253 research outputs found

    TEMPOS: A Platform for Developing Temporal Applications on Top of Object DBMS

    Get PDF
    This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered: a query language and a visual browser. The query language, namely TempOQL, is an extension of OQL supporting the manipulation of histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals with regard to applications' requirements has been validated through concrete case studies

    An object query language for multimedia federations

    Get PDF
    The Fischlar system provides a large centralised repository of multimedia files. As expansion is difficult in centralised systems and as different user groups have a requirement to define their own schemas, the EGTV (Efficient Global Transactions for Video) project was established to examine how the distribution of this database could be managed. The federated database approach is advocated where global schema is designed in a top-down approach, while all multimedia and textual data is stored in object-oriented (O-O) and object-relational (0-R) compliant databases. This thesis investigates queries and updates on large multimedia collections organised in the database federation. The goal of this research is to provide a generic query language capable of interrogating global and local multimedia database schemas. Therefore, a new query language EQL is defined to facilitate the querying of object-oriented and objectrelational database schemas in a database and platform independent manner, and acts as a canonical language for database federations. A new canonical language was required as the existing query language standards (SQL: 1999 and OQL) axe generally incompatible and translation between them is not trivial. EQL is supported with a formally defined object algebra and specified semantics for query evaluation. The ability to capture and store metadata of multiple database schemas is essential when constructing and querying a federated schema. Therefore we also present a new platform independent metamodel for specifying multimedia schemas stored in both object-oriented and object-relational databases. This metadata information is later used for the construction of a global schemas, and during the evaluation of local and global queries. Another important feature of any federated system is the ability to unambiguously define database schemas. The schema definition language for an EGTV database federation must be capable of specifying both object-oriented and object-relational schemas in the database independent format. As XML represents a standard for encoding and distributing data across various platforms, a language based upon XML has been developed as a part of our research. The ODLx (Object Definition Language XML) language specifies a set of XMLbased structures for defining complex database schemas capable of representing different multimedia types. The language is fully integrated with the EGTV metamodel through which ODLx schemas can be mapped to 0-0 and 0-R databases

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    The LHC++ environment

    Get PDF

    Visually querying object-oriented databases

    Get PDF
    Bibliography: pages 141-145.As database requirements increase, the ability to construct database queries efficiently becomes more important. The traditional means of querying a database is to write a textual query, such as writing in SQL to query a relational database. Visual query languages are an alternative means of querying a database; a visual query language can embody powerful query abstraction and user feedback techniques, thereby making them potentially easier to use. In this thesis, we develop a visual query system for ODMG-compliant object-oriented databases, called QUIVER. QUIVER has a comprehensive expressive power; apart from supporting data types such as sets, bags, arrays, lists, tuples, objects and relationships, it supports aggregate functions, methods and sub-queries. The language is also consistent, as constructs with similar functionality have similar visual representations. QUIVER uses the DOT layout engine to automatically layout a query; QUIVER queries are easily constructed, as the system does not constrain the spatial arrangement of query items. QUIVER also supports a query library, allowing queries to be saved, retrieved and shared among users. A substantial part of the design has been implemented using the ODMG-compliant database system O₂, and the usability of the interface as well as the query language itself is presented. Visual queries are translated to OQL, the standard query language proposed by the ODMG, and query answers are presented using O₂ Look. During the course of our investigation, we conducted a user evaluation to compare QUIVER and OQL. The results were extremely encouraging in favour of QUIVER

    Degas: A Database of Autonomous objects

    Get PDF
    In this paper we introduce DEGAS (Dynamic Entities Get Autonomous Status), an active temporal data model based on autonomous objects. The natural combination of active and temporal databases is discussed. The active dimension of DEGAS means that we define the behaviour of objects in terms of production rules. The temporal dimension means that the history of an object is included in the DEGAS data model. Further novel features of DEGAS are the encapsulation of the complete behaviour of an object, both potential and actual. Thus, DEGAS combines dynamic and structural specifications in one model. In addition, DEGAS allows easy evolution of object capabilities through a clear distinction between inherent types and capabilities that can be acquired and lost. This addon mechanism makes DEGAS very suitable as a formalism for role modelling. Finally, the rule model in DEGAS is both simple, through the use of finite automata, and general, because it allows different strategies for dealing with constraints and reacting to events in other objects

    An extensible view system for supporting the integration and interoperation of heterogeneous, autonomous, and distributed database management systems

    Get PDF
    In this thesis the problem of integrating heterogeneous, autonomous and distributed database management systems (DBMSs) is addressed. To provide a solution, we have developed an approach, a design method, and a view system. Our approach is based on the invention of the abstract view constructs that have uniform and stable representations for supporting semantic relativism and distributed abstraction modeling. Our design method applies object-oriented techniques and software engineering concepts to manage the system complexity. Our view system has been constructed upon established experience with the development of large-scale distributed systems in a distributed object infrastructure provided by the Common Object Request Broker Architecture (CORBA). The scope of our research identifies the goals of Project Zeus in which we have created the Zeus View Mechanism ( ZVM) as the theoretical foundation of our approach. The notion of frameworks has been introduced as part of our design methodology to promote code/design reuse and enhance the portability/extensibility of the architectural design. A multidatabase system, the Zeus Multidatabase System ( ZMS), has provided a test bed for our concept. Project Zeus has exciting prospects. The foundation established in this research has created new directions in multidatabase research and will have a significant impact on future integration and interoperation technologies

    Scaling Heterogeneous Databases and the Design of Disco

    Get PDF
    Access to large numbers of data sources introduces new problems for users of heterogeneous distributed databases. End users and application programmers must deal with unavailable data sources. Database administrators must deal with incorporating new sources into the model. Database implementors must deal with the translation of queries between query languages and schemas. The Distributed Information Search COmponent (Disco) 1 addresses these problems. Query processing semantics are developed to process queries over data sources which do not return answers. Data modeling techniques manage connections to data sources. The component interface to data sources flexibly handles different query languages and translates queries. This paper describes (a) the distributed mediator architecture ofDisco, (b) its query processing semantics, (c) the data model and its modeling of data source connections, and (d) the interface to underlying data sources. 1
    corecore