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Abstract—This paper presents TEMPOS: a set of models and languages supporting the manipulation of temporal data on top of object

DBMS. The proposed models exploit object-oriented technology to meet some important, yet traditionally neglected design criteria

related to legacy code migration and representation independence. Two complementary ways for accessing temporal data are offered:

a query language and a visual browser. The query language, namely TEMPOQL, is an extension of OQL supporting the manipulation of

histories regardless of their representations, through fully composable functional operators. The visual browser offers operators that

facilitate several time-related interactive navigation tasks, such as studying a snapshot of a collection of objects at a given instant, or

detecting and examining changes within temporal attributes and relationships. TEMPOS models and languages have been formalized

both at the syntactical and the semantical level and have been implemented on top of an object DBMS. The suitability of the proposals

with regard to applications’ requirements has been validated through concrete case studies.

Index Terms—Temporal database, temporal data model, temporal query language, time representation, object database.
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1 INTRODUCTION

TEMPORAL data handling is a pervasive aspect of many
applications built on top of Database Management

Systems (DBMS). Accordingly, most of these systems
provide datatypes corresponding to the concepts of date
and span. These datatypes are adequate for modeling
simple temporal associations such as the date of birth or the
age of a person. However, they are insufficient when it
comes to model more complex temporal data, such as the
history of an employee’s responsibilities, or the sequence of
annotations attached to a video. Since no datatypes
dedicated to these kinds of associations are currently
provided by DBMS, type constructors such as “list” and
“tuple” must be used instead to encode them. The
semantics of this encoding must then be integrated into
the application programs, thereby increasing their complex-
ity. Temporal database systems aim at overcoming these
deficiencies [1], [2], [3], [4].

Research in this area has been quite prolific regarding

extension proposals to data models and query languages.

Whereas, in the relational framework, these works have led

to the consensus language TSQL2 [5], there is no equivalent

result in the object-oriented framework. Early attempts to

define temporal extensions of object-oriented data models

[2] had a limited impact, essentially due to the absence of a

standard underlying data model. As the ODMG [6]

proposal was released and started to be adopted by the

major object DBMS vendors, a few temporal extensions of it

were defined, among which TOOBIS [7] and T_ODMG [8].
However, we argue that these proposals lack at least some
of the following four important features:

. Migration support, as to ensure a seamless transition
of applications running on top of a nontemporal
system to a temporal extension of it.

. Encapsulation of temporal types, as to separate the
semantics of temporal data from its internal encoding.

. Formal semantics, to avoid many ambiguities gen-
erated by the richness and complexity of temporal
concepts, and to serve as a basis for efficient
implementation.

. Visual interfaces supporting user tasks such as
navigating through a collection of temporal objects.

The goal of the TEMPOS project (Temporal Extension
Models for Persistent Object Servers) [9], [10], [11], [12] has
been to contribute toward a consensus view on how to
handle temporality in object-oriented models by defining a
temporal object database framework integrating the above
features. This paper summarizes the results of this effort.
The proposed framework is based on a temporal data
model, on top of which two interfaces for retrieving and
exploring temporal objects are provided: the TEMPOQL
query language and the pointwise temporal object browser.

The paper is structured as follows: Section 2 focuses on
defining the requirements related to application migration
and representation independence and shows why existing
temporal extensions of ODMG fail to fulfill them. Section 3,
describes the TEMPOS data model, and Section 4 presents
the query language and the visual browser. In Section 5, we
present the prototype that has been developed to validate
the feasibility of our proposal and we describe a major
application among other that have been implemented on
top of TEMPOS. Finally, in Section 6, we end with an
overview of the proposal and point some future research
directions.
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2 MOTIVATION AND RELATED WORK

In this section, we present some of the major requirements
that guided the design of TEMPOS. These requirements are
divided into two categories: those which deal with the
migration of data and application programs from a
nontemporal to a temporal environment and those which
deal with the abstract modeling and querying of histories.
Before reviewing these requirements, we describe the
application used throughout the article.

2.1 Application Example

We consider an application dealing with a factory’s
assembly lines and employees. Assembly lines are modeled
by the class AssemblyLine. Each assembly line is
identified by a number (attribute lineCode) and has a
history of daily productions (attributes production and
quality). At a given date, an assembly line has a set of
workers who are assigned to it (attribute workers) and is
under the responsibility of an employee (attribute super-

visor). In addition, at a given date, each employee
(modeled by the class Employee) identified by her(his)
name (attribute name), earns a salary (attribute salary).
The class Employee is specialized into two subclasses,
Supervisor and Worker. The former contains the
employees who supervise an assembly line, while the latter
contains the employees who are allocated to an assembly
line as workers. At a given date, each supervisor oversees a
number of units (attribute supervises) and each worker
is allocated to one unit (attribute assemblyLine).

For all attributes, except lineCode in AssemblyLine

and name in Employee, the whole history of their values is
stored. For example, the salary of an employee is a temporal
attribute: All the past salaries of an employee are recorded
in the database. Moreover, histories of facts are recorded
with respect to valid-time. As defined in [13], the valid time
of a fact is the time when the fact is true in the modeled
reality (e.g., John’s salary is 1,000 in June 2000). In contrast,
the transaction time of a fact is the time when the fact is
current in the database and can be retrieved (e.g., the fact
that John’s salary is 1,000 in June 2000 has been recorded on
the 20th of May 2000). A fact can also be bitemporal,
meaning that it involves both valid and transaction times.

Finally, all the classes in the application are temporal, in
the sense that both “currently valid” and “currently
invalid” objects are recorded. This means that employees
who have quit the company are recorded in addition to
currently active employees.

2.2 Migration Requirements

Most of the temporal data models and languages that have
been proposed in the literature are extensions of “conven-
tional” ones. A common rationale for this design choice is
that the resulting models can be integrated into existing
systems, so that applications built on top of these systems
may rapidly benefit from the added technology. However,
the smooth migration of existing data and application
programs to temporal database systems may only be
achieved if these latter fulfill some elementary compatibility
requirements. Such requirements have been formally
defined in the context of temporal extensions to relational

models by Bohlen et al. [14], [15]. However, the adaptation
and application of these requirements to an Object-Oriented
(OO) setting has not been previously considered. This
adaptation is not completely trivial due to the following
reasons:

. OO models rely on different concepts than relational
models: objects, classes, types, properties, and
methods instead of relations, tuples, and attributes.

. OO models provide a different (and more eclectic)
set of update operators: object creation, destruction,
dereferencing, attribute updating, and traversal path
updating, instead of SQL’s INSERT, DELETE, and
UPDATE.

. OO databases support direct access from program-
ming languages (e.g., from C++ and Java), in
addition to database retrieval through a query
language (e.g., OQL).

In the following, we consider two levels of migration
requirements: upward compatibility and temporal transitioning
support. These requirements are adaptations to the object-
oriented setting of the concepts of upward compatibility
and temporal upward compatibility defined in [15].

A data model D1 is said to be upward compatible with
another data model D2, if every instance of D2 is also an
instance of D1. In particular, a temporal data model is said
to be upward compatible with a nontemporal data model, if
it supports nontemporal database instances. To illustrate
upward compatibility, consider an ODMG compliant
DBMS managing a database about document loans in a
library. Upward compatibility states that, if the ODMG
DBMS is replaced by a temporal extension of it, the
application programs accessing these data may be left
intact. This implies that the set of database instances
recognized by the extension is a super-set of those
recognized by the original DBMS and that the query and
update statements have identical semantics in the original
DBMS and in the temporal extension.

Now, suppose that, once the legacy applications run on
the temporal extension, it is decided that the history of the
loans should be kept, but in such a way that legacy
application programs may continue to run (at worst they
should be recompiled), while new applications should
perceive the property as being “historical.” We call this
requirement temporal transition support.

While upward compatibility can be achieved by simply
adding new concepts and constructs to a model without
modifying the existing ones, temporal transitioning support
is more difficult to achieve. Bohlen et al. [15] point out that
almost none of the existing temporal extensions to SQL,
including TSQL2, satisfy this latter requirement. It can be
shown that the same remark holds for existing object-
oriented temporal extensions and, in particular, for the
T_ODMG [8] temporal object model. For example, consider
a Document class with a property loaned_by defined on
it. In the context of T_ODMG, if some temporal support is
attached to this property, then any subsequent access to it
will retrieve not only the current value of the document’s
loaned_by property (as in the snapshot version of the
database), but also its whole history. The same remark
applies to the models defined by Goralwalla and Ozsu [16]
and Rose and Segev [17].
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TOOBIS [7] does not exhibit this migration problem.
However, in achieving temporal transitioning support,
TOOBIS introduces some burden to temporal applications.
Indeed, in TOOBIS TOQL for example, each reference to a
temporal property should be prefixed by either keyword
valid, transaction, or bitemporal depending on the
relevant time dimension(s). This leads to rather cumber-
some query expressions. Similar remarks apply to TOOBIS
C++ binding. This approach is actually equivalent to
duplicating the symbols for accessing data when adding
temporal support in such a way that, for each temporally
enhanced property p, there are actually two properties
representing it in the database schema: p and valid p (this
latter is a temporal property). In the example of the library
database, this means that when adding temporal support to
loaned_by, this property is actually not modified and
instead, a new temporal property is added, namely valid

loaned_by.
We advocate a different approach. When temporal

support is added to a database schema S, yielding a new
schema S’, application programs are divided into two
categories: those which view data as if its schema was S and
those which view it with schema S’. Therefore, the problem
of temporal transitioning support is seen as a form of
schema evolution, so that techniques developed in this
context apply. The reason for adopting this approach
instead of TOOBIS’s one may be stated simply: If a property
is modified to add temporal support, temporal applications
should perceive this property as being temporal.

Another migration requirement defined in [15] that has

been taken into account in our proposal is that of

S-reducibility. The idea is that all the operators defined by

a nontemporal query language should be mirrored in the

temporal extension of this language and given a temporal

semantics when applied to temporal data. For example, the

navigation operator defined by OQL should be given a

temporal semantics when applied to temporal properties.

This ensures that the semantics of temporal queries is

understandable in terms of the semantics of nontemporal

queries, so that a programmer familiar with the nontem-

poral query language can apply his/her knowledge to

formulate temporal queries. This requirement is a particular

case of the one introduced in the next section, which

promotes the manipulation of temporal data through

operators that abstract from the underlying representation.

2.3 Representation Independence

An elementary temporal association is a piece of data

relating a fact to an instant. In most temporal data models,

elementary temporal associations are grouped into tempor-

al relations (in the relational framework) or into object or

attribute histories (in the object and the object-relational

frameworks). Temporal relations and histories can be

represented in several ways. For example, it is possible to

associate an instant to every tuple in a temporal relation at

the logical level [18].1 An alternative is to group several

value-equivalent tuples into a single one, time stamped

either by a temporal element as in [19], or by an interval

[17], [7], [8]. This latter is by far the most common approach

in the temporal database literature. In these data models,

queries on temporal relations (or attribute histories) are

defined over an interval time-stamped representation. This

leads to some undesirable tensions between query expres-

sions and their intended semantics. The following query

expressed in TOOBIS TOQL query language illustrates this

point.
When has the assembly line supervised by employee X had a

quality-weighted production greater than that of the assembly line

supervised by employee Y?

/*The extent of the class Supervisor is denoted

TheSupervisors.*/

select valid(pX) from TheSupervisors as supX,

TheSupervisors as supY,

valid supX.supervises as lineX,

valid supY.supervises as lineY,

valid line X.production as prodX,

valid lineY.production as prodY,

valid lineX.quality as qualX,

valid lineY.quality as qualY

where supX.name = “X” and supY.name = “Y” and

prodX * qualX > prodY * qualY and valid(lineX)

overlaps valid(lineY) and

valid(prodX) >= begin(valid(lineX)) and

valid(prodX) <= end(valid(lineX)) and

valid(prodY) >= begin(valid(lineY)) and

valid(prodY) <= end(valid(lineY)) and

valid(prodX) = valid(prodY) and

valid(qualX) = valid(qualY) and

valid(qualX) = valid(prodX)

This query expresses a join between the quality and the

production histories of the assembly lines supervised by X

and Y. The following time stamps and collections of time-

stamped objects are involved in the query:

. valid supX.supervises is a collection of interval
time-stamped AssemblyLine objects (the lines that
X supervised).

. valid(lineX) is the validity period of a time-
stamped assembly line, while lineX is the Assem-

blyLine object without the time stamp.
. valid lineX.production is a collection of

instant time-stamped integers: the successive pro-
duction volumes of the lines supervised by X.

. valid lineX.quality is a collection of instant
time-stampted real numbers: the successive produc-
tion qualities of the line supervised by X.

. valid(prodX) is the validity instant of a time-
stamped integer denoting a production volume at a
given date, while prodX is the value of this integer,
without the time stamp.

. valid(qualX) is the validity instant of a time-
stamped real number denoting a production quality
at a given date, while qualX is the value of this real
number, without the time stamp.
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In this example, there is a clear difference in the level of

abstraction between the query expression in natural

language and that in TOQL. In the natural language

formulation, there is no reference to any time-stamped

object, whereas the TOQL formulation is fully based on

time-stamp manipulation. This mismatch is the result of a

lack of conceptuality in the language: TOQL lacks operators

for reasoning about simultaneity. Specifically, no operators

for navigating through temporal attributes and associations

are provided. Instead, TOQL relies on an interval time-

stamped representation of histories, together with operators

over intervals for expressing most kinds of temporal

queries. The same remark applies to many other proposals

of temporal object query languages. For example, the

expression of the above query in TIGUKAT [16] and

TOOSQL [17] follows the same principle as that in TOOBIS:

The from clause is used to declare a series of iterations over

the histories involved in the query, while the where clause

contains a series of join conditions between these histories.

Hence, the navigation through temporal properties (or

behaviors as termed in TIGUKAT) is diluted in the from and

the where clauses. This gap between the conceptual

expression of a temporal query and its implementation in

TIGUKAT or TOOSQL also appears in other types of

queries, such as those involving a succession of events in

time, or a change of granularity. Indeed, to the best of our

knowledge, there are no dedicated operators in TIGUKAT

or TOOSQL for grouping a history according to a given

granularity.

We advocate that exclusively relying on a fixed

representation of temporal data to define the semantics of

temporal operators, or for query expression, is an undesir-

able feature in a temporal object model. Instead, specific

“representation independent” operators on histories should

be provided, covering the fundamental temporal reasoning

paradigms such as simultaneity, succession, and granular-

ity change.

3 THE TEMPOS DATA MODEL

The TEMPOS data model is based on a set of datatypes

whose behavior is described by type interfaces. The

distinction between interfaces (abstract type descriptions)

and classes (concrete implementations) is exploited to

enforce the separation between the semantics of the

operators over these datatypes and their implementation

under some fixed representation. Furthermore, TEMPOS is

structured into three increasingly sophisticated levels, i.e.,

the second level contains the first level, and the third level

contains the second level. This structure enables a particular

implementation to choose a degree of compliance according

to the requirements of the targeted applications and the

extensibility of the underlying DBMS.
The first level is composed of a set of datatypes modeling

time values (instants, durations, intervals, and sets of
instants), expressed at multiple granularities (time units).
This level is sufficient for applications that involve simple

temporal associations such as dated events (e.g., dates of
birth, dates of appointment, etc.).

The second level introduces the concept of history and its

associated operators. These operators can be used by

application programs to filter, transform, and aggregate

historical data. This level is appropriate for applications that

need to manipulate complex temporal associations (e.g.,

time series) but do not require any specific support for

performing updates according to valid time or transaction

time. In particular, this level does not provide temporal

transitioning support as defined in Section 2.2. Indeed, if an

attribute is declared as being of type “History,” then all the

applications will perceive it as such.

The third level extends the concepts of class, attribute,

and relationship as defined in the ODMG standard, leading

to the concepts of temporal class, temporal attribute, and

temporal relationship. This level supports valid time and

transaction time. Update and retrieval operators over

temporal classes and properties follow the semantics of

these two time dimensions. In addition, this level provides

temporal transitioning support.

3.1 Modeling Histories

TEMPOS is based on a discrete, linear, and bounded time

model in which the time line is structured in a multi-

granular way by means of time units. A time unit models a

partition of the time line into disjoint and contiguous

intervals (see [20] for a formal definition). Days, months,

and years are examples of time units. Some time units are

finer than others. For example, unit Day is finer than unit

Month (written Day � Month). Based on this temporal

structure, the TEMPOS model defines four basic temporal

datatypes: Instant, Duration, Interval, and TSe-

quence (set of instants). A full description of these

temporal datatypes and their operations is out of the scope

of this paper (see [9]). Taking these datatypes as building

blocks, the historical model presented in this section

provides the foundation for capturing the evolution of data

items over time.

3.1.1 Historical Model

A history is abstractly defined as a function from a finite set

of instants to a set of values of a given type. The set of

histories of a given type T are modeled through an abstract

datatype HistoryhTi.
To describe the operators of the HistoryhTi datatype,

we use functional notations. Indeed, given that most of the

operators on histories are higher-order operators (i.e.,

functions whose parameters are themselves functions), a

simple UML-like description of them would not be accurate

enough.
The following notations are used: T1! T2 stands for the

type of all functions with domain T1 and range T2. {T} and
[T], respectively, denote the type of sets of T and
sequences of T. hT1, T2, ..., Tni designates the type of
tuples whose ith component is of type Ti (1 � i � n); tuple
components may be labeled using the notation hL1 : T1,

L2 : T2, ..., Ln : Tni. hv1, v2, . . ., vni denotes a tuple
value whose ith component is vi (1 � i � n). If x is an
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instant or a temporal sequence, then Unit(x) denotes its

time unit.
The selectors of the HistoryhTi type are:

Domain: HistoryhTi ! TSequence

/* retrieves the domain of a history */

Range: HistoryhTi ! { T }

/* retrieves the range of a History */

Unit: HistoryhTi ! Unit

/* Unit(h) = time unit at which the history h

is observed. */

Value: HistoryhTi, Instant ! T

/* Value(H, I) is the value at instant I,

assuming that I 2 Domain(H) */

Histories may be represented in several ways, mainly by

means of collections of time-stamped values, termed

chronicles. Among these representations, some are useful

for query expression, so that specific operators are defined,

allowing one to convert a history into a chronicle.

Concretely, a history may be represented by three kinds

of chronicles:

. Chronologically ordered list of instant-timestamped
values, e.g., [h1, v1i, h2, v1i, h4, v1i, h5, v2i,
h6, v2i, h7, v2i, h8, v3i, h9, v1i, h10, v1i].
Such lists are termed IChronicles.

. Chronologically ordered, coalesced list of interval-
time-stamped values, e.g., [h[1..2], v1i,
h[4..4], v1i, h[5..7], v2i, h[8..8], v3i,
h[9..10], v1i]. This kind of list is called an
XChronicle.

. Set of distinct values time stamped by disjoint
temporal sequences, e.g., { h{1, 2, 4, 9, 10},

v1i, h{5, 6, 7}, v2i, h{ 8 }, v3i }.
These representations are sometimes useful for query

expression, so that specific operators are defined that cast

either of these representations into histories and vice-versa

[21]. Here, we only describe the operator allowing to cast

histories into XChronicles.

XChronicle: HistoryhTi !
[htimestamp: Instant, value: Ti]
/* XChronicle ðhÞ ¼ ½C1; :::; Cn� ) 8k 2 ½1::n� 1�,
Ck:timestamp < Ckþ1:timestamp ^
ðCk:timestamp meets Ckþ1:timestamp ) Ck:value

6¼ Ckþ1:valueÞ */

3.1.2 Algebraic Operators on Histories

Algebraic operators on histories are classified into two

categories: intrapoint and interpoint. An operator is said to

be intrapoint if the value of the resulting history at a given

instant depends exclusively on the value of the argument

histories at that instant, otherwise, it is said to be interpoint.

This classification is closed under composition: The

composition of two intrapoint operators yields an intrapoint

operator and, similarly, for interpoint operators.
Intrapoint operators. Intrapoint operators are essentially

generalizations to histories of the selection, join, and

projection operators of the relational algebra. Five Intra-

point operators are defined in TEMPOS: two corresponding

to the selection (also called restriction), two corresponding

to the join, and one corresponding to the projection.
The operators �if and �in restrict the domain of a history

to those instants at which a given condition is true. Their

semantics is illustrated in Fig. 1.

_�if_: HistoryhTi, (T ! boolean) ! HistoryhTi
/* h �if P ¼ fhI; vi j hI; vi 2 h ^ PðvÞg */

_�in_: HistoryhTi, TSequence ! HistoryhTi
/* h �in S ¼ fhI; vi j hI; vi 2 h ^ I 2 Sg */

The temporal join allows to combine histories. Since two

histories may have different domains, we distinguish the

inner temporal join (�\) from the outer one (�[), depending
on whether the resulting history’s temporal domain is the

intersection or the union of the domains of the arguments:

h1 �\ h2 is a history whose values are pairs obtained by

combining “synchronous” values of h1 and h2 (i.e., values

attached to the same instant); h1 �[ h2 is similar, except

that it attaches values of the form hv, nili or hnil, vi, to
those instants where one of the argument histories is

defined while the other is not. More precisely:

_�\_: HistoryhT1i, HistoryhT2i !
HistoryhhT1,T2ii
/* h1 �\ h2 ¼ fhI; hv1; v2ii j hI; v1i 2 h1 ^ hI; v2i 2 h2g */
/* precondition: Unit(h1) = Unit(h2)} */

_�[_: HistoryhT1i, HistoryhT2i !
HistoryhhT1,T2ii
/* h1 �[ h2 ¼ h1 �[ h2 [ fhI; hv1; nilii j hI; v1i 2 h1 ^ I =2
Domainðh2Þg[fhI; hnil; v2ii j hI; v2i2 h2 ^ I =2 Domainðh1Þg
precondition: Unit(h1) = Unit(h2)} */

The semantics of the join operators are informally

illustrated in Fig. 2.
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The last of the Intrapoint operators, namely Map, applies
a given function to each value of a history. For example,
given a history H of integers, the operation Map(h1, x /

100) yields another history of integers, obtained by
dividing the values of H by 100.

Map: HistoryhTi, (T ! T’) ! HistoryhT’i
*/ Mapðh; fÞ ¼ fhI; fðvÞi j hI; vi 2 hg /*
Interpoint operators. Interpoint operators include parti-

tioning (or grouping) operators and operators dealing with
succession in time. There are two grouping operators in
TEMPOS: UGroup and DGroup. UGroup (h, u2), h being
at granularity u1 (u1 � u2), divides up history h into
groups according to unit u2. The result is a history at
granularity u2 of histories at granularity u1whose values at
instant i are the temporal restriction of h to the interval
expand (i, u1).2 This is illustrated in Fig. 3.

On the other hand, DGroup (h, d) yields all sub-
histories of h of duration d. The resulting history associates
to instant i the restriction of h to interval ½i::iþ d�, if d is
positive, or to ½iþ d::i� if d is negative, provided that the
corresponding interval is included in the temporal domain
of h. This operator is useful to express moving window
queries, as in “compute the average sales for each seven-day
period in the history of daily sales of a store.” Formally,

UGroup: HistoryhTi, Unit ! HistoryhHistoryhTii
*/ UGroupðh; uÞ ¼ fhI; subhi j 9I0 2 DomainðhÞ,
approxðI0; uÞ ¼ I ^ h �in expandðI; UnitðhÞÞ ¼ subhg /*
*/ precondition : UnitðhÞ � u /*

DGroup : HistoryhTi, Duration !

HistoryhHistoryhTii
*/ DGroupðh; dÞ ¼

fhI; subhi j ½I::Iþ d� � h ^ subh ¼ h�in½I::Iþ d�g
if d positive

fhI; subhi j ½I::Iþ d� � h ^ subh ¼ h�in½Iþ d::I�g
if d negative

8>><
>>:

/* preconditions: Unit(d) = Unit(h) or Unit(d)

and Unit(h) are regular */

To reason about successive values of histories and their
correlations, TEMPOS provides four operators, namely,
AfterFirst, BeforeFirst, AfterLast, and Before-

Last. These operators are algebraic versions of the “since”
and “until” operators of linear temporal logics [22].
Specifically, AfterFirst(h, P) yields the subhistory of
h starting at the first instant at which the value of h satisfies
predicate P, or the empty history if such instant does not
exist. BeforeFirst(h, P), on the other hand, restricts h

to those instants preceding the first instant at which the
value of h satisfies P, or h if such instant does not exist. For
any history h and any predicate P, h is equal to the union of
BeforeFirst(h, P) and AfterFirst(h, P) (which are
disjoint). Similar remarks apply to AfterLast and
BeforeLast which are defined symmetrically.

BeforeFirst: HistoryhTi,
(T ! boolean) ! HistoryhTi
/* BeforeFirstðh; PÞ ¼ fhI; vi j hI; vi 2 h ^ :9hI0; v0i 2
h ðPðv0Þ ^ I � I0Þg */

AfterFirst: HistoryhTi,
(T ! boolean) ! HistoryhTi
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Fig. 2. Inner and outer joins.

Fig. 3. Unit-based and duration-based temporal grouping.

2. Operation expand (i, u) maps an instant i observed at some unit
u2, to an interval at a finer unit u1. For example, expand(’January 2001’) =
[’1 January 2001’..’31 January 2001’].



/* AfterFirstðh; PÞ ¼ fhI; vi j hI; vi 2 h ^ 9hI0; v0i 2
h ðPðv0Þ ^ I � I0Þg */
Fig. 4 provides an informal view of the semantics of

AfterFirst and BeforeFirst.

3.2 Temporal Properties and Classes

In this section, we extend the concepts of class, property,
and their instances to integrate temporal support. We also
show how this extension fulfills the requirements formu-
lated in Section 2.

3.2.1 Temporality at the Property Level

As in ODMG, a property is defined as an attribute or
traversal path of a relation attached to some class. For
instance, possible properties of an Employee class include
salary and department. Instances of properties are
attached to objects, so that property instances are to objects
what properties are to classes.

The following two paragraphs successively describe:
1) how temporal support is attached to properties and
2) what is the effect of attaching such support on the
values taken by property instances?

Temporal properties. In TEMPOS, a property may be
either temporal, in which case its successive values are
meaningful and thus recorded, or fleeting, if only its most
recent value is meaningful. When a property is temporal,
the granularity at which its evolution is observed is
determined by a specific characteristic of the property,
namely, its observation unit.

As in ODMG, a type is attached to a property. In the case
of a fleeting property, this type defines the domain of
possible values that an instance of this property may take,
whereas for a temporal property, it models the values that
an instance of this property may take at some instant. If the
type of a temporal property is T, each of its instances has a
history whose type is HistoryhTi.

The temporal dimension of a temporal property deter-
mines the semantics of the temporal associations that it
models. It may be valid-time or transaction-time depending
on whether the facts are timestamped with respect to the
modeled reality or with respect to the database evolution
[23]. TEMPOS therefore distinguishes valid-time and transac-
tion-time properties. By merging these two concepts, it is
possible to model bitemporal associations, although we do
not address this issue in this paper.

Instances of temporal properties. The (observation)
domain of an instance of a temporal property is the set of
instants (i.e., the TSequence) during which the property is

observed for a given object. Observation domains may
evolve dynamically according to the system clock.

The (full) history of a temporal property instance is a
history reflecting the values taken by the property instance
at all instants when it is observed. The domain of this
history is equal to the observation domain of the property
instance. Its structural values, on the other hand, are either
defined by some update, or derived from the inputted
values using a semantic assumption. Specifically, a temporal
property instance has an effective history, corresponding to
the inputted time-stamped values attached to it. The
effective history is contained in (but not necessarily equal
to) the property instance’s history, and the difference
between them is called the potential history. This is the part
of the full history derived through the semantic assump-
tion. In the sequel, we will refer to the domain of a property
instance’s effective history as the effective domain.

We distinguish three semantic assumptions depending
on the intended calculation mode of the potential history
(see Fig. 5).

. Discrete: The structural value of the potential history
is equal to the neutral value of its structural type
(e.g., 0 for integers, nil for objects). This is the case
of the production of a product in a factory: The
period of time during which the production is
defined (i.e., its observation domain) may be known
in advance (e.g., all weekdays), but at some days, it
may be that there is no inputted value (e.g., due to a
strike), so that the effective history is not defined for
those days. A padding value may be attached to a
discrete property, to override the use of the neutral
element of the property’s type as the “default” value
for the potential histories.

. Stepwise: Values are “stable” between two instants in
the effective temporal domain (e.g., a property
instance modeling an employee’s salary). A padding
value determines the value of the property instances
at those time instants for which the stepwise
semantic assumption does not provide one (e.g.,
when the smallest instant in the effective domain is
not equal to the smallest instant in the observation
domain).

. Linearly interpolated (only for numerically-valued
properties): Between two successive instants in the
effective domain, the value varies linearly.

Transaction-time properties have a stepwise semantic
assumption. In addition, the temporal domains of their
instances may evolve with the system clock. Each time that
a transaction-time property instance is accessed, its tempor-
al domain is computed by replacing its upper bound with
the current instant, unless the property is “turned off” as
discussed later. This is depicted in Fig. 6.

Temporal binary relationships. In ODMG, a relationship
is defined implicitly through the declaration of a pair of
inverse properties attached to the class(es) participating in
the relationship. An association between a class C1 and a
class C2 is modeled by attaching a property P1 to C1, and a
property P2 to class C2. Depending on the multiplicity of
the association, P1 and P2 are single-valued or set-valued.
For example, if the multiplicity of the link going from C1 to
C2 is “many,” then P1 is of type set hC2i. Otherwise, if the
multiplicity of this link is “one,” then the type of P1 is
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simply C2. The DBMS automatically ensures referential
integrity: If an object o1 of class C1 refers, through property
P1, to an object o2 of class C2, then o2 refers to o1 through
property P2.

TEMPOS extends this notion of inverse properties to

model temporal relationships. More precisely, if P1 and P2,

respectively, attached to classes C1 and C2 are the inverse

properties defining a temporal relationship, then the

constraints listed below hold. The following notations are

used: extent(C) is the set of all instances of class C, and

o.P is the history of property instance P attached to object o.

. If P1 and P2 are both single-valued then:

ð8 o1 2 extentðC1Þ; 8 i 2 Domainðo1:P1Þ i 2
DomainðValueðo1:P1; iÞ:P2Þ ^ o1

¼ValueðValueðo1:P1; iÞ:P2; iÞÞ^ð8 o2 2 extentðC2Þ;
8 i 2 Domainðo2:P2Þ i 2 DomainðValueðo2:P2; iÞ:P1Þ
^ o2 ¼ ValueðValueðo2:P2; iÞ:P1; iÞÞ:

. If P1 is single-valued and P2 is multivalued then:

ð8 o1 2 extentðC1Þ; 8 i 2 Domainðo1:P1Þ i 2
DomainðValueðo1:P1; iÞ:P2ÞÞ ^ o1 2
ValueðValueðo1:P1; iÞ:P2; iÞ ^ ð8 o2 2 extentðC2Þ;
8 i 2 Domainðo2:P2Þ; 8 o1 2 Valueðo2:P2; iÞ i 2
Domainðo1:P1Þ ^ o2 ¼ Valueðo1:P1; iÞÞ:

. If P1 and P2 are both multivalued then:

ð8 o1 2 extentðC1Þ; 8 i 2 Domainðo1:P1Þ;
8 o2 2 Valueðo1:P1; iÞ i 2 Domainðo2:P2Þ^
o1 2 Valueðo2:P2; iÞÞ ^ ð8 o2 2 extentðC2Þ;
8 i 2 Domainðo2:P2Þ; 8 o1 2 Valueðo2:P2; iÞ i
2 Domainðo1:P1Þ ^ o2 2 Valueðo1:P1; iÞÞ:

3.2.2 Temporality at the Class Level

As properties, classes may be fleeting or temporal. A

temporal class keeps track of its extent by associating to

each of its instances the set of instants at which it is observed,

either with respect to valid or transaction time. Instances of

temporal classes are called temporal objects.
The extent of a class (whether fleeting or temporal) is

defined as the set of all instances of this class having been

created and not deleted. Due to the “append-only”

semantics of transaction-time (i.e., no information may be

lost), an object of a transaction-time class may not be

deleted from its extent. The same applies to any object

participating in a transaction-time relationship or refer-

enced by a transaction-time attribute. For this reason, the

operator delete is overloaded when applied to transac-

tion-time objects as discussed later.
In addition to the notion of extent, two other notions are

introduced that apply to temporal classes and their

instances: observation domain and observed extent.

DUMAS ET AL.: TEMPOS: A PLATFORM FOR DEVELOPING TEMPORAL APPLICATIONS ON TOP OF OBJECT DBMS 361

Fig. 5. A valid-time property instance’s history is calculated based on the effective history and the semantic assumption.

Fig. 6. The history of a transaction-time property instance is calculated based on the effective history, the creation time, and the current time.



Definition 1: Observation Domain. A valid-time (respec-
tively, transaction-time) object has a valid-time (respectively,
transaction-time) observation domain attached to it, which
is an arbitrary set of instants.

Definition 2: Observed extent. Given a temporal class, the
observed extent of this class at an instant i is the subset of
the extent consisting of all objects whose observation domain
contains i.

Conceptually, the observation domain of a valid-time or
transaction-time object is the set of instants at which the
information conveyed by this object is observed. The notion
of “observation” may either be defined with respect to
transaction-time (When is the information conveyed by an
object observed in the database?), or to valid-time (When is
the information about the entity modeled by an object
observed?).

For example, consider a class Product modeling the
product types produced and sold by a company. If the class
is declared as temporal (either with respect to valid-time or
transaction-time), then the observation domain could be
used to model the time when a particular product is
manufactured, or the time when it is sold. Suppose now
that the observation domain models the time when the
product is manufactured. If the class is transaction-time,
then the value of the observation domain of an object of this
class captures the time when the database knows that a
product is manufactured, whereas, if the class is valid-time,
it models the time when the corresponding product is
actually manufactured in reality.

Temporal support on properties and class extents are
orthogonal: A fleeting class may have transaction or valid-
time properties and, reciprocally, a valid-time class or
transaction-time class may have fleeting properties.

3.2.3 Updating and Accessing Temporal Property

Instances

In ODMG, there is one “access” and one “update” operator
for property instances, respectively, get_value, which
retrieves the value of the property instance and set_value

which assigns to it the value given as parameter. In the
context of temporal property instances, the set of update
and access operators is richer, due to the variety of temporal
characteristics attached to them and the need to achieve
biaccessibility (see Section 2). These operators are classified
depending on whether they are intended to modify the
observation domain or the effective history and depending
on the time dimension (valid-time or transaction-time) to
which they apply.

Evolution of the Observation Domain of Transaction-

Time Property Instances. Since transaction-time is intended
to model the evolution of the database, the observation
domain of transaction-time properties instances evolves
automatically with the system clock. Conceptually, the
current instant is added to the observation domain of a
transaction-time property instance at each clock tick. This
automatic evolution of the observation domain can be
overridden, so as to capture the fact that the property
instance is not observed during some period of time. This is
achieved through the notion of growth status, which takes

one of two values: On or Off. If the value of the growth
status of a transaction-time property instance is On, its
observation domain evolves with the system clock. Other-
wise, it does not evolve at all. Operators turn_on and
turn_off on transaction-time property instances allow
one to switch between these two states.

Evolution of the Observation Domain of Valid-Time

Property Instances. Unlike transaction-time properties, the
observation domain of a valid-time property instance does
not evolve automatically with the system clock. Instead, an
update operator set_odomain is provided, which destruc-
tively replaces the domain of the property instance by the
TSequence given as parameter. Given that the observation
domain must always contain the effective domain, this
operator may force some modifications on the effective
history, i.e., if the constraint is violated after some update to
the observation domain, the effective history is restricted to
fit inside this domain.

Evolution of the Effective History of Transaction-Time

Property Instances. In the case of transaction-time proper-
ties, the effective history of a temporal property instance
may only be modified by an overloaded version of ODMG’s
set_value operator. More precisely, set_value(v)

applied to a transaction-time property instance TTPI

replaces the effective history of TTPI by a new history,
identical to the old one except that it maps the current
instant to value v. If necessary, the growth status of the
property instance is turned on.

Evolution of the Effective History of Valid-Time

Property Instances. The operator set_effective_his

tory destructively replaces the effective history of a
temporal property instance with the one given as para-
meter. In order to achieve temporal transitioning support,
the standard set_value operator is also supported and is
given the following semantics (VTPI is a valid-time
property instance):

VTPI:set valueðvÞ � VTPI:set effective history

ðVTPI:get effective historyðÞ
/ fh current instantðÞ; v igÞ:

Where the operator / is defined as follows:

/ : HistoryhTi; HistoryhTi ! HistoryhTi
=� h1 / h2 ¼ fhI; vi j hI; vi 2 h2 _ ðhI; vi

2 h1 ^ I =2 Domainðh2ÞÞg: =�

Accessing Temporal Property Instances. The basic
operators to access temporal property instances are get

_effective_history and get_history. The former
simply retrieves the effective history of the temporal
property instance, while the latter builds a history from
the observation domain and the effective history using the
corresponding semantic assumption as depicted in Figs. 5
and 6. To achieve temporal transitioning support, the
ODMG get_value access operator is also supported on
temporal property instances. Its semantics in this context is
defined as follows (TPI is a temporal property instance):

TPI.get_value() � Value(TPI.get_history(),

current_instant()).
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3.2.4 Temporal Objects’ Observation Domain Evolution

Evolution of Transaction-Time Observation Domains. The
observation domain of transaction-time objects evolves
automatically with the system clock in a similar way as
the observation domains of transaction-time property
instances. Each transaction-time object has a growth status,
which may be On or Off. Conceptually, while a transaction-
time object is on, the current instant is added to its
observation domain at each clock tick. When a transac-
tion-time object is created, its growth status is on. If the
operator delete is called on it, the growth status turns off,
but the object remains in the extent of its class. Subse-
quently, the growth status can be turned on again by calling
the operator revive. There is no operator for suppressing a
transaction-time object from its class extent. This is in line
with the append-only semantics of transaction time [13].

Evolution of valid-time observation domains. When a
valid-time object is created, its observation domain is set to
be the interval [current_instant()..], that is the
interval starting at the current instant and extending up to
the largest instant recognised by the system. This observa-
tion domain can be subsequently modified using operator
set_odomain. This operator destructively sets the obser-
vation domain of the object to be the temporal sequence
given as parameter. The operator delete, when applied on
valid-time objects, does not physically delete the object from
its extent. Instead, it sets the upper bound of the object’s
observation domain, to be the current instant. That is:
O.delete() � O.set_odomain(O.get_odomain() \
[..current_instant()], where get_odomain is an
operator which returns the observation domain of an object,
whether valid-time or transaction-time. The above defini-
tion of the operator delete on valid-time objects is crucial
for ensuring temporal transitioning support as discussed in
Section 3.3.2.

To enable physical deletion of a valid-time objects, an
operator destroy is provided. This operator removes a

valid-time object from its class extent, as does the operator

deletewhen applied to nontemporal objects. The operator
destroy raises an exception if the object to which it is

applied participates in a transaction-time relationship since

data items time stamped with transaction-time are indelible.

3.2.5 Example

We consider a class Product with a valid-time stepwise

attribute price of type real. The valid-time observation

domain of an object of class Product models the days

when the product is manufactured, while the observation
domain of an instance of property price models the time

when its price is defined. Table 1 illustrates a possible

update scenario.

3.3 Achieving Temporal Transitioning

After a database schema is modified to add temporal

support to some of its classes and/or properties, applica-

tions may either continue to access the database as if there

was no temporal component in the schema, or take into

account the schema modification. The following paragraphs

describe how objects are adapted after this kind of schema

modification and how the temporal and nontemporal
“views” of the database may be accessed by applications.

3.3.1 Database Instance Adaptation

To specify how a database instance is adapted to a schema

modification which adds temporal support to nontemporal
schema components, an object conversion operator is

defined. Conceptually, this conversion operator should be

applied to all existing objects in the database instance

whenever the schema is modified. The following algorithm

implements the object conversion.

Algorithm 1: Object conversion operator.

modified_properties: set of properties;

/* properties to which temporal support is
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added */

modified_classes: set of classes;

/* classes to which temporal support is added */

o: object; /* object to be converted */

copy_of_o: object; /* used to store a copy of o */

copy_of_o := o.copy(); /* makes a copy of o */

if classOf(o) in modified_classes then

if (temporalDimension(o) = transaction-time)

then o.turn_on();

else o.set_odomain([current_instant()..])

for p in (properties(classOf(o))

if (p in modified_properties) then {

if (temporalDimension(p) =

transaction-time)

then o.p.turn_on();

else if (semanticAssumption(p) = stepwise)

then o.p.set_observation_domain

([current_instant()..])

o.p.set_value(copy_of_o.p.get_value())

} else o.p = copy_of_p.p

/* property remains fleeting */

As shown by this algorithm, temporal migration support

is only ensured for transaction-time and valid-time stepwise
properties. This is because the idea behind temporal

migration support is that when the “current” value of a

temporal property is modified, the new current value
assigned to it should remain constant. Such a characteristic

is proper to stepwise properties.

3.3.2 Access Modes

Object-oriented programming and query languages gener-

ally only provide one construct for accessing property
values and one for updating them. For instance, in C++, the

only way of accessing the value of an attribute is through
the “dot” operator (i.e., the operator o.p), whereas

updating is performed through constructs of the form o.p

= v. TEMPOS, on the other hand, provides several update

and access primitives for each type of temporal property
instance. The notion of access mode establishes which update

or access operator on temporal properties is to be used
depending on the application context. Two access modes

are provided:

. The upward compatible mode: Temporal property
instances are snapshot-valued: Their value is the
value of their history at the current instant. In
addition, any reference to the extent name of a
temporal class (whether valid-time or transaction-
time) retrieves the observed extent at the current
instant.

. The temporal mode: Temporal property instances
are history-valued, and no filtering is performed
when accessing a temporal class extent (i.e., all
objects in the extent are retrieved).

In the upward compatible mode, whenever a temporal
property is accessed either from a program or from a query,

the value associated to this property is retrieved through
the get_value operator (see Section 3.2.3). Similarly,

updates in this mode are handled by the set_value

operator. In the temporal mode, get_history and
set_effective_history are used instead.

If the operator delete is applied over a temporal object,
this object is still visible by the temporal applications since it
is still present in the extent of its class. However, it is not
visible by the applications which are in upward compatible
mode since its observation domain does not contain the
current instant and, hence, it does not appear in the
observed extent at the current instant (see Section 3.2.4).

To illustrate the role of access modes from the querying
viewpoint, consider a class Product whose extent is
named TheProducts and having two attributes trade-

mark and price with types string and real, respectively.
Suppose that, at some time during the life of the applica-
tion, the class Product as well as its attribute price are
declared as temporal (trademark remains a fleeting
property).

Now, consider the following OQL query: select

struct(t : b.trademark, p : b.price) from The-

Products as b. In the temporal mode, this query has type
baghstructht: string, p: Historyhrealiii and
retrieves, for each product type ever sold, its trademark
and the history of its prices. Conversely, if the snapshot
mode is assumed, the query has type baghstructht:
string, p: realii and retrieves the trademarks of all
currently sold product types with their prices.

Different access modes may be attached to any two
applications accessing the same database. As a result, the
access mode should be implemented on a particular system
as a parameter of each application session. The upward-
compatible mode is the default in TEMPOS. This design
choice ensures temporal transition support.

4 QUERYING AND BROWSING

4.1 Querying Temporal Objects

TEMPOQL extends OQL with types such as time unit,
instant, interval, and history together with language
constructs for manipulating the values of these types.
Below, we introduce some of the salient constructs on
histories provided by TEMPOQL, and illustrate them with
examples taken from the application presented above. We
assume that the application that submits these queries is in
the temporal mode.

4.1.1 Formalization of TEMPOQL

TEMPOQL’s constructs are formalized using a notation
similar to that of [24], which provides a complete
formalization of OQL. The formalization of a construct is
made up of four parts:

. A context describing constraints on the types
appearing in the typing part and on the subqueries
(such as a variable being free in a subquery). Some of
the typing preconditions refer to subtypes of
History and Instant, even though none of these
subtypes are defined by the model. This is to achieve
extensibility, by allowing TEMPOQL constructs to be
applicable to user-defined subtypes of History and
Instant.
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. A syntax given in a BNF-like notation with terminal
symbols typeset in boldface.

. The typing rules for the construct using the notation
premise

implication . The notation q::t means that the query q

has type t, while q[x::t’]::t means that query q

has type t assuming that variable x has type t’.
. The semantics described in terms of expressions

involving operators of the TEMPOS historical model.
The semantics of a query is parameterised by a
valuation function which determines the values of
free symbols in the query. The notation �½x v�
denotes the valuation equal to � except that it assigns
value v to x. The preconditions that apply to the
operators defining the semantics of a construct (in
particular those related to the observation units of
the argument histories), also apply to the construct
itself.

As an example, the formalization of the restriction

operators on histories is given in Fig. 7. For the formaliza-

tion of the other TEMPOQL constructs, the reader is referred

to the Appendix.

4.1.2 Temporal Restriction and Join

The restriction operators on histories (see Section 3.1.2)

appear in TEMPOQL in the form of two language

constructs, namely, during and when. The during

construct generates a history by restricting a given history

to those instants lying in a given set of instants. The when

construct generates a history by restricting a given history

to those instants when its value satisfies a given condition.

The semantics of the during is defined in terms of the �in

operator (see Fig. 12a in the Appendix), while the semantics

of the when is defined in terms of the �if operator (see

Fig. 12b). The following query illustrates these two

constructs.
Q.1: Range and domain restriction. For each assembly

line, retrieve its number and the set of instants when its

production is greater than 100.

/* type: bag<struct<L: string,P:TSequence>> */

select struct(L: li.lineCode,

P: domain(li.production as p when p > 100))

from TheLines as li

The domain operator retrieves the set of instants at
which the history given as parameter is defined. In the
above example, this is the set of instants at which the
history of the assembly line’s production fulfils the
condition given in the when clause. The when operator
can also be used in conjunction with the map operator, as
formalized in the Appendix.

The inner and outer temporal join operators on histories
are also transposed to TEMPOQL in the form of two
language constructs, namely, join and ojoin. The syntax
and semantics of the join is formalized in the Appendix.
The ojoin construct is defined in a similar way as the join,
except that its semantics involves the outer join operator on
histories instead of the inner join. The following query
illustrates the use of the ojoin.

Q.2: Temporal join. When was the production of
assembly line L1 greater than the production of assembly
line L2?

/* type of result: TSequence */

element (select domain ( join

(p1: L1.production, p2: L2.production)

as j when j.p1 > j.p2) from TheLines as

L1, TheLines as L2 where L1.lineCode =

“L1” and L2.lineCode = “L2”)

Together, the when, join, and ojoin constructs allow
developers to express any query in which one or several
histories are combined and restricted to those instants at
which a given condition on their “simultaneous” values
holds. The map operator can then be used to apply an
arbitrary function to each of the values of the resulting
history. These operators are inspired from those found in
the temporal N1NF relational algebras of Clifford and
Crocker [25] and Tansel [26] (among others).
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As an alternative to expressing queries on simultaneous

values through composition of the above constructs,

TEMPOQL also integrates the pointwise generalization princi-

ple. In a nutshell, the pointwise generalization principle is a

metaoperator that transparently combines a number of

histories into a single one and pointwisely applies arbitrary

functions (or operators) over the resulting combination, just

as the composition of the join and the map would do. In

this way, nontemporal operators are naturally given a

temporal semantics, thereby achieving the S-reducibility

requirement defined in [15].

4.1.3 Pointwise Generalization of OQL Constructs

For each OQL construct, TEMPOQL provides a counterpart
construct on histories which seamlessly generalizes it. The
semantics of the “extended” operator is defined according
to the following generalization principle: given an N-ary
operator �: �1; . . . �n ! �nþ1, an operator �:

Historyh�1i; . . . Historyh�ni ! Historyh�nþ1i

is defined such that:

8i 2 Domainðh1 \ . . . \ hnÞ
Valueðh1 � . . . � hn; iÞ ¼ Valueðh1; iÞ � . . . � Valueðhn; iÞ:

For example, given two queries h1 and h2 both
retrieving histories of integers and given an arithmetic
operator �, query h1 � h2 retrieves the history obtained by
applying operator � to synchronous values of h1 and h2

(see the Appendix). The same holds for comparison and
Boolean operators.

Using the generalization principle, it is possible to reason
about simultaneous values in a transparent way. Specifi-
cally, the developer of a query can write query expressions
involving temporal properties, just as if these properties
were not temporal. The generalization principle provides a
semantics to these operators, whereby the nontemporal
expression is applied to each “snapshot” of the involved
properties, and the resulting values are joined into a single
history. As an example, we show an alternative expression
of query Q.2 that exploits the pointwise generalization
principle.

Q.2: Pointwise generalization of arithmetic operators

element ( select domain ((L1.production >

L2.production) as b when b) from

TheLines as L1, TheLines as L2

where L1.lineCode = “T1”and

L2.lineCode = “T2”)

In this query, the expression L1.production >
L2.production retrieves a history of Booleans. For a given
instant, this history is true if the value of L1.production at
this instant is greater than that of L2.production. The
history of Booleans is then restricted to those instants when
its value is “true,” through the expression h as b when b.

OQL’s navigation operator on structured types and
objects is similarly generalized to deal with histories. If h
is a query yielding a history whose values are objects with
some attribute a, then query h.a is a history with the same
temporal domain as h, obtained by projecting each value of

h over attribute a. Formally, if q is a query retrieving a
history of objects of class C, and P is a temporal property
over class C, then:

½½ q:P �� � ¼ fh i; o0 i j h i; o i 2 ½½ q �� � ^ h i; o0 i 2 o:Pg:

The use of this “temporal navigation” operator is
illustrated by the following query.

Q.3: Pointwise generalization of the navigation opera-
tor. When did the assembly line supervised by employee X
have a quality-weighted production greater than that of the
assembly line supervised by Y?

/* type of result: TSequence */

element(select domain

(supX.supervises.production *

supX.supervises.quality >

supY.supervises.production *

supY.supervises.quality as b when b)

from TheSupervisors as supX,

TheSupervisors as supY

where supX.name = “X” and

supY.name = “Y”)

The reader can compare this query to the equivalent one
in TOOBIS TOQL given in Section 2.3. In addition to the fact
that the expression in TEMPOQL is considerably more
concise, one can notice a difference in the level of
abstraction between these two query expressions. Indeed,
in TEMPOQL, the query expression captures a navigation
from a Supervisor object to its associated assembly line
and from there to the production volume and quality of this
assembly line. In TOOBIS TOQL, this navigation only
appears indirectly, in the form a succession of nested
iterations and temporal join conditions.

The expression of the above query directly in OQL
(without any temporal extension) is even more complex
than that in TOOBIS TOQL since OQL does not provide
operators on time intervals as TOQL does. It follows that
the generalization principle in TEMPOQL adds considerable
value with respect to a “pure OQL” approach.

The generalization principle applies to collection types as
well: OQL collection expressions forall, exists, sum,
avg, etc., are generalized in TEMPOQL to apply to histories
of collections. For example, if h is a query retrieving the
history of workers of an assembly line, then count(h)

retrieves the history of the number of workers in that line.
Q.4: Pointwise generalization of operators on collec-

tions. When was the number of workers in line L1 greater
than the number of workers in line L2?

/* type of result: TSequence*/

element(select domain(count(L1.workers) >

count(L2.workers) as b when b)

from TheLines as L1, TheLines as L2

where L1.lineCode = “L1”

and L2.lineCode = “L2”)

The integration of the pointwise generalization principle
distinguishes TEMPOQL from the temporal N1NF relational
algebras of [25] and [26] (among others). On the other hand,
there are clear connections between TEMPOQL’s pointwise
generalization principle and the “WHILE” clause of Gadia
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and Nair’s TempSQL [19].3 The pointwise generalization
principle has also been applied in [14], [15], where it
appears in the form of a statement modifier called
“sequenced,” and, more recently, in [27], where it is applied
to the design of operators over spatio-temporal datatypes.
In fact, the idea behind this principle can be traced back to
programming languages for (synchronous) stream proces-
sing such as LUSTRE [28].

4.1.4 Aggregations and Grouping

The map ... on ... when construct on histories is
extended with a group by and a having clauses,
accounting for history partitioning (see the Appendix).
The partitioning criteria may be a temporal unit or a
duration. Similar remarks to those formulated for the map

... on ... when construct apply, and the when and the
having clauses are optional. Keyword partition is used
in the map and having clauses to refer to the subhistories
generated by the group by clause.

Q.5: Aggregations and duration-based grouping. For
each assembly line and for each 10-day period during
which the total production of this line is greater than 10,000,
retrieve its average production on that period.

/* type: baghstructhL: string, avgP :

Historyhrealiii */
select struct(L: L.lineCode, avgP :

map avg(partition)

on L.production as p

group by #“10 days”

having sum(partition)

> 10000)

from TheLines as L

/* The result of the subquery introduced

by the map clause, is a history at the

granularity of the day: for a given day,

the average production of the 10-day period

starting on that day is retrieved, provided that

the total production on that period is

> 10000 */

Another query illustrating the map ... on ... when

construct is given Section 5.3.

4.1.5 Reasoning about Succession in Time

The afterfirst, beforefirst, afterlast, and
beforelast constructs are straightforward adaptations
of the corresponding operators on histories (see the
Appendix). Their syntax is similar to that of the when

construct.
Q.6: Succession in time-splitting histories. For each

line, retrieve its production history since the last time that
this production was smaller than 100.

/* type: sethL: string, P:

Historyhunsigned longii */
select struct (L: L.lineCode, P: L.production

as b afterlast b � 100)

from TheLines as L

By composing the four splitting operators, it is possible,
in theory, to express queries involving complex sequences
of events. However, the complexity of these query expres-
sions rapidly increases with the complexity of the involved
sequence, making this an impractical approach. In addition,
when duration constraints are involved, these constructs
must be composed with the “group by” construct pre-
viously discussed, leading to still more complicated query
expressions. To tackle this complexity, we defined a
language for expressing patterns of histories (see [29] for
details), and integrated this language in TEMPOQL through
an operator called matches. This operator takes as its
parameter a history and a pattern and returns a Boolean
stating whether the pattern occurs in the history. The
language for describing patterns is based on timed regular
expressions: It provides operators such as followed by (to
express sequencing) at most and at least (to express
repetition with or without temporal constraints). As a
result, the operator matches can be evaluated using
efficient automata-based techniques. A flavor of this
language is given in Section 5.3, Query Q.8.

The above operators for reasoning about succession in
time are a distinguishing feature of TEMPOQL. In related
proposals such as TOQL [7], TempSQL [19], and the
temporal N1NF relational algebras of [25] and [26], the
only way to express queries about succession in time is by
performing cartesian products and explicitely manipulating
the timestamps of the resulting tuples.

4.2 Pointwise Temporal Object Browsing

The pointwise browser is designed to address time-related
users’ tasks such as:

. Analyze data about the supervisor and workers of
each assembly line at a given date.

. Compare at different dates, a given worker’s salary
with respect to that of the supervisor of the assembly
line to which he is assigned.

. Find out whether the composition of a given
assembly line (equipment plus workers) consider-
ably changes when its supervisor does.

4.2.1 Overview

The pointwise browser interface (see Fig. 8) is made up of
two parts: a time line window and a tree of snapshot windows.
A snapshot window displays either a nontemporal object or
a snapshot of a temporal object at a given instant. The
instant with respect to which the object snapshots are
determined is the same for all the windows in the tree and
is subsequently called the reference instant. The reference
instant is constrained to reside within a given interval called
the temporal browsing range.

The role of the time line window is to set the reference
instant. At the beginning of a session, the reference instant
is at the middle of the temporal browsing range. Its position
varies thereafter according to the user interactions with the
sliders and buttons composing the time line window. In its
simplest form, the time line window is composed of a slider
(called the main slider) and four buttons placed at the ends
of this slider. Two of the buttons (labeled with simple
arrows) allow the user to move the reference instant
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forward or backward by one unit. The other pair of buttons
(labeled with double-arrows) allow to move the reference
instant to the next/previous instant where the value of a
given navigation path (called the visualized path) changes.
The instants at which the value of the visualized path
changes are called change instants. Change instants are
visually represented as vertical marks lying within a
horizontal line just beneath the main slider.

In Fig. 8, the change instants are those when the
supervisor of worker “Daassi” changes, whether this
change is due to the fact that this worker is assigned to a
new assembly line and that this assembly line has a
different supervisor than the previous one, or to the fact
that the supervisor of the assembly line to which this
worker is assigned changes.

In addition to the main slider, the time line window may
additionally contain several granular sliders, which allow the
user to move the reference instant with different “steps”
according to a given calendar. For instance, if the reference
instant is a date and that the user specifies the calendar
Year/Month/Day (as in Fig. 8), three granular sliders
appear in the timeline window: The first one allows one to
move the reference instant with a step of a year, the second
one with a step of a month, and the third one with a step of
a day (within the limits of a given month).

Snapshot windows are structured as forms containing
one line per property of the visualized object or object
snapshot. Each line is composed of two buttons: the left one
labeled with the name of the property and the right one
labeled with its value at the reference instant.4 The value of
a nontemporal property is always the same regardless of
the reference instant. The value of a temporal property at a
given instant is equal to the value of its history at that
instant, which is itself defined as follows:

. The value at instant I of a history represented as an
instant time-stamped collection of objects is equal to
the object in this collection whose time stamp is
equal to I. If no such object exists, the value is null.

. The value at instant I of a history represented as an
interval time-stamped collection of objects is equal to
the object in this collection whose timestamp
contains I. If no such object exists, the value is null.

All buttons within a snapshot window are clickable,
except those which denote literal values (i.e., integers, reals,
string, and characters). For instance, in Fig. 8 all the buttons
within the snapshot windows are clickable, except the
white-colored ones.

At the beginning of a session, there is a single snapshot
window. Other snapshot windows are incrementally added
according to the user interactions with the clickable buttons
denoting object references which appear within existing
forms. The object displayed by a given snapshot window
other than the main one is equal to the object referenced by
the button from which this window was opened. For
instance, the configuration shown in Fig. 8 is obtained by
displaying the worker named “Daassi” and successively
clicking on the buttons labeled AssemblyLine and
Supervisor.

The user may also click on the buttons labeled with
property names (i.e., the buttons on the left column of a
form). The semantics of this interaction is that the selected
property becomes the visualized path expression and the
set of “change instants” attached to the timeline window are
updated accordingly. For instance, clicking on the button
labeled production on window 2 of Fig. 8 sets the
visualized path to be Worker.worksIn.production

instead of Worker.worksIn.supervisor. The vertical
marks drawn on the line just below the main slider, and the
label appearing in the lower right corner of the timeline
window are then modified accordingly.

Whenever the user modifies the reference instant, the
new reference instant is notified to the main snapshot
window (see Fig. 9). Upon receiving this notification, the
main window computes the snapshot at the new reference
instant of the object that it displays and updates its
appearance so as to reflect this new snapshot. During this
process, if the value of a temporal property changes, the
new value is transmitted to its dependent window if any.
Finally, the main window propagates the notification of the
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new reference instant to all its dependent windows, and the
above process is carried out recursively.

As stated before, the reference instant is constrained to
lie within an interval called the temporal browsing range.
This range is taken to be the smallest interval containing all
the instants when at least one of the temporal properties of
the object displayed by the main snapshot window (also
called the main object) is defined. For example, if the main
object is a worker W, such that:

W.salary = set(struct(timestamp: [1..4],

value: 10.0),

struct(timestamp: [6..9],

value: 12.0))

and
W.worksIn = set(struct(timestamp: [2..4],

value: X),

struct(timestamp: [6..8],

value: Y)),

(where X and Y are two assembly lines) then the temporal
browsing range is taken to be interval [1..9].

4.2.2 Pointwise Browsing in the Presence of

Null-Valued Properties

Heretofore, we have implicitly assumed that all properties
displayed within snapshot windows have nonnull values.
However, null-valued properties within a snapshot win-
dow may arise in two cases:

. The value of the property at the reference instant
was actually set to “null” through an update (this
can occur whether the property is temporal or not).

. The history of a temporal property is not defined at
the reference instant in which case its value is null.
This situation can occur in the middle of a pointwise
browsing session since the temporal browsing range
may include instants in which some of the temporal
properties of the main object are defined while
others are not.

We visually denote a null value through a filled
rectangle. However, this does not solve all the problems
arising from nulls. Indeed, suppose that the worker
displayed in Fig. 9 is not assigned to any assembly line on
1/5/97 (i.e., there is no element in its history whose

timestamp contains this date). If the reference instant is set
to this date, the value of property worksIn becomes null,
and something has to be done with its dependent forms
(i.e., windows 2 and 3 in Fig. 9).

In the pointwise visual browser, if following a modifica-
tion of the reference instant, one of the properties displayed
by a snapshot window becomes null and, if this property
has a snapshot window attached to it, then all the windows
in the subtree stemming from this property become inactive.
Inactivity of a snapshot window is rendered by modifying
the appearance of some elements within the window,
e.g., graying out the labels denoting property names and
erasing the labels denoting property values. Labels are
restored to their normal appearance when the window
becomes active again.

4.2.3 Pointwisely Browsing Collections of

Temporal Objects

To accommodate collections, we augment the pointwise
browser with the concept of synchronous navigation as
defined in object browsers such as PESTO [30]. Basically,
a collection of temporal objects is displayed in the same way
as a single one, except that the corresponding snapshot
window contains a couple of arrow-labeled buttons on top
of it. This window displays the snapshot at the reference
instant of one of the objects within the collection. Clicking
on either of the arrows allows one to switch to the next or
the previous object in the collection (see Figs. 10a and 10b).

As before, the temporal browsing range is defined with
respect to the object visualized by the main snapshot
window. Therefore, when this object changes, the browsing
range is recomputed. This is the reason why the timeline is
redrawn when transitioning from configuration 1 (see
Fig. 10a) to configuration 2 (see Fig. 10b). During this
transition, the change instants are also recomputed. Under
some circumstances this computation involves a relatively
large amount of data. For instance, consider the example of
Figs. 10a and 10b and suppose that the visualized path
expression is Workers.worksIn.supervisor.salary

(meaning that the path Workers.worksIn.supervisor

is displayed) computing the change instants involves the
following histories:

. The history of the employee’s assembly lines.
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. The history of the supervisors of each line where the
visualized employee has ever worked.

. The history of the salary of each supervisor appear-
ing in any of the histories referenced in the previous
item.

4.2.4 Comparison with Related Work

Data visualization has received little attention within the

temporal database literature. Instead, many efforts have

focused on the design of visual query languages for

temporal databases (see, for example, [31]). Such languages

are clearly complementary to data visualization techniques.
In the area of information visualization, many techniques

for graphically displaying and browsing temporal data

have been designed [32]. Most of these techniques are

oriented toward quantitative time series, i.e., periodical

series of numerical data items. Plaisant et al. [33] adapts

some concepts developed in this area to design an interface

for visualizing legal and medical records involving non-

quantitative temporal data.
The pointwise temporal object browser is an extension of

data browsers such as O2Look [34], ODEVIEW [35], and

PESTO [30]. Nevertheless, the pointwise browser consider-

ably differs from all the above ones since it treats time as a

dimension per se.

5 IMPLEMENTATION AND APPLICATIONS

5.1 Overall Architecture

TEMPOS has been implemented on top of the object-

oriented DBMS O2. Fig. 11 depicts the prototype architec-

ture. It essentially consists of a library of classes corre-

sponding to the ADT hierarchies defined in the time and

historical models, two preprocessors implementing Tem-

pODL and TEMPOQL, respectively, and a visualization

module. A temporal metadata manager handles the com-

munication between the preprocessors.
The library of time-related classes has been primarily

implemented in the O2’s database programming language

O2C (which is translated into C by a preprocessor provided

by the O2 system), while the preprocessors and the

metadata manager have been implemented in C using tools

such as Lex and Yacc. These classes can be used from C++

and Java programs using the corresponding bindings

provided by the O2 system.
The visualization module implements the pointwise

object browser and some other visualization techniques

that we have developed as part of a work on temporal

visual data analysis. As the preprocessor, this module uses

metadata related to the temporal classes and properties

defined in the database’s schema.
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5.2 Implementation Issues Related to the Lack of
Parametric Classes in ODMG

The major problems that we faced during the design and

implementation of the TEMPOS prototype, were those

related to the lack of parametric classes in the O2 model

(which is true of the ODMG object model as well). Indeed,

the History datatype could be naturally mapped into a

parametric class.

One of the solutions that we envisaged, is to generate a

class for each kind of history involved in an application

(e.g., one for histories of integers, another for histories of

floats, etc.). However, in realistic situations, this rapidly

leads to a high proliferation of classes. In addition, some

operators, such as the temporal joins, cannot be satisfacto-

rily implemented using this approach since the type of the

values of the resulting history intrinsically depends on that

of the argument histories (see Section 3.1.2).

Instead, we decided to partially simulate parametric

classes by exploiting the preprocessors included in the

architecture. In this approach, a single nonparametric class

History, corresponding to histories whose values are of

type Object (the top of the ODMG’s class hierarchy), is

first implemented. During schema definition, each history-

valued attribute is declared as being of type History by

the TEMPODL preprocessor, but its exact type specification

is stored in the temporal metadata manager. By accessing

this metadata manager, the TEMPOQL preprocessor gets to

know the exact type of the histories involved in a query.

With this knowledge, the preprocessor adds explicit down-

castings in the translated query expression whenever the

value of a history is involved. In this way, the user of

TEMPOQL manipulates histories as if they were parame-

trically typed.

5.3 Applications

Two applications have been implemented using TEMPOS. In

the first one, which is detailed in [36], we applied the

concepts of timeline, granularity, and history to model the

structure and the annotations of video documents. This

application highlighted the close connections between the

concept of granularity and histories in temporal databases

and the concepts of structuration and annotations in video

databases.

The second application, which we overview in this

section, dealt with the analysis of the use of resources and

space over time at the ski resort “Valloire” located in the

French Alps [37]. The development of this application was

part of a broader study on the use of the resort’s

infrastructures, aiming at formulating proposals for intro-

ducing new activities and improving the use of the

environment and the existing infrastructures. A survey on

200 tourists and inhabitants was conducted in the ski resort.

In this survey, people described their activities (a history of

activities), companionships (a history of companionships),

and movements (a history of locations) during the day(s)

preceding the survey. After digitalizing this information, no

adequate tool was found to analyze this data due to the

tight connections between their spatial and temporal

components.

TEMPOS was used to model and store data produced by

the survey and TEMPOQL was used to query the resulting

histories. This experience highlighted that the operators on

histories provided in TEMPOS, matched the needs of the

studied application. In particular, operators such as the

history restriction (during and when) and the history join

(join) allowed us to deal with queries related to the

context under which individuals performed their activities.

On the other hand, the operators for grouping and

aggregating allowed us to deal with queries related to the

identification of routines as illustrated below.
Q.7: Change of granularity. For each person and for each

day, how long did this person skied?

/* type of result: baghstructhp: Person,

skied: HistoryhDurationiii */
select struct (person : p, skied :

map duration (partition) on p.activity

when a.name = “ski” group by Day)

from ThePersons as p

/* Variable ’partition’ denotes the history of

skiing periods during a day. Operator

’duration’ retrieves the size of the domain of a

history. */

The operators for reasoning about succession in time

revealed to be useful when analyzing chains of activities

performed by individuals in the resort. For example, the
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following query illustrates the use of the operator matches
mentioned in Section 4.1.5.

Q.8: Succession in time. Which persons went skiing just
after shopping and took dinner at most three hours after
skiing?

select p from ThePersons as p where p.activity

as a matches a.name = “shopping” followed by

a.name = “skiing” followed by at most ]“3 hours”

followed by a.name = “dinner”

/* A person is selected if, at least one time,

she(he) went shopping and then when skiing, and

then did anything during at most three hours and

after, took dinner. */

Our experience with the “Valloire” application put

forward the need to introduce in TEMPOS other semantic

assumptions than the three discussed in Section 3.2 and,

especially, semantic assumption dealing with spatially-

valued temporal properties. Indeed, the movements of a

person (a history of locations) is a temporal attribute with a

spatial structural domain type (a location has a geometry

associated to it). The semantic assumption of this temporal

attribute was modeled as stepwise, which means that, for a

given object, the value of this property between two

successive instants in the effective history remains constant.

It is straightforward to see that this cannot accurately model

continuous and arbitrary movement. Instead, a movement

over some interval of time is modeled under this approach

by associating a segment or polyline denoting a path to each

instant in this interval. In the setting of the Valloire

application, this fitted well the requirements initially

expressed since, in the surveys, people represented their

movements by polylines whose segments were annotated

by time intervals, and that no assumption was made a priori

on the kind of movement people had. It became clear at the

end of our experience that the application data and queries

should be revisited under other semantic assumptions. For

example, under some conditions, it would be natural to

assume that individuals move at constant speed between

the two edges of a path. Alternatively, this assumption

could be replaced with a more complex one, which takes

into account the fact that people in a car move slower in

downtown than in a road. Ongoing research in spatio-

temporal data models and languages [27] is addressing

these interpolation aspects.

6 CONCLUSION

TEMPOS is a comprehensive temporal database framework

which synthesizes and unifies many concepts, require-

ments, and functionalities recognized as necessary to

extend existing DBMS for managing temporal data. This

framework includes a history model, a temporal object

model, a query language, and a visual browser.

The history model provides an abstract datatype

dedicated to the notion of history and a rich set of

representation independent operators over it. This set of

operators includes temporal extensions of the selection,

projection, and join operators of the relational algebra,

operators for partitioning (grouping) according to a

granularity or a duration, and algebraic versions of

temporal logic operators. These operators, together with

those defined by the time model, form the basis for

TEMPOQL: the proposed extension of OQL. Of course, a

developer can add other operators by specializing the

interfaces and classes of the historical model.

The temporal object model, which extends the ODMG

model, fulfills two requirements related to legacy code

migration: upward compatibility and temporal transition-

ing support. These requirements have been defined in the

context of relational models in [15]. The first requirement

states that a database may be transparently migrated from

an ODMG system to a temporal extension of it. The second

requirement enables nontemporal legacy code to remain

operational even after a database schema is modified to add

temporal support to some of its components. In TEMPOS,

temporal transitioning support is ensured by separating

temporal properties from the history of their values: A

temporal property has a historical value in the context of a

temporal application and a “snapshot” value in the context

of a nontemporal one. Update operators on temporal

properties are defined in such a way that updates done

by nontemporal applications are compatible with those

performed by temporal ones. The concept of “now,” which

has lead to many confusions in previous temporal data

models [38], is modeled by dynamically generating a

history from a now-relative temporal property.

The TEMPOQL query language offers facilities to ex-

press, in a unified framework, classical temporal queries

such as restriction, join, and grouping, together with

operators for reasoning about succession in time. With

respect to related proposals, the main originalities of

TEMPOQL are:

. It is representation-independent in the sense that

histories are primarily manipulated through opera-
tors whose semantics is not tight to a particular

representation. This contrasts with previous propo-

sals such as [16], [17], [7] and [8], where queries on

histories are expressed by applying iterators on

collections of interval time-stamped values repre-

senting them.
. It integrates two algebraic history grouping opera-

tors. While these operators are present in other

temporal query languages (e.g., TSQL2 [5]), they are
usually not defined algebraically. The algebraic

nature of these operators in TEMPOQL facilitates

their composition with the other operators.
. By applying the pointwise generalization principle,

TEMPOQL extends the semantics of standard OQL

constructs to handle histories. The integration of

the pointwise generalization principle enables

TEMPOQL to fulfill the S-reducibility requirement

defined in [15].

Regarding data visualization, TEMPOS integrates a novel

technique for browsing collections of temporal objects. This

technique orthogonally supports three kinds of navigation:
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1) navigation through time, 2) navigation via object

relationships, and 3) navigation within the elements of a

collection.
All the above models and languages have been for-

malized at the syntactical and the semantical level, and a

prototype on top the O2 DBMS has been developed on the

basis of this formalization. This prototype has been used to

develop several applications from various contexts (GIS,

time series, and multimedia).
As a future work, we envisage two main research

avenues: 1) designing user interfaces for visually mining

temporal and spatio-temporal data and 2) applying the

TEMPOS framework to model and query traces of inter-

organizational business process executions.

APPENDIX

FORMALIZATION OF TEMPOQL

The definitions presented in Fig. 12, together with Fig. 7,
formally describe the extensions that TEMPOQL brings on
top of OQL. The formalization style and the notations used
are discussed in Section 4.1.1.
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