Q−1)/2
j , (3.14)
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with

Gj =
1

g0j + 1
y′MXjy +

g0j

g0j + 1
(y − yιQ)′(y − yιQ), (3.15)

where y denotes the sample average of the vector y (i.e., y = ι′Qy/Q), Xj =
(ιQ : Zj) is the entire design matrix (including the intercept) and MXj = IQ −
Xj(X ′jXj)−1X ′j . Clearly, Gj > 0 if and only if the sample s contains at least two
different positive observations. This condition will be both necessary and sufficient
for posterior and predictive inference throughout the paper.

Although (3.14) provides us with an explicit expression for ls(Mj), direct com-
putation of the probability in (3.12) is very difficult due to the large number of
terms (remember that J = 223) in the denominator. Therefore, we shall approxi-
mate the posterior distribution on the model space, PM |s, by simulating a sample
from it. Instead of just using the empirical frequencies of visiting each model, we
shall adopt a more efficient way of approximating posterior model probabilities.
We take the generated drawings as an indication of which models have nonnegli-
gible posterior mass. Let M(1), . . . ,M(L) be the set of different models visited.
Then, for l = 1, . . . , L, we approximate P (M(l)|s) by

P̂ (M(l)|s) =
ls(M(l))P (M(l))∑L

h=1 ls(M(h))P (M(h))
, (3.16)

where ls(M(l)) is computed following (3.14). As is the case in using relative
frequencies, we implicitly assume that models that were never drawn have zero
posterior probability. The fact that we typically only visit a very small fraction
of all possible models (i.e., L ¿ J), renders this procedure feasible. This idea
was proposed in Lee (1996) who terms it Bayesian Random Search (BARS). It
is clearly more precise than just using empirical frequencies, since posterior odds
between any two models visited as computed from (3.16) are the actual posterior
odds [computed from (3.12)]. In addition, it has the advantage that it allows us
to compare empirical relative frequencies of model visits with analytical posterior
odds. If these numbers are very close, this provides a strong indication that no
further sampling from the model space is required for an accurate evaluation of
posterior model probabilities.

Finally, there is still the issue of how to generate a sample from PM |s, the pos-
terior distribution on the model space. As suggested by Raftery, Madigan and
Hoeting (1997), we can apply the MC3 methodology of Madigan and York (1995)
which simulates drawings from a Markov chain with state space M and station-
ary distribution PM |s. This Markov chain, described in Raftery et al. (1997), is
constructed as follows:

[1] For each model Mj ∈ M we define a neighborhood nbd(Mj) which consists of
Mj itself and any other model inM that contains either one regressor more or
one regressor less than Mj .
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[2] Given that the chain is currently at state Mj , we generate a model Mh from a
uniform distribution over nbd(Mj).

[3] The chain moves to the new stateMh with probability min{1, P (Mh|s)/P (Mj |s)},
where P (Mj |s) was described in (3.12) − (3.14). Otherwise the chain stays at
Mj .

4. INFERENCE AND PREDICTION

4.1. Inference on parameters

We shall compute the posterior distribution of the parameters ω, α, β and σ under
model averaging by means of the ideas outlined in Subsection 3.3. We focus on
inference on ω ∈ (0, 1), which gives the probability of zero catch, and on the
intercept α and the regression vector β ∈ <23, which contains the information
about the effect of each of the regressors on the amount of fish caught when the
catch is non-zero. Inference on σ is easily obtained, but usually of lesser importance
in itself, as σ is typically just a nuisance parameter, of no interest to the modeler.
Posterior inference on ω:

Posterior inference on ω is straightforward, since the posterior distribution of
ω does not depend upon the particular model Mj considered. Combining the
likelihood function in (3.13) with the prior in (3.4) by means of Bayes’ theorem,
leads to a Beta posterior distribution with p.d.f.

p(ω|s) = fB(ω|a∗ ≡ a0 + n−Q, b∗ ≡ b0 +Q). (4.1)

Note that, from (3.4), the expected value of zero catch was a0/(a0 + b0) a priori.
A posteriori, this expectation becomes

a∗
a∗ + b∗

=
a0 + n−Q
a0 + b0 + n

, (4.2)

where n−Q is the number of zero catches in the size n observed sample.

Posterior inference on α and β:
The posterior distribution of these parameters is more involved than that of ω,

since it varies with the model Mj . Thus, we shall first compute their posterior
distribution under a given model Mj and then apply the model averaging ideas
explained in Subsection 3.3. For the intercept α, this leads to the following mixture
of Student-t distributions:

p(α|s) =
J∑
j=1

p(α|s,Mj)P (Mj |s) =
J∑
j=1

f1
S

(
α|Q− 1, y,

Q(Q− 1)
Gj

)
P (Mj |s),

(4.3)
with Gj defined in (3.15), and where fqS(x|ν,m,A) denotes the p.d.f. of a q-variate
Student-t distribution with ν degrees of freedom, location vector m (the mean if
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ν > 1) and precision matrix A (with covariance matrix ν
ν−2A

−1 provided ν > 2).
Clearly, the posterior density for α is unimodal and symmetric, with mode located
at y, and possesses moments up to (and not including) the order Q− 1.

Let us now consider inference on any given component, say βl, of the regression
vector β ∈ <23. Under model Mj , βl takes the value zero if it is one of the irrelevant
components under Mj , i.e., if βl ∈ β(∼j) with a slight abuse of notation), whereas
its posterior distribution will be a univariate Student-t if βl ∈ β(j). This leads to
a posterior distribution for βl which is a mixture of
1. With probability pl ≡

∑
j:βl∈β(∼j)

P (Mj |s),

Dirac at 0. (4.4)

2. With probability 1− pl,

1
1− pl

∑
j:βl∈β(j)

f1
S

(
βl|Q− 1,

blj
g0j + 1

,
Q− 1
Gj

(g0j + 1)c′ljMZ
(−lj)
j

clj

)
P (Mj |s),

(4.5)
where we have assumed that βl corresponds to the lthj component of β(j), blj is
the lthj component of the familiar OLS-estimator (Z ′jZj)

−1Z ′jy, clj denotes the lthj
column of Zj and Z

(−lj)
j is the matrix Zj after removing its lthj column. As was

the case for α, posterior moments of each element of β exist up to the order Q− 1
(not including).

4.2. Prediction

We now focus on forecasting the value of a new observable, say sf , given a vector
of explanatory variables zf ∈ <23, and the observed sample s. Our forecast for
sf will be based on the out-of-sample predictive distribution, which is obtained
from (3.2) after integrating out all the parameters and possible models using their
respective posterior distributions. From (3.2) it is immediate that the predictive
distribution for sf will be a mixture of a Dirac distribution at zero and a continuous
distribution. Thus, we forecast:

1.
sf = 0 (4.6)

with probability

P (sf = 0|s) =
∫
P (sf = 0|ω, s)p(ω|s)dω =

∫
ωfB(ω|a∗, b∗)dω =

a∗
a∗ + b∗

. (4.7)

2. With probability
b∗

a∗ + b∗
, (4.8)
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sf > 0 and it has p.d.f.

p(sf |s) =
1
sf

J∑
j=1

p(log(sf )|s,Mj)P (Mj |s) =
1
sf

J∑
j=1

f1
S

(
log(sf )|Q− 1,

y + z′f(j)

(Z ′jZj)
−1

g0j + 1
Z ′jy,

Q− 1
Gj

{Q+ 1
Q

+ z′f(j)

(Z ′jZj)
−1

g0j + 1
zf(j)

}−1)
P (Mj |s),

(4.9)

where zf(j) is the kj-dimensional subvector of zf that contains the relevant ex-
planatory variables under model Mj .

In a practical context, we may not be interested in predicting the catch of one
single ship in a single day, but rather the catch of a number of ships during a certain
spell of time. This means that we should estimate the predictive distribution of
s̃ ≡

∑I
i=1 sfi rather than considering one single observable sf as was the case

above. The explanatory variables of the observable sfi to be forecasted shall
be grouped in the 23-dimensional vector zfi . The predictive distribution of s̃ is
computed by averaging its sampling distribution over parameters and models using
the relevant posterior probabilities. It is clear from (3.2) that in the sampling s̃ is
zero with probability ωI and has some p.d.f. with probability 1− ωI . This means
that we forecast:
1.

s̃ = 0, (4.10)

with probability

p̃ ≡ P (s̃ = 0|s) =
∫
P (s̃ = 0|ω, s)p(ω|s)dω =

Γ(a∗ + I)Γ(a∗ + b∗)
Γ(a∗)Γ(a∗ + b∗ + I)

. (4.11)

2. With probability
1− p̃, (4.12)

s̃ > 0 and has a predictive distribution given through some p.d.f. on (0,∞). Al-
though an explicit expression for the latter p.d.f. is complicated to derive, we can
simulate drawings which will allow us to approximate its characteristics. Such
drawings are generated in the following way:
2.1. Take each of the different models M(l), l = 1, . . . , L, visited in the MC3 chain

described in Subsection 3.3, and simulate a set of T drawings {ω(l, t), α(l, t), β(l, t),
σ(l, t)}, t = 1, . . . , T from the posterior distribution of the parameters under
this model. The relevant posterior for ω is described in (4.1), whereas it has
a Normal-Gamma structure for (α, β(l), σ

−2), where β(l) groups the nonzero
regression coefficients under M(l), and the other elements of β are zero.

2.2. Conditioning on M(l) and the drawn parameters ω(l, t), α(l, t), β(l, t), σ(l, t),
simulate a set of forecasted values sf1(l, t), . . . , sfI (l, t) from (3.2) and compute
s̃(l, t) ≡

∑I
i=1 sfi(l, t), for l = 1, . . . , L and t = 1, . . . T .
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2.3. If s̃(l, t) > 0, keep its value. Otherwise discard this drawing.
If we now combine 1 and 2 above, we can approximate the predictive expectation

of any function h(s̃) by

Ê
(
h(s̃)|s

)
= p̃h(0) + (1− p̃) 1

T

L∑
l=1

T∑
t=1

h(s̃(l, t))P̂ (M(l)|s), (4.13)

with P̂ (M(l)|s) computed in (3.16). A function h(·) of particular interest is the
indicator function, which allows us to construct histograms that approximate this
distribution.

4.3. Prior elicitation

In this subsection we briefly discuss the actual implementation of the prior de-
scribed in Subsection 3.2. As we do not possess strong prior information, we have
avoided choosing a prior that carries a lot of information. In particular, all we need
to elicit are the prior hyperparameters a0, b0, g0j as well as the prior probabilities
for each of the models. In making these choices, we will again try to incorporate
as little subjective input as possible.

For the elicitation of a0 and b0 in the prior of ω in (3.4), we can simply choose
any numbers that are small relative to n−Q and Q, and the data information will
swamp the prior. Thus, we shall take a0 = b0 = 1, which induces a Uniform prior
distribution of ω on (0, 1)

The choice of g0j is a much more delicate issue and is discussed in detail in
Fernández et al. (1997). In particular, we choose

g0j =
√
kj/Q (4.14)

on the basis of both posterior and predictive arguments. Fernández et al. (1997)
find that the use of (4.14) leads to very satisfactory identification of the correct
model in a simulation exercise, whereas out-of-sample predictive behaviour is also
quite good. Besides their empirical simulation justification, they also derive a
number of theoretical properties of this prior.

Finally, the prior model probabilities P (Mj) = ej in (3.9) will be chosen uni-
formly, i.e., ej = 1/J , j = 1, . . . , J , so that posterior odds between any two models
are equal to the Bayes factors.

One important point has to be stressed in this context. We propose a procedure
for eliciting a prior that only uses the data information through the regressors Z,
which we condition on throughout the analysis, and through the discrete part of
the response variable (i.e., whether catch is zero or strictly positive). However, we
refrain from using any information in the continuous part of the response variable
(i.e., the actual value of y). This we consider crucial, as it keeps our analysis
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within the bounds of probability calculus. George and McCulloch (1993), Laud
and Ibrahim (1995) and Raftery et al. (1997) use priors that depend on y in
this context, and thus formally violate the coherence of the Bayesian paradigm.
Raftery et al. (1997) acknowledge this fact, and consider their data-dependent
prior an approximation to a subjective prior.

4.4. Computational implementation

In the interest of the practical importance of this methodology, and to enhance its
appeal to applied researchers, we have made particular efforts to create a very effi-
cient software that can easily deal with problems of empirical relevance. The pro-
grams are coded in Fortran-77 and make efficient use of CPU-time, e.g., through
storing results for already visited models in stacks. As a consequence, an MC3

Markov chain of length 50,000 (with 25,000 burn-in) was generated and posterior
model probabilities were computed in 89 to 659 seconds for the five species consid-
ered here on a 120 MHz PowerPC 604-based computer. The entire analysis, includ-
ing plots for all the regression coefficients, individual predictive plots and aggregate
predictive Q-Q plots (see Subsection 5.1) took from 17 minutes (for Species 5) to 1
hour and 24 minutes for Species 1, where many models were visited (see Table 3).
After Species 1, the most computationally intensive species was halibut (Species
2), which took less than 37 minutes. The source code is posted on the World
Wide Web at http://www.econwpa.wustl.edu and http://lib.stat.cmu.edu
and is freely available. We think it is crucial for the potential acceptance of a new
methodology by applied researchers that problems of a practically relevant size
can be solved with relatively little computational effort. As far as we know, pre-
vious implementations of the MC3 algorithm were coded in S-plus (see Appendix
B of Raftery et al. 1997), thus making serious practical applications prohibitively
expensive in CPU-time.

5. DISCUSSION OF RESULTS

5.1. Diagnostic checks

There are two different issues that we will consider here. Firstly, the numerical
properties of the Monte Carlo procedure used, and, secondly, the adequacy of the
model fit to the data.

Table 3. Monte Carlo Performance
Species

1 2 3 4 5

Number of Models Visited 8395 390 1696 356 424

Best-Model Probability 1.06% 25.41% 9.13% 13.04% 15.40%

BARS and Emp. Freq. Correlation Coeff. 0.9286 0.9968 0.9942 0.9978 0.9814

For the convergence of the Monte Carlo chain, we focus on the two alternative
ways of computing posterior model probabilities mentioned in Subsection 3.3. Us-
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ing (3.12) we can analytically compute posterior odds between any two models, but
due to the large number of possible models, an MC3 procedure was implemented to
generate a Markov chain over the model space, which converges to drawings from
the correct posterior model distribution. In order to assess whether this conver-
gence has been achieved in a particular run, we compare the posterior probabilities
on the basis of model frequencies in the chain with those computed from (3.16) for
any model visited (i.e., BARS). Throughout, our results are based on a chain of
length 50,000 after discarding the first 25,000 draws (the “burn-in”). Table 3 lists
the total number of visited models, the highest posterior mass assigned to any one
model (the “best” model), and the correlation coefficient between the posterior
probabilities of all visited models computed on the basis of empirical frequencies
and BARS. The results clearly indicate that convergence is never a problem, and
the chains visit a relatively small number of models (a maximum of 0.1% of all
possible models for species 1). In addition, the best model often receives quite a
large posterior probability, but never so close to one that model averaging becomes
unnecessary.
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Fig. 2. Q-Q Plots for predictions of individual ship-days.

The second diagnostic check consists in a predictive check of model fit. In
particular, we base the posterior analysis on 75% of the entire sample and retain the
other 25% for comparison with the corresponding predictive distributions. For all
the retained positive observations we record in which percentile of the continuous
part of the predictive distributions (based on the inference sample and using the
corresponding values of the regressors) the actual observations fall. Contrasting
predictive quantiles with empirical ones thus obtained leads to a Q-Q plot that
indicates how well the model (estimated on the basis of the inference sample) fits
the data in the prediction sample. As the assignment of observations to either
sample is random, we would expect such plots to be a good measure of model
accuracy. Figure 2 presents these Q-Q plots for all five species, indicating that
model fit is always quite adequate. In particular, Species 4 and 5 (grenadier and
skate) are very well modeled by this predictive criterion. In the sequel, we shall
focus mainly on results for these two species, as well as on Species 2 (halibut),
which contributes most to the overall catch, both in weight and in frequency (see
Table 2).
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5.2. Posterior Results

Here we shall present some results based on the 75% inference sample mentioned
above. For policy purposes, the most interesting parameters are the regression
coefficients in β. In view of space restrictions, we shall limit ourselves to some of
the more salient findings. Figures 3-5 present, for a number of selected βl’s, the
posterior p.d.f. in (4.5). In addition, the gauge on top (black shading) indicates
the probability that βl 6= 0 [i.e., 1− pl with pl defined just above (4.4)].
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Fig. 3. Fishing techniques and net size.

Figure 3 focuses on the effect of fishing techniques and net size. For grenadier
the variable ‘drift gillnet’ is often not included in the model (it is, e.g., not in
the “best” model), while ‘otter trawl’ is often excluded for skate. For catching
grenadier anchored gillnet seems to be the best technique, whereas skate is best
caught with an otter trawl or otter trawl by pair (the reference case, as indicated
in Table 1). Median catch of skate with an anchored gillnet is only about 1-15%
of the median catch with a trawl. In view of the shape of the fish involved, this
large difference in the effect of different nets is not too surprising. The influence
of net size is also very different for these two species. For grenadier, the elasticity
is negative (increasing net size by 1% decreases median catch by 2-6%), whereas
for skate there is a positive effect. The latter might indicate that fishing for skate
(a relatively broad fish) is typically done with large mesh nets, possibly to avoid
too much bycatch.

Some ship characteristics are examined in Figure 4. Spanish vessels are catching
more halibut than Portuguese ones (the reference case), whereas the latter seem
more successful in the catch of skate. This might simply reflect different target
species of these fleets. Vessel length and gross registered tonnage (GRT) are ob-
viously positively correlated measures of the ship’s size. For grenadier we mainly
include GRT whereas the important “size” variable for skate is the length of the
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0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

Spanish vessel

0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

engine kW

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
0

1

2

3

4

5

6

vessel length

0.6 0.7 0.8 0.9
0

2

4

6

8

10

GRT

Skate

-1.7-1.6-1.5-1.4-1.3-1.2-1.1 -1
0

1

2

3

4

5

Spanish vessel

-1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1
0

1

2

3

4

5

6

engine kW

1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5
vessel length

0 0.1 0.2 0.3
0

2

4

6

8

GRT

Fig. 4. Ship characteristics.

vessel. Another important characteristic of the ship is the power of the engine.
As Figure 4 indicates, there is a clear positive effect for the quantity of halibut
caught, whereas a negative influence on the catch of skate is inferred. This indi-
cates that more powerful ships will go for the large quantities of halibut, whereas
skate (which is usually caught in much smaller quantities per tow; the average
positive catch per day is 1,116 kg versus 4,291 kg for halibut) is targeted by the
less powerful vessels.
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Fig. 5. Zone and Month.

Figure 5 highlights some findings regarding zone and month. For halibut zone
3L seems a much richer part of the fishing ground than the reference zone 3O.
However, for skate the best models do not distinguish zones 3L and 3O, and the
models that do include 3L indicate that it is even slightly worse than the reference
zone. The months of March, May and June are relatively good months for skate
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(with respect to December), whereas they are much less beneficial to the catch of
halibut. Note also that the posterior densities for these months are all bimodal for
skate, indicating that some models suggest the influence of these months is much
less positive.

5.3. Predictive Results

On the basis of the posterior results partially described above, we shall now predict
observations in the 25% of the sample that was not used for posterior inference.
Section 5.1 presented Q-Q plots, where predictive and empirical quantiles are
contrasted. As examples, we now show some predictive distributions for particular
observations in the retained sample.
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Fig. 6. Halibut: Predictive densities and actual observed values.

For halibut we can easily compute that the catch sf is forecasted to be zero
with probability 0.185 (from (4.7)), whereas with probability 0.815 it will have a
continuous distribution with p.d.f. as in (4.9). Figure 6 shows two such p.d.f.’s for
particular values of zf , along with the actual observation. Observation number
i = 1009 (of the 1400 retained observations) corresponds to a fairly large ship
in zone 3L, and we see that the actual catch of 6160 kg is well inside the bulk
of the predictive mass. Predictive uncertainty, however, is quite substantial. A
smaller ship in the somewhat poorer zone 3M (observation 814) will generate more
predictive mass on smaller values of sf , and again the observed value of 1944 kg
is very compatible with this predictive distribution.

0 500 1000 1500 2000 2500
0

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

obs 375

0 200 400 600 800
0

0.001

0.002

0.003

0.004

obs 558

Fig. 7. Grenadier: Predictive densities and actual observed values.

Some predictive densities for grenadier are presented in Figure 7. Here P (sf =
0|s) = 0.429 and i = 375 is a relatively large vessel, fishing in the rather good
month of February (actual catch was 380 kg), whereas observation 558 corresponds
to a small ship fishing in the worse month of September, catching a mere 75 kg
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of grenadier. Again, the quantities caught are well matched by the corresponding
predictive distributions.

0 25 50 75 100 125 150 175
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
obs 106

0 2000 4000 6000 8000
0

0.0001

0.0002

0.0003

0.0004

0.0005

obs 538

Fig. 8. Skate: Predictive densities and actual observed values.

For skate the predictive probability of zero catch is 0.551 and Figure 8 graphs
the p.d.f.’s of the nonzero catch for observations i = 538 and i = 106. Here the
crucial importance of the fishing technique is illustrated. Even though observation
106 corresponds to a ship of comparable size to that for i = 538, it uses a drift
gillnet and is thus not targeting skate. The very small amount caught (15 kg)
is just bycatch. Nevertheless, the predictive distribution captures this feature
perfectly. The other ship, using an otter trawl, has a substantial catch (2350 kg)
which is well inside the area of predictive mass in Figure 8.

These (arbitrarily chosen) examples illustrate that predictive behaviour is not
merely adequate at the aggregate level (as in Subsection 5.1), but leads to useful
and reasonable forecasts of the catch of a particular ship, in particular circum-
stances.
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Fig. 9. Q-Q plots for cluster predictions.

For policy purposes, it might be interesting to predict not the catch of one
single ship, but the aggregate catch of a number of ships, that are known to be in
a certain area of the Grand Bank at a certain time of the year. If we group the
data into clusters of 10 observations, we can analyze how such predictions, based
on 75% of the observations compare with the actual retained clusters. Clusters of
ships that are in the same zone at the same day are likely to be of most interest for
practically relevant predictions. In order to mimic such clusters, we have sorted
the prediction sample by year, day and zone (in that order) and selected clusters
of 10 consecutive observations from that ordering. The procedure outlined in
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Subsection 4.2 now leads to the Q-Q plots shown in Figure 9 for Species 2, 4 and
5. These plots indicate that quite adequate predictions can be made for the catch
of a certain species aggregated over clusters.
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Fig. 10. Predictive densities and actual observed values for clusters.

Figure 10 presents some individual group predictives for the catch of Species 2,
4 and 5. As is to be expected the predictives tend to be more alike across clusters
than across single observations, and thus we only present one cluster per species.

6. CONCLUDING REMARKS

In this paper we have outlined the modelling of daily live weight catch of different
species of fish in the Grand Banks fisheries. An important aspect of the data is the
fact that most days not all species are caught by a certain ship. Thus, modelling of
these implicit zero observations is crucial. For the positive observations, we have
used a Lognormal regression model, for which we have a collection of 23 different
explanatory variables. In order to deal with the 8.4 million possible models that
are generated by this, we use Bayesian model averaging. In particular, we apply
the MC3 algorithm of Madigan and York (1995), described for regression models
in Raftery et al. (1997). We use a carefully chosen prior distribution and examine
posterior and predictive inference. The former can be instrumental in policy deci-
sions regarding the effect of certain ship characteristics or regulations concerning,
e.g., net size or fishing techniques. The latter is required if we wish to predict catch
per species from easily obtained information regarding the presence of vessels with
known characteristics in a certain area at a certain time, rather than having to
board these vessels and inspect the catch (which is much more costly and also
interferes with the operation of the fishing vessels). Bayesian model averaging
naturally takes into account all uncertainty concerning parameter values as well
as the model uncertainty (within the class of models considered). Thus, realistic
predictions can be made for one or more ship-days, duly taking into account the
ships’ characteristics, location, month as well as parameter and model uncertainty.
Since the programs used were coded efficiently, new data can easily be processed
and posterior and predictive inference can be conducted without excessive com-
putational requirements. We have built in two main diagnostic checks that would
indicate to the user less thrustworthy results (either because the Markov chain has
not yet converged or the particular data are simply not well modelled). Thus, we
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hope this methodology could contribute to the toolbox of the applied modeller of
fish catches.

There are a number of ways in which the sampling model used here could be
extended. Firstly, the probability of zero catch, ω, could be made dependent on
certain explanatory variables, such as zone or season, or even perhaps on some
characteristics of the fishing vessel. This can easily be implemented without com-
plicating the model substantially. We have experimented with specific ω’s for each
zone-month and found that no substantive improvements in predictive model fit
resulted. Therefore, we have opted for the simpler specification used here. A sec-
ond possible elaboration would be to include ship effects in the continuous part
of the model. That could pick up certain quality aspects of the vessels, not cap-
tured in the data, but would make prediction for as yet unobserved ships quite
difficult. Thirdly, it might be a useful exercise to examine the effects of allowing
for heteroskedasticity in the error term of (3.2) by making σ depend on, e.g., the
size of the ship. Of course, both theory and practical implementation would be-
come more cumbersome as a consequence (unless such dependence would be fixed,
rather than estimated from the data). Finally, at a considerable cost in terms
of added complexity, one might propose a multivariate model for all species with
correlated error terms.
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