
THE LHC++ ENVIRONMENT

Bernardino Ferrero Merlino
CERN IT Division - CH 1211 Geneva 23 Switzerland

Abstract
The LHC++ project is an ongoing effort to provide an Object-Oriented
software environment for future HEP experiments. It is based on standards-
conforming solutions, together with HEP-specific extensions and
components. Data persistence is provided by the Objectivity/DB Object
Database (ODBMS), while the IRIS Explorer Visualization system is the
foundation for the Interactive Analysis environment. To complement the
standard package, a set of C++ class libraries for histogram management,
ntuple-li ke analysis (based on Objectivity/DB) and for presentation
graphics (based on Open Inventor) have been developed.

1. INTRODUCTION

Over a period of many years, CERN, in conjunction with other laboratories, built up a large
collection of routines and programs oriented towards the needs of a physics research laboratory. This
software – almost entirely written in Fortran, is referred to collectively as the CERN Program Library
or CERNLIB [1]. For many years, it was assumed that CERNLIB would simply be migrated from
Fortran 77 to Fortran 90. However, in the early ’90s an important change took place, namely the
adoption of object-oriented techniques and programming languages such as C++ and – more recently
– Java. As a result of these changes, the need for the “C++-equivalent of CERNLIB” arose. The
LHC++ project was initiated in 1995 to address these issues. Given the falli ng manpower envelope of
the laboratory, it was clear that there would be insuff icient resources to develop and support
everything in-house and so alternatives, such as collaborative development and the use of commercial
components, were investigated.

The current LHC++ [2] strategy relies on both commercial and HEP-specific components. It’ s
noteworthy that the LHC++ environment is built using a ‘ layered’ approach, where all basic
functionality are implemented as standalone C++ class libraries that are then integrated using a more
sophisticated Modular Visualization System (MVS). A sketch of the LHC++ components is given in
Table 1 below:

Description Components
Data Analysis IRIS Explorer - HEPExplorer
Custom graphics MasterSuite - HEPInventor
Basic graphics OpenInventor - OpenGL
HEP math HEPFitting – GEMINI - CLHEP
Basic math NAG C library
Histograms HTL
Database HepODBMS
Persistency Objectivity/DB
C++ Standard Libraries (STL)
HEP specific CLHEP

Table 1 - LHC++ Components
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25292025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. LHC++ COMM ERCIAL COMPONENTS

Many factors contributed to the choice of the commercial components of LHC++. These included the
functionality of the individual packages, their adherence to standards – either de-facto or de-jure –
their interoperabilit y, their market share (including other HEP laboratories) and of course cost!
Several of the suppliers chosen already had a long-established relationship with CERN from previous
software packages and the systems themselves were “interrelated” . This is important as it not only
guarantees their interoperabilit y but simpli fies the issues related to ensuring consistent releases across
multiple platforms – these issues having been already addressed by the vendors concerned.

2.1 Objectivity/DB ODBMS

In order to study solutions for storing and handling the multi -PB data samples expected with LHC,
the RD45 Project [3] was established in 1995. The proposed solution should also be able to cope with
other persistent objects, such as histograms, calibration and monitoring data, and so forth. It was
found that the best candidate for handling this problem is an Object Database Management Group
(ODMG) [4] compliant object database used together with a mass storage system, based upon the
IEEE reference model for mass storage systems [5]. After considering a few alternatives, the
presently favored solution is built upon Objectivity/DB [6] and HPSS (High Performance Storage
System) [7].

2.2 IRIS Explorer

IRIS Explorer [8] is a toolkit for visualization of scientific data, which can be manipulated via
visual programming tools. Users define their analysis application by connecting building blocks,
called modules, into a so-called map (see Figure 1 below). Modules act like filters: they read one or
more streams of input data and produce one of more streams of output data. The behavior of modules
is controlled (interactively) by a set of parameters. IRIS Explorer comes with a rather complete set of
modules for performing basic data transformations and it is straightforward to create new modules.
IRIS Explorer is built on top of recognized graphics standard such as OpenGL [9] and Open Inventor
[10], thus making possible to integrate third party packages based on the same standards, e.g.
GEANT-4 [11].

2.3 OpenGL

OpenGL is an industry standard for graphics. It is vendor-neutral and multi -platform, and is
optimized for building environments for developing 2D and 3D visual applications. Several vendors
already offer a hardware implementation of the standard, thus ensuring that rendering speed will be
optimal.

2.4 Open Inventor

Open Inventor is an object-oriented 3D toolkit built on top of OpenGL, providing a
comprehensive solution to interactive graphics programming. Its programming model is based on a
3D scene database optimized to ease building graphics applications. It includes a large set of objects,
such as cubes, polygons, text, materials, cameras, lights, track-balls, handle boxes, 3D viewers,
editors and defines a standard file format (IV) for 3D data interchange files, that is the basis for the
Virtual Reality Modeling Language (VRML) [12] standard.

Figure 1 – example of a “Map” in IRIS Explorer

2.5 MasterSuite

MasterSuite [13] is a C++ toolkit for data visualization, containing class libraries with
extension nodes to Open Inventor. These extensions cover both 2D (drawing, charting, etc.) and 3D
(drawing, legends, etc.). In addition, it provides a set of classes to develop viewers for scientific data
for output on screen as well as in vector-PostScript format.

2.6 NAG C Library

The NAG C Library [14] is a collection of about 400 user-callable mathematical and statistical
functions. The library includes faciliti es in the area of minimization, ordinary differential equations,
Fourier transform, linear algebra, zeros of polynomial, statistics, time series etc. The library uses
double precision throughout to ensure maximum accuracy of results. The correctness of each library
function is evaluated and verified by specially written test programs performed on each of the
machine ranges for which the library is available.

3. LHC++ HEP-SPECIFIC COMPONENTS

Although the commercial components on which LHC++ is built offer a solid foundation, they do not
– in general – provide the complete functionality that is required in the HEP community. To cater for
such needs, small extensions – typically some 2-3K lines of code – are provided.

3.1 HepODBMS

HepODBMS [15] is a set of class libraries built on top of the ODMG C++ interface. Their purpose is
to provide a higher level interface than is specified by the ODMG, to simpli fy the porting of existing
applications and provide a minimum level of support for transient-persistent switching. Furthermore,
these libraries help to insulate applications against changes between releases from a given vendor and
between the products of different vendors. The HepODBMS libraries provide classes to deal with
session management, clustering hints, tag and event collections.

3.2 The Histogram Template L ibrary (HTL)

The Histogram Template Library (HTL) [16] is a C++ class library that provides powerful
histogram functionality. As the name suggests, it exploits the template facilit y of C++ and is designed
to be compact, extensible, modular and fast. As such it only deals with histograms (summary data
representing the frequency of values) and not with the whole set of values. Furthermore, although
simple file-based I/O and "line printer" output are supported, it is not coupled to more advanced I/O
and visualization techniques. In the context of LHC++, such capabiliti es are provided by other
components that full y interoperate with HTL.

HTL itself offers the basic features of HBOOK [17] as well as a number of useful extensions,
with an object-oriented (O-O) approach. These features include the following:

� booking and filli ng of 1D, 2D and profile histograms;
� computation of statistics such as the mean or r.m.s of a histogram;
� support for operations between histograms;
� Browsing of and access to characteristics of individual histograms.

 3.3 HEPInventor

 HEPInventor [18] proposes an easily understandable and user-friendly way to present data in
physics programs. It is implemented as a graphical class library built on top of MasterSuite to provide
an interface between HTL and its presentation graphics.

 3.4 HEPExplorer

 HEPExplorer [19] is a set of HEP-specific IRIS Explorer modules, which help a physicist set
up an environment to analyze experimental data, produce histograms, fit models and prepare data
presentation plots. IRIS Explorer Maps that implement simple analysis-related tasks, such as
visualize and fit a histogram, produce histograms out of tag data (see section 4), etc. are part of the
package as well .

 3.5 Gemini/HEPFitt ing

 Gemini [20] is a class library providing basic minimization/fitting capabiliti es. The library
integrates under the same interface both MINUIT [21] and NAG minimizers, although classes are
provided to access features that are unique to one minimization engine (such as NAG support for
linear and non-linear constraints).

 HEPFitting [22] is a utilit y library to fit either HTL or vectors of data, with a handy interface to
specify complex fit functions assembling gaussian, polynomial or exponential terms, as well as user
defined functions.

 3.6 CLHEP

 A set of HEP-specific foundation and utilit y classes such as random generators, physics
vectors, geometry and linear algebra is packaged in the CLHEP class library [23]. CLHEP is
structured in a set of packages independent of any external package (interdependencies within
CLHEP are allowed under certain conditions).

4. ANALYSIS SCENARIO

 The analysis scenario can be split i n two parts. The first part concerns populating the database with
reconstructed event data and is usually done in a C++ program, typically running in batch jobs. The
second part implies using an interactive tool, such as the IRIS Explorer framework, to actually
produce summary data, usually as histograms, out of the event data. Histograms can then be
manipulated, fitted using an appropriate tool and eventually printed in a PostScript file to embed in a
paper or a slide presentation.

 4.1 The ‘batch’ par t

 The main task of this part is populating the Objectivity data store with event information
coming, very li kely, from a former reconstruction phase. Most new HEP experiments assume that it
will be possible to make both raw data and reconstructed data available on-line thanks to the
integration between Objectivity/DB and HPSS. Each experiment will have its own data model and
physicists should be able to navigate through it. This is a major problem for a general-purpose
Interactive Analysis environment, since, unlike the Ntuple case, a common and pre-defined data
model, shared amongst all experiments, is no longer imposed.

 Since all data needed for analysis is supposed to be on-line, the role of the Ntuple replacement
could be quite different. While reasonably small personal data collections will still exist, the main
concern will probably be how to index large event stores to speed up the analysis.

 The RD45 Project suggested one approach to deal with both problems. The idea it to speed up
queries by defining for each event a Tag, i.e., a small set of its most important physics attributes plus
an association with the event where the Tag data come from. A collection of tag objects is saved
together in a Tag Database, something intermediate between an Event Directory and an Ntuple. Since
they are globally defined for the whole experiment, concrete tags can be optimized so that they offer
a very eff icient way to make initial cuts on attributes, thus achieving a high degree of selectivity. On
top of that, at any moment users can cross the association to the event to retrieve any other details
about the full event, which are not contained in the Tag.

 In general the experiment or group will make the selection of key attributes characterizing events, so
that concrete tags are mostly defined for experiment-wide or workgroup-wide data sets. However,
individual physicists have the possibilit y to define their own simpler data collection by using the
Generic Tag mechanism. This second lightweight procedure allows users to define a tag on the fly,
without creating a persistent class. Compared to the concrete tag, there is, of course, a small
performance penalty, but this is most of the time balanced by an increased flexibilit y, since at any
time new fields can be added to the tag and the association to the complete event data remains
available.

 The set of individual tags is called an Explorable Collection, i.e., a collection of objects
implementing an interface for access from IRIS Explorer.

 4.2 An example: creating a Tag collection out of existing events

 The Event we want to create the Tag from is composed by two kinds of information:
� Tracking information, represented by a variable size array of tracks
� Calorimeter information, represented by a variable length array of clusters

/// persistent Tracker class

class Tracker : public ooObj {

public:

ooVArrayT<Track> tracks;

private:

};

/// persistent Calo class

class Calo : public ooObj {

public:

ooVArrayT<Cluster> clusters;

};

/// persistent Event class

class Event : public ooObj {

private:

 int evtNo;

public:

 d_Ref<Tracker> tracker;

 d_Ref<Calo> calo;

} ;

So, for each event, we will have a collection of tracks and a collection of clusters, plus a unique
event identifier.

The classes implementing a single track or cluster will contain information related to the
particle traversing the two sub-detectors:

// Basic track: persistent by embedding

class Track {

public:

double getPhi() { return phi;}

 double getTheta() { return theta;}

 double getPt() { return pt;}

private:

 double phi;

 double theta;

 double pt;

};

// Basic cluster: persistent by embedding

class Cluster {

public:

 double getPhi() { return phi; }

 double getTheta() { return theta; }

 double getEnergy() { return energy; }

private:

 double phi;

 double theta;

 double energy;

};

The tag we want to create will contain the pT and phi attribute of the tracks having maximum
and minimum pT, plus the event unique identifier. Hence the Tag description will be something li ke:

HepExplorableGenericTags highPt; // create a tag collection

// define fields all fields that belong to genTag

 TagAttribute<long> eventNo (highPt,"eventNo");

 /* track with highest pT*/

 TagAttribute<double> ptPlus (highPt,"ptPlus");

 TagAttribute<double> phiPlus(highPt,"phiPlus");

 /* track with lowest pT*/

 TagAttribute<double> ptMinus (highPt,"ptMinus");

 TagAttribute<double> phiMinus(highPt,"phiMinus");

It’ s now possible to scan the events, identify the tracks with minimum/maximum pT and
replicate their pT and phi attributes in the Tag:

ooItr(Event) eventItr;

eventItr.scan(container("Events"));

while(eventItr.next())

 {

 HepRef(Tracker) aTracker = eventItr->tracker;

 int maxTrack = 0, minTrack = 0;

 for (int track=0; track < aTracker->getNoOfTracks(); track++) {

 if (aTracker->tracks[track].getPt()

 > aTracker->tracks[maxTrack].getPt())

 maxTrack = track;

 if (aTracker->tracks[track].getPt()

 < aTracker->tracks[minTrack].getPt())

 minTrack = track;

 }

highPt.newTag(); // create a new tag (all fields have default values)

 eventNo = eventItr->getEventNo();

 ptPlus = aTracker->tracks[maxTrack].getPt();

 phiPlus = aTracker->tracks[maxTrack].getPhi();

 ptMinus = aTracker->tracks[minTrack].getPt();

 phiMinus = aTracker->tracks[minTrack].getPhi();

}

It is noteworthy that the Tag’s attribute are managed exactly as standard C++ variables: the
overloaded assignment operator will t ake care of putting the values in the Tag that will be stored in
the database.

4.3 The interactive par t

Interactive Analysis in IRIS Explorer is implemented by a set of HEPExplorer modules.
Generally speaking, the current set of modules allows users to extract data from an Objectivity/DB
data store and put them in one or more HTL histogram(s). In particular the user can select an
Explorable Collection, define a set of cuts over the collection as a C++ expression, define the input
streams for the HTL histogram(s) to produce and automatically generate and compile C++ code that
implements the cuts and fill t he histograms.

Apart from accessing the data in the tag, users can invoke C++ functions that implement, e.g.,
common physics or access the experiment specific event object (by traversing the association
between a tag and its related event). User-defined functions can be used whenever a C++ expression
is allowed. This means, for example, that reconstruction C++ code can be used in the analysis module
(and the other way round).

Since there’s no interpreter involved, the analysis code can use any C++ feature supported by
the local compiler (templates, STL, exceptions, etc.)

An alternative to code generation/dynamic compilation is the use of a restricted C++ syntax to
specify the cuts. Such restricted syntax is then interpreted to filter the data that will fill t he histogram.
An example of such approach is the TagViewer module (see Figure 2 below):

Figure 2 – The TagViewer Module

The cuts are expressed as a simple C++ expression involving only Tag variables, relational and
logical operators.

5. CONCLUSIONS

The HEPExplorer package is a successful effort to integrate IRIS Explorer and Objectivity/DB
so that high energy physicists can ‘exercise’ the analysis chain, from event to paper, on data stored in
an object oriented database.

We believe IRIS Explorer is a good environment for data analysis and visualization: its
compliance with graphics standard, its simple development environment, its robustness and
modularity being certainly the main good points.

The layered approach has proved to be an effective way to cope with change.Since the first
release of LHC++ (July 1998) we have already changed the basic C++ libraries (from Rogue Wave’s
Tools.h++ to STL) and the whole histogram package (from HistOOgrams to HTL) without major
impact on any other part of the package.

REFERENCES

[1] CERN Program Library (CERNLIB): see http://wwwinfo.cern.ch/asd/index.html.

[2] LHC++: see http://wwwinfo.cern.ch/asd/lhc++/index.html

[3] RD45 - A Persistent Object Manager for HEP, see
http://wwwinfo.cern.ch/asd/rd45/index.html.

[4] The Object Database Management Group (ODMG): see http://www.odmg.org/.

[5] The IEEE Storage System Standards Working Group: see http://www.ssswg.org/.

[6] Objectivity/DB: see http://www.objectivity.com.

[7] The High Performance Storage System: see http://www.sdsc.edu/hpss/.

[8] IRIS Explorer User Guide, ISBN 1-85206-110-3, 1995.

[9] OpenGL Reference Manual, ISBN 0-201-63276-4, Addison Wesley, 1992.

[10] OpenInventor Reference Manual, ISBN 0-201-62491-5, Addison Wesley, 1994.

[11] An Object-Oriented Detector Simulation Toolkit (GEANT-4): see
http://wwwcn.cern.ch/pl/geant/geant4.html.

[12] Virtual Reality Markup Language (VRML): see http://vrml.wired.com/.

[13] 3DMasterSuite: see http://www.tgs.com/.

[14] NAG C library: see http://www.nag.co.uk/.

[15] HEPODBMS: see http://wwwinfo.cern.ch/asd/lhc++/HepODBMS/user-guide/ho.html.

[16] HTL: see http://wwwinfo.cern.ch/asd/lhc++/htlguide/htl.html.

[17] HBOOK: see http://wwwinfo.cern.ch/asdoc/hbook_html3/hboomain.html.

[18] HEPInventor: see http://home.cern.ch/~couet/HEPInventor_doc/.

[19] HEPExplorer: see http://wwwinfo.cern.ch/asd/lhc++/HepExplorer/index.html.

[20] GEMINI: see http://wwwinfo.cern.ch/asd/lhc++/Gemini/.

[21] MINUIT - Function Minimization and Error Analysis Package, CERN Program Library
Long Writeup D506: http://wwwinfo.cern.ch/asdoc/minuit_html3/minmain.html.

[22] HEPFitting: see http://wwwinfo.cern.ch/asd/lhc++/HepFitting/.

[23] CLHEP - A Class Library for HEP, see
http://wwwinfo.cern.ch/asd/lhc++/clhep/index.html

[24] PAW - the Physics Analysis Workshop - CERN Program Library Long Writeup, Q121

